OSDN Git Service

DO NOT MERGE: fix build try #2 am: 778b6f4902 am: 034bc1799c -s ours
[android-x86/frameworks-native.git] / services / surfaceflinger / SurfaceFlinger.cpp
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19 #include <stdint.h>
20 #include <sys/types.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <dlfcn.h>
24 #include <inttypes.h>
25 #include <stdatomic.h>
26
27 #include <EGL/egl.h>
28
29 #include <cutils/log.h>
30 #include <cutils/properties.h>
31
32 #include <binder/IPCThreadState.h>
33 #include <binder/IServiceManager.h>
34 #include <binder/MemoryHeapBase.h>
35 #include <binder/PermissionCache.h>
36
37 #include <ui/DisplayInfo.h>
38 #include <ui/DisplayStatInfo.h>
39
40 #include <gui/BitTube.h>
41 #include <gui/BufferQueue.h>
42 #include <gui/GuiConfig.h>
43 #include <gui/IDisplayEventConnection.h>
44 #include <gui/Surface.h>
45 #include <gui/GraphicBufferAlloc.h>
46
47 #include <ui/GraphicBufferAllocator.h>
48 #include <ui/PixelFormat.h>
49 #include <ui/UiConfig.h>
50
51 #include <utils/misc.h>
52 #include <utils/String8.h>
53 #include <utils/String16.h>
54 #include <utils/StopWatch.h>
55 #include <utils/Trace.h>
56
57 #include <private/android_filesystem_config.h>
58 #include <private/gui/SyncFeatures.h>
59
60 #include "Client.h"
61 #include "clz.h"
62 #include "Colorizer.h"
63 #include "DdmConnection.h"
64 #include "DisplayDevice.h"
65 #include "DispSync.h"
66 #include "EventControlThread.h"
67 #include "EventThread.h"
68 #include "Layer.h"
69 #include "LayerDim.h"
70 #include "SurfaceFlinger.h"
71
72 #include "DisplayHardware/FramebufferSurface.h"
73 #include "DisplayHardware/HWComposer.h"
74 #include "DisplayHardware/VirtualDisplaySurface.h"
75
76 #include "Effects/Daltonizer.h"
77
78 #include "RenderEngine/RenderEngine.h"
79 #include <cutils/compiler.h>
80
81 #define DISPLAY_COUNT       1
82
83 /*
84  * DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
85  * black pixels.
86  */
87 #define DEBUG_SCREENSHOTS   false
88
89 EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
90
91 namespace android {
92
93 // This is the phase offset in nanoseconds of the software vsync event
94 // relative to the vsync event reported by HWComposer.  The software vsync
95 // event is when SurfaceFlinger and Choreographer-based applications run each
96 // frame.
97 //
98 // This phase offset allows adjustment of the minimum latency from application
99 // wake-up (by Choregographer) time to the time at which the resulting window
100 // image is displayed.  This value may be either positive (after the HW vsync)
101 // or negative (before the HW vsync).  Setting it to 0 will result in a
102 // minimum latency of two vsync periods because the app and SurfaceFlinger
103 // will run just after the HW vsync.  Setting it to a positive number will
104 // result in the minimum latency being:
105 //
106 //     (2 * VSYNC_PERIOD - (vsyncPhaseOffsetNs % VSYNC_PERIOD))
107 //
108 // Note that reducing this latency makes it more likely for the applications
109 // to not have their window content image ready in time.  When this happens
110 // the latency will end up being an additional vsync period, and animations
111 // will hiccup.  Therefore, this latency should be tuned somewhat
112 // conservatively (or at least with awareness of the trade-off being made).
113 static const int64_t vsyncPhaseOffsetNs = VSYNC_EVENT_PHASE_OFFSET_NS;
114
115 // This is the phase offset at which SurfaceFlinger's composition runs.
116 static const int64_t sfVsyncPhaseOffsetNs = SF_VSYNC_EVENT_PHASE_OFFSET_NS;
117
118 // ---------------------------------------------------------------------------
119
120 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
121 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
122 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
123 const String16 sDump("android.permission.DUMP");
124
125 // ---------------------------------------------------------------------------
126
127 SurfaceFlinger::SurfaceFlinger()
128     :   BnSurfaceComposer(),
129         mTransactionFlags(0),
130         mTransactionPending(false),
131         mAnimTransactionPending(false),
132         mLayersRemoved(false),
133         mRepaintEverything(0),
134         mRenderEngine(NULL),
135         mBootTime(systemTime()),
136         mVisibleRegionsDirty(false),
137         mHwWorkListDirty(false),
138         mAnimCompositionPending(false),
139         mDebugRegion(0),
140         mDebugDDMS(0),
141         mDebugDisableHWC(0),
142         mDebugDisableTransformHint(0),
143         mDebugInSwapBuffers(0),
144         mLastSwapBufferTime(0),
145         mDebugInTransaction(0),
146         mLastTransactionTime(0),
147         mBootFinished(false),
148         mPrimaryHWVsyncEnabled(false),
149         mHWVsyncAvailable(false),
150         mDaltonize(false),
151         mHasColorMatrix(false)
152 {
153     ALOGI("SurfaceFlinger is starting");
154
155     // debugging stuff...
156     char value[PROPERTY_VALUE_MAX];
157
158     property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
159     mGpuToCpuSupported = !atoi(value);
160
161     property_get("debug.sf.showupdates", value, "0");
162     mDebugRegion = atoi(value);
163
164     property_get("debug.sf.ddms", value, "0");
165     mDebugDDMS = atoi(value);
166     if (mDebugDDMS) {
167         if (!startDdmConnection()) {
168             // start failed, and DDMS debugging not enabled
169             mDebugDDMS = 0;
170         }
171     }
172     ALOGI_IF(mDebugRegion, "showupdates enabled");
173     ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
174 }
175
176 void SurfaceFlinger::onFirstRef()
177 {
178     mEventQueue.init(this);
179 }
180
181 SurfaceFlinger::~SurfaceFlinger()
182 {
183     EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
184     eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
185     eglTerminate(display);
186 }
187
188 void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
189 {
190     // the window manager died on us. prepare its eulogy.
191
192     // restore initial conditions (default device unblank, etc)
193     initializeDisplays();
194
195     // restart the boot-animation
196     startBootAnim();
197 }
198
199 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
200 {
201     sp<ISurfaceComposerClient> bclient;
202     sp<Client> client(new Client(this));
203     status_t err = client->initCheck();
204     if (err == NO_ERROR) {
205         bclient = client;
206     }
207     return bclient;
208 }
209
210 sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
211         bool secure)
212 {
213     class DisplayToken : public BBinder {
214         sp<SurfaceFlinger> flinger;
215         virtual ~DisplayToken() {
216              // no more references, this display must be terminated
217              Mutex::Autolock _l(flinger->mStateLock);
218              flinger->mCurrentState.displays.removeItem(this);
219              flinger->setTransactionFlags(eDisplayTransactionNeeded);
220          }
221      public:
222         DisplayToken(const sp<SurfaceFlinger>& flinger)
223             : flinger(flinger) {
224         }
225     };
226
227     sp<BBinder> token = new DisplayToken(this);
228
229     Mutex::Autolock _l(mStateLock);
230     DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
231     info.displayName = displayName;
232     info.isSecure = secure;
233     mCurrentState.displays.add(token, info);
234
235     return token;
236 }
237
238 void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
239     Mutex::Autolock _l(mStateLock);
240
241     ssize_t idx = mCurrentState.displays.indexOfKey(display);
242     if (idx < 0) {
243         ALOGW("destroyDisplay: invalid display token");
244         return;
245     }
246
247     const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
248     if (!info.isVirtualDisplay()) {
249         ALOGE("destroyDisplay called for non-virtual display");
250         return;
251     }
252
253     mCurrentState.displays.removeItemsAt(idx);
254     setTransactionFlags(eDisplayTransactionNeeded);
255 }
256
257 void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
258     ALOGW_IF(mBuiltinDisplays[type],
259             "Overwriting display token for display type %d", type);
260     mBuiltinDisplays[type] = new BBinder();
261     DisplayDeviceState info(type);
262     // All non-virtual displays are currently considered secure.
263     info.isSecure = true;
264     mCurrentState.displays.add(mBuiltinDisplays[type], info);
265 }
266
267 sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
268     if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
269         ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
270         return NULL;
271     }
272     return mBuiltinDisplays[id];
273 }
274
275 sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
276 {
277     sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
278     return gba;
279 }
280
281 void SurfaceFlinger::bootFinished()
282 {
283     const nsecs_t now = systemTime();
284     const nsecs_t duration = now - mBootTime;
285     ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
286     mBootFinished = true;
287
288     // wait patiently for the window manager death
289     const String16 name("window");
290     sp<IBinder> window(defaultServiceManager()->getService(name));
291     if (window != 0) {
292         window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
293     }
294
295     // stop boot animation
296     // formerly we would just kill the process, but we now ask it to exit so it
297     // can choose where to stop the animation.
298     property_set("service.bootanim.exit", "1");
299 }
300
301 void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
302     class MessageDestroyGLTexture : public MessageBase {
303         RenderEngine& engine;
304         uint32_t texture;
305     public:
306         MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
307             : engine(engine), texture(texture) {
308         }
309         virtual bool handler() {
310             engine.deleteTextures(1, &texture);
311             return true;
312         }
313     };
314     postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
315 }
316
317 class DispSyncSource : public VSyncSource, private DispSync::Callback {
318 public:
319     DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
320         const char* label) :
321             mValue(0),
322             mPhaseOffset(phaseOffset),
323             mTraceVsync(traceVsync),
324             mVsyncOnLabel(String8::format("VsyncOn-%s", label)),
325             mVsyncEventLabel(String8::format("VSYNC-%s", label)),
326             mDispSync(dispSync) {}
327
328     virtual ~DispSyncSource() {}
329
330     virtual void setVSyncEnabled(bool enable) {
331         // Do NOT lock the mutex here so as to avoid any mutex ordering issues
332         // with locking it in the onDispSyncEvent callback.
333         if (enable) {
334             status_t err = mDispSync->addEventListener(mPhaseOffset,
335                     static_cast<DispSync::Callback*>(this));
336             if (err != NO_ERROR) {
337                 ALOGE("error registering vsync callback: %s (%d)",
338                         strerror(-err), err);
339             }
340             //ATRACE_INT(mVsyncOnLabel.string(), 1);
341         } else {
342             status_t err = mDispSync->removeEventListener(
343                     static_cast<DispSync::Callback*>(this));
344             if (err != NO_ERROR) {
345                 ALOGE("error unregistering vsync callback: %s (%d)",
346                         strerror(-err), err);
347             }
348             //ATRACE_INT(mVsyncOnLabel.string(), 0);
349         }
350     }
351
352     virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
353         Mutex::Autolock lock(mMutex);
354         mCallback = callback;
355     }
356
357 private:
358     virtual void onDispSyncEvent(nsecs_t when) {
359         sp<VSyncSource::Callback> callback;
360         {
361             Mutex::Autolock lock(mMutex);
362             callback = mCallback;
363
364             if (mTraceVsync) {
365                 mValue = (mValue + 1) % 2;
366                 ATRACE_INT(mVsyncEventLabel.string(), mValue);
367             }
368         }
369
370         if (callback != NULL) {
371             callback->onVSyncEvent(when);
372         }
373     }
374
375     int mValue;
376
377     const nsecs_t mPhaseOffset;
378     const bool mTraceVsync;
379     const String8 mVsyncOnLabel;
380     const String8 mVsyncEventLabel;
381
382     DispSync* mDispSync;
383     sp<VSyncSource::Callback> mCallback;
384     Mutex mMutex;
385 };
386
387 void SurfaceFlinger::init() {
388     ALOGI(  "SurfaceFlinger's main thread ready to run. "
389             "Initializing graphics H/W...");
390
391     status_t err;
392     Mutex::Autolock _l(mStateLock);
393
394     // initialize EGL for the default display
395     mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
396     eglInitialize(mEGLDisplay, NULL, NULL);
397
398     // Initialize the H/W composer object.  There may or may not be an
399     // actual hardware composer underneath.
400     mHwc = new HWComposer(this,
401             *static_cast<HWComposer::EventHandler *>(this));
402
403     // get a RenderEngine for the given display / config (can't fail)
404     mRenderEngine = RenderEngine::create(mEGLDisplay, mHwc->getVisualID());
405
406     // retrieve the EGL context that was selected/created
407     mEGLContext = mRenderEngine->getEGLContext();
408
409     LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
410             "couldn't create EGLContext");
411
412     // initialize our non-virtual displays
413     for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
414         DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
415         // set-up the displays that are already connected
416         if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
417             // All non-virtual displays are currently considered secure.
418             bool isSecure = true;
419             createBuiltinDisplayLocked(type);
420             wp<IBinder> token = mBuiltinDisplays[i];
421
422             sp<IGraphicBufferProducer> producer;
423             sp<IGraphicBufferConsumer> consumer;
424             BufferQueue::createBufferQueue(&producer, &consumer,
425                     new GraphicBufferAlloc());
426
427             sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i,
428                     consumer);
429             int32_t hwcId = allocateHwcDisplayId(type);
430             sp<DisplayDevice> hw = new DisplayDevice(this,
431                     type, hwcId, mHwc->getFormat(hwcId), isSecure, token,
432                     fbs, producer,
433                     mRenderEngine->getEGLConfig());
434             if (i > DisplayDevice::DISPLAY_PRIMARY) {
435                 // FIXME: currently we don't get blank/unblank requests
436                 // for displays other than the main display, so we always
437                 // assume a connected display is unblanked.
438                 ALOGD("marking display %zu as acquired/unblanked", i);
439                 hw->setPowerMode(HWC_POWER_MODE_NORMAL);
440             }
441             mDisplays.add(token, hw);
442         }
443     }
444
445     // make the GLContext current so that we can create textures when creating Layers
446     // (which may happens before we render something)
447     getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
448
449     // start the EventThread
450     sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
451             vsyncPhaseOffsetNs, true, "app");
452     mEventThread = new EventThread(vsyncSrc);
453     sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
454             sfVsyncPhaseOffsetNs, true, "sf");
455     mSFEventThread = new EventThread(sfVsyncSrc);
456     mEventQueue.setEventThread(mSFEventThread);
457
458     mEventControlThread = new EventControlThread(this);
459     mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
460
461     // set a fake vsync period if there is no HWComposer
462     if (mHwc->initCheck() != NO_ERROR) {
463         mPrimaryDispSync.setPeriod(16666667);
464     }
465
466     // initialize our drawing state
467     mDrawingState = mCurrentState;
468
469     // set initial conditions (e.g. unblank default device)
470     initializeDisplays();
471
472     // start boot animation
473     startBootAnim();
474 }
475
476 int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
477     return (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) ?
478             type : mHwc->allocateDisplayId();
479 }
480
481 void SurfaceFlinger::startBootAnim() {
482     // start boot animation
483     property_set("service.bootanim.exit", "0");
484     property_set("ctl.start", "bootanim");
485 }
486
487 size_t SurfaceFlinger::getMaxTextureSize() const {
488     return mRenderEngine->getMaxTextureSize();
489 }
490
491 size_t SurfaceFlinger::getMaxViewportDims() const {
492     return mRenderEngine->getMaxViewportDims();
493 }
494
495 // ----------------------------------------------------------------------------
496
497 bool SurfaceFlinger::authenticateSurfaceTexture(
498         const sp<IGraphicBufferProducer>& bufferProducer) const {
499     Mutex::Autolock _l(mStateLock);
500     sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
501     return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
502 }
503
504 status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
505         Vector<DisplayInfo>* configs) {
506     if (configs == NULL) {
507         return BAD_VALUE;
508     }
509
510     if (!display.get())
511         return NAME_NOT_FOUND;
512
513     int32_t type = NAME_NOT_FOUND;
514     for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
515         if (display == mBuiltinDisplays[i]) {
516             type = i;
517             break;
518         }
519     }
520
521     if (type < 0) {
522         return type;
523     }
524
525     // TODO: Not sure if display density should handled by SF any longer
526     class Density {
527         static int getDensityFromProperty(char const* propName) {
528             char property[PROPERTY_VALUE_MAX];
529             int density = 0;
530             if (property_get(propName, property, NULL) > 0) {
531                 density = atoi(property);
532             }
533             return density;
534         }
535     public:
536         static int getEmuDensity() {
537             return getDensityFromProperty("qemu.sf.lcd_density"); }
538         static int getBuildDensity()  {
539             return getDensityFromProperty("ro.sf.lcd_density"); }
540     };
541
542     configs->clear();
543
544     const Vector<HWComposer::DisplayConfig>& hwConfigs =
545             getHwComposer().getConfigs(type);
546     for (size_t c = 0; c < hwConfigs.size(); ++c) {
547         const HWComposer::DisplayConfig& hwConfig = hwConfigs[c];
548         DisplayInfo info = DisplayInfo();
549
550         float xdpi = hwConfig.xdpi;
551         float ydpi = hwConfig.ydpi;
552
553         if (type == DisplayDevice::DISPLAY_PRIMARY) {
554             // The density of the device is provided by a build property
555             float density = Density::getBuildDensity() / 160.0f;
556             if (density == 0) {
557                 // the build doesn't provide a density -- this is wrong!
558                 // use xdpi instead
559                 ALOGE("ro.sf.lcd_density must be defined as a build property");
560                 density = xdpi / 160.0f;
561             }
562             if (Density::getEmuDensity()) {
563                 // if "qemu.sf.lcd_density" is specified, it overrides everything
564                 xdpi = ydpi = density = Density::getEmuDensity();
565                 density /= 160.0f;
566             }
567             info.density = density;
568
569             // TODO: this needs to go away (currently needed only by webkit)
570             sp<const DisplayDevice> hw(getDefaultDisplayDevice());
571             info.orientation = hw->getOrientation();
572         } else {
573             // TODO: where should this value come from?
574             static const int TV_DENSITY = 213;
575             info.density = TV_DENSITY / 160.0f;
576             info.orientation = 0;
577         }
578
579         info.w = hwConfig.width;
580         info.h = hwConfig.height;
581         info.xdpi = xdpi;
582         info.ydpi = ydpi;
583         info.fps = float(1e9 / hwConfig.refresh);
584         info.appVsyncOffset = VSYNC_EVENT_PHASE_OFFSET_NS;
585
586         // This is how far in advance a buffer must be queued for
587         // presentation at a given time.  If you want a buffer to appear
588         // on the screen at time N, you must submit the buffer before
589         // (N - presentationDeadline).
590         //
591         // Normally it's one full refresh period (to give SF a chance to
592         // latch the buffer), but this can be reduced by configuring a
593         // DispSync offset.  Any additional delays introduced by the hardware
594         // composer or panel must be accounted for here.
595         //
596         // We add an additional 1ms to allow for processing time and
597         // differences between the ideal and actual refresh rate.
598         info.presentationDeadline =
599                 hwConfig.refresh - SF_VSYNC_EVENT_PHASE_OFFSET_NS + 1000000;
600
601         // All non-virtual displays are currently considered secure.
602         info.secure = true;
603
604         configs->push_back(info);
605     }
606
607     return NO_ERROR;
608 }
609
610 status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& display,
611         DisplayStatInfo* stats) {
612     if (stats == NULL) {
613         return BAD_VALUE;
614     }
615
616     // FIXME for now we always return stats for the primary display
617     memset(stats, 0, sizeof(*stats));
618     stats->vsyncTime   = mPrimaryDispSync.computeNextRefresh(0);
619     stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
620     return NO_ERROR;
621 }
622
623 int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
624     return getDisplayDevice(display)->getActiveConfig();
625 }
626
627 void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
628     ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
629           this);
630     int32_t type = hw->getDisplayType();
631     int currentMode = hw->getActiveConfig();
632
633     if (mode == currentMode) {
634         ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
635         return;
636     }
637
638     if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
639         ALOGW("Trying to set config for virtual display");
640         return;
641     }
642
643     hw->setActiveConfig(mode);
644     getHwComposer().setActiveConfig(type, mode);
645 }
646
647 status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
648     class MessageSetActiveConfig: public MessageBase {
649         SurfaceFlinger& mFlinger;
650         sp<IBinder> mDisplay;
651         int mMode;
652     public:
653         MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
654                                int mode) :
655             mFlinger(flinger), mDisplay(disp) { mMode = mode; }
656         virtual bool handler() {
657             Vector<DisplayInfo> configs;
658             mFlinger.getDisplayConfigs(mDisplay, &configs);
659             if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
660                 ALOGE("Attempt to set active config = %d for display with %zu configs",
661                         mMode, configs.size());
662             }
663             sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
664             if (hw == NULL) {
665                 ALOGE("Attempt to set active config = %d for null display %p",
666                         mMode, mDisplay.get());
667             } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
668                 ALOGW("Attempt to set active config = %d for virtual display",
669                         mMode);
670             } else {
671                 mFlinger.setActiveConfigInternal(hw, mMode);
672             }
673             return true;
674         }
675     };
676     sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
677     postMessageSync(msg);
678     return NO_ERROR;
679 }
680
681 status_t SurfaceFlinger::clearAnimationFrameStats() {
682     Mutex::Autolock _l(mStateLock);
683     mAnimFrameTracker.clearStats();
684     return NO_ERROR;
685 }
686
687 status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
688     Mutex::Autolock _l(mStateLock);
689     mAnimFrameTracker.getStats(outStats);
690     return NO_ERROR;
691 }
692
693 // ----------------------------------------------------------------------------
694
695 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
696     return mEventThread->createEventConnection();
697 }
698
699 // ----------------------------------------------------------------------------
700
701 void SurfaceFlinger::waitForEvent() {
702     mEventQueue.waitMessage();
703 }
704
705 void SurfaceFlinger::signalTransaction() {
706     mEventQueue.invalidate();
707 }
708
709 void SurfaceFlinger::signalLayerUpdate() {
710     mEventQueue.invalidate();
711 }
712
713 void SurfaceFlinger::signalRefresh() {
714     mEventQueue.refresh();
715 }
716
717 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
718         nsecs_t reltime, uint32_t /* flags */) {
719     return mEventQueue.postMessage(msg, reltime);
720 }
721
722 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
723         nsecs_t reltime, uint32_t /* flags */) {
724     status_t res = mEventQueue.postMessage(msg, reltime);
725     if (res == NO_ERROR) {
726         msg->wait();
727     }
728     return res;
729 }
730
731 void SurfaceFlinger::run() {
732     do {
733         waitForEvent();
734     } while (true);
735 }
736
737 void SurfaceFlinger::enableHardwareVsync() {
738     Mutex::Autolock _l(mHWVsyncLock);
739     if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
740         mPrimaryDispSync.beginResync();
741         //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
742         mEventControlThread->setVsyncEnabled(true);
743         mPrimaryHWVsyncEnabled = true;
744     }
745 }
746
747 void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
748     Mutex::Autolock _l(mHWVsyncLock);
749
750     if (makeAvailable) {
751         mHWVsyncAvailable = true;
752     } else if (!mHWVsyncAvailable) {
753         ALOGE("resyncToHardwareVsync called when HW vsync unavailable");
754         return;
755     }
756
757     const nsecs_t period =
758             getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
759
760     mPrimaryDispSync.reset();
761     mPrimaryDispSync.setPeriod(period);
762
763     if (!mPrimaryHWVsyncEnabled) {
764         mPrimaryDispSync.beginResync();
765         //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
766         mEventControlThread->setVsyncEnabled(true);
767         mPrimaryHWVsyncEnabled = true;
768     }
769 }
770
771 void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
772     Mutex::Autolock _l(mHWVsyncLock);
773     if (mPrimaryHWVsyncEnabled) {
774         //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
775         mEventControlThread->setVsyncEnabled(false);
776         mPrimaryDispSync.endResync();
777         mPrimaryHWVsyncEnabled = false;
778     }
779     if (makeUnavailable) {
780         mHWVsyncAvailable = false;
781     }
782 }
783
784 void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
785     bool needsHwVsync = false;
786
787     { // Scope for the lock
788         Mutex::Autolock _l(mHWVsyncLock);
789         if (type == 0 && mPrimaryHWVsyncEnabled) {
790             needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
791         }
792     }
793
794     if (needsHwVsync) {
795         enableHardwareVsync();
796     } else {
797         disableHardwareVsync(false);
798     }
799 }
800
801 void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
802     if (mEventThread == NULL) {
803         // This is a temporary workaround for b/7145521.  A non-null pointer
804         // does not mean EventThread has finished initializing, so this
805         // is not a correct fix.
806         ALOGW("WARNING: EventThread not started, ignoring hotplug");
807         return;
808     }
809
810     if (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
811         Mutex::Autolock _l(mStateLock);
812         if (connected) {
813             createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
814         } else {
815             mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
816             mBuiltinDisplays[type].clear();
817         }
818         setTransactionFlags(eDisplayTransactionNeeded);
819
820         // Defer EventThread notification until SF has updated mDisplays.
821     }
822 }
823
824 void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
825     ATRACE_CALL();
826     getHwComposer().eventControl(disp, event, enabled);
827 }
828
829 void SurfaceFlinger::onMessageReceived(int32_t what) {
830     ATRACE_CALL();
831     switch (what) {
832         case MessageQueue::TRANSACTION: {
833             handleMessageTransaction();
834             break;
835         }
836         case MessageQueue::INVALIDATE: {
837             bool refreshNeeded = handleMessageTransaction();
838             refreshNeeded |= handleMessageInvalidate();
839             refreshNeeded |= mRepaintEverything;
840             if (refreshNeeded) {
841                 // Signal a refresh if a transaction modified the window state,
842                 // a new buffer was latched, or if HWC has requested a full
843                 // repaint
844                 signalRefresh();
845             }
846             break;
847         }
848         case MessageQueue::REFRESH: {
849             handleMessageRefresh();
850             break;
851         }
852     }
853 }
854
855 bool SurfaceFlinger::handleMessageTransaction() {
856     uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
857     if (transactionFlags) {
858         handleTransaction(transactionFlags);
859         return true;
860     }
861     return false;
862 }
863
864 bool SurfaceFlinger::handleMessageInvalidate() {
865     ATRACE_CALL();
866     return handlePageFlip();
867 }
868
869 void SurfaceFlinger::handleMessageRefresh() {
870     ATRACE_CALL();
871     preComposition();
872     rebuildLayerStacks();
873     setUpHWComposer();
874     doDebugFlashRegions();
875     doComposition();
876     postComposition();
877 }
878
879 void SurfaceFlinger::doDebugFlashRegions()
880 {
881     // is debugging enabled
882     if (CC_LIKELY(!mDebugRegion))
883         return;
884
885     const bool repaintEverything = mRepaintEverything;
886     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
887         const sp<DisplayDevice>& hw(mDisplays[dpy]);
888         if (hw->isDisplayOn()) {
889             // transform the dirty region into this screen's coordinate space
890             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
891             if (!dirtyRegion.isEmpty()) {
892                 // redraw the whole screen
893                 doComposeSurfaces(hw, Region(hw->bounds()));
894
895                 // and draw the dirty region
896                 const int32_t height = hw->getHeight();
897                 RenderEngine& engine(getRenderEngine());
898                 engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
899
900                 hw->compositionComplete();
901                 hw->swapBuffers(getHwComposer());
902             }
903         }
904     }
905
906     postFramebuffer();
907
908     if (mDebugRegion > 1) {
909         usleep(mDebugRegion * 1000);
910     }
911
912     HWComposer& hwc(getHwComposer());
913     if (hwc.initCheck() == NO_ERROR) {
914         status_t err = hwc.prepare();
915         ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
916     }
917 }
918
919 void SurfaceFlinger::preComposition()
920 {
921     bool needExtraInvalidate = false;
922     const LayerVector& layers(mDrawingState.layersSortedByZ);
923     const size_t count = layers.size();
924     for (size_t i=0 ; i<count ; i++) {
925         if (layers[i]->onPreComposition()) {
926             needExtraInvalidate = true;
927         }
928     }
929     if (needExtraInvalidate) {
930         signalLayerUpdate();
931     }
932 }
933
934 void SurfaceFlinger::postComposition()
935 {
936     const LayerVector& layers(mDrawingState.layersSortedByZ);
937     const size_t count = layers.size();
938     for (size_t i=0 ; i<count ; i++) {
939         layers[i]->onPostComposition();
940     }
941
942     const HWComposer& hwc = getHwComposer();
943     sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
944
945     if (presentFence->isValid()) {
946         if (mPrimaryDispSync.addPresentFence(presentFence)) {
947             enableHardwareVsync();
948         } else {
949             disableHardwareVsync(false);
950         }
951     }
952
953     if (kIgnorePresentFences) {
954         const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
955         if (hw->isDisplayOn()) {
956             enableHardwareVsync();
957         }
958     }
959
960     if (mAnimCompositionPending) {
961         mAnimCompositionPending = false;
962
963         if (presentFence->isValid()) {
964             mAnimFrameTracker.setActualPresentFence(presentFence);
965         } else {
966             // The HWC doesn't support present fences, so use the refresh
967             // timestamp instead.
968             nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
969             mAnimFrameTracker.setActualPresentTime(presentTime);
970         }
971         mAnimFrameTracker.advanceFrame();
972     }
973 }
974
975 void SurfaceFlinger::rebuildLayerStacks() {
976     // rebuild the visible layer list per screen
977     if (CC_UNLIKELY(mVisibleRegionsDirty)) {
978         ATRACE_CALL();
979         mVisibleRegionsDirty = false;
980         invalidateHwcGeometry();
981
982         const LayerVector& layers(mDrawingState.layersSortedByZ);
983         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
984             Region opaqueRegion;
985             Region dirtyRegion;
986             Vector< sp<Layer> > layersSortedByZ;
987             const sp<DisplayDevice>& hw(mDisplays[dpy]);
988             const Transform& tr(hw->getTransform());
989             const Rect bounds(hw->getBounds());
990             if (hw->isDisplayOn()) {
991                 SurfaceFlinger::computeVisibleRegions(layers,
992                         hw->getLayerStack(), dirtyRegion, opaqueRegion);
993
994                 const size_t count = layers.size();
995                 for (size_t i=0 ; i<count ; i++) {
996                     const sp<Layer>& layer(layers[i]);
997                     const Layer::State& s(layer->getDrawingState());
998                     if (s.layerStack == hw->getLayerStack()) {
999                         Region drawRegion(tr.transform(
1000                                 layer->visibleNonTransparentRegion));
1001                         drawRegion.andSelf(bounds);
1002                         if (!drawRegion.isEmpty()) {
1003                             layersSortedByZ.add(layer);
1004                         }
1005                     }
1006                 }
1007             }
1008             hw->setVisibleLayersSortedByZ(layersSortedByZ);
1009             hw->undefinedRegion.set(bounds);
1010             hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
1011             hw->dirtyRegion.orSelf(dirtyRegion);
1012         }
1013     }
1014 }
1015
1016 void SurfaceFlinger::setUpHWComposer() {
1017     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1018         bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty();
1019         bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
1020         bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
1021
1022         // If nothing has changed (!dirty), don't recompose.
1023         // If something changed, but we don't currently have any visible layers,
1024         //   and didn't when we last did a composition, then skip it this time.
1025         // The second rule does two things:
1026         // - When all layers are removed from a display, we'll emit one black
1027         //   frame, then nothing more until we get new layers.
1028         // - When a display is created with a private layer stack, we won't
1029         //   emit any black frames until a layer is added to the layer stack.
1030         bool mustRecompose = dirty && !(empty && wasEmpty);
1031
1032         ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
1033                 "dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
1034                 mustRecompose ? "doing" : "skipping",
1035                 dirty ? "+" : "-",
1036                 empty ? "+" : "-",
1037                 wasEmpty ? "+" : "-");
1038
1039         mDisplays[dpy]->beginFrame(mustRecompose);
1040
1041         if (mustRecompose) {
1042             mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
1043         }
1044     }
1045
1046     HWComposer& hwc(getHwComposer());
1047     if (hwc.initCheck() == NO_ERROR) {
1048         // build the h/w work list
1049         if (CC_UNLIKELY(mHwWorkListDirty)) {
1050             mHwWorkListDirty = false;
1051             for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1052                 sp<const DisplayDevice> hw(mDisplays[dpy]);
1053                 const int32_t id = hw->getHwcDisplayId();
1054                 if (id >= 0) {
1055                     const Vector< sp<Layer> >& currentLayers(
1056                         hw->getVisibleLayersSortedByZ());
1057                     const size_t count = currentLayers.size();
1058                     if (hwc.createWorkList(id, count) == NO_ERROR) {
1059                         HWComposer::LayerListIterator cur = hwc.begin(id);
1060                         const HWComposer::LayerListIterator end = hwc.end(id);
1061                         for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1062                             const sp<Layer>& layer(currentLayers[i]);
1063                             layer->setGeometry(hw, *cur);
1064                             if (mDebugDisableHWC || mDebugRegion || mDaltonize || mHasColorMatrix) {
1065                                 cur->setSkip(true);
1066                             }
1067                         }
1068                     }
1069                 }
1070             }
1071         }
1072
1073         // set the per-frame data
1074         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1075             sp<const DisplayDevice> hw(mDisplays[dpy]);
1076             const int32_t id = hw->getHwcDisplayId();
1077             if (id >= 0) {
1078                 const Vector< sp<Layer> >& currentLayers(
1079                     hw->getVisibleLayersSortedByZ());
1080                 const size_t count = currentLayers.size();
1081                 HWComposer::LayerListIterator cur = hwc.begin(id);
1082                 const HWComposer::LayerListIterator end = hwc.end(id);
1083                 for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1084                     /*
1085                      * update the per-frame h/w composer data for each layer
1086                      * and build the transparent region of the FB
1087                      */
1088                     const sp<Layer>& layer(currentLayers[i]);
1089                     layer->setPerFrameData(hw, *cur);
1090                 }
1091             }
1092         }
1093
1094         // If possible, attempt to use the cursor overlay on each display.
1095         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1096             sp<const DisplayDevice> hw(mDisplays[dpy]);
1097             const int32_t id = hw->getHwcDisplayId();
1098             if (id >= 0) {
1099                 const Vector< sp<Layer> >& currentLayers(
1100                     hw->getVisibleLayersSortedByZ());
1101                 const size_t count = currentLayers.size();
1102                 HWComposer::LayerListIterator cur = hwc.begin(id);
1103                 const HWComposer::LayerListIterator end = hwc.end(id);
1104                 for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1105                     const sp<Layer>& layer(currentLayers[i]);
1106                     if (layer->isPotentialCursor()) {
1107                         cur->setIsCursorLayerHint();
1108                         break;
1109                     }
1110                 }
1111             }
1112         }
1113
1114         status_t err = hwc.prepare();
1115         ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
1116
1117         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1118             sp<const DisplayDevice> hw(mDisplays[dpy]);
1119             hw->prepareFrame(hwc);
1120         }
1121     }
1122 }
1123
1124 void SurfaceFlinger::doComposition() {
1125     ATRACE_CALL();
1126     const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
1127     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1128         const sp<DisplayDevice>& hw(mDisplays[dpy]);
1129         if (hw->isDisplayOn()) {
1130             // transform the dirty region into this screen's coordinate space
1131             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
1132
1133             // repaint the framebuffer (if needed)
1134             doDisplayComposition(hw, dirtyRegion);
1135
1136             hw->dirtyRegion.clear();
1137             hw->flip(hw->swapRegion);
1138             hw->swapRegion.clear();
1139         }
1140         // inform the h/w that we're done compositing
1141         hw->compositionComplete();
1142     }
1143     postFramebuffer();
1144 }
1145
1146 void SurfaceFlinger::postFramebuffer()
1147 {
1148     ATRACE_CALL();
1149
1150     const nsecs_t now = systemTime();
1151     mDebugInSwapBuffers = now;
1152
1153     HWComposer& hwc(getHwComposer());
1154     if (hwc.initCheck() == NO_ERROR) {
1155         if (!hwc.supportsFramebufferTarget()) {
1156             // EGL spec says:
1157             //   "surface must be bound to the calling thread's current context,
1158             //    for the current rendering API."
1159             getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
1160         }
1161         hwc.commit();
1162     }
1163
1164     // make the default display current because the VirtualDisplayDevice code cannot
1165     // deal with dequeueBuffer() being called outside of the composition loop; however
1166     // the code below can call glFlush() which is allowed (and does in some case) call
1167     // dequeueBuffer().
1168     getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
1169
1170     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1171         sp<const DisplayDevice> hw(mDisplays[dpy]);
1172         const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1173         hw->onSwapBuffersCompleted(hwc);
1174         const size_t count = currentLayers.size();
1175         int32_t id = hw->getHwcDisplayId();
1176         if (id >=0 && hwc.initCheck() == NO_ERROR) {
1177             HWComposer::LayerListIterator cur = hwc.begin(id);
1178             const HWComposer::LayerListIterator end = hwc.end(id);
1179             for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1180                 currentLayers[i]->onLayerDisplayed(hw, &*cur);
1181             }
1182         } else {
1183             for (size_t i = 0; i < count; i++) {
1184                 currentLayers[i]->onLayerDisplayed(hw, NULL);
1185             }
1186         }
1187     }
1188
1189     mLastSwapBufferTime = systemTime() - now;
1190     mDebugInSwapBuffers = 0;
1191
1192     uint32_t flipCount = getDefaultDisplayDevice()->getPageFlipCount();
1193     if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
1194         logFrameStats();
1195     }
1196 }
1197
1198 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1199 {
1200     ATRACE_CALL();
1201
1202     // here we keep a copy of the drawing state (that is the state that's
1203     // going to be overwritten by handleTransactionLocked()) outside of
1204     // mStateLock so that the side-effects of the State assignment
1205     // don't happen with mStateLock held (which can cause deadlocks).
1206     State drawingState(mDrawingState);
1207
1208     Mutex::Autolock _l(mStateLock);
1209     const nsecs_t now = systemTime();
1210     mDebugInTransaction = now;
1211
1212     // Here we're guaranteed that some transaction flags are set
1213     // so we can call handleTransactionLocked() unconditionally.
1214     // We call getTransactionFlags(), which will also clear the flags,
1215     // with mStateLock held to guarantee that mCurrentState won't change
1216     // until the transaction is committed.
1217
1218     transactionFlags = getTransactionFlags(eTransactionMask);
1219     handleTransactionLocked(transactionFlags);
1220
1221     mLastTransactionTime = systemTime() - now;
1222     mDebugInTransaction = 0;
1223     invalidateHwcGeometry();
1224     // here the transaction has been committed
1225 }
1226
1227 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1228 {
1229     const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1230     const size_t count = currentLayers.size();
1231
1232     /*
1233      * Traversal of the children
1234      * (perform the transaction for each of them if needed)
1235      */
1236
1237     if (transactionFlags & eTraversalNeeded) {
1238         for (size_t i=0 ; i<count ; i++) {
1239             const sp<Layer>& layer(currentLayers[i]);
1240             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1241             if (!trFlags) continue;
1242
1243             const uint32_t flags = layer->doTransaction(0);
1244             if (flags & Layer::eVisibleRegion)
1245                 mVisibleRegionsDirty = true;
1246         }
1247     }
1248
1249     /*
1250      * Perform display own transactions if needed
1251      */
1252
1253     if (transactionFlags & eDisplayTransactionNeeded) {
1254         // here we take advantage of Vector's copy-on-write semantics to
1255         // improve performance by skipping the transaction entirely when
1256         // know that the lists are identical
1257         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1258         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1259         if (!curr.isIdenticalTo(draw)) {
1260             mVisibleRegionsDirty = true;
1261             const size_t cc = curr.size();
1262                   size_t dc = draw.size();
1263
1264             // find the displays that were removed
1265             // (ie: in drawing state but not in current state)
1266             // also handle displays that changed
1267             // (ie: displays that are in both lists)
1268             for (size_t i=0 ; i<dc ; i++) {
1269                 const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1270                 if (j < 0) {
1271                     // in drawing state but not in current state
1272                     if (!draw[i].isMainDisplay()) {
1273                         // Call makeCurrent() on the primary display so we can
1274                         // be sure that nothing associated with this display
1275                         // is current.
1276                         const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1277                         defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
1278                         sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1279                         if (hw != NULL)
1280                             hw->disconnect(getHwComposer());
1281                         if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
1282                             mEventThread->onHotplugReceived(draw[i].type, false);
1283                         mDisplays.removeItem(draw.keyAt(i));
1284                     } else {
1285                         ALOGW("trying to remove the main display");
1286                     }
1287                 } else {
1288                     // this display is in both lists. see if something changed.
1289                     const DisplayDeviceState& state(curr[j]);
1290                     const wp<IBinder>& display(curr.keyAt(j));
1291                     if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1292                         // changing the surface is like destroying and
1293                         // recreating the DisplayDevice, so we just remove it
1294                         // from the drawing state, so that it get re-added
1295                         // below.
1296                         sp<DisplayDevice> hw(getDisplayDevice(display));
1297                         if (hw != NULL)
1298                             hw->disconnect(getHwComposer());
1299                         mDisplays.removeItem(display);
1300                         mDrawingState.displays.removeItemsAt(i);
1301                         dc--; i--;
1302                         // at this point we must loop to the next item
1303                         continue;
1304                     }
1305
1306                     const sp<DisplayDevice> disp(getDisplayDevice(display));
1307                     if (disp != NULL) {
1308                         if (state.layerStack != draw[i].layerStack) {
1309                             disp->setLayerStack(state.layerStack);
1310                         }
1311                         if ((state.orientation != draw[i].orientation)
1312                                 || (state.viewport != draw[i].viewport)
1313                                 || (state.frame != draw[i].frame))
1314                         {
1315                             disp->setProjection(state.orientation,
1316                                     state.viewport, state.frame);
1317                         }
1318                         if (state.width != draw[i].width || state.height != draw[i].height) {
1319                             disp->setDisplaySize(state.width, state.height);
1320                         }
1321                     }
1322                 }
1323             }
1324
1325             // find displays that were added
1326             // (ie: in current state but not in drawing state)
1327             for (size_t i=0 ; i<cc ; i++) {
1328                 if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1329                     const DisplayDeviceState& state(curr[i]);
1330
1331                     sp<DisplaySurface> dispSurface;
1332                     sp<IGraphicBufferProducer> producer;
1333                     sp<IGraphicBufferProducer> bqProducer;
1334                     sp<IGraphicBufferConsumer> bqConsumer;
1335                     BufferQueue::createBufferQueue(&bqProducer, &bqConsumer,
1336                             new GraphicBufferAlloc());
1337
1338                     int32_t hwcDisplayId = -1;
1339                     if (state.isVirtualDisplay()) {
1340                         // Virtual displays without a surface are dormant:
1341                         // they have external state (layer stack, projection,
1342                         // etc.) but no internal state (i.e. a DisplayDevice).
1343                         if (state.surface != NULL) {
1344
1345                             int width = 0;
1346                             int status = state.surface->query(
1347                                     NATIVE_WINDOW_WIDTH, &width);
1348                             ALOGE_IF(status != NO_ERROR,
1349                                     "Unable to query width (%d)", status);
1350                             int height = 0;
1351                             status = state.surface->query(
1352                                     NATIVE_WINDOW_HEIGHT, &height);
1353                             ALOGE_IF(status != NO_ERROR,
1354                                     "Unable to query height (%d)", status);
1355                             if (MAX_VIRTUAL_DISPLAY_DIMENSION == 0 ||
1356                                     (width <= MAX_VIRTUAL_DISPLAY_DIMENSION &&
1357                                      height <= MAX_VIRTUAL_DISPLAY_DIMENSION)) {
1358                                 hwcDisplayId = allocateHwcDisplayId(state.type);
1359                             }
1360
1361                             sp<VirtualDisplaySurface> vds = new VirtualDisplaySurface(
1362                                     *mHwc, hwcDisplayId, state.surface,
1363                                     bqProducer, bqConsumer, state.displayName);
1364
1365                             dispSurface = vds;
1366                             producer = vds;
1367                         }
1368                     } else {
1369                         ALOGE_IF(state.surface!=NULL,
1370                                 "adding a supported display, but rendering "
1371                                 "surface is provided (%p), ignoring it",
1372                                 state.surface.get());
1373                         hwcDisplayId = allocateHwcDisplayId(state.type);
1374                         // for supported (by hwc) displays we provide our
1375                         // own rendering surface
1376                         dispSurface = new FramebufferSurface(*mHwc, state.type,
1377                                 bqConsumer);
1378                         producer = bqProducer;
1379                     }
1380
1381                     const wp<IBinder>& display(curr.keyAt(i));
1382                     if (dispSurface != NULL) {
1383                         sp<DisplayDevice> hw = new DisplayDevice(this,
1384                                 state.type, hwcDisplayId,
1385                                 mHwc->getFormat(hwcDisplayId), state.isSecure,
1386                                 display, dispSurface, producer,
1387                                 mRenderEngine->getEGLConfig());
1388                         hw->setLayerStack(state.layerStack);
1389                         hw->setProjection(state.orientation,
1390                                 state.viewport, state.frame);
1391                         hw->setDisplayName(state.displayName);
1392                         mDisplays.add(display, hw);
1393                         if (state.isVirtualDisplay()) {
1394                             if (hwcDisplayId >= 0) {
1395                                 mHwc->setVirtualDisplayProperties(hwcDisplayId,
1396                                         hw->getWidth(), hw->getHeight(),
1397                                         hw->getFormat());
1398                             }
1399                         } else {
1400                             mEventThread->onHotplugReceived(state.type, true);
1401                         }
1402                     }
1403                 }
1404             }
1405         }
1406     }
1407
1408     if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1409         // The transform hint might have changed for some layers
1410         // (either because a display has changed, or because a layer
1411         // as changed).
1412         //
1413         // Walk through all the layers in currentLayers,
1414         // and update their transform hint.
1415         //
1416         // If a layer is visible only on a single display, then that
1417         // display is used to calculate the hint, otherwise we use the
1418         // default display.
1419         //
1420         // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1421         // the hint is set before we acquire a buffer from the surface texture.
1422         //
1423         // NOTE: layer transactions have taken place already, so we use their
1424         // drawing state. However, SurfaceFlinger's own transaction has not
1425         // happened yet, so we must use the current state layer list
1426         // (soon to become the drawing state list).
1427         //
1428         sp<const DisplayDevice> disp;
1429         uint32_t currentlayerStack = 0;
1430         for (size_t i=0; i<count; i++) {
1431             // NOTE: we rely on the fact that layers are sorted by
1432             // layerStack first (so we don't have to traverse the list
1433             // of displays for every layer).
1434             const sp<Layer>& layer(currentLayers[i]);
1435             uint32_t layerStack = layer->getDrawingState().layerStack;
1436             if (i==0 || currentlayerStack != layerStack) {
1437                 currentlayerStack = layerStack;
1438                 // figure out if this layerstack is mirrored
1439                 // (more than one display) if so, pick the default display,
1440                 // if not, pick the only display it's on.
1441                 disp.clear();
1442                 for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1443                     sp<const DisplayDevice> hw(mDisplays[dpy]);
1444                     if (hw->getLayerStack() == currentlayerStack) {
1445                         if (disp == NULL) {
1446                             disp = hw;
1447                         } else {
1448                             disp = NULL;
1449                             break;
1450                         }
1451                     }
1452                 }
1453             }
1454             if (disp == NULL) {
1455                 // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
1456                 // redraw after transform hint changes. See bug 8508397.
1457
1458                 // could be null when this layer is using a layerStack
1459                 // that is not visible on any display. Also can occur at
1460                 // screen off/on times.
1461                 disp = getDefaultDisplayDevice();
1462             }
1463             layer->updateTransformHint(disp);
1464         }
1465     }
1466
1467
1468     /*
1469      * Perform our own transaction if needed
1470      */
1471
1472     const LayerVector& layers(mDrawingState.layersSortedByZ);
1473     if (currentLayers.size() > layers.size()) {
1474         // layers have been added
1475         mVisibleRegionsDirty = true;
1476     }
1477
1478     // some layers might have been removed, so
1479     // we need to update the regions they're exposing.
1480     if (mLayersRemoved) {
1481         mLayersRemoved = false;
1482         mVisibleRegionsDirty = true;
1483         const size_t count = layers.size();
1484         for (size_t i=0 ; i<count ; i++) {
1485             const sp<Layer>& layer(layers[i]);
1486             if (currentLayers.indexOf(layer) < 0) {
1487                 // this layer is not visible anymore
1488                 // TODO: we could traverse the tree from front to back and
1489                 //       compute the actual visible region
1490                 // TODO: we could cache the transformed region
1491                 const Layer::State& s(layer->getDrawingState());
1492                 Region visibleReg = s.transform.transform(
1493                         Region(Rect(s.active.w, s.active.h)));
1494                 invalidateLayerStack(s.layerStack, visibleReg);
1495             }
1496         }
1497     }
1498
1499     commitTransaction();
1500
1501     updateCursorAsync();
1502 }
1503
1504 void SurfaceFlinger::updateCursorAsync()
1505 {
1506     HWComposer& hwc(getHwComposer());
1507     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1508         sp<const DisplayDevice> hw(mDisplays[dpy]);
1509         const int32_t id = hw->getHwcDisplayId();
1510         if (id < 0) {
1511             continue;
1512         }
1513         const Vector< sp<Layer> >& currentLayers(
1514             hw->getVisibleLayersSortedByZ());
1515         const size_t count = currentLayers.size();
1516         HWComposer::LayerListIterator cur = hwc.begin(id);
1517         const HWComposer::LayerListIterator end = hwc.end(id);
1518         for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1519             if (cur->getCompositionType() != HWC_CURSOR_OVERLAY) {
1520                 continue;
1521             }
1522             const sp<Layer>& layer(currentLayers[i]);
1523             Rect cursorPos = layer->getPosition(hw);
1524             hwc.setCursorPositionAsync(id, cursorPos);
1525             break;
1526         }
1527     }
1528 }
1529
1530 void SurfaceFlinger::commitTransaction()
1531 {
1532     if (!mLayersPendingRemoval.isEmpty()) {
1533         // Notify removed layers now that they can't be drawn from
1534         for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1535             mLayersPendingRemoval[i]->onRemoved();
1536         }
1537         mLayersPendingRemoval.clear();
1538     }
1539
1540     // If this transaction is part of a window animation then the next frame
1541     // we composite should be considered an animation as well.
1542     mAnimCompositionPending = mAnimTransactionPending;
1543
1544     mDrawingState = mCurrentState;
1545     mTransactionPending = false;
1546     mAnimTransactionPending = false;
1547     mTransactionCV.broadcast();
1548 }
1549
1550 void SurfaceFlinger::computeVisibleRegions(
1551         const LayerVector& currentLayers, uint32_t layerStack,
1552         Region& outDirtyRegion, Region& outOpaqueRegion)
1553 {
1554     ATRACE_CALL();
1555
1556     Region aboveOpaqueLayers;
1557     Region aboveCoveredLayers;
1558     Region dirty;
1559
1560     outDirtyRegion.clear();
1561
1562     size_t i = currentLayers.size();
1563     while (i--) {
1564         const sp<Layer>& layer = currentLayers[i];
1565
1566         // start with the whole surface at its current location
1567         const Layer::State& s(layer->getDrawingState());
1568
1569         // only consider the layers on the given layer stack
1570         if (s.layerStack != layerStack)
1571             continue;
1572
1573         /*
1574          * opaqueRegion: area of a surface that is fully opaque.
1575          */
1576         Region opaqueRegion;
1577
1578         /*
1579          * visibleRegion: area of a surface that is visible on screen
1580          * and not fully transparent. This is essentially the layer's
1581          * footprint minus the opaque regions above it.
1582          * Areas covered by a translucent surface are considered visible.
1583          */
1584         Region visibleRegion;
1585
1586         /*
1587          * coveredRegion: area of a surface that is covered by all
1588          * visible regions above it (which includes the translucent areas).
1589          */
1590         Region coveredRegion;
1591
1592         /*
1593          * transparentRegion: area of a surface that is hinted to be completely
1594          * transparent. This is only used to tell when the layer has no visible
1595          * non-transparent regions and can be removed from the layer list. It
1596          * does not affect the visibleRegion of this layer or any layers
1597          * beneath it. The hint may not be correct if apps don't respect the
1598          * SurfaceView restrictions (which, sadly, some don't).
1599          */
1600         Region transparentRegion;
1601
1602
1603         // handle hidden surfaces by setting the visible region to empty
1604         if (CC_LIKELY(layer->isVisible())) {
1605             const bool translucent = !layer->isOpaque(s);
1606             Rect bounds(s.transform.transform(layer->computeBounds()));
1607             visibleRegion.set(bounds);
1608             if (!visibleRegion.isEmpty()) {
1609                 // Remove the transparent area from the visible region
1610                 if (translucent) {
1611                     const Transform tr(s.transform);
1612                     if (tr.transformed()) {
1613                         if (tr.preserveRects()) {
1614                             // transform the transparent region
1615                             transparentRegion = tr.transform(s.activeTransparentRegion);
1616                         } else {
1617                             // transformation too complex, can't do the
1618                             // transparent region optimization.
1619                             transparentRegion.clear();
1620                         }
1621                     } else {
1622                         transparentRegion = s.activeTransparentRegion;
1623                     }
1624                 }
1625
1626                 // compute the opaque region
1627                 const int32_t layerOrientation = s.transform.getOrientation();
1628                 if (s.alpha==255 && !translucent &&
1629                         ((layerOrientation & Transform::ROT_INVALID) == false)) {
1630                     // the opaque region is the layer's footprint
1631                     opaqueRegion = visibleRegion;
1632                 }
1633             }
1634         }
1635
1636         // Clip the covered region to the visible region
1637         coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1638
1639         // Update aboveCoveredLayers for next (lower) layer
1640         aboveCoveredLayers.orSelf(visibleRegion);
1641
1642         // subtract the opaque region covered by the layers above us
1643         visibleRegion.subtractSelf(aboveOpaqueLayers);
1644
1645         // compute this layer's dirty region
1646         if (layer->contentDirty) {
1647             // we need to invalidate the whole region
1648             dirty = visibleRegion;
1649             // as well, as the old visible region
1650             dirty.orSelf(layer->visibleRegion);
1651             layer->contentDirty = false;
1652         } else {
1653             /* compute the exposed region:
1654              *   the exposed region consists of two components:
1655              *   1) what's VISIBLE now and was COVERED before
1656              *   2) what's EXPOSED now less what was EXPOSED before
1657              *
1658              * note that (1) is conservative, we start with the whole
1659              * visible region but only keep what used to be covered by
1660              * something -- which mean it may have been exposed.
1661              *
1662              * (2) handles areas that were not covered by anything but got
1663              * exposed because of a resize.
1664              */
1665             const Region newExposed = visibleRegion - coveredRegion;
1666             const Region oldVisibleRegion = layer->visibleRegion;
1667             const Region oldCoveredRegion = layer->coveredRegion;
1668             const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1669             dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1670         }
1671         dirty.subtractSelf(aboveOpaqueLayers);
1672
1673         // accumulate to the screen dirty region
1674         outDirtyRegion.orSelf(dirty);
1675
1676         // Update aboveOpaqueLayers for next (lower) layer
1677         aboveOpaqueLayers.orSelf(opaqueRegion);
1678
1679         // Store the visible region in screen space
1680         layer->setVisibleRegion(visibleRegion);
1681         layer->setCoveredRegion(coveredRegion);
1682         layer->setVisibleNonTransparentRegion(
1683                 visibleRegion.subtract(transparentRegion));
1684     }
1685
1686     outOpaqueRegion = aboveOpaqueLayers;
1687 }
1688
1689 void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1690         const Region& dirty) {
1691     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1692         const sp<DisplayDevice>& hw(mDisplays[dpy]);
1693         if (hw->getLayerStack() == layerStack) {
1694             hw->dirtyRegion.orSelf(dirty);
1695         }
1696     }
1697 }
1698
1699 bool SurfaceFlinger::handlePageFlip()
1700 {
1701     Region dirtyRegion;
1702
1703     bool visibleRegions = false;
1704     const LayerVector& layers(mDrawingState.layersSortedByZ);
1705     bool frameQueued = false;
1706
1707     // Store the set of layers that need updates. This set must not change as
1708     // buffers are being latched, as this could result in a deadlock.
1709     // Example: Two producers share the same command stream and:
1710     // 1.) Layer 0 is latched
1711     // 2.) Layer 0 gets a new frame
1712     // 2.) Layer 1 gets a new frame
1713     // 3.) Layer 1 is latched.
1714     // Display is now waiting on Layer 1's frame, which is behind layer 0's
1715     // second frame. But layer 0's second frame could be waiting on display.
1716     Vector<Layer*> layersWithQueuedFrames;
1717     for (size_t i = 0, count = layers.size(); i<count ; i++) {
1718         const sp<Layer>& layer(layers[i]);
1719         if (layer->hasQueuedFrame()) {
1720             frameQueued = true;
1721             if (layer->shouldPresentNow(mPrimaryDispSync)) {
1722                 layersWithQueuedFrames.push_back(layer.get());
1723             }
1724         }
1725     }
1726     for (size_t i = 0, count = layersWithQueuedFrames.size() ; i<count ; i++) {
1727         Layer* layer = layersWithQueuedFrames[i];
1728         const Region dirty(layer->latchBuffer(visibleRegions));
1729         const Layer::State& s(layer->getDrawingState());
1730         invalidateLayerStack(s.layerStack, dirty);
1731     }
1732
1733     mVisibleRegionsDirty |= visibleRegions;
1734
1735     // If we will need to wake up at some time in the future to deal with a
1736     // queued frame that shouldn't be displayed during this vsync period, wake
1737     // up during the next vsync period to check again.
1738     if (frameQueued && layersWithQueuedFrames.empty()) {
1739         signalLayerUpdate();
1740     }
1741
1742     // Only continue with the refresh if there is actually new work to do
1743     return !layersWithQueuedFrames.empty();
1744 }
1745
1746 void SurfaceFlinger::invalidateHwcGeometry()
1747 {
1748     mHwWorkListDirty = true;
1749 }
1750
1751
1752 void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1753         const Region& inDirtyRegion)
1754 {
1755     // We only need to actually compose the display if:
1756     // 1) It is being handled by hardware composer, which may need this to
1757     //    keep its virtual display state machine in sync, or
1758     // 2) There is work to be done (the dirty region isn't empty)
1759     bool isHwcDisplay = hw->getHwcDisplayId() >= 0;
1760     if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
1761         return;
1762     }
1763
1764     Region dirtyRegion(inDirtyRegion);
1765
1766     // compute the invalid region
1767     hw->swapRegion.orSelf(dirtyRegion);
1768
1769     uint32_t flags = hw->getFlags();
1770     if (flags & DisplayDevice::SWAP_RECTANGLE) {
1771         // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1772         // takes a rectangle, we must make sure to update that whole
1773         // rectangle in that case
1774         dirtyRegion.set(hw->swapRegion.bounds());
1775     } else {
1776         if (flags & DisplayDevice::PARTIAL_UPDATES) {
1777             // We need to redraw the rectangle that will be updated
1778             // (pushed to the framebuffer).
1779             // This is needed because PARTIAL_UPDATES only takes one
1780             // rectangle instead of a region (see DisplayDevice::flip())
1781             dirtyRegion.set(hw->swapRegion.bounds());
1782         } else {
1783             // we need to redraw everything (the whole screen)
1784             dirtyRegion.set(hw->bounds());
1785             hw->swapRegion = dirtyRegion;
1786         }
1787     }
1788
1789     if (CC_LIKELY(!mDaltonize && !mHasColorMatrix)) {
1790         if (!doComposeSurfaces(hw, dirtyRegion)) return;
1791     } else {
1792         RenderEngine& engine(getRenderEngine());
1793         mat4 colorMatrix = mColorMatrix;
1794         if (mDaltonize) {
1795             colorMatrix = colorMatrix * mDaltonizer();
1796         }
1797         engine.beginGroup(colorMatrix);
1798         doComposeSurfaces(hw, dirtyRegion);
1799         engine.endGroup();
1800     }
1801
1802     // update the swap region and clear the dirty region
1803     hw->swapRegion.orSelf(dirtyRegion);
1804
1805     // swap buffers (presentation)
1806     hw->swapBuffers(getHwComposer());
1807 }
1808
1809 bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1810 {
1811     RenderEngine& engine(getRenderEngine());
1812     const int32_t id = hw->getHwcDisplayId();
1813     HWComposer& hwc(getHwComposer());
1814     HWComposer::LayerListIterator cur = hwc.begin(id);
1815     const HWComposer::LayerListIterator end = hwc.end(id);
1816
1817     bool hasGlesComposition = hwc.hasGlesComposition(id);
1818     if (hasGlesComposition) {
1819         if (!hw->makeCurrent(mEGLDisplay, mEGLContext)) {
1820             ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
1821                   hw->getDisplayName().string());
1822             eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
1823             if(!getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext)) {
1824               ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
1825             }
1826             return false;
1827         }
1828
1829         // Never touch the framebuffer if we don't have any framebuffer layers
1830         const bool hasHwcComposition = hwc.hasHwcComposition(id);
1831         if (hasHwcComposition) {
1832             // when using overlays, we assume a fully transparent framebuffer
1833             // NOTE: we could reduce how much we need to clear, for instance
1834             // remove where there are opaque FB layers. however, on some
1835             // GPUs doing a "clean slate" clear might be more efficient.
1836             // We'll revisit later if needed.
1837             engine.clearWithColor(0, 0, 0, 0);
1838         } else {
1839             // we start with the whole screen area
1840             const Region bounds(hw->getBounds());
1841
1842             // we remove the scissor part
1843             // we're left with the letterbox region
1844             // (common case is that letterbox ends-up being empty)
1845             const Region letterbox(bounds.subtract(hw->getScissor()));
1846
1847             // compute the area to clear
1848             Region region(hw->undefinedRegion.merge(letterbox));
1849
1850             // but limit it to the dirty region
1851             region.andSelf(dirty);
1852
1853             // screen is already cleared here
1854             if (!region.isEmpty()) {
1855                 // can happen with SurfaceView
1856                 drawWormhole(hw, region);
1857             }
1858         }
1859
1860         if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1861             // just to be on the safe side, we don't set the
1862             // scissor on the main display. It should never be needed
1863             // anyways (though in theory it could since the API allows it).
1864             const Rect& bounds(hw->getBounds());
1865             const Rect& scissor(hw->getScissor());
1866             if (scissor != bounds) {
1867                 // scissor doesn't match the screen's dimensions, so we
1868                 // need to clear everything outside of it and enable
1869                 // the GL scissor so we don't draw anything where we shouldn't
1870
1871                 // enable scissor for this frame
1872                 const uint32_t height = hw->getHeight();
1873                 engine.setScissor(scissor.left, height - scissor.bottom,
1874                         scissor.getWidth(), scissor.getHeight());
1875             }
1876         }
1877     }
1878
1879     /*
1880      * and then, render the layers targeted at the framebuffer
1881      */
1882
1883     const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1884     const size_t count = layers.size();
1885     const Transform& tr = hw->getTransform();
1886     if (cur != end) {
1887         // we're using h/w composer
1888         for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1889             const sp<Layer>& layer(layers[i]);
1890             const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1891             if (!clip.isEmpty()) {
1892                 switch (cur->getCompositionType()) {
1893                     case HWC_CURSOR_OVERLAY:
1894                     case HWC_OVERLAY: {
1895                         const Layer::State& state(layer->getDrawingState());
1896                         if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1897                                 && i
1898                                 && layer->isOpaque(state) && (state.alpha == 0xFF)
1899                                 && hasGlesComposition) {
1900                             // never clear the very first layer since we're
1901                             // guaranteed the FB is already cleared
1902                             layer->clearWithOpenGL(hw, clip);
1903                         }
1904                         break;
1905                     }
1906                     case HWC_FRAMEBUFFER: {
1907                         layer->draw(hw, clip);
1908                         break;
1909                     }
1910                     case HWC_FRAMEBUFFER_TARGET: {
1911                         // this should not happen as the iterator shouldn't
1912                         // let us get there.
1913                         ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%zu)", i);
1914                         break;
1915                     }
1916                 }
1917             }
1918             layer->setAcquireFence(hw, *cur);
1919         }
1920     } else {
1921         // we're not using h/w composer
1922         for (size_t i=0 ; i<count ; ++i) {
1923             const sp<Layer>& layer(layers[i]);
1924             const Region clip(dirty.intersect(
1925                     tr.transform(layer->visibleRegion)));
1926             if (!clip.isEmpty()) {
1927                 layer->draw(hw, clip);
1928             }
1929         }
1930     }
1931
1932     // disable scissor at the end of the frame
1933     engine.disableScissor();
1934     return true;
1935 }
1936
1937 void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw, const Region& region) const {
1938     const int32_t height = hw->getHeight();
1939     RenderEngine& engine(getRenderEngine());
1940     engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
1941 }
1942
1943 void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1944         const sp<IBinder>& handle,
1945         const sp<IGraphicBufferProducer>& gbc,
1946         const sp<Layer>& lbc)
1947 {
1948     // attach this layer to the client
1949     client->attachLayer(handle, lbc);
1950
1951     // add this layer to the current state list
1952     Mutex::Autolock _l(mStateLock);
1953     mCurrentState.layersSortedByZ.add(lbc);
1954     mGraphicBufferProducerList.add(gbc->asBinder());
1955 }
1956
1957 status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer) {
1958     Mutex::Autolock _l(mStateLock);
1959     ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1960     if (index >= 0) {
1961         mLayersPendingRemoval.push(layer);
1962         mLayersRemoved = true;
1963         setTransactionFlags(eTransactionNeeded);
1964         return NO_ERROR;
1965     }
1966     return status_t(index);
1967 }
1968
1969 uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t /* flags */) {
1970     return android_atomic_release_load(&mTransactionFlags);
1971 }
1972
1973 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
1974     return android_atomic_and(~flags, &mTransactionFlags) & flags;
1975 }
1976
1977 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
1978     uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1979     if ((old & flags)==0) { // wake the server up
1980         signalTransaction();
1981     }
1982     return old;
1983 }
1984
1985 void SurfaceFlinger::setTransactionState(
1986         const Vector<ComposerState>& state,
1987         const Vector<DisplayState>& displays,
1988         uint32_t flags)
1989 {
1990     ATRACE_CALL();
1991     Mutex::Autolock _l(mStateLock);
1992     uint32_t transactionFlags = 0;
1993
1994     if (flags & eAnimation) {
1995         // For window updates that are part of an animation we must wait for
1996         // previous animation "frames" to be handled.
1997         while (mAnimTransactionPending) {
1998             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1999             if (CC_UNLIKELY(err != NO_ERROR)) {
2000                 // just in case something goes wrong in SF, return to the
2001                 // caller after a few seconds.
2002                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
2003                         "waiting for previous animation frame");
2004                 mAnimTransactionPending = false;
2005                 break;
2006             }
2007         }
2008     }
2009
2010     size_t count = displays.size();
2011     for (size_t i=0 ; i<count ; i++) {
2012         const DisplayState& s(displays[i]);
2013         transactionFlags |= setDisplayStateLocked(s);
2014     }
2015
2016     count = state.size();
2017     for (size_t i=0 ; i<count ; i++) {
2018         const ComposerState& s(state[i]);
2019         // Here we need to check that the interface we're given is indeed
2020         // one of our own. A malicious client could give us a NULL
2021         // IInterface, or one of its own or even one of our own but a
2022         // different type. All these situations would cause us to crash.
2023         //
2024         // NOTE: it would be better to use RTTI as we could directly check
2025         // that we have a Client*. however, RTTI is disabled in Android.
2026         if (s.client != NULL) {
2027             sp<IBinder> binder = s.client->asBinder();
2028             if (binder != NULL) {
2029                 String16 desc(binder->getInterfaceDescriptor());
2030                 if (desc == ISurfaceComposerClient::descriptor) {
2031                     sp<Client> client( static_cast<Client *>(s.client.get()) );
2032                     transactionFlags |= setClientStateLocked(client, s.state);
2033                 }
2034             }
2035         }
2036     }
2037
2038     if (transactionFlags) {
2039         // this triggers the transaction
2040         setTransactionFlags(transactionFlags);
2041
2042         // if this is a synchronous transaction, wait for it to take effect
2043         // before returning.
2044         if (flags & eSynchronous) {
2045             mTransactionPending = true;
2046         }
2047         if (flags & eAnimation) {
2048             mAnimTransactionPending = true;
2049         }
2050         while (mTransactionPending) {
2051             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
2052             if (CC_UNLIKELY(err != NO_ERROR)) {
2053                 // just in case something goes wrong in SF, return to the
2054                 // called after a few seconds.
2055                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
2056                 mTransactionPending = false;
2057                 break;
2058             }
2059         }
2060     }
2061 }
2062
2063 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
2064 {
2065     ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
2066     if (dpyIdx < 0)
2067         return 0;
2068
2069     uint32_t flags = 0;
2070     DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
2071     if (disp.isValid()) {
2072         const uint32_t what = s.what;
2073         if (what & DisplayState::eSurfaceChanged) {
2074             if (disp.surface->asBinder() != s.surface->asBinder()) {
2075                 disp.surface = s.surface;
2076                 flags |= eDisplayTransactionNeeded;
2077             }
2078         }
2079         if (what & DisplayState::eLayerStackChanged) {
2080             if (disp.layerStack != s.layerStack) {
2081                 disp.layerStack = s.layerStack;
2082                 flags |= eDisplayTransactionNeeded;
2083             }
2084         }
2085         if (what & DisplayState::eDisplayProjectionChanged) {
2086             if (disp.orientation != s.orientation) {
2087                 disp.orientation = s.orientation;
2088                 flags |= eDisplayTransactionNeeded;
2089             }
2090             if (disp.frame != s.frame) {
2091                 disp.frame = s.frame;
2092                 flags |= eDisplayTransactionNeeded;
2093             }
2094             if (disp.viewport != s.viewport) {
2095                 disp.viewport = s.viewport;
2096                 flags |= eDisplayTransactionNeeded;
2097             }
2098         }
2099         if (what & DisplayState::eDisplaySizeChanged) {
2100             if (disp.width != s.width) {
2101                 disp.width = s.width;
2102                 flags |= eDisplayTransactionNeeded;
2103             }
2104             if (disp.height != s.height) {
2105                 disp.height = s.height;
2106                 flags |= eDisplayTransactionNeeded;
2107             }
2108         }
2109     }
2110     return flags;
2111 }
2112
2113 uint32_t SurfaceFlinger::setClientStateLocked(
2114         const sp<Client>& client,
2115         const layer_state_t& s)
2116 {
2117     uint32_t flags = 0;
2118     sp<Layer> layer(client->getLayerUser(s.surface));
2119     if (layer != 0) {
2120         const uint32_t what = s.what;
2121         if (what & layer_state_t::ePositionChanged) {
2122             if (layer->setPosition(s.x, s.y))
2123                 flags |= eTraversalNeeded;
2124         }
2125         if (what & layer_state_t::eLayerChanged) {
2126             // NOTE: index needs to be calculated before we update the state
2127             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
2128             if (layer->setLayer(s.z)) {
2129                 mCurrentState.layersSortedByZ.removeAt(idx);
2130                 mCurrentState.layersSortedByZ.add(layer);
2131                 // we need traversal (state changed)
2132                 // AND transaction (list changed)
2133                 flags |= eTransactionNeeded|eTraversalNeeded;
2134             }
2135         }
2136         if (what & layer_state_t::eSizeChanged) {
2137             if (layer->setSize(s.w, s.h)) {
2138                 flags |= eTraversalNeeded;
2139             }
2140         }
2141         if (what & layer_state_t::eAlphaChanged) {
2142             if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
2143                 flags |= eTraversalNeeded;
2144         }
2145         if (what & layer_state_t::eMatrixChanged) {
2146             if (layer->setMatrix(s.matrix))
2147                 flags |= eTraversalNeeded;
2148         }
2149         if (what & layer_state_t::eTransparentRegionChanged) {
2150             if (layer->setTransparentRegionHint(s.transparentRegion))
2151                 flags |= eTraversalNeeded;
2152         }
2153         if ((what & layer_state_t::eVisibilityChanged) ||
2154                 (what & layer_state_t::eOpacityChanged)) {
2155             // TODO: should we just use an eFlagsChanged for this?
2156             if (layer->setFlags(s.flags, s.mask))
2157                 flags |= eTraversalNeeded;
2158         }
2159         if (what & layer_state_t::eCropChanged) {
2160             if (layer->setCrop(s.crop))
2161                 flags |= eTraversalNeeded;
2162         }
2163         if (what & layer_state_t::eLayerStackChanged) {
2164             // NOTE: index needs to be calculated before we update the state
2165             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
2166             if (layer->setLayerStack(s.layerStack)) {
2167                 mCurrentState.layersSortedByZ.removeAt(idx);
2168                 mCurrentState.layersSortedByZ.add(layer);
2169                 // we need traversal (state changed)
2170                 // AND transaction (list changed)
2171                 flags |= eTransactionNeeded|eTraversalNeeded;
2172             }
2173         }
2174     }
2175     return flags;
2176 }
2177
2178 status_t SurfaceFlinger::createLayer(
2179         const String8& name,
2180         const sp<Client>& client,
2181         uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
2182         sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
2183 {
2184     //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
2185     if (int32_t(w|h) < 0) {
2186         ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
2187                 int(w), int(h));
2188         return BAD_VALUE;
2189     }
2190
2191     status_t result = NO_ERROR;
2192
2193     sp<Layer> layer;
2194
2195     switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
2196         case ISurfaceComposerClient::eFXSurfaceNormal:
2197             result = createNormalLayer(client,
2198                     name, w, h, flags, format,
2199                     handle, gbp, &layer);
2200             break;
2201         case ISurfaceComposerClient::eFXSurfaceDim:
2202             result = createDimLayer(client,
2203                     name, w, h, flags,
2204                     handle, gbp, &layer);
2205             break;
2206         default:
2207             result = BAD_VALUE;
2208             break;
2209     }
2210
2211     if (result == NO_ERROR) {
2212         addClientLayer(client, *handle, *gbp, layer);
2213         setTransactionFlags(eTransactionNeeded);
2214     }
2215     return result;
2216 }
2217
2218 status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
2219         const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
2220         sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
2221 {
2222     // initialize the surfaces
2223     switch (format) {
2224     case PIXEL_FORMAT_TRANSPARENT:
2225     case PIXEL_FORMAT_TRANSLUCENT:
2226         format = PIXEL_FORMAT_RGBA_8888;
2227         break;
2228     case PIXEL_FORMAT_OPAQUE:
2229         format = PIXEL_FORMAT_RGBX_8888;
2230         break;
2231     }
2232
2233     *outLayer = new Layer(this, client, name, w, h, flags);
2234     status_t err = (*outLayer)->setBuffers(w, h, format, flags);
2235     if (err == NO_ERROR) {
2236         *handle = (*outLayer)->getHandle();
2237         *gbp = (*outLayer)->getProducer();
2238     }
2239
2240     ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
2241     return err;
2242 }
2243
2244 status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
2245         const String8& name, uint32_t w, uint32_t h, uint32_t flags,
2246         sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
2247 {
2248     *outLayer = new LayerDim(this, client, name, w, h, flags);
2249     *handle = (*outLayer)->getHandle();
2250     *gbp = (*outLayer)->getProducer();
2251     return NO_ERROR;
2252 }
2253
2254 status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
2255 {
2256     // called by the window manager when it wants to remove a Layer
2257     status_t err = NO_ERROR;
2258     sp<Layer> l(client->getLayerUser(handle));
2259     if (l != NULL) {
2260         err = removeLayer(l);
2261         ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2262                 "error removing layer=%p (%s)", l.get(), strerror(-err));
2263     }
2264     return err;
2265 }
2266
2267 status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
2268 {
2269     // called by ~LayerCleaner() when all references to the IBinder (handle)
2270     // are gone
2271     status_t err = NO_ERROR;
2272     sp<Layer> l(layer.promote());
2273     if (l != NULL) {
2274         err = removeLayer(l);
2275         ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2276                 "error removing layer=%p (%s)", l.get(), strerror(-err));
2277     }
2278     return err;
2279 }
2280
2281 // ---------------------------------------------------------------------------
2282
2283 void SurfaceFlinger::onInitializeDisplays() {
2284     // reset screen orientation and use primary layer stack
2285     Vector<ComposerState> state;
2286     Vector<DisplayState> displays;
2287     DisplayState d;
2288     d.what = DisplayState::eDisplayProjectionChanged |
2289              DisplayState::eLayerStackChanged;
2290     d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2291     d.layerStack = 0;
2292     d.orientation = DisplayState::eOrientationDefault;
2293     d.frame.makeInvalid();
2294     d.viewport.makeInvalid();
2295     d.width = 0;
2296     d.height = 0;
2297     displays.add(d);
2298     setTransactionState(state, displays, 0);
2299     setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL);
2300
2301     const nsecs_t period =
2302             getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2303     mAnimFrameTracker.setDisplayRefreshPeriod(period);
2304 }
2305
2306 void SurfaceFlinger::initializeDisplays() {
2307     class MessageScreenInitialized : public MessageBase {
2308         SurfaceFlinger* flinger;
2309     public:
2310         MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2311         virtual bool handler() {
2312             flinger->onInitializeDisplays();
2313             return true;
2314         }
2315     };
2316     sp<MessageBase> msg = new MessageScreenInitialized(this);
2317     postMessageAsync(msg);  // we may be called from main thread, use async message
2318 }
2319
2320 void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
2321         int mode) {
2322     ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
2323             this);
2324     int32_t type = hw->getDisplayType();
2325     int currentMode = hw->getPowerMode();
2326
2327     if (mode == currentMode) {
2328         ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
2329         return;
2330     }
2331
2332     hw->setPowerMode(mode);
2333     if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
2334         ALOGW("Trying to set power mode for virtual display");
2335         return;
2336     }
2337
2338     if (currentMode == HWC_POWER_MODE_OFF) {
2339         getHwComposer().setPowerMode(type, mode);
2340         if (type == DisplayDevice::DISPLAY_PRIMARY) {
2341             // FIXME: eventthread only knows about the main display right now
2342             mEventThread->onScreenAcquired();
2343             resyncToHardwareVsync(true);
2344         }
2345
2346         mVisibleRegionsDirty = true;
2347         repaintEverything();
2348     } else if (mode == HWC_POWER_MODE_OFF) {
2349         if (type == DisplayDevice::DISPLAY_PRIMARY) {
2350             disableHardwareVsync(true); // also cancels any in-progress resync
2351
2352             // FIXME: eventthread only knows about the main display right now
2353             mEventThread->onScreenReleased();
2354         }
2355
2356         getHwComposer().setPowerMode(type, mode);
2357         mVisibleRegionsDirty = true;
2358         // from this point on, SF will stop drawing on this display
2359     } else {
2360         getHwComposer().setPowerMode(type, mode);
2361     }
2362 }
2363
2364 void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) {
2365     class MessageSetPowerMode: public MessageBase {
2366         SurfaceFlinger& mFlinger;
2367         sp<IBinder> mDisplay;
2368         int mMode;
2369     public:
2370         MessageSetPowerMode(SurfaceFlinger& flinger,
2371                 const sp<IBinder>& disp, int mode) : mFlinger(flinger),
2372                     mDisplay(disp) { mMode = mode; }
2373         virtual bool handler() {
2374             sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2375             if (hw == NULL) {
2376                 ALOGE("Attempt to set power mode = %d for null display %p",
2377                         mMode, mDisplay.get());
2378             } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
2379                 ALOGW("Attempt to set power mode = %d for virtual display",
2380                         mMode);
2381             } else {
2382                 mFlinger.setPowerModeInternal(hw, mMode);
2383             }
2384             return true;
2385         }
2386     };
2387     sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode);
2388     postMessageSync(msg);
2389 }
2390
2391 // ---------------------------------------------------------------------------
2392
2393 status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2394 {
2395     String8 result;
2396
2397     IPCThreadState* ipc = IPCThreadState::self();
2398     const int pid = ipc->getCallingPid();
2399     const int uid = ipc->getCallingUid();
2400     if ((uid != AID_SHELL) &&
2401             !PermissionCache::checkPermission(sDump, pid, uid)) {
2402         result.appendFormat("Permission Denial: "
2403                 "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
2404     } else {
2405         // Try to get the main lock, but don't insist if we can't
2406         // (this would indicate SF is stuck, but we want to be able to
2407         // print something in dumpsys).
2408         int retry = 3;
2409         while (mStateLock.tryLock()<0 && --retry>=0) {
2410             usleep(1000000);
2411         }
2412         const bool locked(retry >= 0);
2413         if (!locked) {
2414             result.append(
2415                     "SurfaceFlinger appears to be unresponsive, "
2416                     "dumping anyways (no locks held)\n");
2417         }
2418
2419         bool dumpAll = true;
2420         size_t index = 0;
2421         size_t numArgs = args.size();
2422         if (numArgs) {
2423             if ((index < numArgs) &&
2424                     (args[index] == String16("--list"))) {
2425                 index++;
2426                 listLayersLocked(args, index, result);
2427                 dumpAll = false;
2428             }
2429
2430             if ((index < numArgs) &&
2431                     (args[index] == String16("--latency"))) {
2432                 index++;
2433                 dumpStatsLocked(args, index, result);
2434                 dumpAll = false;
2435             }
2436
2437             if ((index < numArgs) &&
2438                     (args[index] == String16("--latency-clear"))) {
2439                 index++;
2440                 clearStatsLocked(args, index, result);
2441                 dumpAll = false;
2442             }
2443
2444             if ((index < numArgs) &&
2445                     (args[index] == String16("--dispsync"))) {
2446                 index++;
2447                 mPrimaryDispSync.dump(result);
2448                 dumpAll = false;
2449             }
2450         }
2451
2452         if (dumpAll) {
2453             dumpAllLocked(args, index, result);
2454         }
2455
2456         if (locked) {
2457             mStateLock.unlock();
2458         }
2459     }
2460     write(fd, result.string(), result.size());
2461     return NO_ERROR;
2462 }
2463
2464 void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */,
2465         size_t& /* index */, String8& result) const
2466 {
2467     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2468     const size_t count = currentLayers.size();
2469     for (size_t i=0 ; i<count ; i++) {
2470         const sp<Layer>& layer(currentLayers[i]);
2471         result.appendFormat("%s\n", layer->getName().string());
2472     }
2473 }
2474
2475 void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2476         String8& result) const
2477 {
2478     String8 name;
2479     if (index < args.size()) {
2480         name = String8(args[index]);
2481         index++;
2482     }
2483
2484     const nsecs_t period =
2485             getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2486     result.appendFormat("%" PRId64 "\n", period);
2487
2488     if (name.isEmpty()) {
2489         mAnimFrameTracker.dumpStats(result);
2490     } else {
2491         const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2492         const size_t count = currentLayers.size();
2493         for (size_t i=0 ; i<count ; i++) {
2494             const sp<Layer>& layer(currentLayers[i]);
2495             if (name == layer->getName()) {
2496                 layer->dumpFrameStats(result);
2497             }
2498         }
2499     }
2500 }
2501
2502 void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2503         String8& /* result */)
2504 {
2505     String8 name;
2506     if (index < args.size()) {
2507         name = String8(args[index]);
2508         index++;
2509     }
2510
2511     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2512     const size_t count = currentLayers.size();
2513     for (size_t i=0 ; i<count ; i++) {
2514         const sp<Layer>& layer(currentLayers[i]);
2515         if (name.isEmpty() || (name == layer->getName())) {
2516             layer->clearFrameStats();
2517         }
2518     }
2519
2520     mAnimFrameTracker.clearStats();
2521 }
2522
2523 // This should only be called from the main thread.  Otherwise it would need
2524 // the lock and should use mCurrentState rather than mDrawingState.
2525 void SurfaceFlinger::logFrameStats() {
2526     const LayerVector& drawingLayers = mDrawingState.layersSortedByZ;
2527     const size_t count = drawingLayers.size();
2528     for (size_t i=0 ; i<count ; i++) {
2529         const sp<Layer>& layer(drawingLayers[i]);
2530         layer->logFrameStats();
2531     }
2532
2533     mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
2534 }
2535
2536 /*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2537 {
2538     static const char* config =
2539             " [sf"
2540 #ifdef HAS_CONTEXT_PRIORITY
2541             " HAS_CONTEXT_PRIORITY"
2542 #endif
2543 #ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2544             " NEVER_DEFAULT_TO_ASYNC_MODE"
2545 #endif
2546 #ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2547             " TARGET_DISABLE_TRIPLE_BUFFERING"
2548 #endif
2549             "]";
2550     result.append(config);
2551 }
2552
2553 void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
2554         String8& result) const
2555 {
2556     bool colorize = false;
2557     if (index < args.size()
2558             && (args[index] == String16("--color"))) {
2559         colorize = true;
2560         index++;
2561     }
2562
2563     Colorizer colorizer(colorize);
2564
2565     // figure out if we're stuck somewhere
2566     const nsecs_t now = systemTime();
2567     const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2568     const nsecs_t inTransaction(mDebugInTransaction);
2569     nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2570     nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2571
2572     /*
2573      * Dump library configuration.
2574      */
2575
2576     colorizer.bold(result);
2577     result.append("Build configuration:");
2578     colorizer.reset(result);
2579     appendSfConfigString(result);
2580     appendUiConfigString(result);
2581     appendGuiConfigString(result);
2582     result.append("\n");
2583
2584     colorizer.bold(result);
2585     result.append("Sync configuration: ");
2586     colorizer.reset(result);
2587     result.append(SyncFeatures::getInstance().toString());
2588     result.append("\n");
2589
2590     colorizer.bold(result);
2591     result.append("DispSync configuration: ");
2592     colorizer.reset(result);
2593     result.appendFormat("app phase %" PRId64 " ns, sf phase %" PRId64 " ns, "
2594             "present offset %d ns (refresh %" PRId64 " ns)",
2595         vsyncPhaseOffsetNs, sfVsyncPhaseOffsetNs, PRESENT_TIME_OFFSET_FROM_VSYNC_NS,
2596         mHwc->getRefreshPeriod(HWC_DISPLAY_PRIMARY));
2597     result.append("\n");
2598
2599     /*
2600      * Dump the visible layer list
2601      */
2602     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2603     const size_t count = currentLayers.size();
2604     colorizer.bold(result);
2605     result.appendFormat("Visible layers (count = %zu)\n", count);
2606     colorizer.reset(result);
2607     for (size_t i=0 ; i<count ; i++) {
2608         const sp<Layer>& layer(currentLayers[i]);
2609         layer->dump(result, colorizer);
2610     }
2611
2612     /*
2613      * Dump Display state
2614      */
2615
2616     colorizer.bold(result);
2617     result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
2618     colorizer.reset(result);
2619     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2620         const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2621         hw->dump(result);
2622     }
2623
2624     /*
2625      * Dump SurfaceFlinger global state
2626      */
2627
2628     colorizer.bold(result);
2629     result.append("SurfaceFlinger global state:\n");
2630     colorizer.reset(result);
2631
2632     HWComposer& hwc(getHwComposer());
2633     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2634
2635     colorizer.bold(result);
2636     result.appendFormat("EGL implementation : %s\n",
2637             eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2638     colorizer.reset(result);
2639     result.appendFormat("%s\n",
2640             eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2641
2642     mRenderEngine->dump(result);
2643
2644     hw->undefinedRegion.dump(result, "undefinedRegion");
2645     result.appendFormat("  orientation=%d, isDisplayOn=%d\n",
2646             hw->getOrientation(), hw->isDisplayOn());
2647     result.appendFormat(
2648             "  last eglSwapBuffers() time: %f us\n"
2649             "  last transaction time     : %f us\n"
2650             "  transaction-flags         : %08x\n"
2651             "  refresh-rate              : %f fps\n"
2652             "  x-dpi                     : %f\n"
2653             "  y-dpi                     : %f\n"
2654             "  gpu_to_cpu_unsupported    : %d\n"
2655             ,
2656             mLastSwapBufferTime/1000.0,
2657             mLastTransactionTime/1000.0,
2658             mTransactionFlags,
2659             1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2660             hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2661             hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2662             !mGpuToCpuSupported);
2663
2664     result.appendFormat("  eglSwapBuffers time: %f us\n",
2665             inSwapBuffersDuration/1000.0);
2666
2667     result.appendFormat("  transaction time: %f us\n",
2668             inTransactionDuration/1000.0);
2669
2670     /*
2671      * VSYNC state
2672      */
2673     mEventThread->dump(result);
2674
2675     /*
2676      * Dump HWComposer state
2677      */
2678     colorizer.bold(result);
2679     result.append("h/w composer state:\n");
2680     colorizer.reset(result);
2681     result.appendFormat("  h/w composer %s and %s\n",
2682             hwc.initCheck()==NO_ERROR ? "present" : "not present",
2683                     (mDebugDisableHWC || mDebugRegion || mDaltonize
2684                             || mHasColorMatrix) ? "disabled" : "enabled");
2685     hwc.dump(result);
2686
2687     /*
2688      * Dump gralloc state
2689      */
2690     const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2691     alloc.dump(result);
2692 }
2693
2694 const Vector< sp<Layer> >&
2695 SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2696     // Note: mStateLock is held here
2697     wp<IBinder> dpy;
2698     for (size_t i=0 ; i<mDisplays.size() ; i++) {
2699         if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2700             dpy = mDisplays.keyAt(i);
2701             break;
2702         }
2703     }
2704     if (dpy == NULL) {
2705         ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2706         // Just use the primary display so we have something to return
2707         dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2708     }
2709     return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2710 }
2711
2712 bool SurfaceFlinger::startDdmConnection()
2713 {
2714     void* libddmconnection_dso =
2715             dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2716     if (!libddmconnection_dso) {
2717         return false;
2718     }
2719     void (*DdmConnection_start)(const char* name);
2720     DdmConnection_start =
2721             (decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start");
2722     if (!DdmConnection_start) {
2723         dlclose(libddmconnection_dso);
2724         return false;
2725     }
2726     (*DdmConnection_start)(getServiceName());
2727     return true;
2728 }
2729
2730 status_t SurfaceFlinger::onTransact(
2731     uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2732 {
2733     switch (code) {
2734         case CREATE_CONNECTION:
2735         case CREATE_DISPLAY:
2736         case SET_TRANSACTION_STATE:
2737         case BOOT_FINISHED:
2738         case CLEAR_ANIMATION_FRAME_STATS:
2739         case GET_ANIMATION_FRAME_STATS:
2740         case SET_POWER_MODE:
2741         {
2742             // codes that require permission check
2743             IPCThreadState* ipc = IPCThreadState::self();
2744             const int pid = ipc->getCallingPid();
2745             const int uid = ipc->getCallingUid();
2746             if ((uid != AID_GRAPHICS) &&
2747                     !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2748                 ALOGE("Permission Denial: "
2749                         "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2750                 return PERMISSION_DENIED;
2751             }
2752             break;
2753         }
2754         case CAPTURE_SCREEN:
2755         {
2756             // codes that require permission check
2757             IPCThreadState* ipc = IPCThreadState::self();
2758             const int pid = ipc->getCallingPid();
2759             const int uid = ipc->getCallingUid();
2760             if ((uid != AID_GRAPHICS) &&
2761                     !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2762                 ALOGE("Permission Denial: "
2763                         "can't read framebuffer pid=%d, uid=%d", pid, uid);
2764                 return PERMISSION_DENIED;
2765             }
2766             break;
2767         }
2768     }
2769
2770     status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2771     if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2772         CHECK_INTERFACE(ISurfaceComposer, data, reply);
2773         if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2774             IPCThreadState* ipc = IPCThreadState::self();
2775             const int pid = ipc->getCallingPid();
2776             const int uid = ipc->getCallingUid();
2777             ALOGE("Permission Denial: "
2778                     "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2779             return PERMISSION_DENIED;
2780         }
2781         int n;
2782         switch (code) {
2783             case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2784             case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2785                 return NO_ERROR;
2786             case 1002:  // SHOW_UPDATES
2787                 n = data.readInt32();
2788                 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2789                 invalidateHwcGeometry();
2790                 repaintEverything();
2791                 return NO_ERROR;
2792             case 1004:{ // repaint everything
2793                 repaintEverything();
2794                 return NO_ERROR;
2795             }
2796             case 1005:{ // force transaction
2797                 setTransactionFlags(
2798                         eTransactionNeeded|
2799                         eDisplayTransactionNeeded|
2800                         eTraversalNeeded);
2801                 return NO_ERROR;
2802             }
2803             case 1006:{ // send empty update
2804                 signalRefresh();
2805                 return NO_ERROR;
2806             }
2807             case 1008:  // toggle use of hw composer
2808                 n = data.readInt32();
2809                 mDebugDisableHWC = n ? 1 : 0;
2810                 invalidateHwcGeometry();
2811                 repaintEverything();
2812                 return NO_ERROR;
2813             case 1009:  // toggle use of transform hint
2814                 n = data.readInt32();
2815                 mDebugDisableTransformHint = n ? 1 : 0;
2816                 invalidateHwcGeometry();
2817                 repaintEverything();
2818                 return NO_ERROR;
2819             case 1010:  // interrogate.
2820                 reply->writeInt32(0);
2821                 reply->writeInt32(0);
2822                 reply->writeInt32(mDebugRegion);
2823                 reply->writeInt32(0);
2824                 reply->writeInt32(mDebugDisableHWC);
2825                 return NO_ERROR;
2826             case 1013: {
2827                 Mutex::Autolock _l(mStateLock);
2828                 sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2829                 reply->writeInt32(hw->getPageFlipCount());
2830                 return NO_ERROR;
2831             }
2832             case 1014: {
2833                 // daltonize
2834                 n = data.readInt32();
2835                 switch (n % 10) {
2836                     case 1: mDaltonizer.setType(Daltonizer::protanomaly);   break;
2837                     case 2: mDaltonizer.setType(Daltonizer::deuteranomaly); break;
2838                     case 3: mDaltonizer.setType(Daltonizer::tritanomaly);   break;
2839                 }
2840                 if (n >= 10) {
2841                     mDaltonizer.setMode(Daltonizer::correction);
2842                 } else {
2843                     mDaltonizer.setMode(Daltonizer::simulation);
2844                 }
2845                 mDaltonize = n > 0;
2846                 invalidateHwcGeometry();
2847                 repaintEverything();
2848                 return NO_ERROR;
2849             }
2850             case 1015: {
2851                 // apply a color matrix
2852                 n = data.readInt32();
2853                 mHasColorMatrix = n ? 1 : 0;
2854                 if (n) {
2855                     // color matrix is sent as mat3 matrix followed by vec3
2856                     // offset, then packed into a mat4 where the last row is
2857                     // the offset and extra values are 0
2858                     for (size_t i = 0 ; i < 4; i++) {
2859                       for (size_t j = 0; j < 4; j++) {
2860                           mColorMatrix[i][j] = data.readFloat();
2861                       }
2862                     }
2863                 } else {
2864                     mColorMatrix = mat4();
2865                 }
2866                 invalidateHwcGeometry();
2867                 repaintEverything();
2868                 return NO_ERROR;
2869             }
2870             // This is an experimental interface
2871             // Needs to be shifted to proper binder interface when we productize
2872             case 1016: {
2873                 n = data.readInt32();
2874                 mPrimaryDispSync.setRefreshSkipCount(n);
2875                 return NO_ERROR;
2876             }
2877         }
2878     }
2879     return err;
2880 }
2881
2882 void SurfaceFlinger::repaintEverything() {
2883     android_atomic_or(1, &mRepaintEverything);
2884     signalTransaction();
2885 }
2886
2887 // ---------------------------------------------------------------------------
2888 // Capture screen into an IGraphiBufferProducer
2889 // ---------------------------------------------------------------------------
2890
2891 /* The code below is here to handle b/8734824
2892  *
2893  * We create a IGraphicBufferProducer wrapper that forwards all calls
2894  * from the surfaceflinger thread to the calling binder thread, where they
2895  * are executed. This allows the calling thread in the calling process to be
2896  * reused and not depend on having "enough" binder threads to handle the
2897  * requests.
2898  */
2899 class GraphicProducerWrapper : public BBinder, public MessageHandler {
2900     /* Parts of GraphicProducerWrapper are run on two different threads,
2901      * communicating by sending messages via Looper but also by shared member
2902      * data. Coherence maintenance is subtle and in places implicit (ugh).
2903      *
2904      * Don't rely on Looper's sendMessage/handleMessage providing
2905      * release/acquire semantics for any data not actually in the Message.
2906      * Data going from surfaceflinger to binder threads needs to be
2907      * synchronized explicitly.
2908      *
2909      * Barrier open/wait do provide release/acquire semantics. This provides
2910      * implicit synchronization for data coming back from binder to
2911      * surfaceflinger threads.
2912      */
2913
2914     sp<IGraphicBufferProducer> impl;
2915     sp<Looper> looper;
2916     status_t result;
2917     bool exitPending;
2918     bool exitRequested;
2919     Barrier barrier;
2920     uint32_t code;
2921     Parcel const* data;
2922     Parcel* reply;
2923
2924     enum {
2925         MSG_API_CALL,
2926         MSG_EXIT
2927     };
2928
2929     /*
2930      * Called on surfaceflinger thread. This is called by our "fake"
2931      * BpGraphicBufferProducer. We package the data and reply Parcel and
2932      * forward them to the binder thread.
2933      */
2934     virtual status_t transact(uint32_t code,
2935             const Parcel& data, Parcel* reply, uint32_t /* flags */) {
2936         this->code = code;
2937         this->data = &data;
2938         this->reply = reply;
2939         if (exitPending) {
2940             // if we've exited, we run the message synchronously right here.
2941             // note (JH): as far as I can tell from looking at the code, this
2942             // never actually happens. if it does, i'm not sure if it happens
2943             // on the surfaceflinger or binder thread.
2944             handleMessage(Message(MSG_API_CALL));
2945         } else {
2946             barrier.close();
2947             // Prevent stores to this->{code, data, reply} from being
2948             // reordered later than the construction of Message.
2949             atomic_thread_fence(memory_order_release);
2950             looper->sendMessage(this, Message(MSG_API_CALL));
2951             barrier.wait();
2952         }
2953         return result;
2954     }
2955
2956     /*
2957      * here we run on the binder thread. All we've got to do is
2958      * call the real BpGraphicBufferProducer.
2959      */
2960     virtual void handleMessage(const Message& message) {
2961         int what = message.what;
2962         // Prevent reads below from happening before the read from Message
2963         atomic_thread_fence(memory_order_acquire);
2964         if (what == MSG_API_CALL) {
2965             result = impl->asBinder()->transact(code, data[0], reply);
2966             barrier.open();
2967         } else if (what == MSG_EXIT) {
2968             exitRequested = true;
2969         }
2970     }
2971
2972 public:
2973     GraphicProducerWrapper(const sp<IGraphicBufferProducer>& impl)
2974     :   impl(impl),
2975         looper(new Looper(true)),
2976         exitPending(false),
2977         exitRequested(false)
2978     {}
2979
2980     // Binder thread
2981     status_t waitForResponse() {
2982         do {
2983             looper->pollOnce(-1);
2984         } while (!exitRequested);
2985         return result;
2986     }
2987
2988     // Client thread
2989     void exit(status_t result) {
2990         this->result = result;
2991         exitPending = true;
2992         // Ensure this->result is visible to the binder thread before it
2993         // handles the message.
2994         atomic_thread_fence(memory_order_release);
2995         looper->sendMessage(this, Message(MSG_EXIT));
2996     }
2997 };
2998
2999
3000 status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
3001         const sp<IGraphicBufferProducer>& producer,
3002         Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
3003         uint32_t minLayerZ, uint32_t maxLayerZ,
3004         bool useIdentityTransform, ISurfaceComposer::Rotation rotation) {
3005
3006     if (CC_UNLIKELY(display == 0))
3007         return BAD_VALUE;
3008
3009     if (CC_UNLIKELY(producer == 0))
3010         return BAD_VALUE;
3011
3012     // if we have secure windows on this display, never allow the screen capture
3013     // unless the producer interface is local (i.e.: we can take a screenshot for
3014     // ourselves).
3015     if (!producer->asBinder()->localBinder()) {
3016         Mutex::Autolock _l(mStateLock);
3017         sp<const DisplayDevice> hw(getDisplayDevice(display));
3018         if (hw->getSecureLayerVisible()) {
3019             ALOGW("FB is protected: PERMISSION_DENIED");
3020             return PERMISSION_DENIED;
3021         }
3022     }
3023
3024     // Convert to surfaceflinger's internal rotation type.
3025     Transform::orientation_flags rotationFlags;
3026     switch (rotation) {
3027         case ISurfaceComposer::eRotateNone:
3028             rotationFlags = Transform::ROT_0;
3029             break;
3030         case ISurfaceComposer::eRotate90:
3031             rotationFlags = Transform::ROT_90;
3032             break;
3033         case ISurfaceComposer::eRotate180:
3034             rotationFlags = Transform::ROT_180;
3035             break;
3036         case ISurfaceComposer::eRotate270:
3037             rotationFlags = Transform::ROT_270;
3038             break;
3039         default:
3040             rotationFlags = Transform::ROT_0;
3041             ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
3042             break;
3043     }
3044
3045     class MessageCaptureScreen : public MessageBase {
3046         SurfaceFlinger* flinger;
3047         sp<IBinder> display;
3048         sp<IGraphicBufferProducer> producer;
3049         Rect sourceCrop;
3050         uint32_t reqWidth, reqHeight;
3051         uint32_t minLayerZ,maxLayerZ;
3052         bool useIdentityTransform;
3053         Transform::orientation_flags rotation;
3054         status_t result;
3055     public:
3056         MessageCaptureScreen(SurfaceFlinger* flinger,
3057                 const sp<IBinder>& display,
3058                 const sp<IGraphicBufferProducer>& producer,
3059                 Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
3060                 uint32_t minLayerZ, uint32_t maxLayerZ,
3061                 bool useIdentityTransform, Transform::orientation_flags rotation)
3062             : flinger(flinger), display(display), producer(producer),
3063               sourceCrop(sourceCrop), reqWidth(reqWidth), reqHeight(reqHeight),
3064               minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
3065               useIdentityTransform(useIdentityTransform),
3066               rotation(rotation),
3067               result(PERMISSION_DENIED)
3068         {
3069         }
3070         status_t getResult() const {
3071             return result;
3072         }
3073         virtual bool handler() {
3074             Mutex::Autolock _l(flinger->mStateLock);
3075             sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
3076             result = flinger->captureScreenImplLocked(hw, producer,
3077                     sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
3078                     useIdentityTransform, rotation);
3079             static_cast<GraphicProducerWrapper*>(producer->asBinder().get())->exit(result);
3080             return true;
3081         }
3082     };
3083
3084     // make sure to process transactions before screenshots -- a transaction
3085     // might already be pending but scheduled for VSYNC; this guarantees we
3086     // will handle it before the screenshot. When VSYNC finally arrives
3087     // the scheduled transaction will be a no-op. If no transactions are
3088     // scheduled at this time, this will end-up being a no-op as well.
3089     mEventQueue.invalidateTransactionNow();
3090
3091     // this creates a "fake" BBinder which will serve as a "fake" remote
3092     // binder to receive the marshaled calls and forward them to the
3093     // real remote (a BpGraphicBufferProducer)
3094     sp<GraphicProducerWrapper> wrapper = new GraphicProducerWrapper(producer);
3095
3096     // the asInterface() call below creates our "fake" BpGraphicBufferProducer
3097     // which does the marshaling work forwards to our "fake remote" above.
3098     sp<MessageBase> msg = new MessageCaptureScreen(this,
3099             display, IGraphicBufferProducer::asInterface( wrapper ),
3100             sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
3101             useIdentityTransform, rotationFlags);
3102
3103     status_t res = postMessageAsync(msg);
3104     if (res == NO_ERROR) {
3105         res = wrapper->waitForResponse();
3106     }
3107     return res;
3108 }
3109
3110
3111 void SurfaceFlinger::renderScreenImplLocked(
3112         const sp<const DisplayDevice>& hw,
3113         Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
3114         uint32_t minLayerZ, uint32_t maxLayerZ,
3115         bool yswap, bool useIdentityTransform, Transform::orientation_flags rotation)
3116 {
3117     ATRACE_CALL();
3118     RenderEngine& engine(getRenderEngine());
3119
3120     // get screen geometry
3121     const uint32_t hw_w = hw->getWidth();
3122     const uint32_t hw_h = hw->getHeight();
3123     const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
3124
3125     // if a default or invalid sourceCrop is passed in, set reasonable values
3126     if (sourceCrop.width() == 0 || sourceCrop.height() == 0 ||
3127             !sourceCrop.isValid()) {
3128         sourceCrop.setLeftTop(Point(0, 0));
3129         sourceCrop.setRightBottom(Point(hw_w, hw_h));
3130     }
3131
3132     // ensure that sourceCrop is inside screen
3133     if (sourceCrop.left < 0) {
3134         ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left);
3135     }
3136     if (static_cast<uint32_t>(sourceCrop.right) > hw_w) {
3137         ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, hw_w);
3138     }
3139     if (sourceCrop.top < 0) {
3140         ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top);
3141     }
3142     if (static_cast<uint32_t>(sourceCrop.bottom) > hw_h) {
3143         ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, hw_h);
3144     }
3145
3146     // make sure to clear all GL error flags
3147     engine.checkErrors();
3148
3149     // set-up our viewport
3150     engine.setViewportAndProjection(
3151         reqWidth, reqHeight, sourceCrop, hw_h, yswap, rotation);
3152     engine.disableTexturing();
3153
3154     // redraw the screen entirely...
3155     engine.clearWithColor(0, 0, 0, 1);
3156
3157     const LayerVector& layers( mDrawingState.layersSortedByZ );
3158     const size_t count = layers.size();
3159     for (size_t i=0 ; i<count ; ++i) {
3160         const sp<Layer>& layer(layers[i]);
3161         const Layer::State& state(layer->getDrawingState());
3162         if (state.layerStack == hw->getLayerStack()) {
3163             if (state.z >= minLayerZ && state.z <= maxLayerZ) {
3164                 if (layer->isVisible()) {
3165                     if (filtering) layer->setFiltering(true);
3166                     layer->draw(hw, useIdentityTransform);
3167                     if (filtering) layer->setFiltering(false);
3168                 }
3169             }
3170         }
3171     }
3172
3173     // compositionComplete is needed for older driver
3174     hw->compositionComplete();
3175     hw->setViewportAndProjection();
3176 }
3177
3178
3179 status_t SurfaceFlinger::captureScreenImplLocked(
3180         const sp<const DisplayDevice>& hw,
3181         const sp<IGraphicBufferProducer>& producer,
3182         Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
3183         uint32_t minLayerZ, uint32_t maxLayerZ,
3184         bool useIdentityTransform, Transform::orientation_flags rotation)
3185 {
3186     ATRACE_CALL();
3187
3188     // get screen geometry
3189     const uint32_t hw_w = hw->getWidth();
3190     const uint32_t hw_h = hw->getHeight();
3191
3192     if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
3193         ALOGE("size mismatch (%d, %d) > (%d, %d)",
3194                 reqWidth, reqHeight, hw_w, hw_h);
3195         return BAD_VALUE;
3196     }
3197
3198     reqWidth  = (!reqWidth)  ? hw_w : reqWidth;
3199     reqHeight = (!reqHeight) ? hw_h : reqHeight;
3200
3201     // create a surface (because we're a producer, and we need to
3202     // dequeue/queue a buffer)
3203     sp<Surface> sur = new Surface(producer, false);
3204     ANativeWindow* window = sur.get();
3205
3206     status_t result = NO_ERROR;
3207     if (native_window_api_connect(window, NATIVE_WINDOW_API_EGL) == NO_ERROR) {
3208         uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
3209                         GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
3210
3211         int err = 0;
3212         err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
3213         err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
3214         err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
3215         err |= native_window_set_usage(window, usage);
3216
3217         if (err == NO_ERROR) {
3218             ANativeWindowBuffer* buffer;
3219             /* TODO: Once we have the sync framework everywhere this can use
3220              * server-side waits on the fence that dequeueBuffer returns.
3221              */
3222             result = native_window_dequeue_buffer_and_wait(window,  &buffer);
3223             if (result == NO_ERROR) {
3224                 int syncFd = -1;
3225                 // create an EGLImage from the buffer so we can later
3226                 // turn it into a texture
3227                 EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
3228                         EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
3229                 if (image != EGL_NO_IMAGE_KHR) {
3230                     // this binds the given EGLImage as a framebuffer for the
3231                     // duration of this scope.
3232                     RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image);
3233                     if (imageBond.getStatus() == NO_ERROR) {
3234                         // this will in fact render into our dequeued buffer
3235                         // via an FBO, which means we didn't have to create
3236                         // an EGLSurface and therefore we're not
3237                         // dependent on the context's EGLConfig.
3238                         renderScreenImplLocked(
3239                             hw, sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ, true,
3240                             useIdentityTransform, rotation);
3241
3242                         // Attempt to create a sync khr object that can produce a sync point. If that
3243                         // isn't available, create a non-dupable sync object in the fallback path and
3244                         // wait on it directly.
3245                         EGLSyncKHR sync;
3246                         if (!DEBUG_SCREENSHOTS) {
3247                            sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
3248                            // native fence fd will not be populated until flush() is done.
3249                            getRenderEngine().flush();
3250                         } else {
3251                             sync = EGL_NO_SYNC_KHR;
3252                         }
3253                         if (sync != EGL_NO_SYNC_KHR) {
3254                             // get the sync fd
3255                             syncFd = eglDupNativeFenceFDANDROID(mEGLDisplay, sync);
3256                             if (syncFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
3257                                 ALOGW("captureScreen: failed to dup sync khr object");
3258                                 syncFd = -1;
3259                             }
3260                             eglDestroySyncKHR(mEGLDisplay, sync);
3261                         } else {
3262                             // fallback path
3263                             sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL);
3264                             if (sync != EGL_NO_SYNC_KHR) {
3265                                 EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync,
3266                                     EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/);
3267                                 EGLint eglErr = eglGetError();
3268                                 if (result == EGL_TIMEOUT_EXPIRED_KHR) {
3269                                     ALOGW("captureScreen: fence wait timed out");
3270                                 } else {
3271                                     ALOGW_IF(eglErr != EGL_SUCCESS,
3272                                             "captureScreen: error waiting on EGL fence: %#x", eglErr);
3273                                 }
3274                                 eglDestroySyncKHR(mEGLDisplay, sync);
3275                             } else {
3276                                 ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError());
3277                             }
3278                         }
3279                         if (DEBUG_SCREENSHOTS) {
3280                             uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
3281                             getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
3282                             checkScreenshot(reqWidth, reqHeight, reqWidth, pixels,
3283                                     hw, minLayerZ, maxLayerZ);
3284                             delete [] pixels;
3285                         }
3286
3287                     } else {
3288                         ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
3289                         result = INVALID_OPERATION;
3290                     }
3291                     // destroy our image
3292                     eglDestroyImageKHR(mEGLDisplay, image);
3293                 } else {
3294                     result = BAD_VALUE;
3295                 }
3296                 // queueBuffer takes ownership of syncFd
3297                 window->queueBuffer(window, buffer, syncFd);
3298             }
3299         } else {
3300             result = BAD_VALUE;
3301         }
3302         native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
3303     }
3304
3305     return result;
3306 }
3307
3308 void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
3309         const sp<const DisplayDevice>& hw, uint32_t minLayerZ, uint32_t maxLayerZ) {
3310     if (DEBUG_SCREENSHOTS) {
3311         for (size_t y=0 ; y<h ; y++) {
3312             uint32_t const * p = (uint32_t const *)vaddr + y*s;
3313             for (size_t x=0 ; x<w ; x++) {
3314                 if (p[x] != 0xFF000000) return;
3315             }
3316         }
3317         ALOGE("*** we just took a black screenshot ***\n"
3318                 "requested minz=%d, maxz=%d, layerStack=%d",
3319                 minLayerZ, maxLayerZ, hw->getLayerStack());
3320         const LayerVector& layers( mDrawingState.layersSortedByZ );
3321         const size_t count = layers.size();
3322         for (size_t i=0 ; i<count ; ++i) {
3323             const sp<Layer>& layer(layers[i]);
3324             const Layer::State& state(layer->getDrawingState());
3325             const bool visible = (state.layerStack == hw->getLayerStack())
3326                                 && (state.z >= minLayerZ && state.z <= maxLayerZ)
3327                                 && (layer->isVisible());
3328             ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%x",
3329                     visible ? '+' : '-',
3330                             i, layer->getName().string(), state.layerStack, state.z,
3331                             layer->isVisible(), state.flags, state.alpha);
3332         }
3333     }
3334 }
3335
3336 // ---------------------------------------------------------------------------
3337
3338 SurfaceFlinger::LayerVector::LayerVector() {
3339 }
3340
3341 SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
3342     : SortedVector<sp<Layer> >(rhs) {
3343 }
3344
3345 int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
3346     const void* rhs) const
3347 {
3348     // sort layers per layer-stack, then by z-order and finally by sequence
3349     const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
3350     const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
3351
3352     uint32_t ls = l->getCurrentState().layerStack;
3353     uint32_t rs = r->getCurrentState().layerStack;
3354     if (ls != rs)
3355         return ls - rs;
3356
3357     uint32_t lz = l->getCurrentState().z;
3358     uint32_t rz = r->getCurrentState().z;
3359     if (lz != rz)
3360         return lz - rz;
3361
3362     return l->sequence - r->sequence;
3363 }
3364
3365 // ---------------------------------------------------------------------------
3366
3367 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
3368     : type(DisplayDevice::DISPLAY_ID_INVALID), width(0), height(0) {
3369 }
3370
3371 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
3372     : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0), width(0), height(0) {
3373     viewport.makeInvalid();
3374     frame.makeInvalid();
3375 }
3376
3377 // ---------------------------------------------------------------------------
3378
3379 }; // namespace android
3380
3381
3382 #if defined(__gl_h_)
3383 #error "don't include gl/gl.h in this file"
3384 #endif
3385
3386 #if defined(__gl2_h_)
3387 #error "don't include gl2/gl2.h in this file"
3388 #endif