OSDN Git Service

Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[qmiga/qemu.git] / softmmu / icount.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/cutils.h"
28 #include "migration/vmstate.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "exec/exec-all.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/qtest.h"
34 #include "qemu/main-loop.h"
35 #include "qemu/option.h"
36 #include "qemu/seqlock.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/runstate.h"
39 #include "hw/core/cpu.h"
40 #include "sysemu/cpu-timers.h"
41 #include "sysemu/cpu-throttle.h"
42 #include "timers-state.h"
43
44 /*
45  * ICOUNT: Instruction Counter
46  *
47  * this module is split off from cpu-timers because the icount part
48  * is TCG-specific, and does not need to be built for other accels.
49  */
50 static bool icount_sleep = true;
51 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
52 #define MAX_ICOUNT_SHIFT 10
53
54 /*
55  * 0 = Do not count executed instructions.
56  * 1 = Fixed conversion of insn to ns via "shift" option
57  * 2 = Runtime adaptive algorithm to compute shift
58  */
59 int use_icount;
60
61 static void icount_enable_precise(void)
62 {
63     use_icount = 1;
64 }
65
66 static void icount_enable_adaptive(void)
67 {
68     use_icount = 2;
69 }
70
71 /*
72  * The current number of executed instructions is based on what we
73  * originally budgeted minus the current state of the decrementing
74  * icount counters in extra/u16.low.
75  */
76 static int64_t icount_get_executed(CPUState *cpu)
77 {
78     return (cpu->icount_budget -
79             (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
80 }
81
82 /*
83  * Update the global shared timer_state.qemu_icount to take into
84  * account executed instructions. This is done by the TCG vCPU
85  * thread so the main-loop can see time has moved forward.
86  */
87 static void icount_update_locked(CPUState *cpu)
88 {
89     int64_t executed = icount_get_executed(cpu);
90     cpu->icount_budget -= executed;
91
92     qatomic_set_i64(&timers_state.qemu_icount,
93                     timers_state.qemu_icount + executed);
94 }
95
96 /*
97  * Update the global shared timer_state.qemu_icount to take into
98  * account executed instructions. This is done by the TCG vCPU
99  * thread so the main-loop can see time has moved forward.
100  */
101 void icount_update(CPUState *cpu)
102 {
103     seqlock_write_lock(&timers_state.vm_clock_seqlock,
104                        &timers_state.vm_clock_lock);
105     icount_update_locked(cpu);
106     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
107                          &timers_state.vm_clock_lock);
108 }
109
110 static int64_t icount_get_raw_locked(void)
111 {
112     CPUState *cpu = current_cpu;
113
114     if (cpu && cpu->running) {
115         if (!cpu->can_do_io) {
116             error_report("Bad icount read");
117             exit(1);
118         }
119         /* Take into account what has run */
120         icount_update_locked(cpu);
121     }
122     /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
123     return qatomic_read_i64(&timers_state.qemu_icount);
124 }
125
126 static int64_t icount_get_locked(void)
127 {
128     int64_t icount = icount_get_raw_locked();
129     return qatomic_read_i64(&timers_state.qemu_icount_bias) +
130         icount_to_ns(icount);
131 }
132
133 int64_t icount_get_raw(void)
134 {
135     int64_t icount;
136     unsigned start;
137
138     do {
139         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
140         icount = icount_get_raw_locked();
141     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
142
143     return icount;
144 }
145
146 /* Return the virtual CPU time, based on the instruction counter.  */
147 int64_t icount_get(void)
148 {
149     int64_t icount;
150     unsigned start;
151
152     do {
153         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
154         icount = icount_get_locked();
155     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
156
157     return icount;
158 }
159
160 int64_t icount_to_ns(int64_t icount)
161 {
162     return icount << qatomic_read(&timers_state.icount_time_shift);
163 }
164
165 /*
166  * Correlation between real and virtual time is always going to be
167  * fairly approximate, so ignore small variation.
168  * When the guest is idle real and virtual time will be aligned in
169  * the IO wait loop.
170  */
171 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
172
173 static void icount_adjust(void)
174 {
175     int64_t cur_time;
176     int64_t cur_icount;
177     int64_t delta;
178
179     /* Protected by TimersState mutex.  */
180     static int64_t last_delta;
181
182     /* If the VM is not running, then do nothing.  */
183     if (!runstate_is_running()) {
184         return;
185     }
186
187     seqlock_write_lock(&timers_state.vm_clock_seqlock,
188                        &timers_state.vm_clock_lock);
189     cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
190                                    cpu_get_clock_locked());
191     cur_icount = icount_get_locked();
192
193     delta = cur_icount - cur_time;
194     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
195     if (delta > 0
196         && last_delta + ICOUNT_WOBBLE < delta * 2
197         && timers_state.icount_time_shift > 0) {
198         /* The guest is getting too far ahead.  Slow time down.  */
199         qatomic_set(&timers_state.icount_time_shift,
200                     timers_state.icount_time_shift - 1);
201     }
202     if (delta < 0
203         && last_delta - ICOUNT_WOBBLE > delta * 2
204         && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
205         /* The guest is getting too far behind.  Speed time up.  */
206         qatomic_set(&timers_state.icount_time_shift,
207                     timers_state.icount_time_shift + 1);
208     }
209     last_delta = delta;
210     qatomic_set_i64(&timers_state.qemu_icount_bias,
211                     cur_icount - (timers_state.qemu_icount
212                                   << timers_state.icount_time_shift));
213     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
214                          &timers_state.vm_clock_lock);
215 }
216
217 static void icount_adjust_rt(void *opaque)
218 {
219     timer_mod(timers_state.icount_rt_timer,
220               qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
221     icount_adjust();
222 }
223
224 static void icount_adjust_vm(void *opaque)
225 {
226     timer_mod(timers_state.icount_vm_timer,
227                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
228                    NANOSECONDS_PER_SECOND / 10);
229     icount_adjust();
230 }
231
232 int64_t icount_round(int64_t count)
233 {
234     int shift = qatomic_read(&timers_state.icount_time_shift);
235     return (count + (1 << shift) - 1) >> shift;
236 }
237
238 static void icount_warp_rt(void)
239 {
240     unsigned seq;
241     int64_t warp_start;
242
243     /*
244      * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
245      * changes from -1 to another value, so the race here is okay.
246      */
247     do {
248         seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
249         warp_start = timers_state.vm_clock_warp_start;
250     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
251
252     if (warp_start == -1) {
253         return;
254     }
255
256     seqlock_write_lock(&timers_state.vm_clock_seqlock,
257                        &timers_state.vm_clock_lock);
258     if (runstate_is_running()) {
259         int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
260                                             cpu_get_clock_locked());
261         int64_t warp_delta;
262
263         warp_delta = clock - timers_state.vm_clock_warp_start;
264         if (icount_enabled() == 2) {
265             /*
266              * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
267              * far ahead of real time.
268              */
269             int64_t cur_icount = icount_get_locked();
270             int64_t delta = clock - cur_icount;
271             warp_delta = MIN(warp_delta, delta);
272         }
273         qatomic_set_i64(&timers_state.qemu_icount_bias,
274                         timers_state.qemu_icount_bias + warp_delta);
275     }
276     timers_state.vm_clock_warp_start = -1;
277     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
278                        &timers_state.vm_clock_lock);
279
280     if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
281         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
282     }
283 }
284
285 static void icount_timer_cb(void *opaque)
286 {
287     /*
288      * No need for a checkpoint because the timer already synchronizes
289      * with CHECKPOINT_CLOCK_VIRTUAL_RT.
290      */
291     icount_warp_rt();
292 }
293
294 void icount_start_warp_timer(void)
295 {
296     int64_t clock;
297     int64_t deadline;
298
299     assert(icount_enabled());
300
301     /*
302      * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
303      * do not fire, so computing the deadline does not make sense.
304      */
305     if (!runstate_is_running()) {
306         return;
307     }
308
309     if (replay_mode != REPLAY_MODE_PLAY) {
310         if (!all_cpu_threads_idle()) {
311             return;
312         }
313
314         if (qtest_enabled()) {
315             /* When testing, qtest commands advance icount.  */
316             return;
317         }
318
319         replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
320     } else {
321         /* warp clock deterministically in record/replay mode */
322         if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
323             /*
324              * vCPU is sleeping and warp can't be started.
325              * It is probably a race condition: notification sent
326              * to vCPU was processed in advance and vCPU went to sleep.
327              * Therefore we have to wake it up for doing someting.
328              */
329             if (replay_has_checkpoint()) {
330                 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
331             }
332             return;
333         }
334     }
335
336     /* We want to use the earliest deadline from ALL vm_clocks */
337     clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
338     deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
339                                           ~QEMU_TIMER_ATTR_EXTERNAL);
340     if (deadline < 0) {
341         static bool notified;
342         if (!icount_sleep && !notified) {
343             warn_report("icount sleep disabled and no active timers");
344             notified = true;
345         }
346         return;
347     }
348
349     if (deadline > 0) {
350         /*
351          * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
352          * sleep.  Otherwise, the CPU might be waiting for a future timer
353          * interrupt to wake it up, but the interrupt never comes because
354          * the vCPU isn't running any insns and thus doesn't advance the
355          * QEMU_CLOCK_VIRTUAL.
356          */
357         if (!icount_sleep) {
358             /*
359              * We never let VCPUs sleep in no sleep icount mode.
360              * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
361              * to the next QEMU_CLOCK_VIRTUAL event and notify it.
362              * It is useful when we want a deterministic execution time,
363              * isolated from host latencies.
364              */
365             seqlock_write_lock(&timers_state.vm_clock_seqlock,
366                                &timers_state.vm_clock_lock);
367             qatomic_set_i64(&timers_state.qemu_icount_bias,
368                             timers_state.qemu_icount_bias + deadline);
369             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
370                                  &timers_state.vm_clock_lock);
371             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
372         } else {
373             /*
374              * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
375              * "real" time, (related to the time left until the next event) has
376              * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
377              * This avoids that the warps are visible externally; for example,
378              * you will not be sending network packets continuously instead of
379              * every 100ms.
380              */
381             seqlock_write_lock(&timers_state.vm_clock_seqlock,
382                                &timers_state.vm_clock_lock);
383             if (timers_state.vm_clock_warp_start == -1
384                 || timers_state.vm_clock_warp_start > clock) {
385                 timers_state.vm_clock_warp_start = clock;
386             }
387             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
388                                  &timers_state.vm_clock_lock);
389             timer_mod_anticipate(timers_state.icount_warp_timer,
390                                  clock + deadline);
391         }
392     } else if (deadline == 0) {
393         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
394     }
395 }
396
397 void icount_account_warp_timer(void)
398 {
399     if (!icount_sleep) {
400         return;
401     }
402
403     /*
404      * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
405      * do not fire, so computing the deadline does not make sense.
406      */
407     if (!runstate_is_running()) {
408         return;
409     }
410
411     /* warp clock deterministically in record/replay mode */
412     if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
413         return;
414     }
415
416     timer_del(timers_state.icount_warp_timer);
417     icount_warp_rt();
418 }
419
420 void icount_configure(QemuOpts *opts, Error **errp)
421 {
422     const char *option = qemu_opt_get(opts, "shift");
423     bool sleep = qemu_opt_get_bool(opts, "sleep", true);
424     bool align = qemu_opt_get_bool(opts, "align", false);
425     long time_shift = -1;
426
427     if (!option) {
428         if (qemu_opt_get(opts, "align") != NULL) {
429             error_setg(errp, "Please specify shift option when using align");
430         }
431         return;
432     }
433
434     if (align && !sleep) {
435         error_setg(errp, "align=on and sleep=off are incompatible");
436         return;
437     }
438
439     if (strcmp(option, "auto") != 0) {
440         if (qemu_strtol(option, NULL, 0, &time_shift) < 0
441             || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
442             error_setg(errp, "icount: Invalid shift value");
443             return;
444         }
445     } else if (icount_align_option) {
446         error_setg(errp, "shift=auto and align=on are incompatible");
447         return;
448     } else if (!icount_sleep) {
449         error_setg(errp, "shift=auto and sleep=off are incompatible");
450         return;
451     }
452
453     icount_sleep = sleep;
454     if (icount_sleep) {
455         timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
456                                          icount_timer_cb, NULL);
457     }
458
459     icount_align_option = align;
460
461     if (time_shift >= 0) {
462         timers_state.icount_time_shift = time_shift;
463         icount_enable_precise();
464         return;
465     }
466
467     icount_enable_adaptive();
468
469     /*
470      * 125MIPS seems a reasonable initial guess at the guest speed.
471      * It will be corrected fairly quickly anyway.
472      */
473     timers_state.icount_time_shift = 3;
474
475     /*
476      * Have both realtime and virtual time triggers for speed adjustment.
477      * The realtime trigger catches emulated time passing too slowly,
478      * the virtual time trigger catches emulated time passing too fast.
479      * Realtime triggers occur even when idle, so use them less frequently
480      * than VM triggers.
481      */
482     timers_state.vm_clock_warp_start = -1;
483     timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
484                                    icount_adjust_rt, NULL);
485     timer_mod(timers_state.icount_rt_timer,
486                    qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
487     timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488                                         icount_adjust_vm, NULL);
489     timer_mod(timers_state.icount_vm_timer,
490                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
491                    NANOSECONDS_PER_SECOND / 10);
492 }