OSDN Git Service

mac_{old|new}world: Code style fix adding missing braces to if-s
[qmiga/qemu.git] / softmmu / icount.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "exec/exec-all.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/qtest.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/option.h"
35 #include "qemu/seqlock.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/runstate.h"
38 #include "hw/core/cpu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/cpu-throttle.h"
41 #include "timers-state.h"
42
43 /*
44  * ICOUNT: Instruction Counter
45  *
46  * this module is split off from cpu-timers because the icount part
47  * is TCG-specific, and does not need to be built for other accels.
48  */
49 static bool icount_sleep = true;
50 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
51 #define MAX_ICOUNT_SHIFT 10
52
53 /*
54  * 0 = Do not count executed instructions.
55  * 1 = Fixed conversion of insn to ns via "shift" option
56  * 2 = Runtime adaptive algorithm to compute shift
57  */
58 int use_icount;
59
60 static void icount_enable_precise(void)
61 {
62     use_icount = 1;
63 }
64
65 static void icount_enable_adaptive(void)
66 {
67     use_icount = 2;
68 }
69
70 /*
71  * The current number of executed instructions is based on what we
72  * originally budgeted minus the current state of the decrementing
73  * icount counters in extra/u16.low.
74  */
75 static int64_t icount_get_executed(CPUState *cpu)
76 {
77     return (cpu->icount_budget -
78             (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
79 }
80
81 /*
82  * Update the global shared timer_state.qemu_icount to take into
83  * account executed instructions. This is done by the TCG vCPU
84  * thread so the main-loop can see time has moved forward.
85  */
86 static void icount_update_locked(CPUState *cpu)
87 {
88     int64_t executed = icount_get_executed(cpu);
89     cpu->icount_budget -= executed;
90
91     qatomic_set_i64(&timers_state.qemu_icount,
92                     timers_state.qemu_icount + executed);
93 }
94
95 /*
96  * Update the global shared timer_state.qemu_icount to take into
97  * account executed instructions. This is done by the TCG vCPU
98  * thread so the main-loop can see time has moved forward.
99  */
100 void icount_update(CPUState *cpu)
101 {
102     seqlock_write_lock(&timers_state.vm_clock_seqlock,
103                        &timers_state.vm_clock_lock);
104     icount_update_locked(cpu);
105     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
106                          &timers_state.vm_clock_lock);
107 }
108
109 static int64_t icount_get_raw_locked(void)
110 {
111     CPUState *cpu = current_cpu;
112
113     if (cpu && cpu->running) {
114         if (!cpu->can_do_io) {
115             error_report("Bad icount read");
116             exit(1);
117         }
118         /* Take into account what has run */
119         icount_update_locked(cpu);
120     }
121     /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
122     return qatomic_read_i64(&timers_state.qemu_icount);
123 }
124
125 static int64_t icount_get_locked(void)
126 {
127     int64_t icount = icount_get_raw_locked();
128     return qatomic_read_i64(&timers_state.qemu_icount_bias) +
129         icount_to_ns(icount);
130 }
131
132 int64_t icount_get_raw(void)
133 {
134     int64_t icount;
135     unsigned start;
136
137     do {
138         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
139         icount = icount_get_raw_locked();
140     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
141
142     return icount;
143 }
144
145 /* Return the virtual CPU time, based on the instruction counter.  */
146 int64_t icount_get(void)
147 {
148     int64_t icount;
149     unsigned start;
150
151     do {
152         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
153         icount = icount_get_locked();
154     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
155
156     return icount;
157 }
158
159 int64_t icount_to_ns(int64_t icount)
160 {
161     return icount << qatomic_read(&timers_state.icount_time_shift);
162 }
163
164 /*
165  * Correlation between real and virtual time is always going to be
166  * fairly approximate, so ignore small variation.
167  * When the guest is idle real and virtual time will be aligned in
168  * the IO wait loop.
169  */
170 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
171
172 static void icount_adjust(void)
173 {
174     int64_t cur_time;
175     int64_t cur_icount;
176     int64_t delta;
177
178     /* If the VM is not running, then do nothing.  */
179     if (!runstate_is_running()) {
180         return;
181     }
182
183     seqlock_write_lock(&timers_state.vm_clock_seqlock,
184                        &timers_state.vm_clock_lock);
185     cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
186                                    cpu_get_clock_locked());
187     cur_icount = icount_get_locked();
188
189     delta = cur_icount - cur_time;
190     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
191     if (delta > 0
192         && timers_state.last_delta + ICOUNT_WOBBLE < delta * 2
193         && timers_state.icount_time_shift > 0) {
194         /* The guest is getting too far ahead.  Slow time down.  */
195         qatomic_set(&timers_state.icount_time_shift,
196                     timers_state.icount_time_shift - 1);
197     }
198     if (delta < 0
199         && timers_state.last_delta - ICOUNT_WOBBLE > delta * 2
200         && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
201         /* The guest is getting too far behind.  Speed time up.  */
202         qatomic_set(&timers_state.icount_time_shift,
203                     timers_state.icount_time_shift + 1);
204     }
205     timers_state.last_delta = delta;
206     qatomic_set_i64(&timers_state.qemu_icount_bias,
207                     cur_icount - (timers_state.qemu_icount
208                                   << timers_state.icount_time_shift));
209     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
210                          &timers_state.vm_clock_lock);
211 }
212
213 static void icount_adjust_rt(void *opaque)
214 {
215     timer_mod(timers_state.icount_rt_timer,
216               qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
217     icount_adjust();
218 }
219
220 static void icount_adjust_vm(void *opaque)
221 {
222     timer_mod(timers_state.icount_vm_timer,
223                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
224                    NANOSECONDS_PER_SECOND / 10);
225     icount_adjust();
226 }
227
228 int64_t icount_round(int64_t count)
229 {
230     int shift = qatomic_read(&timers_state.icount_time_shift);
231     return (count + (1 << shift) - 1) >> shift;
232 }
233
234 static void icount_warp_rt(void)
235 {
236     unsigned seq;
237     int64_t warp_start;
238
239     /*
240      * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
241      * changes from -1 to another value, so the race here is okay.
242      */
243     do {
244         seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
245         warp_start = timers_state.vm_clock_warp_start;
246     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
247
248     if (warp_start == -1) {
249         return;
250     }
251
252     seqlock_write_lock(&timers_state.vm_clock_seqlock,
253                        &timers_state.vm_clock_lock);
254     if (runstate_is_running()) {
255         int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
256                                             cpu_get_clock_locked());
257         int64_t warp_delta;
258
259         warp_delta = clock - timers_state.vm_clock_warp_start;
260         if (icount_enabled() == 2) {
261             /*
262              * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
263              * far ahead of real time.
264              */
265             int64_t cur_icount = icount_get_locked();
266             int64_t delta = clock - cur_icount;
267             warp_delta = MIN(warp_delta, delta);
268         }
269         qatomic_set_i64(&timers_state.qemu_icount_bias,
270                         timers_state.qemu_icount_bias + warp_delta);
271     }
272     timers_state.vm_clock_warp_start = -1;
273     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
274                        &timers_state.vm_clock_lock);
275
276     if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
277         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
278     }
279 }
280
281 static void icount_timer_cb(void *opaque)
282 {
283     /*
284      * No need for a checkpoint because the timer already synchronizes
285      * with CHECKPOINT_CLOCK_VIRTUAL_RT.
286      */
287     icount_warp_rt();
288 }
289
290 void icount_start_warp_timer(void)
291 {
292     int64_t clock;
293     int64_t deadline;
294
295     assert(icount_enabled());
296
297     /*
298      * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
299      * do not fire, so computing the deadline does not make sense.
300      */
301     if (!runstate_is_running()) {
302         return;
303     }
304
305     if (replay_mode != REPLAY_MODE_PLAY) {
306         if (!all_cpu_threads_idle()) {
307             return;
308         }
309
310         if (qtest_enabled()) {
311             /* When testing, qtest commands advance icount.  */
312             return;
313         }
314
315         replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
316     } else {
317         /* warp clock deterministically in record/replay mode */
318         if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
319             /*
320              * vCPU is sleeping and warp can't be started.
321              * It is probably a race condition: notification sent
322              * to vCPU was processed in advance and vCPU went to sleep.
323              * Therefore we have to wake it up for doing someting.
324              */
325             if (replay_has_event()) {
326                 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
327             }
328             return;
329         }
330     }
331
332     /* We want to use the earliest deadline from ALL vm_clocks */
333     clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
334     deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
335                                           ~QEMU_TIMER_ATTR_EXTERNAL);
336     if (deadline < 0) {
337         static bool notified;
338         if (!icount_sleep && !notified) {
339             warn_report("icount sleep disabled and no active timers");
340             notified = true;
341         }
342         return;
343     }
344
345     if (deadline > 0) {
346         /*
347          * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
348          * sleep.  Otherwise, the CPU might be waiting for a future timer
349          * interrupt to wake it up, but the interrupt never comes because
350          * the vCPU isn't running any insns and thus doesn't advance the
351          * QEMU_CLOCK_VIRTUAL.
352          */
353         if (!icount_sleep) {
354             /*
355              * We never let VCPUs sleep in no sleep icount mode.
356              * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
357              * to the next QEMU_CLOCK_VIRTUAL event and notify it.
358              * It is useful when we want a deterministic execution time,
359              * isolated from host latencies.
360              */
361             seqlock_write_lock(&timers_state.vm_clock_seqlock,
362                                &timers_state.vm_clock_lock);
363             qatomic_set_i64(&timers_state.qemu_icount_bias,
364                             timers_state.qemu_icount_bias + deadline);
365             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
366                                  &timers_state.vm_clock_lock);
367             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
368         } else {
369             /*
370              * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
371              * "real" time, (related to the time left until the next event) has
372              * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
373              * This avoids that the warps are visible externally; for example,
374              * you will not be sending network packets continuously instead of
375              * every 100ms.
376              */
377             seqlock_write_lock(&timers_state.vm_clock_seqlock,
378                                &timers_state.vm_clock_lock);
379             if (timers_state.vm_clock_warp_start == -1
380                 || timers_state.vm_clock_warp_start > clock) {
381                 timers_state.vm_clock_warp_start = clock;
382             }
383             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
384                                  &timers_state.vm_clock_lock);
385             timer_mod_anticipate(timers_state.icount_warp_timer,
386                                  clock + deadline);
387         }
388     } else if (deadline == 0) {
389         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
390     }
391 }
392
393 void icount_account_warp_timer(void)
394 {
395     if (!icount_sleep) {
396         return;
397     }
398
399     /*
400      * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
401      * do not fire, so computing the deadline does not make sense.
402      */
403     if (!runstate_is_running()) {
404         return;
405     }
406
407     replay_async_events();
408
409     /* warp clock deterministically in record/replay mode */
410     if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
411         return;
412     }
413
414     timer_del(timers_state.icount_warp_timer);
415     icount_warp_rt();
416 }
417
418 void icount_configure(QemuOpts *opts, Error **errp)
419 {
420     const char *option = qemu_opt_get(opts, "shift");
421     bool sleep = qemu_opt_get_bool(opts, "sleep", true);
422     bool align = qemu_opt_get_bool(opts, "align", false);
423     long time_shift = -1;
424
425     if (!option) {
426         if (qemu_opt_get(opts, "align") != NULL) {
427             error_setg(errp, "Please specify shift option when using align");
428         }
429         return;
430     }
431
432     if (align && !sleep) {
433         error_setg(errp, "align=on and sleep=off are incompatible");
434         return;
435     }
436
437     if (strcmp(option, "auto") != 0) {
438         if (qemu_strtol(option, NULL, 0, &time_shift) < 0
439             || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
440             error_setg(errp, "icount: Invalid shift value");
441             return;
442         }
443     } else if (icount_align_option) {
444         error_setg(errp, "shift=auto and align=on are incompatible");
445         return;
446     } else if (!icount_sleep) {
447         error_setg(errp, "shift=auto and sleep=off are incompatible");
448         return;
449     }
450
451     icount_sleep = sleep;
452     if (icount_sleep) {
453         timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
454                                          icount_timer_cb, NULL);
455     }
456
457     icount_align_option = align;
458
459     if (time_shift >= 0) {
460         timers_state.icount_time_shift = time_shift;
461         icount_enable_precise();
462         return;
463     }
464
465     icount_enable_adaptive();
466
467     /*
468      * 125MIPS seems a reasonable initial guess at the guest speed.
469      * It will be corrected fairly quickly anyway.
470      */
471     timers_state.icount_time_shift = 3;
472
473     /*
474      * Have both realtime and virtual time triggers for speed adjustment.
475      * The realtime trigger catches emulated time passing too slowly,
476      * the virtual time trigger catches emulated time passing too fast.
477      * Realtime triggers occur even when idle, so use them less frequently
478      * than VM triggers.
479      */
480     timers_state.vm_clock_warp_start = -1;
481     timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
482                                    icount_adjust_rt, NULL);
483     timer_mod(timers_state.icount_rt_timer,
484                    qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
485     timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
486                                         icount_adjust_vm, NULL);
487     timer_mod(timers_state.icount_vm_timer,
488                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
489                    NANOSECONDS_PER_SECOND / 10);
490 }
491
492 void icount_notify_exit(void)
493 {
494     if (icount_enabled() && current_cpu) {
495         qemu_cpu_kick(current_cpu);
496         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
497     }
498 }