OSDN Git Service

linux-user/aarch64: Pass syndrome to EXC_*_ABORT
[qmiga/qemu.git] / softmmu / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/qemu-print.h"
27 #include "qom/object.h"
28 #include "trace.h"
29
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "qemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
38
39 //#define DEBUG_UNASSIGNED
40
41 static unsigned memory_region_transaction_depth;
42 static bool memory_region_update_pending;
43 static bool ioeventfd_update_pending;
44 bool global_dirty_log;
45
46 static QTAILQ_HEAD(, MemoryListener) memory_listeners
47     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48
49 static QTAILQ_HEAD(, AddressSpace) address_spaces
50     = QTAILQ_HEAD_INITIALIZER(address_spaces);
51
52 static GHashTable *flat_views;
53
54 typedef struct AddrRange AddrRange;
55
56 /*
57  * Note that signed integers are needed for negative offsetting in aliases
58  * (large MemoryRegion::alias_offset).
59  */
60 struct AddrRange {
61     Int128 start;
62     Int128 size;
63 };
64
65 static AddrRange addrrange_make(Int128 start, Int128 size)
66 {
67     return (AddrRange) { start, size };
68 }
69
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 {
72     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 }
74
75 static Int128 addrrange_end(AddrRange r)
76 {
77     return int128_add(r.start, r.size);
78 }
79
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 {
82     int128_addto(&range.start, delta);
83     return range;
84 }
85
86 static bool addrrange_contains(AddrRange range, Int128 addr)
87 {
88     return int128_ge(addr, range.start)
89         && int128_lt(addr, addrrange_end(range));
90 }
91
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 {
94     return addrrange_contains(r1, r2.start)
95         || addrrange_contains(r2, r1.start);
96 }
97
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 {
100     Int128 start = int128_max(r1.start, r2.start);
101     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102     return addrrange_make(start, int128_sub(end, start));
103 }
104
105 enum ListenerDirection { Forward, Reverse };
106
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
108     do {                                                                \
109         MemoryListener *_listener;                                      \
110                                                                         \
111         switch (_direction) {                                           \
112         case Forward:                                                   \
113             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
114                 if (_listener->_callback) {                             \
115                     _listener->_callback(_listener, ##_args);           \
116                 }                                                       \
117             }                                                           \
118             break;                                                      \
119         case Reverse:                                                   \
120             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121                 if (_listener->_callback) {                             \
122                     _listener->_callback(_listener, ##_args);           \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         default:                                                        \
127             abort();                                                    \
128         }                                                               \
129     } while (0)
130
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132     do {                                                                \
133         MemoryListener *_listener;                                      \
134                                                                         \
135         switch (_direction) {                                           \
136         case Forward:                                                   \
137             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
138                 if (_listener->_callback) {                             \
139                     _listener->_callback(_listener, _section, ##_args); \
140                 }                                                       \
141             }                                                           \
142             break;                                                      \
143         case Reverse:                                                   \
144             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145                 if (_listener->_callback) {                             \
146                     _listener->_callback(_listener, _section, ##_args); \
147                 }                                                       \
148             }                                                           \
149             break;                                                      \
150         default:                                                        \
151             abort();                                                    \
152         }                                                               \
153     } while (0)
154
155 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
157     do {                                                                \
158         MemoryRegionSection mrs = section_from_flat_range(fr,           \
159                 address_space_to_flatview(as));                         \
160         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
161     } while(0)
162
163 struct CoalescedMemoryRange {
164     AddrRange addr;
165     QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 };
167
168 struct MemoryRegionIoeventfd {
169     AddrRange addr;
170     bool match_data;
171     uint64_t data;
172     EventNotifier *e;
173 };
174
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176                                            MemoryRegionIoeventfd *b)
177 {
178     if (int128_lt(a->addr.start, b->addr.start)) {
179         return true;
180     } else if (int128_gt(a->addr.start, b->addr.start)) {
181         return false;
182     } else if (int128_lt(a->addr.size, b->addr.size)) {
183         return true;
184     } else if (int128_gt(a->addr.size, b->addr.size)) {
185         return false;
186     } else if (a->match_data < b->match_data) {
187         return true;
188     } else  if (a->match_data > b->match_data) {
189         return false;
190     } else if (a->match_data) {
191         if (a->data < b->data) {
192             return true;
193         } else if (a->data > b->data) {
194             return false;
195         }
196     }
197     if (a->e < b->e) {
198         return true;
199     } else if (a->e > b->e) {
200         return false;
201     }
202     return false;
203 }
204
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206                                           MemoryRegionIoeventfd *b)
207 {
208     if (int128_eq(a->addr.start, b->addr.start) &&
209         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
210          (int128_eq(a->addr.size, b->addr.size) &&
211           (a->match_data == b->match_data) &&
212           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
213           (a->e == b->e))))
214         return true;
215
216     return false;
217 }
218
219 /* Range of memory in the global map.  Addresses are absolute. */
220 struct FlatRange {
221     MemoryRegion *mr;
222     hwaddr offset_in_region;
223     AddrRange addr;
224     uint8_t dirty_log_mask;
225     bool romd_mode;
226     bool readonly;
227     bool nonvolatile;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244     };
245 }
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249     return a->mr == b->mr
250         && addrrange_equal(a->addr, b->addr)
251         && a->offset_in_region == b->offset_in_region
252         && a->romd_mode == b->romd_mode
253         && a->readonly == b->readonly
254         && a->nonvolatile == b->nonvolatile;
255 }
256
257 static FlatView *flatview_new(MemoryRegion *mr_root)
258 {
259     FlatView *view;
260
261     view = g_new0(FlatView, 1);
262     view->ref = 1;
263     view->root = mr_root;
264     memory_region_ref(mr_root);
265     trace_flatview_new(view, mr_root);
266
267     return view;
268 }
269
270 /* Insert a range into a given position.  Caller is responsible for maintaining
271  * sorting order.
272  */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275     if (view->nr == view->nr_allocated) {
276         view->nr_allocated = MAX(2 * view->nr, 10);
277         view->ranges = g_realloc(view->ranges,
278                                     view->nr_allocated * sizeof(*view->ranges));
279     }
280     memmove(view->ranges + pos + 1, view->ranges + pos,
281             (view->nr - pos) * sizeof(FlatRange));
282     view->ranges[pos] = *range;
283     memory_region_ref(range->mr);
284     ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289     int i;
290
291     trace_flatview_destroy(view, view->root);
292     if (view->dispatch) {
293         address_space_dispatch_free(view->dispatch);
294     }
295     for (i = 0; i < view->nr; i++) {
296         memory_region_unref(view->ranges[i].mr);
297     }
298     g_free(view->ranges);
299     memory_region_unref(view->root);
300     g_free(view);
301 }
302
303 static bool flatview_ref(FlatView *view)
304 {
305     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
306 }
307
308 void flatview_unref(FlatView *view)
309 {
310     if (qatomic_fetch_dec(&view->ref) == 1) {
311         trace_flatview_destroy_rcu(view, view->root);
312         assert(view->root);
313         call_rcu(view, flatview_destroy, rcu);
314     }
315 }
316
317 static bool can_merge(FlatRange *r1, FlatRange *r2)
318 {
319     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
320         && r1->mr == r2->mr
321         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
322                                 r1->addr.size),
323                      int128_make64(r2->offset_in_region))
324         && r1->dirty_log_mask == r2->dirty_log_mask
325         && r1->romd_mode == r2->romd_mode
326         && r1->readonly == r2->readonly
327         && r1->nonvolatile == r2->nonvolatile;
328 }
329
330 /* Attempt to simplify a view by merging adjacent ranges */
331 static void flatview_simplify(FlatView *view)
332 {
333     unsigned i, j, k;
334
335     i = 0;
336     while (i < view->nr) {
337         j = i + 1;
338         while (j < view->nr
339                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
340             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
341             ++j;
342         }
343         ++i;
344         for (k = i; k < j; k++) {
345             memory_region_unref(view->ranges[k].mr);
346         }
347         memmove(&view->ranges[i], &view->ranges[j],
348                 (view->nr - j) * sizeof(view->ranges[j]));
349         view->nr -= j - i;
350     }
351 }
352
353 static bool memory_region_big_endian(MemoryRegion *mr)
354 {
355 #ifdef TARGET_WORDS_BIGENDIAN
356     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
357 #else
358     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
359 #endif
360 }
361
362 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
363 {
364     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
365         switch (op & MO_SIZE) {
366         case MO_8:
367             break;
368         case MO_16:
369             *data = bswap16(*data);
370             break;
371         case MO_32:
372             *data = bswap32(*data);
373             break;
374         case MO_64:
375             *data = bswap64(*data);
376             break;
377         default:
378             g_assert_not_reached();
379         }
380     }
381 }
382
383 static inline void memory_region_shift_read_access(uint64_t *value,
384                                                    signed shift,
385                                                    uint64_t mask,
386                                                    uint64_t tmp)
387 {
388     if (shift >= 0) {
389         *value |= (tmp & mask) << shift;
390     } else {
391         *value |= (tmp & mask) >> -shift;
392     }
393 }
394
395 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
396                                                         signed shift,
397                                                         uint64_t mask)
398 {
399     uint64_t tmp;
400
401     if (shift >= 0) {
402         tmp = (*value >> shift) & mask;
403     } else {
404         tmp = (*value << -shift) & mask;
405     }
406
407     return tmp;
408 }
409
410 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
411 {
412     MemoryRegion *root;
413     hwaddr abs_addr = offset;
414
415     abs_addr += mr->addr;
416     for (root = mr; root->container; ) {
417         root = root->container;
418         abs_addr += root->addr;
419     }
420
421     return abs_addr;
422 }
423
424 static int get_cpu_index(void)
425 {
426     if (current_cpu) {
427         return current_cpu->cpu_index;
428     }
429     return -1;
430 }
431
432 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
433                                                 hwaddr addr,
434                                                 uint64_t *value,
435                                                 unsigned size,
436                                                 signed shift,
437                                                 uint64_t mask,
438                                                 MemTxAttrs attrs)
439 {
440     uint64_t tmp;
441
442     tmp = mr->ops->read(mr->opaque, addr, size);
443     if (mr->subpage) {
444         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
445     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
446         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
447         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
448     }
449     memory_region_shift_read_access(value, shift, mask, tmp);
450     return MEMTX_OK;
451 }
452
453 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
454                                                           hwaddr addr,
455                                                           uint64_t *value,
456                                                           unsigned size,
457                                                           signed shift,
458                                                           uint64_t mask,
459                                                           MemTxAttrs attrs)
460 {
461     uint64_t tmp = 0;
462     MemTxResult r;
463
464     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
465     if (mr->subpage) {
466         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
467     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
468         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
469         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
470     }
471     memory_region_shift_read_access(value, shift, mask, tmp);
472     return r;
473 }
474
475 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
476                                                 hwaddr addr,
477                                                 uint64_t *value,
478                                                 unsigned size,
479                                                 signed shift,
480                                                 uint64_t mask,
481                                                 MemTxAttrs attrs)
482 {
483     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
484
485     if (mr->subpage) {
486         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
487     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
488         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
489         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
490     }
491     mr->ops->write(mr->opaque, addr, tmp, size);
492     return MEMTX_OK;
493 }
494
495 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
496                                                            hwaddr addr,
497                                                            uint64_t *value,
498                                                            unsigned size,
499                                                            signed shift,
500                                                            uint64_t mask,
501                                                            MemTxAttrs attrs)
502 {
503     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
504
505     if (mr->subpage) {
506         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
507     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
508         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
509         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
510     }
511     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 }
513
514 static MemTxResult access_with_adjusted_size(hwaddr addr,
515                                       uint64_t *value,
516                                       unsigned size,
517                                       unsigned access_size_min,
518                                       unsigned access_size_max,
519                                       MemTxResult (*access_fn)
520                                                   (MemoryRegion *mr,
521                                                    hwaddr addr,
522                                                    uint64_t *value,
523                                                    unsigned size,
524                                                    signed shift,
525                                                    uint64_t mask,
526                                                    MemTxAttrs attrs),
527                                       MemoryRegion *mr,
528                                       MemTxAttrs attrs)
529 {
530     uint64_t access_mask;
531     unsigned access_size;
532     unsigned i;
533     MemTxResult r = MEMTX_OK;
534
535     if (!access_size_min) {
536         access_size_min = 1;
537     }
538     if (!access_size_max) {
539         access_size_max = 4;
540     }
541
542     /* FIXME: support unaligned access? */
543     access_size = MAX(MIN(size, access_size_max), access_size_min);
544     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
545     if (memory_region_big_endian(mr)) {
546         for (i = 0; i < size; i += access_size) {
547             r |= access_fn(mr, addr + i, value, access_size,
548                         (size - access_size - i) * 8, access_mask, attrs);
549         }
550     } else {
551         for (i = 0; i < size; i += access_size) {
552             r |= access_fn(mr, addr + i, value, access_size, i * 8,
553                         access_mask, attrs);
554         }
555     }
556     return r;
557 }
558
559 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
560 {
561     AddressSpace *as;
562
563     while (mr->container) {
564         mr = mr->container;
565     }
566     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
567         if (mr == as->root) {
568             return as;
569         }
570     }
571     return NULL;
572 }
573
574 /* Render a memory region into the global view.  Ranges in @view obscure
575  * ranges in @mr.
576  */
577 static void render_memory_region(FlatView *view,
578                                  MemoryRegion *mr,
579                                  Int128 base,
580                                  AddrRange clip,
581                                  bool readonly,
582                                  bool nonvolatile)
583 {
584     MemoryRegion *subregion;
585     unsigned i;
586     hwaddr offset_in_region;
587     Int128 remain;
588     Int128 now;
589     FlatRange fr;
590     AddrRange tmp;
591
592     if (!mr->enabled) {
593         return;
594     }
595
596     int128_addto(&base, int128_make64(mr->addr));
597     readonly |= mr->readonly;
598     nonvolatile |= mr->nonvolatile;
599
600     tmp = addrrange_make(base, mr->size);
601
602     if (!addrrange_intersects(tmp, clip)) {
603         return;
604     }
605
606     clip = addrrange_intersection(tmp, clip);
607
608     if (mr->alias) {
609         int128_subfrom(&base, int128_make64(mr->alias->addr));
610         int128_subfrom(&base, int128_make64(mr->alias_offset));
611         render_memory_region(view, mr->alias, base, clip,
612                              readonly, nonvolatile);
613         return;
614     }
615
616     /* Render subregions in priority order. */
617     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
618         render_memory_region(view, subregion, base, clip,
619                              readonly, nonvolatile);
620     }
621
622     if (!mr->terminates) {
623         return;
624     }
625
626     offset_in_region = int128_get64(int128_sub(clip.start, base));
627     base = clip.start;
628     remain = clip.size;
629
630     fr.mr = mr;
631     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
632     fr.romd_mode = mr->romd_mode;
633     fr.readonly = readonly;
634     fr.nonvolatile = nonvolatile;
635
636     /* Render the region itself into any gaps left by the current view. */
637     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
638         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
639             continue;
640         }
641         if (int128_lt(base, view->ranges[i].addr.start)) {
642             now = int128_min(remain,
643                              int128_sub(view->ranges[i].addr.start, base));
644             fr.offset_in_region = offset_in_region;
645             fr.addr = addrrange_make(base, now);
646             flatview_insert(view, i, &fr);
647             ++i;
648             int128_addto(&base, now);
649             offset_in_region += int128_get64(now);
650             int128_subfrom(&remain, now);
651         }
652         now = int128_sub(int128_min(int128_add(base, remain),
653                                     addrrange_end(view->ranges[i].addr)),
654                          base);
655         int128_addto(&base, now);
656         offset_in_region += int128_get64(now);
657         int128_subfrom(&remain, now);
658     }
659     if (int128_nz(remain)) {
660         fr.offset_in_region = offset_in_region;
661         fr.addr = addrrange_make(base, remain);
662         flatview_insert(view, i, &fr);
663     }
664 }
665
666 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
667 {
668     FlatRange *fr;
669
670     assert(fv);
671     assert(cb);
672
673     FOR_EACH_FLAT_RANGE(fr, fv) {
674         if (cb(fr->addr.start, fr->addr.size, fr->mr, opaque))
675             break;
676     }
677 }
678
679 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
680 {
681     while (mr->enabled) {
682         if (mr->alias) {
683             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
684                 /* The alias is included in its entirety.  Use it as
685                  * the "real" root, so that we can share more FlatViews.
686                  */
687                 mr = mr->alias;
688                 continue;
689             }
690         } else if (!mr->terminates) {
691             unsigned int found = 0;
692             MemoryRegion *child, *next = NULL;
693             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
694                 if (child->enabled) {
695                     if (++found > 1) {
696                         next = NULL;
697                         break;
698                     }
699                     if (!child->addr && int128_ge(mr->size, child->size)) {
700                         /* A child is included in its entirety.  If it's the only
701                          * enabled one, use it in the hope of finding an alias down the
702                          * way. This will also let us share FlatViews.
703                          */
704                         next = child;
705                     }
706                 }
707             }
708             if (found == 0) {
709                 return NULL;
710             }
711             if (next) {
712                 mr = next;
713                 continue;
714             }
715         }
716
717         return mr;
718     }
719
720     return NULL;
721 }
722
723 /* Render a memory topology into a list of disjoint absolute ranges. */
724 static FlatView *generate_memory_topology(MemoryRegion *mr)
725 {
726     int i;
727     FlatView *view;
728
729     view = flatview_new(mr);
730
731     if (mr) {
732         render_memory_region(view, mr, int128_zero(),
733                              addrrange_make(int128_zero(), int128_2_64()),
734                              false, false);
735     }
736     flatview_simplify(view);
737
738     view->dispatch = address_space_dispatch_new(view);
739     for (i = 0; i < view->nr; i++) {
740         MemoryRegionSection mrs =
741             section_from_flat_range(&view->ranges[i], view);
742         flatview_add_to_dispatch(view, &mrs);
743     }
744     address_space_dispatch_compact(view->dispatch);
745     g_hash_table_replace(flat_views, mr, view);
746
747     return view;
748 }
749
750 static void address_space_add_del_ioeventfds(AddressSpace *as,
751                                              MemoryRegionIoeventfd *fds_new,
752                                              unsigned fds_new_nb,
753                                              MemoryRegionIoeventfd *fds_old,
754                                              unsigned fds_old_nb)
755 {
756     unsigned iold, inew;
757     MemoryRegionIoeventfd *fd;
758     MemoryRegionSection section;
759
760     /* Generate a symmetric difference of the old and new fd sets, adding
761      * and deleting as necessary.
762      */
763
764     iold = inew = 0;
765     while (iold < fds_old_nb || inew < fds_new_nb) {
766         if (iold < fds_old_nb
767             && (inew == fds_new_nb
768                 || memory_region_ioeventfd_before(&fds_old[iold],
769                                                   &fds_new[inew]))) {
770             fd = &fds_old[iold];
771             section = (MemoryRegionSection) {
772                 .fv = address_space_to_flatview(as),
773                 .offset_within_address_space = int128_get64(fd->addr.start),
774                 .size = fd->addr.size,
775             };
776             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
777                                  fd->match_data, fd->data, fd->e);
778             ++iold;
779         } else if (inew < fds_new_nb
780                    && (iold == fds_old_nb
781                        || memory_region_ioeventfd_before(&fds_new[inew],
782                                                          &fds_old[iold]))) {
783             fd = &fds_new[inew];
784             section = (MemoryRegionSection) {
785                 .fv = address_space_to_flatview(as),
786                 .offset_within_address_space = int128_get64(fd->addr.start),
787                 .size = fd->addr.size,
788             };
789             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
790                                  fd->match_data, fd->data, fd->e);
791             ++inew;
792         } else {
793             ++iold;
794             ++inew;
795         }
796     }
797 }
798
799 FlatView *address_space_get_flatview(AddressSpace *as)
800 {
801     FlatView *view;
802
803     RCU_READ_LOCK_GUARD();
804     do {
805         view = address_space_to_flatview(as);
806         /* If somebody has replaced as->current_map concurrently,
807          * flatview_ref returns false.
808          */
809     } while (!flatview_ref(view));
810     return view;
811 }
812
813 static void address_space_update_ioeventfds(AddressSpace *as)
814 {
815     FlatView *view;
816     FlatRange *fr;
817     unsigned ioeventfd_nb = 0;
818     unsigned ioeventfd_max;
819     MemoryRegionIoeventfd *ioeventfds;
820     AddrRange tmp;
821     unsigned i;
822
823     /*
824      * It is likely that the number of ioeventfds hasn't changed much, so use
825      * the previous size as the starting value, with some headroom to avoid
826      * gratuitous reallocations.
827      */
828     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
829     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
830
831     view = address_space_get_flatview(as);
832     FOR_EACH_FLAT_RANGE(fr, view) {
833         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
834             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
835                                   int128_sub(fr->addr.start,
836                                              int128_make64(fr->offset_in_region)));
837             if (addrrange_intersects(fr->addr, tmp)) {
838                 ++ioeventfd_nb;
839                 if (ioeventfd_nb > ioeventfd_max) {
840                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
841                     ioeventfds = g_realloc(ioeventfds,
842                             ioeventfd_max * sizeof(*ioeventfds));
843                 }
844                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
845                 ioeventfds[ioeventfd_nb-1].addr = tmp;
846             }
847         }
848     }
849
850     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
851                                      as->ioeventfds, as->ioeventfd_nb);
852
853     g_free(as->ioeventfds);
854     as->ioeventfds = ioeventfds;
855     as->ioeventfd_nb = ioeventfd_nb;
856     flatview_unref(view);
857 }
858
859 /*
860  * Notify the memory listeners about the coalesced IO change events of
861  * range `cmr'.  Only the part that has intersection of the specified
862  * FlatRange will be sent.
863  */
864 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
865                                            CoalescedMemoryRange *cmr, bool add)
866 {
867     AddrRange tmp;
868
869     tmp = addrrange_shift(cmr->addr,
870                           int128_sub(fr->addr.start,
871                                      int128_make64(fr->offset_in_region)));
872     if (!addrrange_intersects(tmp, fr->addr)) {
873         return;
874     }
875     tmp = addrrange_intersection(tmp, fr->addr);
876
877     if (add) {
878         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
879                                       int128_get64(tmp.start),
880                                       int128_get64(tmp.size));
881     } else {
882         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
883                                       int128_get64(tmp.start),
884                                       int128_get64(tmp.size));
885     }
886 }
887
888 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
889 {
890     CoalescedMemoryRange *cmr;
891
892     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
893         flat_range_coalesced_io_notify(fr, as, cmr, false);
894     }
895 }
896
897 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
898 {
899     MemoryRegion *mr = fr->mr;
900     CoalescedMemoryRange *cmr;
901
902     if (QTAILQ_EMPTY(&mr->coalesced)) {
903         return;
904     }
905
906     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
907         flat_range_coalesced_io_notify(fr, as, cmr, true);
908     }
909 }
910
911 static void address_space_update_topology_pass(AddressSpace *as,
912                                                const FlatView *old_view,
913                                                const FlatView *new_view,
914                                                bool adding)
915 {
916     unsigned iold, inew;
917     FlatRange *frold, *frnew;
918
919     /* Generate a symmetric difference of the old and new memory maps.
920      * Kill ranges in the old map, and instantiate ranges in the new map.
921      */
922     iold = inew = 0;
923     while (iold < old_view->nr || inew < new_view->nr) {
924         if (iold < old_view->nr) {
925             frold = &old_view->ranges[iold];
926         } else {
927             frold = NULL;
928         }
929         if (inew < new_view->nr) {
930             frnew = &new_view->ranges[inew];
931         } else {
932             frnew = NULL;
933         }
934
935         if (frold
936             && (!frnew
937                 || int128_lt(frold->addr.start, frnew->addr.start)
938                 || (int128_eq(frold->addr.start, frnew->addr.start)
939                     && !flatrange_equal(frold, frnew)))) {
940             /* In old but not in new, or in both but attributes changed. */
941
942             if (!adding) {
943                 flat_range_coalesced_io_del(frold, as);
944                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
945             }
946
947             ++iold;
948         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
949             /* In both and unchanged (except logging may have changed) */
950
951             if (adding) {
952                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
953                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
954                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
955                                                   frold->dirty_log_mask,
956                                                   frnew->dirty_log_mask);
957                 }
958                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
959                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
960                                                   frold->dirty_log_mask,
961                                                   frnew->dirty_log_mask);
962                 }
963             }
964
965             ++iold;
966             ++inew;
967         } else {
968             /* In new */
969
970             if (adding) {
971                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
972                 flat_range_coalesced_io_add(frnew, as);
973             }
974
975             ++inew;
976         }
977     }
978 }
979
980 static void flatviews_init(void)
981 {
982     static FlatView *empty_view;
983
984     if (flat_views) {
985         return;
986     }
987
988     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
989                                        (GDestroyNotify) flatview_unref);
990     if (!empty_view) {
991         empty_view = generate_memory_topology(NULL);
992         /* We keep it alive forever in the global variable.  */
993         flatview_ref(empty_view);
994     } else {
995         g_hash_table_replace(flat_views, NULL, empty_view);
996         flatview_ref(empty_view);
997     }
998 }
999
1000 static void flatviews_reset(void)
1001 {
1002     AddressSpace *as;
1003
1004     if (flat_views) {
1005         g_hash_table_unref(flat_views);
1006         flat_views = NULL;
1007     }
1008     flatviews_init();
1009
1010     /* Render unique FVs */
1011     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1012         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1013
1014         if (g_hash_table_lookup(flat_views, physmr)) {
1015             continue;
1016         }
1017
1018         generate_memory_topology(physmr);
1019     }
1020 }
1021
1022 static void address_space_set_flatview(AddressSpace *as)
1023 {
1024     FlatView *old_view = address_space_to_flatview(as);
1025     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1026     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1027
1028     assert(new_view);
1029
1030     if (old_view == new_view) {
1031         return;
1032     }
1033
1034     if (old_view) {
1035         flatview_ref(old_view);
1036     }
1037
1038     flatview_ref(new_view);
1039
1040     if (!QTAILQ_EMPTY(&as->listeners)) {
1041         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1042
1043         if (!old_view2) {
1044             old_view2 = &tmpview;
1045         }
1046         address_space_update_topology_pass(as, old_view2, new_view, false);
1047         address_space_update_topology_pass(as, old_view2, new_view, true);
1048     }
1049
1050     /* Writes are protected by the BQL.  */
1051     qatomic_rcu_set(&as->current_map, new_view);
1052     if (old_view) {
1053         flatview_unref(old_view);
1054     }
1055
1056     /* Note that all the old MemoryRegions are still alive up to this
1057      * point.  This relieves most MemoryListeners from the need to
1058      * ref/unref the MemoryRegions they get---unless they use them
1059      * outside the iothread mutex, in which case precise reference
1060      * counting is necessary.
1061      */
1062     if (old_view) {
1063         flatview_unref(old_view);
1064     }
1065 }
1066
1067 static void address_space_update_topology(AddressSpace *as)
1068 {
1069     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1070
1071     flatviews_init();
1072     if (!g_hash_table_lookup(flat_views, physmr)) {
1073         generate_memory_topology(physmr);
1074     }
1075     address_space_set_flatview(as);
1076 }
1077
1078 void memory_region_transaction_begin(void)
1079 {
1080     qemu_flush_coalesced_mmio_buffer();
1081     ++memory_region_transaction_depth;
1082 }
1083
1084 void memory_region_transaction_commit(void)
1085 {
1086     AddressSpace *as;
1087
1088     assert(memory_region_transaction_depth);
1089     assert(qemu_mutex_iothread_locked());
1090
1091     --memory_region_transaction_depth;
1092     if (!memory_region_transaction_depth) {
1093         if (memory_region_update_pending) {
1094             flatviews_reset();
1095
1096             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1097
1098             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1099                 address_space_set_flatview(as);
1100                 address_space_update_ioeventfds(as);
1101             }
1102             memory_region_update_pending = false;
1103             ioeventfd_update_pending = false;
1104             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1105         } else if (ioeventfd_update_pending) {
1106             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1107                 address_space_update_ioeventfds(as);
1108             }
1109             ioeventfd_update_pending = false;
1110         }
1111    }
1112 }
1113
1114 static void memory_region_destructor_none(MemoryRegion *mr)
1115 {
1116 }
1117
1118 static void memory_region_destructor_ram(MemoryRegion *mr)
1119 {
1120     qemu_ram_free(mr->ram_block);
1121 }
1122
1123 static bool memory_region_need_escape(char c)
1124 {
1125     return c == '/' || c == '[' || c == '\\' || c == ']';
1126 }
1127
1128 static char *memory_region_escape_name(const char *name)
1129 {
1130     const char *p;
1131     char *escaped, *q;
1132     uint8_t c;
1133     size_t bytes = 0;
1134
1135     for (p = name; *p; p++) {
1136         bytes += memory_region_need_escape(*p) ? 4 : 1;
1137     }
1138     if (bytes == p - name) {
1139        return g_memdup(name, bytes + 1);
1140     }
1141
1142     escaped = g_malloc(bytes + 1);
1143     for (p = name, q = escaped; *p; p++) {
1144         c = *p;
1145         if (unlikely(memory_region_need_escape(c))) {
1146             *q++ = '\\';
1147             *q++ = 'x';
1148             *q++ = "0123456789abcdef"[c >> 4];
1149             c = "0123456789abcdef"[c & 15];
1150         }
1151         *q++ = c;
1152     }
1153     *q = 0;
1154     return escaped;
1155 }
1156
1157 static void memory_region_do_init(MemoryRegion *mr,
1158                                   Object *owner,
1159                                   const char *name,
1160                                   uint64_t size)
1161 {
1162     mr->size = int128_make64(size);
1163     if (size == UINT64_MAX) {
1164         mr->size = int128_2_64();
1165     }
1166     mr->name = g_strdup(name);
1167     mr->owner = owner;
1168     mr->ram_block = NULL;
1169
1170     if (name) {
1171         char *escaped_name = memory_region_escape_name(name);
1172         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1173
1174         if (!owner) {
1175             owner = container_get(qdev_get_machine(), "/unattached");
1176         }
1177
1178         object_property_add_child(owner, name_array, OBJECT(mr));
1179         object_unref(OBJECT(mr));
1180         g_free(name_array);
1181         g_free(escaped_name);
1182     }
1183 }
1184
1185 void memory_region_init(MemoryRegion *mr,
1186                         Object *owner,
1187                         const char *name,
1188                         uint64_t size)
1189 {
1190     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1191     memory_region_do_init(mr, owner, name, size);
1192 }
1193
1194 static void memory_region_get_container(Object *obj, Visitor *v,
1195                                         const char *name, void *opaque,
1196                                         Error **errp)
1197 {
1198     MemoryRegion *mr = MEMORY_REGION(obj);
1199     char *path = (char *)"";
1200
1201     if (mr->container) {
1202         path = object_get_canonical_path(OBJECT(mr->container));
1203     }
1204     visit_type_str(v, name, &path, errp);
1205     if (mr->container) {
1206         g_free(path);
1207     }
1208 }
1209
1210 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1211                                                const char *part)
1212 {
1213     MemoryRegion *mr = MEMORY_REGION(obj);
1214
1215     return OBJECT(mr->container);
1216 }
1217
1218 static void memory_region_get_priority(Object *obj, Visitor *v,
1219                                        const char *name, void *opaque,
1220                                        Error **errp)
1221 {
1222     MemoryRegion *mr = MEMORY_REGION(obj);
1223     int32_t value = mr->priority;
1224
1225     visit_type_int32(v, name, &value, errp);
1226 }
1227
1228 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1229                                    void *opaque, Error **errp)
1230 {
1231     MemoryRegion *mr = MEMORY_REGION(obj);
1232     uint64_t value = memory_region_size(mr);
1233
1234     visit_type_uint64(v, name, &value, errp);
1235 }
1236
1237 static void memory_region_initfn(Object *obj)
1238 {
1239     MemoryRegion *mr = MEMORY_REGION(obj);
1240     ObjectProperty *op;
1241
1242     mr->ops = &unassigned_mem_ops;
1243     mr->enabled = true;
1244     mr->romd_mode = true;
1245     mr->destructor = memory_region_destructor_none;
1246     QTAILQ_INIT(&mr->subregions);
1247     QTAILQ_INIT(&mr->coalesced);
1248
1249     op = object_property_add(OBJECT(mr), "container",
1250                              "link<" TYPE_MEMORY_REGION ">",
1251                              memory_region_get_container,
1252                              NULL, /* memory_region_set_container */
1253                              NULL, NULL);
1254     op->resolve = memory_region_resolve_container;
1255
1256     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1257                                    &mr->addr, OBJ_PROP_FLAG_READ);
1258     object_property_add(OBJECT(mr), "priority", "uint32",
1259                         memory_region_get_priority,
1260                         NULL, /* memory_region_set_priority */
1261                         NULL, NULL);
1262     object_property_add(OBJECT(mr), "size", "uint64",
1263                         memory_region_get_size,
1264                         NULL, /* memory_region_set_size, */
1265                         NULL, NULL);
1266 }
1267
1268 static void iommu_memory_region_initfn(Object *obj)
1269 {
1270     MemoryRegion *mr = MEMORY_REGION(obj);
1271
1272     mr->is_iommu = true;
1273 }
1274
1275 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1276                                     unsigned size)
1277 {
1278 #ifdef DEBUG_UNASSIGNED
1279     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1280 #endif
1281     return 0;
1282 }
1283
1284 static void unassigned_mem_write(void *opaque, hwaddr addr,
1285                                  uint64_t val, unsigned size)
1286 {
1287 #ifdef DEBUG_UNASSIGNED
1288     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1289 #endif
1290 }
1291
1292 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1293                                    unsigned size, bool is_write,
1294                                    MemTxAttrs attrs)
1295 {
1296     return false;
1297 }
1298
1299 const MemoryRegionOps unassigned_mem_ops = {
1300     .valid.accepts = unassigned_mem_accepts,
1301     .endianness = DEVICE_NATIVE_ENDIAN,
1302 };
1303
1304 static uint64_t memory_region_ram_device_read(void *opaque,
1305                                               hwaddr addr, unsigned size)
1306 {
1307     MemoryRegion *mr = opaque;
1308     uint64_t data = (uint64_t)~0;
1309
1310     switch (size) {
1311     case 1:
1312         data = *(uint8_t *)(mr->ram_block->host + addr);
1313         break;
1314     case 2:
1315         data = *(uint16_t *)(mr->ram_block->host + addr);
1316         break;
1317     case 4:
1318         data = *(uint32_t *)(mr->ram_block->host + addr);
1319         break;
1320     case 8:
1321         data = *(uint64_t *)(mr->ram_block->host + addr);
1322         break;
1323     }
1324
1325     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1326
1327     return data;
1328 }
1329
1330 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1331                                            uint64_t data, unsigned size)
1332 {
1333     MemoryRegion *mr = opaque;
1334
1335     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1336
1337     switch (size) {
1338     case 1:
1339         *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1340         break;
1341     case 2:
1342         *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1343         break;
1344     case 4:
1345         *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1346         break;
1347     case 8:
1348         *(uint64_t *)(mr->ram_block->host + addr) = data;
1349         break;
1350     }
1351 }
1352
1353 static const MemoryRegionOps ram_device_mem_ops = {
1354     .read = memory_region_ram_device_read,
1355     .write = memory_region_ram_device_write,
1356     .endianness = DEVICE_HOST_ENDIAN,
1357     .valid = {
1358         .min_access_size = 1,
1359         .max_access_size = 8,
1360         .unaligned = true,
1361     },
1362     .impl = {
1363         .min_access_size = 1,
1364         .max_access_size = 8,
1365         .unaligned = true,
1366     },
1367 };
1368
1369 bool memory_region_access_valid(MemoryRegion *mr,
1370                                 hwaddr addr,
1371                                 unsigned size,
1372                                 bool is_write,
1373                                 MemTxAttrs attrs)
1374 {
1375     if (mr->ops->valid.accepts
1376         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1377         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1378                                        "0x%" HWADDR_PRIX ", size %u, "
1379                                        "region '%s', reason: rejected\n",
1380                       addr, size, memory_region_name(mr));
1381         return false;
1382     }
1383
1384     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1385         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1386                                        "0x%" HWADDR_PRIX ", size %u, "
1387                                        "region '%s', reason: unaligned\n",
1388                       addr, size, memory_region_name(mr));
1389         return false;
1390     }
1391
1392     /* Treat zero as compatibility all valid */
1393     if (!mr->ops->valid.max_access_size) {
1394         return true;
1395     }
1396
1397     if (size > mr->ops->valid.max_access_size
1398         || size < mr->ops->valid.min_access_size) {
1399         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1400                                        "0x%" HWADDR_PRIX ", size %u, "
1401                                        "region '%s', reason: invalid size "
1402                                        "(min:%u max:%u)\n",
1403                       addr, size, memory_region_name(mr),
1404                       mr->ops->valid.min_access_size,
1405                       mr->ops->valid.max_access_size);
1406         return false;
1407     }
1408     return true;
1409 }
1410
1411 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1412                                                 hwaddr addr,
1413                                                 uint64_t *pval,
1414                                                 unsigned size,
1415                                                 MemTxAttrs attrs)
1416 {
1417     *pval = 0;
1418
1419     if (mr->ops->read) {
1420         return access_with_adjusted_size(addr, pval, size,
1421                                          mr->ops->impl.min_access_size,
1422                                          mr->ops->impl.max_access_size,
1423                                          memory_region_read_accessor,
1424                                          mr, attrs);
1425     } else {
1426         return access_with_adjusted_size(addr, pval, size,
1427                                          mr->ops->impl.min_access_size,
1428                                          mr->ops->impl.max_access_size,
1429                                          memory_region_read_with_attrs_accessor,
1430                                          mr, attrs);
1431     }
1432 }
1433
1434 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1435                                         hwaddr addr,
1436                                         uint64_t *pval,
1437                                         MemOp op,
1438                                         MemTxAttrs attrs)
1439 {
1440     unsigned size = memop_size(op);
1441     MemTxResult r;
1442
1443     fuzz_dma_read_cb(addr, size, mr);
1444     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1445         *pval = unassigned_mem_read(mr, addr, size);
1446         return MEMTX_DECODE_ERROR;
1447     }
1448
1449     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1450     adjust_endianness(mr, pval, op);
1451     return r;
1452 }
1453
1454 /* Return true if an eventfd was signalled */
1455 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1456                                                     hwaddr addr,
1457                                                     uint64_t data,
1458                                                     unsigned size,
1459                                                     MemTxAttrs attrs)
1460 {
1461     MemoryRegionIoeventfd ioeventfd = {
1462         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1463         .data = data,
1464     };
1465     unsigned i;
1466
1467     for (i = 0; i < mr->ioeventfd_nb; i++) {
1468         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1469         ioeventfd.e = mr->ioeventfds[i].e;
1470
1471         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1472             event_notifier_set(ioeventfd.e);
1473             return true;
1474         }
1475     }
1476
1477     return false;
1478 }
1479
1480 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1481                                          hwaddr addr,
1482                                          uint64_t data,
1483                                          MemOp op,
1484                                          MemTxAttrs attrs)
1485 {
1486     unsigned size = memop_size(op);
1487
1488     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1489         unassigned_mem_write(mr, addr, data, size);
1490         return MEMTX_DECODE_ERROR;
1491     }
1492
1493     adjust_endianness(mr, &data, op);
1494
1495     if ((!kvm_eventfds_enabled()) &&
1496         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1497         return MEMTX_OK;
1498     }
1499
1500     if (mr->ops->write) {
1501         return access_with_adjusted_size(addr, &data, size,
1502                                          mr->ops->impl.min_access_size,
1503                                          mr->ops->impl.max_access_size,
1504                                          memory_region_write_accessor, mr,
1505                                          attrs);
1506     } else {
1507         return
1508             access_with_adjusted_size(addr, &data, size,
1509                                       mr->ops->impl.min_access_size,
1510                                       mr->ops->impl.max_access_size,
1511                                       memory_region_write_with_attrs_accessor,
1512                                       mr, attrs);
1513     }
1514 }
1515
1516 void memory_region_init_io(MemoryRegion *mr,
1517                            Object *owner,
1518                            const MemoryRegionOps *ops,
1519                            void *opaque,
1520                            const char *name,
1521                            uint64_t size)
1522 {
1523     memory_region_init(mr, owner, name, size);
1524     mr->ops = ops ? ops : &unassigned_mem_ops;
1525     mr->opaque = opaque;
1526     mr->terminates = true;
1527 }
1528
1529 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1530                                       Object *owner,
1531                                       const char *name,
1532                                       uint64_t size,
1533                                       Error **errp)
1534 {
1535     memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1536 }
1537
1538 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1539                                              Object *owner,
1540                                              const char *name,
1541                                              uint64_t size,
1542                                              bool share,
1543                                              Error **errp)
1544 {
1545     Error *err = NULL;
1546     memory_region_init(mr, owner, name, size);
1547     mr->ram = true;
1548     mr->terminates = true;
1549     mr->destructor = memory_region_destructor_ram;
1550     mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1551     if (err) {
1552         mr->size = int128_zero();
1553         object_unparent(OBJECT(mr));
1554         error_propagate(errp, err);
1555     }
1556 }
1557
1558 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1559                                        Object *owner,
1560                                        const char *name,
1561                                        uint64_t size,
1562                                        uint64_t max_size,
1563                                        void (*resized)(const char*,
1564                                                        uint64_t length,
1565                                                        void *host),
1566                                        Error **errp)
1567 {
1568     Error *err = NULL;
1569     memory_region_init(mr, owner, name, size);
1570     mr->ram = true;
1571     mr->terminates = true;
1572     mr->destructor = memory_region_destructor_ram;
1573     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1574                                               mr, &err);
1575     if (err) {
1576         mr->size = int128_zero();
1577         object_unparent(OBJECT(mr));
1578         error_propagate(errp, err);
1579     }
1580 }
1581
1582 #ifdef CONFIG_POSIX
1583 void memory_region_init_ram_from_file(MemoryRegion *mr,
1584                                       struct Object *owner,
1585                                       const char *name,
1586                                       uint64_t size,
1587                                       uint64_t align,
1588                                       uint32_t ram_flags,
1589                                       const char *path,
1590                                       bool readonly,
1591                                       Error **errp)
1592 {
1593     Error *err = NULL;
1594     memory_region_init(mr, owner, name, size);
1595     mr->ram = true;
1596     mr->readonly = readonly;
1597     mr->terminates = true;
1598     mr->destructor = memory_region_destructor_ram;
1599     mr->align = align;
1600     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1601                                              readonly, &err);
1602     if (err) {
1603         mr->size = int128_zero();
1604         object_unparent(OBJECT(mr));
1605         error_propagate(errp, err);
1606     }
1607 }
1608
1609 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1610                                     struct Object *owner,
1611                                     const char *name,
1612                                     uint64_t size,
1613                                     bool share,
1614                                     int fd,
1615                                     ram_addr_t offset,
1616                                     Error **errp)
1617 {
1618     Error *err = NULL;
1619     memory_region_init(mr, owner, name, size);
1620     mr->ram = true;
1621     mr->terminates = true;
1622     mr->destructor = memory_region_destructor_ram;
1623     mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1624                                            share ? RAM_SHARED : 0,
1625                                            fd, offset, false, &err);
1626     if (err) {
1627         mr->size = int128_zero();
1628         object_unparent(OBJECT(mr));
1629         error_propagate(errp, err);
1630     }
1631 }
1632 #endif
1633
1634 void memory_region_init_ram_ptr(MemoryRegion *mr,
1635                                 Object *owner,
1636                                 const char *name,
1637                                 uint64_t size,
1638                                 void *ptr)
1639 {
1640     memory_region_init(mr, owner, name, size);
1641     mr->ram = true;
1642     mr->terminates = true;
1643     mr->destructor = memory_region_destructor_ram;
1644
1645     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1646     assert(ptr != NULL);
1647     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1648 }
1649
1650 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1651                                        Object *owner,
1652                                        const char *name,
1653                                        uint64_t size,
1654                                        void *ptr)
1655 {
1656     memory_region_init(mr, owner, name, size);
1657     mr->ram = true;
1658     mr->terminates = true;
1659     mr->ram_device = true;
1660     mr->ops = &ram_device_mem_ops;
1661     mr->opaque = mr;
1662     mr->destructor = memory_region_destructor_ram;
1663
1664     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1665     assert(ptr != NULL);
1666     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1667 }
1668
1669 void memory_region_init_alias(MemoryRegion *mr,
1670                               Object *owner,
1671                               const char *name,
1672                               MemoryRegion *orig,
1673                               hwaddr offset,
1674                               uint64_t size)
1675 {
1676     memory_region_init(mr, owner, name, size);
1677     mr->alias = orig;
1678     mr->alias_offset = offset;
1679 }
1680
1681 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1682                                       struct Object *owner,
1683                                       const char *name,
1684                                       uint64_t size,
1685                                       Error **errp)
1686 {
1687     memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1688     mr->readonly = true;
1689 }
1690
1691 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1692                                              Object *owner,
1693                                              const MemoryRegionOps *ops,
1694                                              void *opaque,
1695                                              const char *name,
1696                                              uint64_t size,
1697                                              Error **errp)
1698 {
1699     Error *err = NULL;
1700     assert(ops);
1701     memory_region_init(mr, owner, name, size);
1702     mr->ops = ops;
1703     mr->opaque = opaque;
1704     mr->terminates = true;
1705     mr->rom_device = true;
1706     mr->destructor = memory_region_destructor_ram;
1707     mr->ram_block = qemu_ram_alloc(size, false,  mr, &err);
1708     if (err) {
1709         mr->size = int128_zero();
1710         object_unparent(OBJECT(mr));
1711         error_propagate(errp, err);
1712     }
1713 }
1714
1715 void memory_region_init_iommu(void *_iommu_mr,
1716                               size_t instance_size,
1717                               const char *mrtypename,
1718                               Object *owner,
1719                               const char *name,
1720                               uint64_t size)
1721 {
1722     struct IOMMUMemoryRegion *iommu_mr;
1723     struct MemoryRegion *mr;
1724
1725     object_initialize(_iommu_mr, instance_size, mrtypename);
1726     mr = MEMORY_REGION(_iommu_mr);
1727     memory_region_do_init(mr, owner, name, size);
1728     iommu_mr = IOMMU_MEMORY_REGION(mr);
1729     mr->terminates = true;  /* then re-forwards */
1730     QLIST_INIT(&iommu_mr->iommu_notify);
1731     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1732 }
1733
1734 static void memory_region_finalize(Object *obj)
1735 {
1736     MemoryRegion *mr = MEMORY_REGION(obj);
1737
1738     assert(!mr->container);
1739
1740     /* We know the region is not visible in any address space (it
1741      * does not have a container and cannot be a root either because
1742      * it has no references, so we can blindly clear mr->enabled.
1743      * memory_region_set_enabled instead could trigger a transaction
1744      * and cause an infinite loop.
1745      */
1746     mr->enabled = false;
1747     memory_region_transaction_begin();
1748     while (!QTAILQ_EMPTY(&mr->subregions)) {
1749         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1750         memory_region_del_subregion(mr, subregion);
1751     }
1752     memory_region_transaction_commit();
1753
1754     mr->destructor(mr);
1755     memory_region_clear_coalescing(mr);
1756     g_free((char *)mr->name);
1757     g_free(mr->ioeventfds);
1758 }
1759
1760 Object *memory_region_owner(MemoryRegion *mr)
1761 {
1762     Object *obj = OBJECT(mr);
1763     return obj->parent;
1764 }
1765
1766 void memory_region_ref(MemoryRegion *mr)
1767 {
1768     /* MMIO callbacks most likely will access data that belongs
1769      * to the owner, hence the need to ref/unref the owner whenever
1770      * the memory region is in use.
1771      *
1772      * The memory region is a child of its owner.  As long as the
1773      * owner doesn't call unparent itself on the memory region,
1774      * ref-ing the owner will also keep the memory region alive.
1775      * Memory regions without an owner are supposed to never go away;
1776      * we do not ref/unref them because it slows down DMA sensibly.
1777      */
1778     if (mr && mr->owner) {
1779         object_ref(mr->owner);
1780     }
1781 }
1782
1783 void memory_region_unref(MemoryRegion *mr)
1784 {
1785     if (mr && mr->owner) {
1786         object_unref(mr->owner);
1787     }
1788 }
1789
1790 uint64_t memory_region_size(MemoryRegion *mr)
1791 {
1792     if (int128_eq(mr->size, int128_2_64())) {
1793         return UINT64_MAX;
1794     }
1795     return int128_get64(mr->size);
1796 }
1797
1798 const char *memory_region_name(const MemoryRegion *mr)
1799 {
1800     if (!mr->name) {
1801         ((MemoryRegion *)mr)->name =
1802             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1803     }
1804     return mr->name;
1805 }
1806
1807 bool memory_region_is_ram_device(MemoryRegion *mr)
1808 {
1809     return mr->ram_device;
1810 }
1811
1812 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1813 {
1814     uint8_t mask = mr->dirty_log_mask;
1815     RAMBlock *rb = mr->ram_block;
1816
1817     if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1818                              memory_region_is_iommu(mr))) {
1819         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1820     }
1821
1822     if (tcg_enabled() && rb) {
1823         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1824         mask |= (1 << DIRTY_MEMORY_CODE);
1825     }
1826     return mask;
1827 }
1828
1829 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1830 {
1831     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1832 }
1833
1834 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1835                                                    Error **errp)
1836 {
1837     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1838     IOMMUNotifier *iommu_notifier;
1839     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1840     int ret = 0;
1841
1842     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1843         flags |= iommu_notifier->notifier_flags;
1844     }
1845
1846     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1847         ret = imrc->notify_flag_changed(iommu_mr,
1848                                         iommu_mr->iommu_notify_flags,
1849                                         flags, errp);
1850     }
1851
1852     if (!ret) {
1853         iommu_mr->iommu_notify_flags = flags;
1854     }
1855     return ret;
1856 }
1857
1858 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1859                                            uint64_t page_size_mask,
1860                                            Error **errp)
1861 {
1862     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1863     int ret = 0;
1864
1865     if (imrc->iommu_set_page_size_mask) {
1866         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1867     }
1868     return ret;
1869 }
1870
1871 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1872                                           IOMMUNotifier *n, Error **errp)
1873 {
1874     IOMMUMemoryRegion *iommu_mr;
1875     int ret;
1876
1877     if (mr->alias) {
1878         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1879     }
1880
1881     /* We need to register for at least one bitfield */
1882     iommu_mr = IOMMU_MEMORY_REGION(mr);
1883     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1884     assert(n->start <= n->end);
1885     assert(n->iommu_idx >= 0 &&
1886            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1887
1888     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1889     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1890     if (ret) {
1891         QLIST_REMOVE(n, node);
1892     }
1893     return ret;
1894 }
1895
1896 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1897 {
1898     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1899
1900     if (imrc->get_min_page_size) {
1901         return imrc->get_min_page_size(iommu_mr);
1902     }
1903     return TARGET_PAGE_SIZE;
1904 }
1905
1906 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1907 {
1908     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1909     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1910     hwaddr addr, granularity;
1911     IOMMUTLBEntry iotlb;
1912
1913     /* If the IOMMU has its own replay callback, override */
1914     if (imrc->replay) {
1915         imrc->replay(iommu_mr, n);
1916         return;
1917     }
1918
1919     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1920
1921     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1922         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1923         if (iotlb.perm != IOMMU_NONE) {
1924             n->notify(n, &iotlb);
1925         }
1926
1927         /* if (2^64 - MR size) < granularity, it's possible to get an
1928          * infinite loop here.  This should catch such a wraparound */
1929         if ((addr + granularity) < addr) {
1930             break;
1931         }
1932     }
1933 }
1934
1935 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1936                                              IOMMUNotifier *n)
1937 {
1938     IOMMUMemoryRegion *iommu_mr;
1939
1940     if (mr->alias) {
1941         memory_region_unregister_iommu_notifier(mr->alias, n);
1942         return;
1943     }
1944     QLIST_REMOVE(n, node);
1945     iommu_mr = IOMMU_MEMORY_REGION(mr);
1946     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1947 }
1948
1949 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1950                                     IOMMUTLBEvent *event)
1951 {
1952     IOMMUTLBEntry *entry = &event->entry;
1953     hwaddr entry_end = entry->iova + entry->addr_mask;
1954     IOMMUTLBEntry tmp = *entry;
1955
1956     if (event->type == IOMMU_NOTIFIER_UNMAP) {
1957         assert(entry->perm == IOMMU_NONE);
1958     }
1959
1960     /*
1961      * Skip the notification if the notification does not overlap
1962      * with registered range.
1963      */
1964     if (notifier->start > entry_end || notifier->end < entry->iova) {
1965         return;
1966     }
1967
1968     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1969         /* Crop (iova, addr_mask) to range */
1970         tmp.iova = MAX(tmp.iova, notifier->start);
1971         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1972     } else {
1973         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1974     }
1975
1976     if (event->type & notifier->notifier_flags) {
1977         notifier->notify(notifier, &tmp);
1978     }
1979 }
1980
1981 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1982                                 int iommu_idx,
1983                                 IOMMUTLBEvent event)
1984 {
1985     IOMMUNotifier *iommu_notifier;
1986
1987     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1988
1989     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1990         if (iommu_notifier->iommu_idx == iommu_idx) {
1991             memory_region_notify_iommu_one(iommu_notifier, &event);
1992         }
1993     }
1994 }
1995
1996 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1997                                  enum IOMMUMemoryRegionAttr attr,
1998                                  void *data)
1999 {
2000     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2001
2002     if (!imrc->get_attr) {
2003         return -EINVAL;
2004     }
2005
2006     return imrc->get_attr(iommu_mr, attr, data);
2007 }
2008
2009 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2010                                        MemTxAttrs attrs)
2011 {
2012     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2013
2014     if (!imrc->attrs_to_index) {
2015         return 0;
2016     }
2017
2018     return imrc->attrs_to_index(iommu_mr, attrs);
2019 }
2020
2021 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2022 {
2023     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2024
2025     if (!imrc->num_indexes) {
2026         return 1;
2027     }
2028
2029     return imrc->num_indexes(iommu_mr);
2030 }
2031
2032 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2033 {
2034     uint8_t mask = 1 << client;
2035     uint8_t old_logging;
2036
2037     assert(client == DIRTY_MEMORY_VGA);
2038     old_logging = mr->vga_logging_count;
2039     mr->vga_logging_count += log ? 1 : -1;
2040     if (!!old_logging == !!mr->vga_logging_count) {
2041         return;
2042     }
2043
2044     memory_region_transaction_begin();
2045     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2046     memory_region_update_pending |= mr->enabled;
2047     memory_region_transaction_commit();
2048 }
2049
2050 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2051                              hwaddr size)
2052 {
2053     assert(mr->ram_block);
2054     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2055                                         size,
2056                                         memory_region_get_dirty_log_mask(mr));
2057 }
2058
2059 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2060 {
2061     MemoryListener *listener;
2062     AddressSpace *as;
2063     FlatView *view;
2064     FlatRange *fr;
2065
2066     /* If the same address space has multiple log_sync listeners, we
2067      * visit that address space's FlatView multiple times.  But because
2068      * log_sync listeners are rare, it's still cheaper than walking each
2069      * address space once.
2070      */
2071     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2072         if (!listener->log_sync) {
2073             continue;
2074         }
2075         as = listener->address_space;
2076         view = address_space_get_flatview(as);
2077         FOR_EACH_FLAT_RANGE(fr, view) {
2078             if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2079                 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2080                 listener->log_sync(listener, &mrs);
2081             }
2082         }
2083         flatview_unref(view);
2084     }
2085 }
2086
2087 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2088                                       hwaddr len)
2089 {
2090     MemoryRegionSection mrs;
2091     MemoryListener *listener;
2092     AddressSpace *as;
2093     FlatView *view;
2094     FlatRange *fr;
2095     hwaddr sec_start, sec_end, sec_size;
2096
2097     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2098         if (!listener->log_clear) {
2099             continue;
2100         }
2101         as = listener->address_space;
2102         view = address_space_get_flatview(as);
2103         FOR_EACH_FLAT_RANGE(fr, view) {
2104             if (!fr->dirty_log_mask || fr->mr != mr) {
2105                 /*
2106                  * Clear dirty bitmap operation only applies to those
2107                  * regions whose dirty logging is at least enabled
2108                  */
2109                 continue;
2110             }
2111
2112             mrs = section_from_flat_range(fr, view);
2113
2114             sec_start = MAX(mrs.offset_within_region, start);
2115             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2116             sec_end = MIN(sec_end, start + len);
2117
2118             if (sec_start >= sec_end) {
2119                 /*
2120                  * If this memory region section has no intersection
2121                  * with the requested range, skip.
2122                  */
2123                 continue;
2124             }
2125
2126             /* Valid case; shrink the section if needed */
2127             mrs.offset_within_address_space +=
2128                 sec_start - mrs.offset_within_region;
2129             mrs.offset_within_region = sec_start;
2130             sec_size = sec_end - sec_start;
2131             mrs.size = int128_make64(sec_size);
2132             listener->log_clear(listener, &mrs);
2133         }
2134         flatview_unref(view);
2135     }
2136 }
2137
2138 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2139                                                             hwaddr addr,
2140                                                             hwaddr size,
2141                                                             unsigned client)
2142 {
2143     DirtyBitmapSnapshot *snapshot;
2144     assert(mr->ram_block);
2145     memory_region_sync_dirty_bitmap(mr);
2146     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2147     memory_global_after_dirty_log_sync();
2148     return snapshot;
2149 }
2150
2151 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2152                                       hwaddr addr, hwaddr size)
2153 {
2154     assert(mr->ram_block);
2155     return cpu_physical_memory_snapshot_get_dirty(snap,
2156                 memory_region_get_ram_addr(mr) + addr, size);
2157 }
2158
2159 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2160 {
2161     if (mr->readonly != readonly) {
2162         memory_region_transaction_begin();
2163         mr->readonly = readonly;
2164         memory_region_update_pending |= mr->enabled;
2165         memory_region_transaction_commit();
2166     }
2167 }
2168
2169 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2170 {
2171     if (mr->nonvolatile != nonvolatile) {
2172         memory_region_transaction_begin();
2173         mr->nonvolatile = nonvolatile;
2174         memory_region_update_pending |= mr->enabled;
2175         memory_region_transaction_commit();
2176     }
2177 }
2178
2179 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2180 {
2181     if (mr->romd_mode != romd_mode) {
2182         memory_region_transaction_begin();
2183         mr->romd_mode = romd_mode;
2184         memory_region_update_pending |= mr->enabled;
2185         memory_region_transaction_commit();
2186     }
2187 }
2188
2189 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2190                                hwaddr size, unsigned client)
2191 {
2192     assert(mr->ram_block);
2193     cpu_physical_memory_test_and_clear_dirty(
2194         memory_region_get_ram_addr(mr) + addr, size, client);
2195 }
2196
2197 int memory_region_get_fd(MemoryRegion *mr)
2198 {
2199     int fd;
2200
2201     RCU_READ_LOCK_GUARD();
2202     while (mr->alias) {
2203         mr = mr->alias;
2204     }
2205     fd = mr->ram_block->fd;
2206
2207     return fd;
2208 }
2209
2210 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2211 {
2212     void *ptr;
2213     uint64_t offset = 0;
2214
2215     RCU_READ_LOCK_GUARD();
2216     while (mr->alias) {
2217         offset += mr->alias_offset;
2218         mr = mr->alias;
2219     }
2220     assert(mr->ram_block);
2221     ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2222
2223     return ptr;
2224 }
2225
2226 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2227 {
2228     RAMBlock *block;
2229
2230     block = qemu_ram_block_from_host(ptr, false, offset);
2231     if (!block) {
2232         return NULL;
2233     }
2234
2235     return block->mr;
2236 }
2237
2238 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2239 {
2240     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2241 }
2242
2243 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2244 {
2245     assert(mr->ram_block);
2246
2247     qemu_ram_resize(mr->ram_block, newsize, errp);
2248 }
2249
2250 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2251 {
2252     if (mr->ram_block) {
2253         qemu_ram_msync(mr->ram_block, addr, size);
2254     }
2255 }
2256
2257 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2258 {
2259     /*
2260      * Might be extended case needed to cover
2261      * different types of memory regions
2262      */
2263     if (mr->dirty_log_mask) {
2264         memory_region_msync(mr, addr, size);
2265     }
2266 }
2267
2268 /*
2269  * Call proper memory listeners about the change on the newly
2270  * added/removed CoalescedMemoryRange.
2271  */
2272 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2273                                                  CoalescedMemoryRange *cmr,
2274                                                  bool add)
2275 {
2276     AddressSpace *as;
2277     FlatView *view;
2278     FlatRange *fr;
2279
2280     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2281         view = address_space_get_flatview(as);
2282         FOR_EACH_FLAT_RANGE(fr, view) {
2283             if (fr->mr == mr) {
2284                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2285             }
2286         }
2287         flatview_unref(view);
2288     }
2289 }
2290
2291 void memory_region_set_coalescing(MemoryRegion *mr)
2292 {
2293     memory_region_clear_coalescing(mr);
2294     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2295 }
2296
2297 void memory_region_add_coalescing(MemoryRegion *mr,
2298                                   hwaddr offset,
2299                                   uint64_t size)
2300 {
2301     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2302
2303     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2304     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2305     memory_region_update_coalesced_range(mr, cmr, true);
2306     memory_region_set_flush_coalesced(mr);
2307 }
2308
2309 void memory_region_clear_coalescing(MemoryRegion *mr)
2310 {
2311     CoalescedMemoryRange *cmr;
2312
2313     if (QTAILQ_EMPTY(&mr->coalesced)) {
2314         return;
2315     }
2316
2317     qemu_flush_coalesced_mmio_buffer();
2318     mr->flush_coalesced_mmio = false;
2319
2320     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2321         cmr = QTAILQ_FIRST(&mr->coalesced);
2322         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2323         memory_region_update_coalesced_range(mr, cmr, false);
2324         g_free(cmr);
2325     }
2326 }
2327
2328 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2329 {
2330     mr->flush_coalesced_mmio = true;
2331 }
2332
2333 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2334 {
2335     qemu_flush_coalesced_mmio_buffer();
2336     if (QTAILQ_EMPTY(&mr->coalesced)) {
2337         mr->flush_coalesced_mmio = false;
2338     }
2339 }
2340
2341 static bool userspace_eventfd_warning;
2342
2343 void memory_region_add_eventfd(MemoryRegion *mr,
2344                                hwaddr addr,
2345                                unsigned size,
2346                                bool match_data,
2347                                uint64_t data,
2348                                EventNotifier *e)
2349 {
2350     MemoryRegionIoeventfd mrfd = {
2351         .addr.start = int128_make64(addr),
2352         .addr.size = int128_make64(size),
2353         .match_data = match_data,
2354         .data = data,
2355         .e = e,
2356     };
2357     unsigned i;
2358
2359     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2360                             userspace_eventfd_warning))) {
2361         userspace_eventfd_warning = true;
2362         error_report("Using eventfd without MMIO binding in KVM. "
2363                      "Suboptimal performance expected");
2364     }
2365
2366     if (size) {
2367         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2368     }
2369     memory_region_transaction_begin();
2370     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2371         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2372             break;
2373         }
2374     }
2375     ++mr->ioeventfd_nb;
2376     mr->ioeventfds = g_realloc(mr->ioeventfds,
2377                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2378     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2379             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2380     mr->ioeventfds[i] = mrfd;
2381     ioeventfd_update_pending |= mr->enabled;
2382     memory_region_transaction_commit();
2383 }
2384
2385 void memory_region_del_eventfd(MemoryRegion *mr,
2386                                hwaddr addr,
2387                                unsigned size,
2388                                bool match_data,
2389                                uint64_t data,
2390                                EventNotifier *e)
2391 {
2392     MemoryRegionIoeventfd mrfd = {
2393         .addr.start = int128_make64(addr),
2394         .addr.size = int128_make64(size),
2395         .match_data = match_data,
2396         .data = data,
2397         .e = e,
2398     };
2399     unsigned i;
2400
2401     if (size) {
2402         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2403     }
2404     memory_region_transaction_begin();
2405     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2406         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2407             break;
2408         }
2409     }
2410     assert(i != mr->ioeventfd_nb);
2411     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2412             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2413     --mr->ioeventfd_nb;
2414     mr->ioeventfds = g_realloc(mr->ioeventfds,
2415                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2416     ioeventfd_update_pending |= mr->enabled;
2417     memory_region_transaction_commit();
2418 }
2419
2420 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2421 {
2422     MemoryRegion *mr = subregion->container;
2423     MemoryRegion *other;
2424
2425     memory_region_transaction_begin();
2426
2427     memory_region_ref(subregion);
2428     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2429         if (subregion->priority >= other->priority) {
2430             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2431             goto done;
2432         }
2433     }
2434     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2435 done:
2436     memory_region_update_pending |= mr->enabled && subregion->enabled;
2437     memory_region_transaction_commit();
2438 }
2439
2440 static void memory_region_add_subregion_common(MemoryRegion *mr,
2441                                                hwaddr offset,
2442                                                MemoryRegion *subregion)
2443 {
2444     assert(!subregion->container);
2445     subregion->container = mr;
2446     subregion->addr = offset;
2447     memory_region_update_container_subregions(subregion);
2448 }
2449
2450 void memory_region_add_subregion(MemoryRegion *mr,
2451                                  hwaddr offset,
2452                                  MemoryRegion *subregion)
2453 {
2454     subregion->priority = 0;
2455     memory_region_add_subregion_common(mr, offset, subregion);
2456 }
2457
2458 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2459                                          hwaddr offset,
2460                                          MemoryRegion *subregion,
2461                                          int priority)
2462 {
2463     subregion->priority = priority;
2464     memory_region_add_subregion_common(mr, offset, subregion);
2465 }
2466
2467 void memory_region_del_subregion(MemoryRegion *mr,
2468                                  MemoryRegion *subregion)
2469 {
2470     memory_region_transaction_begin();
2471     assert(subregion->container == mr);
2472     subregion->container = NULL;
2473     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2474     memory_region_unref(subregion);
2475     memory_region_update_pending |= mr->enabled && subregion->enabled;
2476     memory_region_transaction_commit();
2477 }
2478
2479 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2480 {
2481     if (enabled == mr->enabled) {
2482         return;
2483     }
2484     memory_region_transaction_begin();
2485     mr->enabled = enabled;
2486     memory_region_update_pending = true;
2487     memory_region_transaction_commit();
2488 }
2489
2490 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2491 {
2492     Int128 s = int128_make64(size);
2493
2494     if (size == UINT64_MAX) {
2495         s = int128_2_64();
2496     }
2497     if (int128_eq(s, mr->size)) {
2498         return;
2499     }
2500     memory_region_transaction_begin();
2501     mr->size = s;
2502     memory_region_update_pending = true;
2503     memory_region_transaction_commit();
2504 }
2505
2506 static void memory_region_readd_subregion(MemoryRegion *mr)
2507 {
2508     MemoryRegion *container = mr->container;
2509
2510     if (container) {
2511         memory_region_transaction_begin();
2512         memory_region_ref(mr);
2513         memory_region_del_subregion(container, mr);
2514         mr->container = container;
2515         memory_region_update_container_subregions(mr);
2516         memory_region_unref(mr);
2517         memory_region_transaction_commit();
2518     }
2519 }
2520
2521 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2522 {
2523     if (addr != mr->addr) {
2524         mr->addr = addr;
2525         memory_region_readd_subregion(mr);
2526     }
2527 }
2528
2529 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2530 {
2531     assert(mr->alias);
2532
2533     if (offset == mr->alias_offset) {
2534         return;
2535     }
2536
2537     memory_region_transaction_begin();
2538     mr->alias_offset = offset;
2539     memory_region_update_pending |= mr->enabled;
2540     memory_region_transaction_commit();
2541 }
2542
2543 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2544 {
2545     return mr->align;
2546 }
2547
2548 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2549 {
2550     const AddrRange *addr = addr_;
2551     const FlatRange *fr = fr_;
2552
2553     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2554         return -1;
2555     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2556         return 1;
2557     }
2558     return 0;
2559 }
2560
2561 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2562 {
2563     return bsearch(&addr, view->ranges, view->nr,
2564                    sizeof(FlatRange), cmp_flatrange_addr);
2565 }
2566
2567 bool memory_region_is_mapped(MemoryRegion *mr)
2568 {
2569     return mr->container ? true : false;
2570 }
2571
2572 /* Same as memory_region_find, but it does not add a reference to the
2573  * returned region.  It must be called from an RCU critical section.
2574  */
2575 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2576                                                   hwaddr addr, uint64_t size)
2577 {
2578     MemoryRegionSection ret = { .mr = NULL };
2579     MemoryRegion *root;
2580     AddressSpace *as;
2581     AddrRange range;
2582     FlatView *view;
2583     FlatRange *fr;
2584
2585     addr += mr->addr;
2586     for (root = mr; root->container; ) {
2587         root = root->container;
2588         addr += root->addr;
2589     }
2590
2591     as = memory_region_to_address_space(root);
2592     if (!as) {
2593         return ret;
2594     }
2595     range = addrrange_make(int128_make64(addr), int128_make64(size));
2596
2597     view = address_space_to_flatview(as);
2598     fr = flatview_lookup(view, range);
2599     if (!fr) {
2600         return ret;
2601     }
2602
2603     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2604         --fr;
2605     }
2606
2607     ret.mr = fr->mr;
2608     ret.fv = view;
2609     range = addrrange_intersection(range, fr->addr);
2610     ret.offset_within_region = fr->offset_in_region;
2611     ret.offset_within_region += int128_get64(int128_sub(range.start,
2612                                                         fr->addr.start));
2613     ret.size = range.size;
2614     ret.offset_within_address_space = int128_get64(range.start);
2615     ret.readonly = fr->readonly;
2616     ret.nonvolatile = fr->nonvolatile;
2617     return ret;
2618 }
2619
2620 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2621                                        hwaddr addr, uint64_t size)
2622 {
2623     MemoryRegionSection ret;
2624     RCU_READ_LOCK_GUARD();
2625     ret = memory_region_find_rcu(mr, addr, size);
2626     if (ret.mr) {
2627         memory_region_ref(ret.mr);
2628     }
2629     return ret;
2630 }
2631
2632 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2633 {
2634     MemoryRegion *mr;
2635
2636     RCU_READ_LOCK_GUARD();
2637     mr = memory_region_find_rcu(container, addr, 1).mr;
2638     return mr && mr != container;
2639 }
2640
2641 void memory_global_dirty_log_sync(void)
2642 {
2643     memory_region_sync_dirty_bitmap(NULL);
2644 }
2645
2646 void memory_global_after_dirty_log_sync(void)
2647 {
2648     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2649 }
2650
2651 static VMChangeStateEntry *vmstate_change;
2652
2653 void memory_global_dirty_log_start(void)
2654 {
2655     if (vmstate_change) {
2656         qemu_del_vm_change_state_handler(vmstate_change);
2657         vmstate_change = NULL;
2658     }
2659
2660     global_dirty_log = true;
2661
2662     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2663
2664     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2665     memory_region_transaction_begin();
2666     memory_region_update_pending = true;
2667     memory_region_transaction_commit();
2668 }
2669
2670 static void memory_global_dirty_log_do_stop(void)
2671 {
2672     global_dirty_log = false;
2673
2674     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2675     memory_region_transaction_begin();
2676     memory_region_update_pending = true;
2677     memory_region_transaction_commit();
2678
2679     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2680 }
2681
2682 static void memory_vm_change_state_handler(void *opaque, int running,
2683                                            RunState state)
2684 {
2685     if (running) {
2686         memory_global_dirty_log_do_stop();
2687
2688         if (vmstate_change) {
2689             qemu_del_vm_change_state_handler(vmstate_change);
2690             vmstate_change = NULL;
2691         }
2692     }
2693 }
2694
2695 void memory_global_dirty_log_stop(void)
2696 {
2697     if (!runstate_is_running()) {
2698         if (vmstate_change) {
2699             return;
2700         }
2701         vmstate_change = qemu_add_vm_change_state_handler(
2702                                 memory_vm_change_state_handler, NULL);
2703         return;
2704     }
2705
2706     memory_global_dirty_log_do_stop();
2707 }
2708
2709 static void listener_add_address_space(MemoryListener *listener,
2710                                        AddressSpace *as)
2711 {
2712     FlatView *view;
2713     FlatRange *fr;
2714
2715     if (listener->begin) {
2716         listener->begin(listener);
2717     }
2718     if (global_dirty_log) {
2719         if (listener->log_global_start) {
2720             listener->log_global_start(listener);
2721         }
2722     }
2723
2724     view = address_space_get_flatview(as);
2725     FOR_EACH_FLAT_RANGE(fr, view) {
2726         MemoryRegionSection section = section_from_flat_range(fr, view);
2727
2728         if (listener->region_add) {
2729             listener->region_add(listener, &section);
2730         }
2731         if (fr->dirty_log_mask && listener->log_start) {
2732             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2733         }
2734     }
2735     if (listener->commit) {
2736         listener->commit(listener);
2737     }
2738     flatview_unref(view);
2739 }
2740
2741 static void listener_del_address_space(MemoryListener *listener,
2742                                        AddressSpace *as)
2743 {
2744     FlatView *view;
2745     FlatRange *fr;
2746
2747     if (listener->begin) {
2748         listener->begin(listener);
2749     }
2750     view = address_space_get_flatview(as);
2751     FOR_EACH_FLAT_RANGE(fr, view) {
2752         MemoryRegionSection section = section_from_flat_range(fr, view);
2753
2754         if (fr->dirty_log_mask && listener->log_stop) {
2755             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2756         }
2757         if (listener->region_del) {
2758             listener->region_del(listener, &section);
2759         }
2760     }
2761     if (listener->commit) {
2762         listener->commit(listener);
2763     }
2764     flatview_unref(view);
2765 }
2766
2767 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2768 {
2769     MemoryListener *other = NULL;
2770
2771     listener->address_space = as;
2772     if (QTAILQ_EMPTY(&memory_listeners)
2773         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2774         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2775     } else {
2776         QTAILQ_FOREACH(other, &memory_listeners, link) {
2777             if (listener->priority < other->priority) {
2778                 break;
2779             }
2780         }
2781         QTAILQ_INSERT_BEFORE(other, listener, link);
2782     }
2783
2784     if (QTAILQ_EMPTY(&as->listeners)
2785         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2786         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2787     } else {
2788         QTAILQ_FOREACH(other, &as->listeners, link_as) {
2789             if (listener->priority < other->priority) {
2790                 break;
2791             }
2792         }
2793         QTAILQ_INSERT_BEFORE(other, listener, link_as);
2794     }
2795
2796     listener_add_address_space(listener, as);
2797 }
2798
2799 void memory_listener_unregister(MemoryListener *listener)
2800 {
2801     if (!listener->address_space) {
2802         return;
2803     }
2804
2805     listener_del_address_space(listener, listener->address_space);
2806     QTAILQ_REMOVE(&memory_listeners, listener, link);
2807     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2808     listener->address_space = NULL;
2809 }
2810
2811 void address_space_remove_listeners(AddressSpace *as)
2812 {
2813     while (!QTAILQ_EMPTY(&as->listeners)) {
2814         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2815     }
2816 }
2817
2818 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2819 {
2820     memory_region_ref(root);
2821     as->root = root;
2822     as->current_map = NULL;
2823     as->ioeventfd_nb = 0;
2824     as->ioeventfds = NULL;
2825     QTAILQ_INIT(&as->listeners);
2826     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2827     as->name = g_strdup(name ? name : "anonymous");
2828     address_space_update_topology(as);
2829     address_space_update_ioeventfds(as);
2830 }
2831
2832 static void do_address_space_destroy(AddressSpace *as)
2833 {
2834     assert(QTAILQ_EMPTY(&as->listeners));
2835
2836     flatview_unref(as->current_map);
2837     g_free(as->name);
2838     g_free(as->ioeventfds);
2839     memory_region_unref(as->root);
2840 }
2841
2842 void address_space_destroy(AddressSpace *as)
2843 {
2844     MemoryRegion *root = as->root;
2845
2846     /* Flush out anything from MemoryListeners listening in on this */
2847     memory_region_transaction_begin();
2848     as->root = NULL;
2849     memory_region_transaction_commit();
2850     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2851
2852     /* At this point, as->dispatch and as->current_map are dummy
2853      * entries that the guest should never use.  Wait for the old
2854      * values to expire before freeing the data.
2855      */
2856     as->root = root;
2857     call_rcu(as, do_address_space_destroy, rcu);
2858 }
2859
2860 static const char *memory_region_type(MemoryRegion *mr)
2861 {
2862     if (mr->alias) {
2863         return memory_region_type(mr->alias);
2864     }
2865     if (memory_region_is_ram_device(mr)) {
2866         return "ramd";
2867     } else if (memory_region_is_romd(mr)) {
2868         return "romd";
2869     } else if (memory_region_is_rom(mr)) {
2870         return "rom";
2871     } else if (memory_region_is_ram(mr)) {
2872         return "ram";
2873     } else {
2874         return "i/o";
2875     }
2876 }
2877
2878 typedef struct MemoryRegionList MemoryRegionList;
2879
2880 struct MemoryRegionList {
2881     const MemoryRegion *mr;
2882     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2883 };
2884
2885 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2886
2887 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2888                            int128_sub((size), int128_one())) : 0)
2889 #define MTREE_INDENT "  "
2890
2891 static void mtree_expand_owner(const char *label, Object *obj)
2892 {
2893     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2894
2895     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2896     if (dev && dev->id) {
2897         qemu_printf(" id=%s", dev->id);
2898     } else {
2899         char *canonical_path = object_get_canonical_path(obj);
2900         if (canonical_path) {
2901             qemu_printf(" path=%s", canonical_path);
2902             g_free(canonical_path);
2903         } else {
2904             qemu_printf(" type=%s", object_get_typename(obj));
2905         }
2906     }
2907     qemu_printf("}");
2908 }
2909
2910 static void mtree_print_mr_owner(const MemoryRegion *mr)
2911 {
2912     Object *owner = mr->owner;
2913     Object *parent = memory_region_owner((MemoryRegion *)mr);
2914
2915     if (!owner && !parent) {
2916         qemu_printf(" orphan");
2917         return;
2918     }
2919     if (owner) {
2920         mtree_expand_owner("owner", owner);
2921     }
2922     if (parent && parent != owner) {
2923         mtree_expand_owner("parent", parent);
2924     }
2925 }
2926
2927 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2928                            hwaddr base,
2929                            MemoryRegionListHead *alias_print_queue,
2930                            bool owner, bool display_disabled)
2931 {
2932     MemoryRegionList *new_ml, *ml, *next_ml;
2933     MemoryRegionListHead submr_print_queue;
2934     const MemoryRegion *submr;
2935     unsigned int i;
2936     hwaddr cur_start, cur_end;
2937
2938     if (!mr) {
2939         return;
2940     }
2941
2942     cur_start = base + mr->addr;
2943     cur_end = cur_start + MR_SIZE(mr->size);
2944
2945     /*
2946      * Try to detect overflow of memory region. This should never
2947      * happen normally. When it happens, we dump something to warn the
2948      * user who is observing this.
2949      */
2950     if (cur_start < base || cur_end < cur_start) {
2951         qemu_printf("[DETECTED OVERFLOW!] ");
2952     }
2953
2954     if (mr->alias) {
2955         MemoryRegionList *ml;
2956         bool found = false;
2957
2958         /* check if the alias is already in the queue */
2959         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2960             if (ml->mr == mr->alias) {
2961                 found = true;
2962             }
2963         }
2964
2965         if (!found) {
2966             ml = g_new(MemoryRegionList, 1);
2967             ml->mr = mr->alias;
2968             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2969         }
2970         if (mr->enabled || display_disabled) {
2971             for (i = 0; i < level; i++) {
2972                 qemu_printf(MTREE_INDENT);
2973             }
2974             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2975                         " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2976                         "-" TARGET_FMT_plx "%s",
2977                         cur_start, cur_end,
2978                         mr->priority,
2979                         mr->nonvolatile ? "nv-" : "",
2980                         memory_region_type((MemoryRegion *)mr),
2981                         memory_region_name(mr),
2982                         memory_region_name(mr->alias),
2983                         mr->alias_offset,
2984                         mr->alias_offset + MR_SIZE(mr->size),
2985                         mr->enabled ? "" : " [disabled]");
2986             if (owner) {
2987                 mtree_print_mr_owner(mr);
2988             }
2989             qemu_printf("\n");
2990         }
2991     } else {
2992         if (mr->enabled || display_disabled) {
2993             for (i = 0; i < level; i++) {
2994                 qemu_printf(MTREE_INDENT);
2995             }
2996             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2997                         " (prio %d, %s%s): %s%s",
2998                         cur_start, cur_end,
2999                         mr->priority,
3000                         mr->nonvolatile ? "nv-" : "",
3001                         memory_region_type((MemoryRegion *)mr),
3002                         memory_region_name(mr),
3003                         mr->enabled ? "" : " [disabled]");
3004             if (owner) {
3005                 mtree_print_mr_owner(mr);
3006             }
3007             qemu_printf("\n");
3008         }
3009     }
3010
3011     QTAILQ_INIT(&submr_print_queue);
3012
3013     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3014         new_ml = g_new(MemoryRegionList, 1);
3015         new_ml->mr = submr;
3016         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3017             if (new_ml->mr->addr < ml->mr->addr ||
3018                 (new_ml->mr->addr == ml->mr->addr &&
3019                  new_ml->mr->priority > ml->mr->priority)) {
3020                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3021                 new_ml = NULL;
3022                 break;
3023             }
3024         }
3025         if (new_ml) {
3026             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3027         }
3028     }
3029
3030     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3031         mtree_print_mr(ml->mr, level + 1, cur_start,
3032                        alias_print_queue, owner, display_disabled);
3033     }
3034
3035     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3036         g_free(ml);
3037     }
3038 }
3039
3040 struct FlatViewInfo {
3041     int counter;
3042     bool dispatch_tree;
3043     bool owner;
3044     AccelClass *ac;
3045 };
3046
3047 static void mtree_print_flatview(gpointer key, gpointer value,
3048                                  gpointer user_data)
3049 {
3050     FlatView *view = key;
3051     GArray *fv_address_spaces = value;
3052     struct FlatViewInfo *fvi = user_data;
3053     FlatRange *range = &view->ranges[0];
3054     MemoryRegion *mr;
3055     int n = view->nr;
3056     int i;
3057     AddressSpace *as;
3058
3059     qemu_printf("FlatView #%d\n", fvi->counter);
3060     ++fvi->counter;
3061
3062     for (i = 0; i < fv_address_spaces->len; ++i) {
3063         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3064         qemu_printf(" AS \"%s\", root: %s",
3065                     as->name, memory_region_name(as->root));
3066         if (as->root->alias) {
3067             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3068         }
3069         qemu_printf("\n");
3070     }
3071
3072     qemu_printf(" Root memory region: %s\n",
3073       view->root ? memory_region_name(view->root) : "(none)");
3074
3075     if (n <= 0) {
3076         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3077         return;
3078     }
3079
3080     while (n--) {
3081         mr = range->mr;
3082         if (range->offset_in_region) {
3083             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3084                         " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3085                         int128_get64(range->addr.start),
3086                         int128_get64(range->addr.start)
3087                         + MR_SIZE(range->addr.size),
3088                         mr->priority,
3089                         range->nonvolatile ? "nv-" : "",
3090                         range->readonly ? "rom" : memory_region_type(mr),
3091                         memory_region_name(mr),
3092                         range->offset_in_region);
3093         } else {
3094             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3095                         " (prio %d, %s%s): %s",
3096                         int128_get64(range->addr.start),
3097                         int128_get64(range->addr.start)
3098                         + MR_SIZE(range->addr.size),
3099                         mr->priority,
3100                         range->nonvolatile ? "nv-" : "",
3101                         range->readonly ? "rom" : memory_region_type(mr),
3102                         memory_region_name(mr));
3103         }
3104         if (fvi->owner) {
3105             mtree_print_mr_owner(mr);
3106         }
3107
3108         if (fvi->ac) {
3109             for (i = 0; i < fv_address_spaces->len; ++i) {
3110                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3111                 if (fvi->ac->has_memory(current_machine, as,
3112                                         int128_get64(range->addr.start),
3113                                         MR_SIZE(range->addr.size) + 1)) {
3114                     qemu_printf(" %s", fvi->ac->name);
3115                 }
3116             }
3117         }
3118         qemu_printf("\n");
3119         range++;
3120     }
3121
3122 #if !defined(CONFIG_USER_ONLY)
3123     if (fvi->dispatch_tree && view->root) {
3124         mtree_print_dispatch(view->dispatch, view->root);
3125     }
3126 #endif
3127
3128     qemu_printf("\n");
3129 }
3130
3131 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3132                                       gpointer user_data)
3133 {
3134     FlatView *view = key;
3135     GArray *fv_address_spaces = value;
3136
3137     g_array_unref(fv_address_spaces);
3138     flatview_unref(view);
3139
3140     return true;
3141 }
3142
3143 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3144 {
3145     MemoryRegionListHead ml_head;
3146     MemoryRegionList *ml, *ml2;
3147     AddressSpace *as;
3148
3149     if (flatview) {
3150         FlatView *view;
3151         struct FlatViewInfo fvi = {
3152             .counter = 0,
3153             .dispatch_tree = dispatch_tree,
3154             .owner = owner,
3155         };
3156         GArray *fv_address_spaces;
3157         GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3158         AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3159
3160         if (ac->has_memory) {
3161             fvi.ac = ac;
3162         }
3163
3164         /* Gather all FVs in one table */
3165         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3166             view = address_space_get_flatview(as);
3167
3168             fv_address_spaces = g_hash_table_lookup(views, view);
3169             if (!fv_address_spaces) {
3170                 fv_address_spaces = g_array_new(false, false, sizeof(as));
3171                 g_hash_table_insert(views, view, fv_address_spaces);
3172             }
3173
3174             g_array_append_val(fv_address_spaces, as);
3175         }
3176
3177         /* Print */
3178         g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3179
3180         /* Free */
3181         g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3182         g_hash_table_unref(views);
3183
3184         return;
3185     }
3186
3187     QTAILQ_INIT(&ml_head);
3188
3189     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3190         qemu_printf("address-space: %s\n", as->name);
3191         mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3192         qemu_printf("\n");
3193     }
3194
3195     /* print aliased regions */
3196     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3197         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3198         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3199         qemu_printf("\n");
3200     }
3201
3202     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3203         g_free(ml);
3204     }
3205 }
3206
3207 void memory_region_init_ram(MemoryRegion *mr,
3208                             struct Object *owner,
3209                             const char *name,
3210                             uint64_t size,
3211                             Error **errp)
3212 {
3213     DeviceState *owner_dev;
3214     Error *err = NULL;
3215
3216     memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3217     if (err) {
3218         error_propagate(errp, err);
3219         return;
3220     }
3221     /* This will assert if owner is neither NULL nor a DeviceState.
3222      * We only want the owner here for the purposes of defining a
3223      * unique name for migration. TODO: Ideally we should implement
3224      * a naming scheme for Objects which are not DeviceStates, in
3225      * which case we can relax this restriction.
3226      */
3227     owner_dev = DEVICE(owner);
3228     vmstate_register_ram(mr, owner_dev);
3229 }
3230
3231 void memory_region_init_rom(MemoryRegion *mr,
3232                             struct Object *owner,
3233                             const char *name,
3234                             uint64_t size,
3235                             Error **errp)
3236 {
3237     DeviceState *owner_dev;
3238     Error *err = NULL;
3239
3240     memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3241     if (err) {
3242         error_propagate(errp, err);
3243         return;
3244     }
3245     /* This will assert if owner is neither NULL nor a DeviceState.
3246      * We only want the owner here for the purposes of defining a
3247      * unique name for migration. TODO: Ideally we should implement
3248      * a naming scheme for Objects which are not DeviceStates, in
3249      * which case we can relax this restriction.
3250      */
3251     owner_dev = DEVICE(owner);
3252     vmstate_register_ram(mr, owner_dev);
3253 }
3254
3255 void memory_region_init_rom_device(MemoryRegion *mr,
3256                                    struct Object *owner,
3257                                    const MemoryRegionOps *ops,
3258                                    void *opaque,
3259                                    const char *name,
3260                                    uint64_t size,
3261                                    Error **errp)
3262 {
3263     DeviceState *owner_dev;
3264     Error *err = NULL;
3265
3266     memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3267                                             name, size, &err);
3268     if (err) {
3269         error_propagate(errp, err);
3270         return;
3271     }
3272     /* This will assert if owner is neither NULL nor a DeviceState.
3273      * We only want the owner here for the purposes of defining a
3274      * unique name for migration. TODO: Ideally we should implement
3275      * a naming scheme for Objects which are not DeviceStates, in
3276      * which case we can relax this restriction.
3277      */
3278     owner_dev = DEVICE(owner);
3279     vmstate_register_ram(mr, owner_dev);
3280 }
3281
3282 /*
3283  * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3284  * the fuzz_dma_read_cb callback
3285  */
3286 #ifdef CONFIG_FUZZ
3287 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3288                       size_t len,
3289                       MemoryRegion *mr)
3290 {
3291 }
3292 #endif
3293
3294 static const TypeInfo memory_region_info = {
3295     .parent             = TYPE_OBJECT,
3296     .name               = TYPE_MEMORY_REGION,
3297     .class_size         = sizeof(MemoryRegionClass),
3298     .instance_size      = sizeof(MemoryRegion),
3299     .instance_init      = memory_region_initfn,
3300     .instance_finalize  = memory_region_finalize,
3301 };
3302
3303 static const TypeInfo iommu_memory_region_info = {
3304     .parent             = TYPE_MEMORY_REGION,
3305     .name               = TYPE_IOMMU_MEMORY_REGION,
3306     .class_size         = sizeof(IOMMUMemoryRegionClass),
3307     .instance_size      = sizeof(IOMMUMemoryRegion),
3308     .instance_init      = iommu_memory_region_initfn,
3309     .abstract           = true,
3310 };
3311
3312 static void memory_register_types(void)
3313 {
3314     type_register_static(&memory_region_info);
3315     type_register_static(&iommu_memory_region_info);
3316 }
3317
3318 type_init(memory_register_types)