OSDN Git Service

ALSA: pcm: remove SNDRV_PCM_IOCTL1_INFO internal command
[android-x86/kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45  * fill ring buffer with silence
46  * runtime->silence_start: starting pointer to silence area
47  * runtime->silence_filled: size filled with silence
48  * runtime->silence_threshold: threshold from application
49  * runtime->silence_size: maximal size from application
50  *
51  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52  */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55         struct snd_pcm_runtime *runtime = substream->runtime;
56         snd_pcm_uframes_t frames, ofs, transfer;
57
58         if (runtime->silence_size < runtime->boundary) {
59                 snd_pcm_sframes_t noise_dist, n;
60                 if (runtime->silence_start != runtime->control->appl_ptr) {
61                         n = runtime->control->appl_ptr - runtime->silence_start;
62                         if (n < 0)
63                                 n += runtime->boundary;
64                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65                                 runtime->silence_filled -= n;
66                         else
67                                 runtime->silence_filled = 0;
68                         runtime->silence_start = runtime->control->appl_ptr;
69                 }
70                 if (runtime->silence_filled >= runtime->buffer_size)
71                         return;
72                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74                         return;
75                 frames = runtime->silence_threshold - noise_dist;
76                 if (frames > runtime->silence_size)
77                         frames = runtime->silence_size;
78         } else {
79                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
80                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81                         if (avail > runtime->buffer_size)
82                                 avail = runtime->buffer_size;
83                         runtime->silence_filled = avail > 0 ? avail : 0;
84                         runtime->silence_start = (runtime->status->hw_ptr +
85                                                   runtime->silence_filled) %
86                                                  runtime->boundary;
87                 } else {
88                         ofs = runtime->status->hw_ptr;
89                         frames = new_hw_ptr - ofs;
90                         if ((snd_pcm_sframes_t)frames < 0)
91                                 frames += runtime->boundary;
92                         runtime->silence_filled -= frames;
93                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94                                 runtime->silence_filled = 0;
95                                 runtime->silence_start = new_hw_ptr;
96                         } else {
97                                 runtime->silence_start = ofs;
98                         }
99                 }
100                 frames = runtime->buffer_size - runtime->silence_filled;
101         }
102         if (snd_BUG_ON(frames > runtime->buffer_size))
103                 return;
104         if (frames == 0)
105                 return;
106         ofs = runtime->silence_start % runtime->buffer_size;
107         while (frames > 0) {
108                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111                         if (substream->ops->silence) {
112                                 int err;
113                                 err = substream->ops->silence(substream, -1, ofs, transfer);
114                                 snd_BUG_ON(err < 0);
115                         } else {
116                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118                         }
119                 } else {
120                         unsigned int c;
121                         unsigned int channels = runtime->channels;
122                         if (substream->ops->silence) {
123                                 for (c = 0; c < channels; ++c) {
124                                         int err;
125                                         err = substream->ops->silence(substream, c, ofs, transfer);
126                                         snd_BUG_ON(err < 0);
127                                 }
128                         } else {
129                                 size_t dma_csize = runtime->dma_bytes / channels;
130                                 for (c = 0; c < channels; ++c) {
131                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133                                 }
134                         }
135                 }
136                 runtime->silence_filled += transfer;
137                 frames -= transfer;
138                 ofs = 0;
139         }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144                            char *name, size_t len)
145 {
146         snprintf(name, len, "pcmC%dD%d%c:%d",
147                  substream->pcm->card->number,
148                  substream->pcm->device,
149                  substream->stream ? 'c' : 'p',
150                  substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC        (1<<0)
156 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162                         ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask)     0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do {                      \
168                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
169                         dump_stack();                           \
170         } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174         struct snd_pcm_runtime *runtime = substream->runtime;
175
176         trace_xrun(substream);
177         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181                 char name[16];
182                 snd_pcm_debug_name(substream, name, sizeof(name));
183                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184                 dump_stack_on_xrun(substream);
185         }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
190         do {                                                            \
191                 trace_hw_ptr_error(substream, reason);  \
192                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
193                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194                                            (in_interrupt) ? 'Q' : 'P', ##args); \
195                         dump_stack_on_xrun(substream);                  \
196                 }                                                       \
197         } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206                          struct snd_pcm_runtime *runtime)
207 {
208         snd_pcm_uframes_t avail;
209
210         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211                 avail = snd_pcm_playback_avail(runtime);
212         else
213                 avail = snd_pcm_capture_avail(runtime);
214         if (avail > runtime->avail_max)
215                 runtime->avail_max = avail;
216         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217                 if (avail >= runtime->buffer_size) {
218                         snd_pcm_drain_done(substream);
219                         return -EPIPE;
220                 }
221         } else {
222                 if (avail >= runtime->stop_threshold) {
223                         xrun(substream);
224                         return -EPIPE;
225                 }
226         }
227         if (runtime->twake) {
228                 if (avail >= runtime->twake)
229                         wake_up(&runtime->tsleep);
230         } else if (avail >= runtime->control->avail_min)
231                 wake_up(&runtime->sleep);
232         return 0;
233 }
234
235 static void update_audio_tstamp(struct snd_pcm_substream *substream,
236                                 struct timespec *curr_tstamp,
237                                 struct timespec *audio_tstamp)
238 {
239         struct snd_pcm_runtime *runtime = substream->runtime;
240         u64 audio_frames, audio_nsecs;
241         struct timespec driver_tstamp;
242
243         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244                 return;
245
246         if (!(substream->ops->get_time_info) ||
247                 (runtime->audio_tstamp_report.actual_type ==
248                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250                 /*
251                  * provide audio timestamp derived from pointer position
252                  * add delay only if requested
253                  */
254
255                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257                 if (runtime->audio_tstamp_config.report_delay) {
258                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259                                 audio_frames -=  runtime->delay;
260                         else
261                                 audio_frames +=  runtime->delay;
262                 }
263                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264                                 runtime->rate);
265                 *audio_tstamp = ns_to_timespec(audio_nsecs);
266         }
267         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
268                 runtime->status->audio_tstamp = *audio_tstamp;
269                 runtime->status->tstamp = *curr_tstamp;
270         }
271
272         /*
273          * re-take a driver timestamp to let apps detect if the reference tstamp
274          * read by low-level hardware was provided with a delay
275          */
276         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
277         runtime->driver_tstamp = driver_tstamp;
278 }
279
280 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
281                                   unsigned int in_interrupt)
282 {
283         struct snd_pcm_runtime *runtime = substream->runtime;
284         snd_pcm_uframes_t pos;
285         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
286         snd_pcm_sframes_t hdelta, delta;
287         unsigned long jdelta;
288         unsigned long curr_jiffies;
289         struct timespec curr_tstamp;
290         struct timespec audio_tstamp;
291         int crossed_boundary = 0;
292
293         old_hw_ptr = runtime->status->hw_ptr;
294
295         /*
296          * group pointer, time and jiffies reads to allow for more
297          * accurate correlations/corrections.
298          * The values are stored at the end of this routine after
299          * corrections for hw_ptr position
300          */
301         pos = substream->ops->pointer(substream);
302         curr_jiffies = jiffies;
303         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
304                 if ((substream->ops->get_time_info) &&
305                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
306                         substream->ops->get_time_info(substream, &curr_tstamp,
307                                                 &audio_tstamp,
308                                                 &runtime->audio_tstamp_config,
309                                                 &runtime->audio_tstamp_report);
310
311                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
312                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
313                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314                 } else
315                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
316         }
317
318         if (pos == SNDRV_PCM_POS_XRUN) {
319                 xrun(substream);
320                 return -EPIPE;
321         }
322         if (pos >= runtime->buffer_size) {
323                 if (printk_ratelimit()) {
324                         char name[16];
325                         snd_pcm_debug_name(substream, name, sizeof(name));
326                         pcm_err(substream->pcm,
327                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
328                                 name, pos, runtime->buffer_size,
329                                 runtime->period_size);
330                 }
331                 pos = 0;
332         }
333         pos -= pos % runtime->min_align;
334         trace_hwptr(substream, pos, in_interrupt);
335         hw_base = runtime->hw_ptr_base;
336         new_hw_ptr = hw_base + pos;
337         if (in_interrupt) {
338                 /* we know that one period was processed */
339                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
340                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
341                 if (delta > new_hw_ptr) {
342                         /* check for double acknowledged interrupts */
343                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
345                                 hw_base += runtime->buffer_size;
346                                 if (hw_base >= runtime->boundary) {
347                                         hw_base = 0;
348                                         crossed_boundary++;
349                                 }
350                                 new_hw_ptr = hw_base + pos;
351                                 goto __delta;
352                         }
353                 }
354         }
355         /* new_hw_ptr might be lower than old_hw_ptr in case when */
356         /* pointer crosses the end of the ring buffer */
357         if (new_hw_ptr < old_hw_ptr) {
358                 hw_base += runtime->buffer_size;
359                 if (hw_base >= runtime->boundary) {
360                         hw_base = 0;
361                         crossed_boundary++;
362                 }
363                 new_hw_ptr = hw_base + pos;
364         }
365       __delta:
366         delta = new_hw_ptr - old_hw_ptr;
367         if (delta < 0)
368                 delta += runtime->boundary;
369
370         if (runtime->no_period_wakeup) {
371                 snd_pcm_sframes_t xrun_threshold;
372                 /*
373                  * Without regular period interrupts, we have to check
374                  * the elapsed time to detect xruns.
375                  */
376                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
377                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
378                         goto no_delta_check;
379                 hdelta = jdelta - delta * HZ / runtime->rate;
380                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
381                 while (hdelta > xrun_threshold) {
382                         delta += runtime->buffer_size;
383                         hw_base += runtime->buffer_size;
384                         if (hw_base >= runtime->boundary) {
385                                 hw_base = 0;
386                                 crossed_boundary++;
387                         }
388                         new_hw_ptr = hw_base + pos;
389                         hdelta -= runtime->hw_ptr_buffer_jiffies;
390                 }
391                 goto no_delta_check;
392         }
393
394         /* something must be really wrong */
395         if (delta >= runtime->buffer_size + runtime->period_size) {
396                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
397                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
398                              substream->stream, (long)pos,
399                              (long)new_hw_ptr, (long)old_hw_ptr);
400                 return 0;
401         }
402
403         /* Do jiffies check only in xrun_debug mode */
404         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
405                 goto no_jiffies_check;
406
407         /* Skip the jiffies check for hardwares with BATCH flag.
408          * Such hardware usually just increases the position at each IRQ,
409          * thus it can't give any strange position.
410          */
411         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
412                 goto no_jiffies_check;
413         hdelta = delta;
414         if (hdelta < runtime->delay)
415                 goto no_jiffies_check;
416         hdelta -= runtime->delay;
417         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
418         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
419                 delta = jdelta /
420                         (((runtime->period_size * HZ) / runtime->rate)
421                                                                 + HZ/100);
422                 /* move new_hw_ptr according jiffies not pos variable */
423                 new_hw_ptr = old_hw_ptr;
424                 hw_base = delta;
425                 /* use loop to avoid checks for delta overflows */
426                 /* the delta value is small or zero in most cases */
427                 while (delta > 0) {
428                         new_hw_ptr += runtime->period_size;
429                         if (new_hw_ptr >= runtime->boundary) {
430                                 new_hw_ptr -= runtime->boundary;
431                                 crossed_boundary--;
432                         }
433                         delta--;
434                 }
435                 /* align hw_base to buffer_size */
436                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
437                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
438                              (long)pos, (long)hdelta,
439                              (long)runtime->period_size, jdelta,
440                              ((hdelta * HZ) / runtime->rate), hw_base,
441                              (unsigned long)old_hw_ptr,
442                              (unsigned long)new_hw_ptr);
443                 /* reset values to proper state */
444                 delta = 0;
445                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
446         }
447  no_jiffies_check:
448         if (delta > runtime->period_size + runtime->period_size / 2) {
449                 hw_ptr_error(substream, in_interrupt,
450                              "Lost interrupts?",
451                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
452                              substream->stream, (long)delta,
453                              (long)new_hw_ptr,
454                              (long)old_hw_ptr);
455         }
456
457  no_delta_check:
458         if (runtime->status->hw_ptr == new_hw_ptr) {
459                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
460                 return 0;
461         }
462
463         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
464             runtime->silence_size > 0)
465                 snd_pcm_playback_silence(substream, new_hw_ptr);
466
467         if (in_interrupt) {
468                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
469                 if (delta < 0)
470                         delta += runtime->boundary;
471                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
472                 runtime->hw_ptr_interrupt += delta;
473                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
474                         runtime->hw_ptr_interrupt -= runtime->boundary;
475         }
476         runtime->hw_ptr_base = hw_base;
477         runtime->status->hw_ptr = new_hw_ptr;
478         runtime->hw_ptr_jiffies = curr_jiffies;
479         if (crossed_boundary) {
480                 snd_BUG_ON(crossed_boundary != 1);
481                 runtime->hw_ptr_wrap += runtime->boundary;
482         }
483
484         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
485
486         return snd_pcm_update_state(substream, runtime);
487 }
488
489 /* CAUTION: call it with irq disabled */
490 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
491 {
492         return snd_pcm_update_hw_ptr0(substream, 0);
493 }
494
495 /**
496  * snd_pcm_set_ops - set the PCM operators
497  * @pcm: the pcm instance
498  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
499  * @ops: the operator table
500  *
501  * Sets the given PCM operators to the pcm instance.
502  */
503 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
504                      const struct snd_pcm_ops *ops)
505 {
506         struct snd_pcm_str *stream = &pcm->streams[direction];
507         struct snd_pcm_substream *substream;
508         
509         for (substream = stream->substream; substream != NULL; substream = substream->next)
510                 substream->ops = ops;
511 }
512
513 EXPORT_SYMBOL(snd_pcm_set_ops);
514
515 /**
516  * snd_pcm_sync - set the PCM sync id
517  * @substream: the pcm substream
518  *
519  * Sets the PCM sync identifier for the card.
520  */
521 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
522 {
523         struct snd_pcm_runtime *runtime = substream->runtime;
524         
525         runtime->sync.id32[0] = substream->pcm->card->number;
526         runtime->sync.id32[1] = -1;
527         runtime->sync.id32[2] = -1;
528         runtime->sync.id32[3] = -1;
529 }
530
531 EXPORT_SYMBOL(snd_pcm_set_sync);
532
533 /*
534  *  Standard ioctl routine
535  */
536
537 static inline unsigned int div32(unsigned int a, unsigned int b, 
538                                  unsigned int *r)
539 {
540         if (b == 0) {
541                 *r = 0;
542                 return UINT_MAX;
543         }
544         *r = a % b;
545         return a / b;
546 }
547
548 static inline unsigned int div_down(unsigned int a, unsigned int b)
549 {
550         if (b == 0)
551                 return UINT_MAX;
552         return a / b;
553 }
554
555 static inline unsigned int div_up(unsigned int a, unsigned int b)
556 {
557         unsigned int r;
558         unsigned int q;
559         if (b == 0)
560                 return UINT_MAX;
561         q = div32(a, b, &r);
562         if (r)
563                 ++q;
564         return q;
565 }
566
567 static inline unsigned int mul(unsigned int a, unsigned int b)
568 {
569         if (a == 0)
570                 return 0;
571         if (div_down(UINT_MAX, a) < b)
572                 return UINT_MAX;
573         return a * b;
574 }
575
576 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
577                                     unsigned int c, unsigned int *r)
578 {
579         u_int64_t n = (u_int64_t) a * b;
580         if (c == 0) {
581                 *r = 0;
582                 return UINT_MAX;
583         }
584         n = div_u64_rem(n, c, r);
585         if (n >= UINT_MAX) {
586                 *r = 0;
587                 return UINT_MAX;
588         }
589         return n;
590 }
591
592 /**
593  * snd_interval_refine - refine the interval value of configurator
594  * @i: the interval value to refine
595  * @v: the interval value to refer to
596  *
597  * Refines the interval value with the reference value.
598  * The interval is changed to the range satisfying both intervals.
599  * The interval status (min, max, integer, etc.) are evaluated.
600  *
601  * Return: Positive if the value is changed, zero if it's not changed, or a
602  * negative error code.
603  */
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
605 {
606         int changed = 0;
607         if (snd_BUG_ON(snd_interval_empty(i)))
608                 return -EINVAL;
609         if (i->min < v->min) {
610                 i->min = v->min;
611                 i->openmin = v->openmin;
612                 changed = 1;
613         } else if (i->min == v->min && !i->openmin && v->openmin) {
614                 i->openmin = 1;
615                 changed = 1;
616         }
617         if (i->max > v->max) {
618                 i->max = v->max;
619                 i->openmax = v->openmax;
620                 changed = 1;
621         } else if (i->max == v->max && !i->openmax && v->openmax) {
622                 i->openmax = 1;
623                 changed = 1;
624         }
625         if (!i->integer && v->integer) {
626                 i->integer = 1;
627                 changed = 1;
628         }
629         if (i->integer) {
630                 if (i->openmin) {
631                         i->min++;
632                         i->openmin = 0;
633                 }
634                 if (i->openmax) {
635                         i->max--;
636                         i->openmax = 0;
637                 }
638         } else if (!i->openmin && !i->openmax && i->min == i->max)
639                 i->integer = 1;
640         if (snd_interval_checkempty(i)) {
641                 snd_interval_none(i);
642                 return -EINVAL;
643         }
644         return changed;
645 }
646
647 EXPORT_SYMBOL(snd_interval_refine);
648
649 static int snd_interval_refine_first(struct snd_interval *i)
650 {
651         const unsigned int last_max = i->max;
652
653         if (snd_BUG_ON(snd_interval_empty(i)))
654                 return -EINVAL;
655         if (snd_interval_single(i))
656                 return 0;
657         i->max = i->min;
658         if (i->openmin)
659                 i->max++;
660         /* only exclude max value if also excluded before refine */
661         i->openmax = (i->openmax && i->max >= last_max);
662         return 1;
663 }
664
665 static int snd_interval_refine_last(struct snd_interval *i)
666 {
667         const unsigned int last_min = i->min;
668
669         if (snd_BUG_ON(snd_interval_empty(i)))
670                 return -EINVAL;
671         if (snd_interval_single(i))
672                 return 0;
673         i->min = i->max;
674         if (i->openmax)
675                 i->min--;
676         /* only exclude min value if also excluded before refine */
677         i->openmin = (i->openmin && i->min <= last_min);
678         return 1;
679 }
680
681 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682 {
683         if (a->empty || b->empty) {
684                 snd_interval_none(c);
685                 return;
686         }
687         c->empty = 0;
688         c->min = mul(a->min, b->min);
689         c->openmin = (a->openmin || b->openmin);
690         c->max = mul(a->max,  b->max);
691         c->openmax = (a->openmax || b->openmax);
692         c->integer = (a->integer && b->integer);
693 }
694
695 /**
696  * snd_interval_div - refine the interval value with division
697  * @a: dividend
698  * @b: divisor
699  * @c: quotient
700  *
701  * c = a / b
702  *
703  * Returns non-zero if the value is changed, zero if not changed.
704  */
705 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
706 {
707         unsigned int r;
708         if (a->empty || b->empty) {
709                 snd_interval_none(c);
710                 return;
711         }
712         c->empty = 0;
713         c->min = div32(a->min, b->max, &r);
714         c->openmin = (r || a->openmin || b->openmax);
715         if (b->min > 0) {
716                 c->max = div32(a->max, b->min, &r);
717                 if (r) {
718                         c->max++;
719                         c->openmax = 1;
720                 } else
721                         c->openmax = (a->openmax || b->openmin);
722         } else {
723                 c->max = UINT_MAX;
724                 c->openmax = 0;
725         }
726         c->integer = 0;
727 }
728
729 /**
730  * snd_interval_muldivk - refine the interval value
731  * @a: dividend 1
732  * @b: dividend 2
733  * @k: divisor (as integer)
734  * @c: result
735   *
736  * c = a * b / k
737  *
738  * Returns non-zero if the value is changed, zero if not changed.
739  */
740 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
741                       unsigned int k, struct snd_interval *c)
742 {
743         unsigned int r;
744         if (a->empty || b->empty) {
745                 snd_interval_none(c);
746                 return;
747         }
748         c->empty = 0;
749         c->min = muldiv32(a->min, b->min, k, &r);
750         c->openmin = (r || a->openmin || b->openmin);
751         c->max = muldiv32(a->max, b->max, k, &r);
752         if (r) {
753                 c->max++;
754                 c->openmax = 1;
755         } else
756                 c->openmax = (a->openmax || b->openmax);
757         c->integer = 0;
758 }
759
760 /**
761  * snd_interval_mulkdiv - refine the interval value
762  * @a: dividend 1
763  * @k: dividend 2 (as integer)
764  * @b: divisor
765  * @c: result
766  *
767  * c = a * k / b
768  *
769  * Returns non-zero if the value is changed, zero if not changed.
770  */
771 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
772                       const struct snd_interval *b, struct snd_interval *c)
773 {
774         unsigned int r;
775         if (a->empty || b->empty) {
776                 snd_interval_none(c);
777                 return;
778         }
779         c->empty = 0;
780         c->min = muldiv32(a->min, k, b->max, &r);
781         c->openmin = (r || a->openmin || b->openmax);
782         if (b->min > 0) {
783                 c->max = muldiv32(a->max, k, b->min, &r);
784                 if (r) {
785                         c->max++;
786                         c->openmax = 1;
787                 } else
788                         c->openmax = (a->openmax || b->openmin);
789         } else {
790                 c->max = UINT_MAX;
791                 c->openmax = 0;
792         }
793         c->integer = 0;
794 }
795
796 /* ---- */
797
798
799 /**
800  * snd_interval_ratnum - refine the interval value
801  * @i: interval to refine
802  * @rats_count: number of ratnum_t 
803  * @rats: ratnum_t array
804  * @nump: pointer to store the resultant numerator
805  * @denp: pointer to store the resultant denominator
806  *
807  * Return: Positive if the value is changed, zero if it's not changed, or a
808  * negative error code.
809  */
810 int snd_interval_ratnum(struct snd_interval *i,
811                         unsigned int rats_count, const struct snd_ratnum *rats,
812                         unsigned int *nump, unsigned int *denp)
813 {
814         unsigned int best_num, best_den;
815         int best_diff;
816         unsigned int k;
817         struct snd_interval t;
818         int err;
819         unsigned int result_num, result_den;
820         int result_diff;
821
822         best_num = best_den = best_diff = 0;
823         for (k = 0; k < rats_count; ++k) {
824                 unsigned int num = rats[k].num;
825                 unsigned int den;
826                 unsigned int q = i->min;
827                 int diff;
828                 if (q == 0)
829                         q = 1;
830                 den = div_up(num, q);
831                 if (den < rats[k].den_min)
832                         continue;
833                 if (den > rats[k].den_max)
834                         den = rats[k].den_max;
835                 else {
836                         unsigned int r;
837                         r = (den - rats[k].den_min) % rats[k].den_step;
838                         if (r != 0)
839                                 den -= r;
840                 }
841                 diff = num - q * den;
842                 if (diff < 0)
843                         diff = -diff;
844                 if (best_num == 0 ||
845                     diff * best_den < best_diff * den) {
846                         best_diff = diff;
847                         best_den = den;
848                         best_num = num;
849                 }
850         }
851         if (best_den == 0) {
852                 i->empty = 1;
853                 return -EINVAL;
854         }
855         t.min = div_down(best_num, best_den);
856         t.openmin = !!(best_num % best_den);
857         
858         result_num = best_num;
859         result_diff = best_diff;
860         result_den = best_den;
861         best_num = best_den = best_diff = 0;
862         for (k = 0; k < rats_count; ++k) {
863                 unsigned int num = rats[k].num;
864                 unsigned int den;
865                 unsigned int q = i->max;
866                 int diff;
867                 if (q == 0) {
868                         i->empty = 1;
869                         return -EINVAL;
870                 }
871                 den = div_down(num, q);
872                 if (den > rats[k].den_max)
873                         continue;
874                 if (den < rats[k].den_min)
875                         den = rats[k].den_min;
876                 else {
877                         unsigned int r;
878                         r = (den - rats[k].den_min) % rats[k].den_step;
879                         if (r != 0)
880                                 den += rats[k].den_step - r;
881                 }
882                 diff = q * den - num;
883                 if (diff < 0)
884                         diff = -diff;
885                 if (best_num == 0 ||
886                     diff * best_den < best_diff * den) {
887                         best_diff = diff;
888                         best_den = den;
889                         best_num = num;
890                 }
891         }
892         if (best_den == 0) {
893                 i->empty = 1;
894                 return -EINVAL;
895         }
896         t.max = div_up(best_num, best_den);
897         t.openmax = !!(best_num % best_den);
898         t.integer = 0;
899         err = snd_interval_refine(i, &t);
900         if (err < 0)
901                 return err;
902
903         if (snd_interval_single(i)) {
904                 if (best_diff * result_den < result_diff * best_den) {
905                         result_num = best_num;
906                         result_den = best_den;
907                 }
908                 if (nump)
909                         *nump = result_num;
910                 if (denp)
911                         *denp = result_den;
912         }
913         return err;
914 }
915
916 EXPORT_SYMBOL(snd_interval_ratnum);
917
918 /**
919  * snd_interval_ratden - refine the interval value
920  * @i: interval to refine
921  * @rats_count: number of struct ratden
922  * @rats: struct ratden array
923  * @nump: pointer to store the resultant numerator
924  * @denp: pointer to store the resultant denominator
925  *
926  * Return: Positive if the value is changed, zero if it's not changed, or a
927  * negative error code.
928  */
929 static int snd_interval_ratden(struct snd_interval *i,
930                                unsigned int rats_count,
931                                const struct snd_ratden *rats,
932                                unsigned int *nump, unsigned int *denp)
933 {
934         unsigned int best_num, best_diff, best_den;
935         unsigned int k;
936         struct snd_interval t;
937         int err;
938
939         best_num = best_den = best_diff = 0;
940         for (k = 0; k < rats_count; ++k) {
941                 unsigned int num;
942                 unsigned int den = rats[k].den;
943                 unsigned int q = i->min;
944                 int diff;
945                 num = mul(q, den);
946                 if (num > rats[k].num_max)
947                         continue;
948                 if (num < rats[k].num_min)
949                         num = rats[k].num_max;
950                 else {
951                         unsigned int r;
952                         r = (num - rats[k].num_min) % rats[k].num_step;
953                         if (r != 0)
954                                 num += rats[k].num_step - r;
955                 }
956                 diff = num - q * den;
957                 if (best_num == 0 ||
958                     diff * best_den < best_diff * den) {
959                         best_diff = diff;
960                         best_den = den;
961                         best_num = num;
962                 }
963         }
964         if (best_den == 0) {
965                 i->empty = 1;
966                 return -EINVAL;
967         }
968         t.min = div_down(best_num, best_den);
969         t.openmin = !!(best_num % best_den);
970         
971         best_num = best_den = best_diff = 0;
972         for (k = 0; k < rats_count; ++k) {
973                 unsigned int num;
974                 unsigned int den = rats[k].den;
975                 unsigned int q = i->max;
976                 int diff;
977                 num = mul(q, den);
978                 if (num < rats[k].num_min)
979                         continue;
980                 if (num > rats[k].num_max)
981                         num = rats[k].num_max;
982                 else {
983                         unsigned int r;
984                         r = (num - rats[k].num_min) % rats[k].num_step;
985                         if (r != 0)
986                                 num -= r;
987                 }
988                 diff = q * den - num;
989                 if (best_num == 0 ||
990                     diff * best_den < best_diff * den) {
991                         best_diff = diff;
992                         best_den = den;
993                         best_num = num;
994                 }
995         }
996         if (best_den == 0) {
997                 i->empty = 1;
998                 return -EINVAL;
999         }
1000         t.max = div_up(best_num, best_den);
1001         t.openmax = !!(best_num % best_den);
1002         t.integer = 0;
1003         err = snd_interval_refine(i, &t);
1004         if (err < 0)
1005                 return err;
1006
1007         if (snd_interval_single(i)) {
1008                 if (nump)
1009                         *nump = best_num;
1010                 if (denp)
1011                         *denp = best_den;
1012         }
1013         return err;
1014 }
1015
1016 /**
1017  * snd_interval_list - refine the interval value from the list
1018  * @i: the interval value to refine
1019  * @count: the number of elements in the list
1020  * @list: the value list
1021  * @mask: the bit-mask to evaluate
1022  *
1023  * Refines the interval value from the list.
1024  * When mask is non-zero, only the elements corresponding to bit 1 are
1025  * evaluated.
1026  *
1027  * Return: Positive if the value is changed, zero if it's not changed, or a
1028  * negative error code.
1029  */
1030 int snd_interval_list(struct snd_interval *i, unsigned int count,
1031                       const unsigned int *list, unsigned int mask)
1032 {
1033         unsigned int k;
1034         struct snd_interval list_range;
1035
1036         if (!count) {
1037                 i->empty = 1;
1038                 return -EINVAL;
1039         }
1040         snd_interval_any(&list_range);
1041         list_range.min = UINT_MAX;
1042         list_range.max = 0;
1043         for (k = 0; k < count; k++) {
1044                 if (mask && !(mask & (1 << k)))
1045                         continue;
1046                 if (!snd_interval_test(i, list[k]))
1047                         continue;
1048                 list_range.min = min(list_range.min, list[k]);
1049                 list_range.max = max(list_range.max, list[k]);
1050         }
1051         return snd_interval_refine(i, &list_range);
1052 }
1053
1054 EXPORT_SYMBOL(snd_interval_list);
1055
1056 /**
1057  * snd_interval_ranges - refine the interval value from the list of ranges
1058  * @i: the interval value to refine
1059  * @count: the number of elements in the list of ranges
1060  * @ranges: the ranges list
1061  * @mask: the bit-mask to evaluate
1062  *
1063  * Refines the interval value from the list of ranges.
1064  * When mask is non-zero, only the elements corresponding to bit 1 are
1065  * evaluated.
1066  *
1067  * Return: Positive if the value is changed, zero if it's not changed, or a
1068  * negative error code.
1069  */
1070 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1071                         const struct snd_interval *ranges, unsigned int mask)
1072 {
1073         unsigned int k;
1074         struct snd_interval range_union;
1075         struct snd_interval range;
1076
1077         if (!count) {
1078                 snd_interval_none(i);
1079                 return -EINVAL;
1080         }
1081         snd_interval_any(&range_union);
1082         range_union.min = UINT_MAX;
1083         range_union.max = 0;
1084         for (k = 0; k < count; k++) {
1085                 if (mask && !(mask & (1 << k)))
1086                         continue;
1087                 snd_interval_copy(&range, &ranges[k]);
1088                 if (snd_interval_refine(&range, i) < 0)
1089                         continue;
1090                 if (snd_interval_empty(&range))
1091                         continue;
1092
1093                 if (range.min < range_union.min) {
1094                         range_union.min = range.min;
1095                         range_union.openmin = 1;
1096                 }
1097                 if (range.min == range_union.min && !range.openmin)
1098                         range_union.openmin = 0;
1099                 if (range.max > range_union.max) {
1100                         range_union.max = range.max;
1101                         range_union.openmax = 1;
1102                 }
1103                 if (range.max == range_union.max && !range.openmax)
1104                         range_union.openmax = 0;
1105         }
1106         return snd_interval_refine(i, &range_union);
1107 }
1108 EXPORT_SYMBOL(snd_interval_ranges);
1109
1110 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1111 {
1112         unsigned int n;
1113         int changed = 0;
1114         n = i->min % step;
1115         if (n != 0 || i->openmin) {
1116                 i->min += step - n;
1117                 i->openmin = 0;
1118                 changed = 1;
1119         }
1120         n = i->max % step;
1121         if (n != 0 || i->openmax) {
1122                 i->max -= n;
1123                 i->openmax = 0;
1124                 changed = 1;
1125         }
1126         if (snd_interval_checkempty(i)) {
1127                 i->empty = 1;
1128                 return -EINVAL;
1129         }
1130         return changed;
1131 }
1132
1133 /* Info constraints helpers */
1134
1135 /**
1136  * snd_pcm_hw_rule_add - add the hw-constraint rule
1137  * @runtime: the pcm runtime instance
1138  * @cond: condition bits
1139  * @var: the variable to evaluate
1140  * @func: the evaluation function
1141  * @private: the private data pointer passed to function
1142  * @dep: the dependent variables
1143  *
1144  * Return: Zero if successful, or a negative error code on failure.
1145  */
1146 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1147                         int var,
1148                         snd_pcm_hw_rule_func_t func, void *private,
1149                         int dep, ...)
1150 {
1151         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1152         struct snd_pcm_hw_rule *c;
1153         unsigned int k;
1154         va_list args;
1155         va_start(args, dep);
1156         if (constrs->rules_num >= constrs->rules_all) {
1157                 struct snd_pcm_hw_rule *new;
1158                 unsigned int new_rules = constrs->rules_all + 16;
1159                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1160                 if (!new) {
1161                         va_end(args);
1162                         return -ENOMEM;
1163                 }
1164                 if (constrs->rules) {
1165                         memcpy(new, constrs->rules,
1166                                constrs->rules_num * sizeof(*c));
1167                         kfree(constrs->rules);
1168                 }
1169                 constrs->rules = new;
1170                 constrs->rules_all = new_rules;
1171         }
1172         c = &constrs->rules[constrs->rules_num];
1173         c->cond = cond;
1174         c->func = func;
1175         c->var = var;
1176         c->private = private;
1177         k = 0;
1178         while (1) {
1179                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1180                         va_end(args);
1181                         return -EINVAL;
1182                 }
1183                 c->deps[k++] = dep;
1184                 if (dep < 0)
1185                         break;
1186                 dep = va_arg(args, int);
1187         }
1188         constrs->rules_num++;
1189         va_end(args);
1190         return 0;
1191 }
1192
1193 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1194
1195 /**
1196  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1197  * @runtime: PCM runtime instance
1198  * @var: hw_params variable to apply the mask
1199  * @mask: the bitmap mask
1200  *
1201  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1202  *
1203  * Return: Zero if successful, or a negative error code on failure.
1204  */
1205 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1206                                u_int32_t mask)
1207 {
1208         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1209         struct snd_mask *maskp = constrs_mask(constrs, var);
1210         *maskp->bits &= mask;
1211         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1212         if (*maskp->bits == 0)
1213                 return -EINVAL;
1214         return 0;
1215 }
1216
1217 /**
1218  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1219  * @runtime: PCM runtime instance
1220  * @var: hw_params variable to apply the mask
1221  * @mask: the 64bit bitmap mask
1222  *
1223  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1224  *
1225  * Return: Zero if successful, or a negative error code on failure.
1226  */
1227 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228                                  u_int64_t mask)
1229 {
1230         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231         struct snd_mask *maskp = constrs_mask(constrs, var);
1232         maskp->bits[0] &= (u_int32_t)mask;
1233         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1234         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1235         if (! maskp->bits[0] && ! maskp->bits[1])
1236                 return -EINVAL;
1237         return 0;
1238 }
1239 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1240
1241 /**
1242  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1243  * @runtime: PCM runtime instance
1244  * @var: hw_params variable to apply the integer constraint
1245  *
1246  * Apply the constraint of integer to an interval parameter.
1247  *
1248  * Return: Positive if the value is changed, zero if it's not changed, or a
1249  * negative error code.
1250  */
1251 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1252 {
1253         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1254         return snd_interval_setinteger(constrs_interval(constrs, var));
1255 }
1256
1257 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1258
1259 /**
1260  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1261  * @runtime: PCM runtime instance
1262  * @var: hw_params variable to apply the range
1263  * @min: the minimal value
1264  * @max: the maximal value
1265  * 
1266  * Apply the min/max range constraint to an interval parameter.
1267  *
1268  * Return: Positive if the value is changed, zero if it's not changed, or a
1269  * negative error code.
1270  */
1271 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1272                                  unsigned int min, unsigned int max)
1273 {
1274         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1275         struct snd_interval t;
1276         t.min = min;
1277         t.max = max;
1278         t.openmin = t.openmax = 0;
1279         t.integer = 0;
1280         return snd_interval_refine(constrs_interval(constrs, var), &t);
1281 }
1282
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1284
1285 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1286                                 struct snd_pcm_hw_rule *rule)
1287 {
1288         struct snd_pcm_hw_constraint_list *list = rule->private;
1289         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1290 }               
1291
1292
1293 /**
1294  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1295  * @runtime: PCM runtime instance
1296  * @cond: condition bits
1297  * @var: hw_params variable to apply the list constraint
1298  * @l: list
1299  * 
1300  * Apply the list of constraints to an interval parameter.
1301  *
1302  * Return: Zero if successful, or a negative error code on failure.
1303  */
1304 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1305                                unsigned int cond,
1306                                snd_pcm_hw_param_t var,
1307                                const struct snd_pcm_hw_constraint_list *l)
1308 {
1309         return snd_pcm_hw_rule_add(runtime, cond, var,
1310                                    snd_pcm_hw_rule_list, (void *)l,
1311                                    var, -1);
1312 }
1313
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1315
1316 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1317                                   struct snd_pcm_hw_rule *rule)
1318 {
1319         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1320         return snd_interval_ranges(hw_param_interval(params, rule->var),
1321                                    r->count, r->ranges, r->mask);
1322 }
1323
1324
1325 /**
1326  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1327  * @runtime: PCM runtime instance
1328  * @cond: condition bits
1329  * @var: hw_params variable to apply the list of range constraints
1330  * @r: ranges
1331  *
1332  * Apply the list of range constraints to an interval parameter.
1333  *
1334  * Return: Zero if successful, or a negative error code on failure.
1335  */
1336 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1337                                  unsigned int cond,
1338                                  snd_pcm_hw_param_t var,
1339                                  const struct snd_pcm_hw_constraint_ranges *r)
1340 {
1341         return snd_pcm_hw_rule_add(runtime, cond, var,
1342                                    snd_pcm_hw_rule_ranges, (void *)r,
1343                                    var, -1);
1344 }
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1346
1347 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1348                                    struct snd_pcm_hw_rule *rule)
1349 {
1350         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1351         unsigned int num = 0, den = 0;
1352         int err;
1353         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1354                                   r->nrats, r->rats, &num, &den);
1355         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356                 params->rate_num = num;
1357                 params->rate_den = den;
1358         }
1359         return err;
1360 }
1361
1362 /**
1363  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1364  * @runtime: PCM runtime instance
1365  * @cond: condition bits
1366  * @var: hw_params variable to apply the ratnums constraint
1367  * @r: struct snd_ratnums constriants
1368  *
1369  * Return: Zero if successful, or a negative error code on failure.
1370  */
1371 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1372                                   unsigned int cond,
1373                                   snd_pcm_hw_param_t var,
1374                                   const struct snd_pcm_hw_constraint_ratnums *r)
1375 {
1376         return snd_pcm_hw_rule_add(runtime, cond, var,
1377                                    snd_pcm_hw_rule_ratnums, (void *)r,
1378                                    var, -1);
1379 }
1380
1381 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1382
1383 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1384                                    struct snd_pcm_hw_rule *rule)
1385 {
1386         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1387         unsigned int num = 0, den = 0;
1388         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1389                                   r->nrats, r->rats, &num, &den);
1390         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1391                 params->rate_num = num;
1392                 params->rate_den = den;
1393         }
1394         return err;
1395 }
1396
1397 /**
1398  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1399  * @runtime: PCM runtime instance
1400  * @cond: condition bits
1401  * @var: hw_params variable to apply the ratdens constraint
1402  * @r: struct snd_ratdens constriants
1403  *
1404  * Return: Zero if successful, or a negative error code on failure.
1405  */
1406 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1407                                   unsigned int cond,
1408                                   snd_pcm_hw_param_t var,
1409                                   const struct snd_pcm_hw_constraint_ratdens *r)
1410 {
1411         return snd_pcm_hw_rule_add(runtime, cond, var,
1412                                    snd_pcm_hw_rule_ratdens, (void *)r,
1413                                    var, -1);
1414 }
1415
1416 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1417
1418 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1419                                   struct snd_pcm_hw_rule *rule)
1420 {
1421         unsigned int l = (unsigned long) rule->private;
1422         int width = l & 0xffff;
1423         unsigned int msbits = l >> 16;
1424         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1425
1426         if (!snd_interval_single(i))
1427                 return 0;
1428
1429         if ((snd_interval_value(i) == width) ||
1430             (width == 0 && snd_interval_value(i) > msbits))
1431                 params->msbits = min_not_zero(params->msbits, msbits);
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1438  * @runtime: PCM runtime instance
1439  * @cond: condition bits
1440  * @width: sample bits width
1441  * @msbits: msbits width
1442  *
1443  * This constraint will set the number of most significant bits (msbits) if a
1444  * sample format with the specified width has been select. If width is set to 0
1445  * the msbits will be set for any sample format with a width larger than the
1446  * specified msbits.
1447  *
1448  * Return: Zero if successful, or a negative error code on failure.
1449  */
1450 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1451                                  unsigned int cond,
1452                                  unsigned int width,
1453                                  unsigned int msbits)
1454 {
1455         unsigned long l = (msbits << 16) | width;
1456         return snd_pcm_hw_rule_add(runtime, cond, -1,
1457                                     snd_pcm_hw_rule_msbits,
1458                                     (void*) l,
1459                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1460 }
1461
1462 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1463
1464 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1465                                 struct snd_pcm_hw_rule *rule)
1466 {
1467         unsigned long step = (unsigned long) rule->private;
1468         return snd_interval_step(hw_param_interval(params, rule->var), step);
1469 }
1470
1471 /**
1472  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1473  * @runtime: PCM runtime instance
1474  * @cond: condition bits
1475  * @var: hw_params variable to apply the step constraint
1476  * @step: step size
1477  *
1478  * Return: Zero if successful, or a negative error code on failure.
1479  */
1480 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1481                                unsigned int cond,
1482                                snd_pcm_hw_param_t var,
1483                                unsigned long step)
1484 {
1485         return snd_pcm_hw_rule_add(runtime, cond, var, 
1486                                    snd_pcm_hw_rule_step, (void *) step,
1487                                    var, -1);
1488 }
1489
1490 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1491
1492 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1493 {
1494         static unsigned int pow2_sizes[] = {
1495                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1496                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1497                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1498                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1499         };
1500         return snd_interval_list(hw_param_interval(params, rule->var),
1501                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1502 }               
1503
1504 /**
1505  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1506  * @runtime: PCM runtime instance
1507  * @cond: condition bits
1508  * @var: hw_params variable to apply the power-of-2 constraint
1509  *
1510  * Return: Zero if successful, or a negative error code on failure.
1511  */
1512 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1513                                unsigned int cond,
1514                                snd_pcm_hw_param_t var)
1515 {
1516         return snd_pcm_hw_rule_add(runtime, cond, var, 
1517                                    snd_pcm_hw_rule_pow2, NULL,
1518                                    var, -1);
1519 }
1520
1521 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1522
1523 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1524                                            struct snd_pcm_hw_rule *rule)
1525 {
1526         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1527         struct snd_interval *rate;
1528
1529         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1530         return snd_interval_list(rate, 1, &base_rate, 0);
1531 }
1532
1533 /**
1534  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1535  * @runtime: PCM runtime instance
1536  * @base_rate: the rate at which the hardware does not resample
1537  *
1538  * Return: Zero if successful, or a negative error code on failure.
1539  */
1540 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1541                                unsigned int base_rate)
1542 {
1543         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1544                                    SNDRV_PCM_HW_PARAM_RATE,
1545                                    snd_pcm_hw_rule_noresample_func,
1546                                    (void *)(uintptr_t)base_rate,
1547                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1548 }
1549 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1550
1551 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1552                                   snd_pcm_hw_param_t var)
1553 {
1554         if (hw_is_mask(var)) {
1555                 snd_mask_any(hw_param_mask(params, var));
1556                 params->cmask |= 1 << var;
1557                 params->rmask |= 1 << var;
1558                 return;
1559         }
1560         if (hw_is_interval(var)) {
1561                 snd_interval_any(hw_param_interval(params, var));
1562                 params->cmask |= 1 << var;
1563                 params->rmask |= 1 << var;
1564                 return;
1565         }
1566         snd_BUG();
1567 }
1568
1569 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1570 {
1571         unsigned int k;
1572         memset(params, 0, sizeof(*params));
1573         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1574                 _snd_pcm_hw_param_any(params, k);
1575         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1576                 _snd_pcm_hw_param_any(params, k);
1577         params->info = ~0U;
1578 }
1579
1580 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1581
1582 /**
1583  * snd_pcm_hw_param_value - return @params field @var value
1584  * @params: the hw_params instance
1585  * @var: parameter to retrieve
1586  * @dir: pointer to the direction (-1,0,1) or %NULL
1587  *
1588  * Return: The value for field @var if it's fixed in configuration space
1589  * defined by @params. -%EINVAL otherwise.
1590  */
1591 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1592                            snd_pcm_hw_param_t var, int *dir)
1593 {
1594         if (hw_is_mask(var)) {
1595                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1596                 if (!snd_mask_single(mask))
1597                         return -EINVAL;
1598                 if (dir)
1599                         *dir = 0;
1600                 return snd_mask_value(mask);
1601         }
1602         if (hw_is_interval(var)) {
1603                 const struct snd_interval *i = hw_param_interval_c(params, var);
1604                 if (!snd_interval_single(i))
1605                         return -EINVAL;
1606                 if (dir)
1607                         *dir = i->openmin;
1608                 return snd_interval_value(i);
1609         }
1610         return -EINVAL;
1611 }
1612
1613 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1614
1615 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1616                                 snd_pcm_hw_param_t var)
1617 {
1618         if (hw_is_mask(var)) {
1619                 snd_mask_none(hw_param_mask(params, var));
1620                 params->cmask |= 1 << var;
1621                 params->rmask |= 1 << var;
1622         } else if (hw_is_interval(var)) {
1623                 snd_interval_none(hw_param_interval(params, var));
1624                 params->cmask |= 1 << var;
1625                 params->rmask |= 1 << var;
1626         } else {
1627                 snd_BUG();
1628         }
1629 }
1630
1631 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1632
1633 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1634                                    snd_pcm_hw_param_t var)
1635 {
1636         int changed;
1637         if (hw_is_mask(var))
1638                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1639         else if (hw_is_interval(var))
1640                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1641         else
1642                 return -EINVAL;
1643         if (changed) {
1644                 params->cmask |= 1 << var;
1645                 params->rmask |= 1 << var;
1646         }
1647         return changed;
1648 }
1649
1650
1651 /**
1652  * snd_pcm_hw_param_first - refine config space and return minimum value
1653  * @pcm: PCM instance
1654  * @params: the hw_params instance
1655  * @var: parameter to retrieve
1656  * @dir: pointer to the direction (-1,0,1) or %NULL
1657  *
1658  * Inside configuration space defined by @params remove from @var all
1659  * values > minimum. Reduce configuration space accordingly.
1660  *
1661  * Return: The minimum, or a negative error code on failure.
1662  */
1663 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1664                            struct snd_pcm_hw_params *params, 
1665                            snd_pcm_hw_param_t var, int *dir)
1666 {
1667         int changed = _snd_pcm_hw_param_first(params, var);
1668         if (changed < 0)
1669                 return changed;
1670         if (params->rmask) {
1671                 int err = snd_pcm_hw_refine(pcm, params);
1672                 if (err < 0)
1673                         return err;
1674         }
1675         return snd_pcm_hw_param_value(params, var, dir);
1676 }
1677
1678 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1679
1680 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1681                                   snd_pcm_hw_param_t var)
1682 {
1683         int changed;
1684         if (hw_is_mask(var))
1685                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1686         else if (hw_is_interval(var))
1687                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1688         else
1689                 return -EINVAL;
1690         if (changed) {
1691                 params->cmask |= 1 << var;
1692                 params->rmask |= 1 << var;
1693         }
1694         return changed;
1695 }
1696
1697
1698 /**
1699  * snd_pcm_hw_param_last - refine config space and return maximum value
1700  * @pcm: PCM instance
1701  * @params: the hw_params instance
1702  * @var: parameter to retrieve
1703  * @dir: pointer to the direction (-1,0,1) or %NULL
1704  *
1705  * Inside configuration space defined by @params remove from @var all
1706  * values < maximum. Reduce configuration space accordingly.
1707  *
1708  * Return: The maximum, or a negative error code on failure.
1709  */
1710 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1711                           struct snd_pcm_hw_params *params,
1712                           snd_pcm_hw_param_t var, int *dir)
1713 {
1714         int changed = _snd_pcm_hw_param_last(params, var);
1715         if (changed < 0)
1716                 return changed;
1717         if (params->rmask) {
1718                 int err = snd_pcm_hw_refine(pcm, params);
1719                 if (err < 0)
1720                         return err;
1721         }
1722         return snd_pcm_hw_param_value(params, var, dir);
1723 }
1724
1725 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1726
1727 /**
1728  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1729  * @pcm: PCM instance
1730  * @params: the hw_params instance
1731  *
1732  * Choose one configuration from configuration space defined by @params.
1733  * The configuration chosen is that obtained fixing in this order:
1734  * first access, first format, first subformat, min channels,
1735  * min rate, min period time, max buffer size, min tick time
1736  *
1737  * Return: Zero if successful, or a negative error code on failure.
1738  */
1739 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1740                              struct snd_pcm_hw_params *params)
1741 {
1742         static int vars[] = {
1743                 SNDRV_PCM_HW_PARAM_ACCESS,
1744                 SNDRV_PCM_HW_PARAM_FORMAT,
1745                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1746                 SNDRV_PCM_HW_PARAM_CHANNELS,
1747                 SNDRV_PCM_HW_PARAM_RATE,
1748                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1749                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1750                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1751                 -1
1752         };
1753         int err, *v;
1754
1755         for (v = vars; *v != -1; v++) {
1756                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1757                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1758                 else
1759                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1760                 if (snd_BUG_ON(err < 0))
1761                         return err;
1762         }
1763         return 0;
1764 }
1765
1766 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1767                                    void *arg)
1768 {
1769         struct snd_pcm_runtime *runtime = substream->runtime;
1770         unsigned long flags;
1771         snd_pcm_stream_lock_irqsave(substream, flags);
1772         if (snd_pcm_running(substream) &&
1773             snd_pcm_update_hw_ptr(substream) >= 0)
1774                 runtime->status->hw_ptr %= runtime->buffer_size;
1775         else {
1776                 runtime->status->hw_ptr = 0;
1777                 runtime->hw_ptr_wrap = 0;
1778         }
1779         snd_pcm_stream_unlock_irqrestore(substream, flags);
1780         return 0;
1781 }
1782
1783 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1784                                           void *arg)
1785 {
1786         struct snd_pcm_channel_info *info = arg;
1787         struct snd_pcm_runtime *runtime = substream->runtime;
1788         int width;
1789         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1790                 info->offset = -1;
1791                 return 0;
1792         }
1793         width = snd_pcm_format_physical_width(runtime->format);
1794         if (width < 0)
1795                 return width;
1796         info->offset = 0;
1797         switch (runtime->access) {
1798         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1799         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1800                 info->first = info->channel * width;
1801                 info->step = runtime->channels * width;
1802                 break;
1803         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1804         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1805         {
1806                 size_t size = runtime->dma_bytes / runtime->channels;
1807                 info->first = info->channel * size * 8;
1808                 info->step = width;
1809                 break;
1810         }
1811         default:
1812                 snd_BUG();
1813                 break;
1814         }
1815         return 0;
1816 }
1817
1818 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1819                                        void *arg)
1820 {
1821         struct snd_pcm_hw_params *params = arg;
1822         snd_pcm_format_t format;
1823         int channels;
1824         ssize_t frame_size;
1825
1826         params->fifo_size = substream->runtime->hw.fifo_size;
1827         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1828                 format = params_format(params);
1829                 channels = params_channels(params);
1830                 frame_size = snd_pcm_format_size(format, channels);
1831                 if (frame_size > 0)
1832                         params->fifo_size /= (unsigned)frame_size;
1833         }
1834         return 0;
1835 }
1836
1837 /**
1838  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1839  * @substream: the pcm substream instance
1840  * @cmd: ioctl command
1841  * @arg: ioctl argument
1842  *
1843  * Processes the generic ioctl commands for PCM.
1844  * Can be passed as the ioctl callback for PCM ops.
1845  *
1846  * Return: Zero if successful, or a negative error code on failure.
1847  */
1848 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1849                       unsigned int cmd, void *arg)
1850 {
1851         switch (cmd) {
1852         case SNDRV_PCM_IOCTL1_RESET:
1853                 return snd_pcm_lib_ioctl_reset(substream, arg);
1854         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1855                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1856         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1857                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1858         }
1859         return -ENXIO;
1860 }
1861
1862 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1863
1864 /**
1865  * snd_pcm_period_elapsed - update the pcm status for the next period
1866  * @substream: the pcm substream instance
1867  *
1868  * This function is called from the interrupt handler when the
1869  * PCM has processed the period size.  It will update the current
1870  * pointer, wake up sleepers, etc.
1871  *
1872  * Even if more than one periods have elapsed since the last call, you
1873  * have to call this only once.
1874  */
1875 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1876 {
1877         struct snd_pcm_runtime *runtime;
1878         unsigned long flags;
1879
1880         if (PCM_RUNTIME_CHECK(substream))
1881                 return;
1882         runtime = substream->runtime;
1883
1884         snd_pcm_stream_lock_irqsave(substream, flags);
1885         if (!snd_pcm_running(substream) ||
1886             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1887                 goto _end;
1888
1889 #ifdef CONFIG_SND_PCM_TIMER
1890         if (substream->timer_running)
1891                 snd_timer_interrupt(substream->timer, 1);
1892 #endif
1893  _end:
1894         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1895         snd_pcm_stream_unlock_irqrestore(substream, flags);
1896 }
1897
1898 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1899
1900 /*
1901  * Wait until avail_min data becomes available
1902  * Returns a negative error code if any error occurs during operation.
1903  * The available space is stored on availp.  When err = 0 and avail = 0
1904  * on the capture stream, it indicates the stream is in DRAINING state.
1905  */
1906 static int wait_for_avail(struct snd_pcm_substream *substream,
1907                               snd_pcm_uframes_t *availp)
1908 {
1909         struct snd_pcm_runtime *runtime = substream->runtime;
1910         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1911         wait_queue_t wait;
1912         int err = 0;
1913         snd_pcm_uframes_t avail = 0;
1914         long wait_time, tout;
1915
1916         init_waitqueue_entry(&wait, current);
1917         set_current_state(TASK_INTERRUPTIBLE);
1918         add_wait_queue(&runtime->tsleep, &wait);
1919
1920         if (runtime->no_period_wakeup)
1921                 wait_time = MAX_SCHEDULE_TIMEOUT;
1922         else {
1923                 wait_time = 10;
1924                 if (runtime->rate) {
1925                         long t = runtime->period_size * 2 / runtime->rate;
1926                         wait_time = max(t, wait_time);
1927                 }
1928                 wait_time = msecs_to_jiffies(wait_time * 1000);
1929         }
1930
1931         for (;;) {
1932                 if (signal_pending(current)) {
1933                         err = -ERESTARTSYS;
1934                         break;
1935                 }
1936
1937                 /*
1938                  * We need to check if space became available already
1939                  * (and thus the wakeup happened already) first to close
1940                  * the race of space already having become available.
1941                  * This check must happen after been added to the waitqueue
1942                  * and having current state be INTERRUPTIBLE.
1943                  */
1944                 if (is_playback)
1945                         avail = snd_pcm_playback_avail(runtime);
1946                 else
1947                         avail = snd_pcm_capture_avail(runtime);
1948                 if (avail >= runtime->twake)
1949                         break;
1950                 snd_pcm_stream_unlock_irq(substream);
1951
1952                 tout = schedule_timeout(wait_time);
1953
1954                 snd_pcm_stream_lock_irq(substream);
1955                 set_current_state(TASK_INTERRUPTIBLE);
1956                 switch (runtime->status->state) {
1957                 case SNDRV_PCM_STATE_SUSPENDED:
1958                         err = -ESTRPIPE;
1959                         goto _endloop;
1960                 case SNDRV_PCM_STATE_XRUN:
1961                         err = -EPIPE;
1962                         goto _endloop;
1963                 case SNDRV_PCM_STATE_DRAINING:
1964                         if (is_playback)
1965                                 err = -EPIPE;
1966                         else 
1967                                 avail = 0; /* indicate draining */
1968                         goto _endloop;
1969                 case SNDRV_PCM_STATE_OPEN:
1970                 case SNDRV_PCM_STATE_SETUP:
1971                 case SNDRV_PCM_STATE_DISCONNECTED:
1972                         err = -EBADFD;
1973                         goto _endloop;
1974                 case SNDRV_PCM_STATE_PAUSED:
1975                         continue;
1976                 }
1977                 if (!tout) {
1978                         pcm_dbg(substream->pcm,
1979                                 "%s write error (DMA or IRQ trouble?)\n",
1980                                 is_playback ? "playback" : "capture");
1981                         err = -EIO;
1982                         break;
1983                 }
1984         }
1985  _endloop:
1986         set_current_state(TASK_RUNNING);
1987         remove_wait_queue(&runtime->tsleep, &wait);
1988         *availp = avail;
1989         return err;
1990 }
1991         
1992 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1993                                       unsigned int hwoff,
1994                                       unsigned long data, unsigned int off,
1995                                       snd_pcm_uframes_t frames)
1996 {
1997         struct snd_pcm_runtime *runtime = substream->runtime;
1998         int err;
1999         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2000         if (substream->ops->copy) {
2001                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2002                         return err;
2003         } else {
2004                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2005                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2006                         return -EFAULT;
2007         }
2008         return 0;
2009 }
2010  
2011 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2012                           unsigned long data, unsigned int off,
2013                           snd_pcm_uframes_t size);
2014
2015 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2016                                             unsigned long data,
2017                                             snd_pcm_uframes_t size,
2018                                             int nonblock,
2019                                             transfer_f transfer)
2020 {
2021         struct snd_pcm_runtime *runtime = substream->runtime;
2022         snd_pcm_uframes_t xfer = 0;
2023         snd_pcm_uframes_t offset = 0;
2024         snd_pcm_uframes_t avail;
2025         int err = 0;
2026
2027         if (size == 0)
2028                 return 0;
2029
2030         snd_pcm_stream_lock_irq(substream);
2031         switch (runtime->status->state) {
2032         case SNDRV_PCM_STATE_PREPARED:
2033         case SNDRV_PCM_STATE_RUNNING:
2034         case SNDRV_PCM_STATE_PAUSED:
2035                 break;
2036         case SNDRV_PCM_STATE_XRUN:
2037                 err = -EPIPE;
2038                 goto _end_unlock;
2039         case SNDRV_PCM_STATE_SUSPENDED:
2040                 err = -ESTRPIPE;
2041                 goto _end_unlock;
2042         default:
2043                 err = -EBADFD;
2044                 goto _end_unlock;
2045         }
2046
2047         runtime->twake = runtime->control->avail_min ? : 1;
2048         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2049                 snd_pcm_update_hw_ptr(substream);
2050         avail = snd_pcm_playback_avail(runtime);
2051         while (size > 0) {
2052                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2053                 snd_pcm_uframes_t cont;
2054                 if (!avail) {
2055                         if (nonblock) {
2056                                 err = -EAGAIN;
2057                                 goto _end_unlock;
2058                         }
2059                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2060                                         runtime->control->avail_min ? : 1);
2061                         err = wait_for_avail(substream, &avail);
2062                         if (err < 0)
2063                                 goto _end_unlock;
2064                 }
2065                 frames = size > avail ? avail : size;
2066                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2067                 if (frames > cont)
2068                         frames = cont;
2069                 if (snd_BUG_ON(!frames)) {
2070                         runtime->twake = 0;
2071                         snd_pcm_stream_unlock_irq(substream);
2072                         return -EINVAL;
2073                 }
2074                 appl_ptr = runtime->control->appl_ptr;
2075                 appl_ofs = appl_ptr % runtime->buffer_size;
2076                 snd_pcm_stream_unlock_irq(substream);
2077                 err = transfer(substream, appl_ofs, data, offset, frames);
2078                 snd_pcm_stream_lock_irq(substream);
2079                 if (err < 0)
2080                         goto _end_unlock;
2081                 switch (runtime->status->state) {
2082                 case SNDRV_PCM_STATE_XRUN:
2083                         err = -EPIPE;
2084                         goto _end_unlock;
2085                 case SNDRV_PCM_STATE_SUSPENDED:
2086                         err = -ESTRPIPE;
2087                         goto _end_unlock;
2088                 default:
2089                         break;
2090                 }
2091                 appl_ptr += frames;
2092                 if (appl_ptr >= runtime->boundary)
2093                         appl_ptr -= runtime->boundary;
2094                 runtime->control->appl_ptr = appl_ptr;
2095                 if (substream->ops->ack)
2096                         substream->ops->ack(substream);
2097
2098                 offset += frames;
2099                 size -= frames;
2100                 xfer += frames;
2101                 avail -= frames;
2102                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2103                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2104                         err = snd_pcm_start(substream);
2105                         if (err < 0)
2106                                 goto _end_unlock;
2107                 }
2108         }
2109  _end_unlock:
2110         runtime->twake = 0;
2111         if (xfer > 0 && err >= 0)
2112                 snd_pcm_update_state(substream, runtime);
2113         snd_pcm_stream_unlock_irq(substream);
2114         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2115 }
2116
2117 /* sanity-check for read/write methods */
2118 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2119 {
2120         struct snd_pcm_runtime *runtime;
2121         if (PCM_RUNTIME_CHECK(substream))
2122                 return -ENXIO;
2123         runtime = substream->runtime;
2124         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2125                 return -EINVAL;
2126         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2127                 return -EBADFD;
2128         return 0;
2129 }
2130
2131 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2132 {
2133         struct snd_pcm_runtime *runtime;
2134         int nonblock;
2135         int err;
2136
2137         err = pcm_sanity_check(substream);
2138         if (err < 0)
2139                 return err;
2140         runtime = substream->runtime;
2141         nonblock = !!(substream->f_flags & O_NONBLOCK);
2142
2143         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2144             runtime->channels > 1)
2145                 return -EINVAL;
2146         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2147                                   snd_pcm_lib_write_transfer);
2148 }
2149
2150 EXPORT_SYMBOL(snd_pcm_lib_write);
2151
2152 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2153                                        unsigned int hwoff,
2154                                        unsigned long data, unsigned int off,
2155                                        snd_pcm_uframes_t frames)
2156 {
2157         struct snd_pcm_runtime *runtime = substream->runtime;
2158         int err;
2159         void __user **bufs = (void __user **)data;
2160         int channels = runtime->channels;
2161         int c;
2162         if (substream->ops->copy) {
2163                 if (snd_BUG_ON(!substream->ops->silence))
2164                         return -EINVAL;
2165                 for (c = 0; c < channels; ++c, ++bufs) {
2166                         if (*bufs == NULL) {
2167                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2168                                         return err;
2169                         } else {
2170                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2171                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2172                                         return err;
2173                         }
2174                 }
2175         } else {
2176                 /* default transfer behaviour */
2177                 size_t dma_csize = runtime->dma_bytes / channels;
2178                 for (c = 0; c < channels; ++c, ++bufs) {
2179                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2180                         if (*bufs == NULL) {
2181                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2182                         } else {
2183                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2184                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2185                                         return -EFAULT;
2186                         }
2187                 }
2188         }
2189         return 0;
2190 }
2191  
2192 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2193                                      void __user **bufs,
2194                                      snd_pcm_uframes_t frames)
2195 {
2196         struct snd_pcm_runtime *runtime;
2197         int nonblock;
2198         int err;
2199
2200         err = pcm_sanity_check(substream);
2201         if (err < 0)
2202                 return err;
2203         runtime = substream->runtime;
2204         nonblock = !!(substream->f_flags & O_NONBLOCK);
2205
2206         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2207                 return -EINVAL;
2208         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2209                                   nonblock, snd_pcm_lib_writev_transfer);
2210 }
2211
2212 EXPORT_SYMBOL(snd_pcm_lib_writev);
2213
2214 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2215                                      unsigned int hwoff,
2216                                      unsigned long data, unsigned int off,
2217                                      snd_pcm_uframes_t frames)
2218 {
2219         struct snd_pcm_runtime *runtime = substream->runtime;
2220         int err;
2221         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2222         if (substream->ops->copy) {
2223                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2224                         return err;
2225         } else {
2226                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2227                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2228                         return -EFAULT;
2229         }
2230         return 0;
2231 }
2232
2233 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2234                                            unsigned long data,
2235                                            snd_pcm_uframes_t size,
2236                                            int nonblock,
2237                                            transfer_f transfer)
2238 {
2239         struct snd_pcm_runtime *runtime = substream->runtime;
2240         snd_pcm_uframes_t xfer = 0;
2241         snd_pcm_uframes_t offset = 0;
2242         snd_pcm_uframes_t avail;
2243         int err = 0;
2244
2245         if (size == 0)
2246                 return 0;
2247
2248         snd_pcm_stream_lock_irq(substream);
2249         switch (runtime->status->state) {
2250         case SNDRV_PCM_STATE_PREPARED:
2251                 if (size >= runtime->start_threshold) {
2252                         err = snd_pcm_start(substream);
2253                         if (err < 0)
2254                                 goto _end_unlock;
2255                 }
2256                 break;
2257         case SNDRV_PCM_STATE_DRAINING:
2258         case SNDRV_PCM_STATE_RUNNING:
2259         case SNDRV_PCM_STATE_PAUSED:
2260                 break;
2261         case SNDRV_PCM_STATE_XRUN:
2262                 err = -EPIPE;
2263                 goto _end_unlock;
2264         case SNDRV_PCM_STATE_SUSPENDED:
2265                 err = -ESTRPIPE;
2266                 goto _end_unlock;
2267         default:
2268                 err = -EBADFD;
2269                 goto _end_unlock;
2270         }
2271
2272         runtime->twake = runtime->control->avail_min ? : 1;
2273         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2274                 snd_pcm_update_hw_ptr(substream);
2275         avail = snd_pcm_capture_avail(runtime);
2276         while (size > 0) {
2277                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2278                 snd_pcm_uframes_t cont;
2279                 if (!avail) {
2280                         if (runtime->status->state ==
2281                             SNDRV_PCM_STATE_DRAINING) {
2282                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2283                                 goto _end_unlock;
2284                         }
2285                         if (nonblock) {
2286                                 err = -EAGAIN;
2287                                 goto _end_unlock;
2288                         }
2289                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2290                                         runtime->control->avail_min ? : 1);
2291                         err = wait_for_avail(substream, &avail);
2292                         if (err < 0)
2293                                 goto _end_unlock;
2294                         if (!avail)
2295                                 continue; /* draining */
2296                 }
2297                 frames = size > avail ? avail : size;
2298                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2299                 if (frames > cont)
2300                         frames = cont;
2301                 if (snd_BUG_ON(!frames)) {
2302                         runtime->twake = 0;
2303                         snd_pcm_stream_unlock_irq(substream);
2304                         return -EINVAL;
2305                 }
2306                 appl_ptr = runtime->control->appl_ptr;
2307                 appl_ofs = appl_ptr % runtime->buffer_size;
2308                 snd_pcm_stream_unlock_irq(substream);
2309                 err = transfer(substream, appl_ofs, data, offset, frames);
2310                 snd_pcm_stream_lock_irq(substream);
2311                 if (err < 0)
2312                         goto _end_unlock;
2313                 switch (runtime->status->state) {
2314                 case SNDRV_PCM_STATE_XRUN:
2315                         err = -EPIPE;
2316                         goto _end_unlock;
2317                 case SNDRV_PCM_STATE_SUSPENDED:
2318                         err = -ESTRPIPE;
2319                         goto _end_unlock;
2320                 default:
2321                         break;
2322                 }
2323                 appl_ptr += frames;
2324                 if (appl_ptr >= runtime->boundary)
2325                         appl_ptr -= runtime->boundary;
2326                 runtime->control->appl_ptr = appl_ptr;
2327                 if (substream->ops->ack)
2328                         substream->ops->ack(substream);
2329
2330                 offset += frames;
2331                 size -= frames;
2332                 xfer += frames;
2333                 avail -= frames;
2334         }
2335  _end_unlock:
2336         runtime->twake = 0;
2337         if (xfer > 0 && err >= 0)
2338                 snd_pcm_update_state(substream, runtime);
2339         snd_pcm_stream_unlock_irq(substream);
2340         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2341 }
2342
2343 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2344 {
2345         struct snd_pcm_runtime *runtime;
2346         int nonblock;
2347         int err;
2348         
2349         err = pcm_sanity_check(substream);
2350         if (err < 0)
2351                 return err;
2352         runtime = substream->runtime;
2353         nonblock = !!(substream->f_flags & O_NONBLOCK);
2354         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2355                 return -EINVAL;
2356         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2357 }
2358
2359 EXPORT_SYMBOL(snd_pcm_lib_read);
2360
2361 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2362                                       unsigned int hwoff,
2363                                       unsigned long data, unsigned int off,
2364                                       snd_pcm_uframes_t frames)
2365 {
2366         struct snd_pcm_runtime *runtime = substream->runtime;
2367         int err;
2368         void __user **bufs = (void __user **)data;
2369         int channels = runtime->channels;
2370         int c;
2371         if (substream->ops->copy) {
2372                 for (c = 0; c < channels; ++c, ++bufs) {
2373                         char __user *buf;
2374                         if (*bufs == NULL)
2375                                 continue;
2376                         buf = *bufs + samples_to_bytes(runtime, off);
2377                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2378                                 return err;
2379                 }
2380         } else {
2381                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2382                 for (c = 0; c < channels; ++c, ++bufs) {
2383                         char *hwbuf;
2384                         char __user *buf;
2385                         if (*bufs == NULL)
2386                                 continue;
2387
2388                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2389                         buf = *bufs + samples_to_bytes(runtime, off);
2390                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2391                                 return -EFAULT;
2392                 }
2393         }
2394         return 0;
2395 }
2396  
2397 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2398                                     void __user **bufs,
2399                                     snd_pcm_uframes_t frames)
2400 {
2401         struct snd_pcm_runtime *runtime;
2402         int nonblock;
2403         int err;
2404
2405         err = pcm_sanity_check(substream);
2406         if (err < 0)
2407                 return err;
2408         runtime = substream->runtime;
2409         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2410                 return -EBADFD;
2411
2412         nonblock = !!(substream->f_flags & O_NONBLOCK);
2413         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2414                 return -EINVAL;
2415         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2416 }
2417
2418 EXPORT_SYMBOL(snd_pcm_lib_readv);
2419
2420 /*
2421  * standard channel mapping helpers
2422  */
2423
2424 /* default channel maps for multi-channel playbacks, up to 8 channels */
2425 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2426         { .channels = 1,
2427           .map = { SNDRV_CHMAP_MONO } },
2428         { .channels = 2,
2429           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2430         { .channels = 4,
2431           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2433         { .channels = 6,
2434           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2437         { .channels = 8,
2438           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2439                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2440                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2441                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2442         { }
2443 };
2444 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2445
2446 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2447 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2448         { .channels = 1,
2449           .map = { SNDRV_CHMAP_MONO } },
2450         { .channels = 2,
2451           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2452         { .channels = 4,
2453           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455         { .channels = 6,
2456           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2459         { .channels = 8,
2460           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2461                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2462                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2463                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2464         { }
2465 };
2466 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2467
2468 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2469 {
2470         if (ch > info->max_channels)
2471                 return false;
2472         return !info->channel_mask || (info->channel_mask & (1U << ch));
2473 }
2474
2475 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2476                               struct snd_ctl_elem_info *uinfo)
2477 {
2478         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2479
2480         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2481         uinfo->count = 0;
2482         uinfo->count = info->max_channels;
2483         uinfo->value.integer.min = 0;
2484         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2485         return 0;
2486 }
2487
2488 /* get callback for channel map ctl element
2489  * stores the channel position firstly matching with the current channels
2490  */
2491 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2492                              struct snd_ctl_elem_value *ucontrol)
2493 {
2494         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2496         struct snd_pcm_substream *substream;
2497         const struct snd_pcm_chmap_elem *map;
2498
2499         if (!info->chmap)
2500                 return -EINVAL;
2501         substream = snd_pcm_chmap_substream(info, idx);
2502         if (!substream)
2503                 return -ENODEV;
2504         memset(ucontrol->value.integer.value, 0,
2505                sizeof(ucontrol->value.integer.value));
2506         if (!substream->runtime)
2507                 return 0; /* no channels set */
2508         for (map = info->chmap; map->channels; map++) {
2509                 int i;
2510                 if (map->channels == substream->runtime->channels &&
2511                     valid_chmap_channels(info, map->channels)) {
2512                         for (i = 0; i < map->channels; i++)
2513                                 ucontrol->value.integer.value[i] = map->map[i];
2514                         return 0;
2515                 }
2516         }
2517         return -EINVAL;
2518 }
2519
2520 /* tlv callback for channel map ctl element
2521  * expands the pre-defined channel maps in a form of TLV
2522  */
2523 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2524                              unsigned int size, unsigned int __user *tlv)
2525 {
2526         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2527         const struct snd_pcm_chmap_elem *map;
2528         unsigned int __user *dst;
2529         int c, count = 0;
2530
2531         if (!info->chmap)
2532                 return -EINVAL;
2533         if (size < 8)
2534                 return -ENOMEM;
2535         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2536                 return -EFAULT;
2537         size -= 8;
2538         dst = tlv + 2;
2539         for (map = info->chmap; map->channels; map++) {
2540                 int chs_bytes = map->channels * 4;
2541                 if (!valid_chmap_channels(info, map->channels))
2542                         continue;
2543                 if (size < 8)
2544                         return -ENOMEM;
2545                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2546                     put_user(chs_bytes, dst + 1))
2547                         return -EFAULT;
2548                 dst += 2;
2549                 size -= 8;
2550                 count += 8;
2551                 if (size < chs_bytes)
2552                         return -ENOMEM;
2553                 size -= chs_bytes;
2554                 count += chs_bytes;
2555                 for (c = 0; c < map->channels; c++) {
2556                         if (put_user(map->map[c], dst))
2557                                 return -EFAULT;
2558                         dst++;
2559                 }
2560         }
2561         if (put_user(count, tlv + 1))
2562                 return -EFAULT;
2563         return 0;
2564 }
2565
2566 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2567 {
2568         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2569         info->pcm->streams[info->stream].chmap_kctl = NULL;
2570         kfree(info);
2571 }
2572
2573 /**
2574  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2575  * @pcm: the assigned PCM instance
2576  * @stream: stream direction
2577  * @chmap: channel map elements (for query)
2578  * @max_channels: the max number of channels for the stream
2579  * @private_value: the value passed to each kcontrol's private_value field
2580  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2581  *
2582  * Create channel-mapping control elements assigned to the given PCM stream(s).
2583  * Return: Zero if successful, or a negative error value.
2584  */
2585 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2586                            const struct snd_pcm_chmap_elem *chmap,
2587                            int max_channels,
2588                            unsigned long private_value,
2589                            struct snd_pcm_chmap **info_ret)
2590 {
2591         struct snd_pcm_chmap *info;
2592         struct snd_kcontrol_new knew = {
2593                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2594                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2595                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2596                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2597                 .info = pcm_chmap_ctl_info,
2598                 .get = pcm_chmap_ctl_get,
2599                 .tlv.c = pcm_chmap_ctl_tlv,
2600         };
2601         int err;
2602
2603         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2604                 return -EBUSY;
2605         info = kzalloc(sizeof(*info), GFP_KERNEL);
2606         if (!info)
2607                 return -ENOMEM;
2608         info->pcm = pcm;
2609         info->stream = stream;
2610         info->chmap = chmap;
2611         info->max_channels = max_channels;
2612         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2613                 knew.name = "Playback Channel Map";
2614         else
2615                 knew.name = "Capture Channel Map";
2616         knew.device = pcm->device;
2617         knew.count = pcm->streams[stream].substream_count;
2618         knew.private_value = private_value;
2619         info->kctl = snd_ctl_new1(&knew, info);
2620         if (!info->kctl) {
2621                 kfree(info);
2622                 return -ENOMEM;
2623         }
2624         info->kctl->private_free = pcm_chmap_ctl_private_free;
2625         err = snd_ctl_add(pcm->card, info->kctl);
2626         if (err < 0)
2627                 return err;
2628         pcm->streams[stream].chmap_kctl = info->kctl;
2629         if (info_ret)
2630                 *info_ret = info;
2631         return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);