OSDN Git Service

Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / sound / sparc / dbri.c
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*        ALSA stuff
51  * cs4215_*     CS4215 codec specific stuff
52  * dbri_*       DBRI high-level stuff
53  * other        DBRI low-level stuff
54  */
55
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/atomic.h>
73 #include <linux/module.h>
74
75 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
76 MODULE_DESCRIPTION("Sun DBRI");
77 MODULE_LICENSE("GPL");
78 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91
92 #undef DBRI_DEBUG
93
94 #define D_INT   (1<<0)
95 #define D_GEN   (1<<1)
96 #define D_CMD   (1<<2)
97 #define D_MM    (1<<3)
98 #define D_USR   (1<<4)
99 #define D_DESC  (1<<5)
100
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104
105 #ifdef DBRI_DEBUG
106 static char *cmds[] = {
107         "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108         "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112
113 #else
114 #define dprintk(a, x...) do { } while (0)
115
116 #endif                          /* DBRI_DEBUG */
117
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
119                                     (intr << 27) |      \
120                                     value)
121
122 /***************************************************************************
123         CS4215 specific definitions and structures
124 ****************************************************************************/
125
126 struct cs4215 {
127         __u8 data[4];           /* Data mode: Time slots 5-8 */
128         __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
129         __u8 onboard;
130         __u8 offset;            /* Bit offset from frame sync to time slot 1 */
131         volatile __u32 status;
132         volatile __u32 version;
133         __u8 precision;         /* In bits, either 8 or 16 */
134         __u8 channels;          /* 1 or 2 */
135 };
136
137 /*
138  * Control mode first
139  */
140
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB      (1<<2)  /* Control Latch Bit */
143 #define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
144                                 /* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16     0
150 #define CS4215_DFR_ULAW         1
151 #define CS4215_DFR_ALAW         2
152 #define CS4215_DFR_LINEAR8      3
153 #define CS4215_DFR_STEREO       (1<<2)
154 static struct {
155         unsigned short freq;
156         unsigned char xtal;
157         unsigned char csval;
158 } CS4215_FREQ[] = {
159         {  8000, (1 << 4), (0 << 3) },
160         { 16000, (1 << 4), (1 << 3) },
161         { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
162         { 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165         { 48000, (1 << 4), (6 << 3) },
166         {  9600, (1 << 4), (7 << 3) },
167         {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
168         { 11025, (2 << 4), (1 << 3) },
169         { 18900, (2 << 4), (2 << 3) },
170         { 22050, (2 << 4), (3 << 3) },
171         { 37800, (2 << 4), (4 << 3) },
172         { 44100, (2 << 4), (5 << 3) },
173         { 33075, (2 << 4), (6 << 3) },
174         {  6615, (2 << 4), (7 << 3) },
175         { 0, 0, 0}
176 };
177
178 #define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
179
180 #define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
181
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
184 #define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128 (1<<2)
187 #define CS4215_BSEL_256 (2<<2)
188 #define CS4215_MCK_MAST (0<<4)  /* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
193
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
197
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200
201 /* Time Slot 6, Reserved  */
202
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205
206 /* Time Slot 8, Reserved  */
207
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE       (1<<6)  /* Line Out Enable */
216 #define CS4215_HE       (1<<7)  /* Headphone Enable */
217
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE       (1<<6)  /* Speaker Enable */
221 #define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
222
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
227 #define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
228 #define CS4215_PIO1     (1<<7)
229
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
233
234 /***************************************************************************
235                 DBRI specific definitions and structures
236 ****************************************************************************/
237
238 /* DBRI main registers */
239 #define REG0    0x00            /* Status and Control */
240 #define REG1    0x04            /* Mode and Interrupt */
241 #define REG2    0x08            /* Parallel IO */
242 #define REG3    0x0c            /* Test */
243 #define REG8    0x20            /* Command Queue Pointer */
244 #define REG9    0x24            /* Interrupt Queue Pointer */
245
246 #define DBRI_NO_CMDS    64
247 #define DBRI_INT_BLK    64
248 #define DBRI_NO_DESCS   64
249 #define DBRI_NO_PIPES   32
250 #define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
251
252 #define DBRI_REC        0
253 #define DBRI_PLAY       1
254 #define DBRI_NO_STREAMS 2
255
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259         volatile __u32 word1;
260         __u32 ba;       /* Transmit/Receive Buffer Address */
261         __u32 nda;      /* Next Descriptor Address */
262         volatile __u32 word4;
263 };
264
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269         s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
270         volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
271         struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
272 };
273
274 #define dbri_dma_off(member, elem)      \
275         ((u32)(unsigned long)           \
276          (&(((struct dbri_dma *)0)->member[elem])))
277
278 enum in_or_out { PIPEinput, PIPEoutput };
279
280 struct dbri_pipe {
281         u32 sdp;                /* SDP command word */
282         int nextpipe;           /* Next pipe in linked list */
283         int length;             /* Length of timeslot (bits) */
284         int first_desc;         /* Index of first descriptor */
285         int desc;               /* Index of active descriptor */
286         volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
287 };
288
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291         struct snd_pcm_substream *substream;
292         u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
293         int size;               /* Size of DMA buffer             */
294         size_t offset;          /* offset in user buffer          */
295         int pipe;               /* Data pipe used                 */
296         int left_gain;          /* mixer elements                 */
297         int right_gain;
298 };
299
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302         int regs_size, irq;     /* Needed for unload */
303         struct platform_device *op;     /* OF device info */
304         spinlock_t lock;
305
306         struct dbri_dma *dma;   /* Pointer to our DMA block */
307         dma_addr_t dma_dvma;    /* DBRI visible DMA address */
308
309         void __iomem *regs;     /* dbri HW regs */
310         int dbri_irqp;          /* intr queue pointer */
311
312         struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
313         int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
314         spinlock_t cmdlock;     /* Protects cmd queue accesses */
315         s32 *cmdptr;            /* Pointer to the last queued cmd */
316
317         int chi_bpf;
318
319         struct cs4215 mm;       /* mmcodec special info */
320                                 /* per stream (playback/record) info */
321         struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323
324 #define DBRI_MAX_VOLUME         63      /* Output volume */
325 #define DBRI_MAX_GAIN           15      /* Input gain */
326
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P             (1<<15) /* Program command & queue pointer valid */
329 #define D_G             (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S             (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E             (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X             (1<<7)  /* Sanity Timer Disable */
333 #define D_T             (1<<6)  /* Permit activation of the TE interface */
334 #define D_N             (1<<5)  /* Permit activation of the NT interface */
335 #define D_C             (1<<4)  /* Permit activation of the CHI interface */
336 #define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
337 #define D_D             (1<<2)  /* Disable Master Mode */
338 #define D_H             (1<<1)  /* Halt for Analysis */
339 #define D_R             (1<<0)  /* Soft Reset */
340
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END    (1<<8)  /* Byte Order */
343 #define D_BIG_END       (0<<8)  /* Byte Order */
344 #define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
345 #define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
346 #define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
347 #define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
348 #define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
349
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
352 #define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
353 #define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
354 #define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
355 #define D_ENPIO         (0xf0)  /* Enable all the pins */
356 #define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
359 #define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
360
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT          0x0     /* Stop execution */
363 #define D_PAUSE         0x1     /* Flush long pipes */
364 #define D_JUMP          0x2     /* New command queue */
365 #define D_IIQ           0x3     /* Initialize Interrupt Queue */
366 #define D_REX           0x4     /* Report command execution via interrupt */
367 #define D_SDP           0x5     /* Setup Data Pipe */
368 #define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS           0x7     /* Define Time Slot */
370 #define D_SSP           0x8     /* Set short Data Pipe */
371 #define D_CHI           0x9     /* Set CHI Global Mode */
372 #define D_NT            0xa     /* NT Command */
373 #define D_TE            0xb     /* TE Command */
374 #define D_CDEC          0xc     /* Codec setup */
375 #define D_TEST          0xd     /* No comment */
376 #define D_CDM           0xe     /* CHI Data mode command */
377
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE    (2<<18) /* Report any changes */
385 #define D_SDP_EVERY     (3<<18) /* Report any changes */
386 #define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
388
389 /* Pipe data MODE */
390 #define D_SDP_MEM       (0<<13) /* To/from memory */
391 #define D_SDP_HDLC      (2<<13)
392 #define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER       (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED     (6<<13) /* Short only */
395 #define D_SDP_MODE(v)   ((v)&(7<<13))
396
397 #define D_SDP_TO_SER    (1<<12) /* Direction */
398 #define D_SDP_FROM_SER  (0<<12) /* Direction */
399 #define D_SDP_MSB       (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB       (0<<11) /* Bit order within Byte */
401 #define D_SDP_P         (1<<10) /* Pointer Valid */
402 #define D_SDP_A         (1<<8)  /* Abort */
403 #define D_SDP_C         (1<<7)  /* Clear */
404
405 /* Define Time Slot */
406 #define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS       (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL       (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
412
413 /* Time Slot defines */
414 #define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
416 #define D_TS_DI         (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR    (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
426 #define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD        (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD        (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
432
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT       (1<<17) /* Frame Bit */
435 #define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT       (1<<13) /* Configure interface as NT */
439 #define D_NT_FT         (1<<12) /* Fixed Timing */
440 #define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT        (1<<9)  /* Activate Interface */
443 #define D_NT_MFE        (1<<8)  /* Multiframe Enable */
444 #define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
445 #define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
446 #define D_NT_FACT       (1<<1)  /* Force Activation */
447 #define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
448
449 /* Codec Setup */
450 #define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
451 #define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
453
454 /* Test */
455 #define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
456 #define D_TEST_SIZE(v)  ((v)<<11)       /* */
457 #define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC     0x6     /* Microprocessor test */
459 #define D_TEST_SER      0x7     /* Serial-Controller test */
460 #define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP     0xe     /* ROM Dump */
465
466 /* CHI Data Mode */
467 #define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
472 #define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
473
474 /* The Interrupts */
475 #define D_INTR_BRDY     1       /* Buffer Ready for processing */
476 #define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL      5       /* End of List */
480 #define D_INTR_CMDI     6       /* Command has bean read */
481 #define D_INTR_XCMP     8       /* Transmission of frame complete */
482 #define D_INTR_SBRI     9       /* BRI status change info */
483 #define D_INTR_FXDT     10      /* Fixed data change */
484 #define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT     12      /* Dropped by frame slip */
487 #define D_INTR_RBYT     13      /* Repeated by frame slip */
488 #define D_INTR_LINT     14      /* Lost Interrupt */
489 #define D_INTR_UNDR     15      /* DMA underrun */
490
491 #define D_INTR_TE       32
492 #define D_INTR_NT       34
493 #define D_INTR_CHI      36
494 #define D_INTR_CMD      38
495
496 #define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)        ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
501
502 #define D_P_0           0       /* TE receive anchor */
503 #define D_P_1           1       /* TE transmit anchor */
504 #define D_P_2           2       /* NT transmit anchor */
505 #define D_P_3           3       /* NT receive anchor */
506 #define D_P_4           4       /* CHI send data */
507 #define D_P_5           5       /* CHI receive data */
508 #define D_P_6           6       /* */
509 #define D_P_7           7       /* */
510 #define D_P_8           8       /* */
511 #define D_P_9           9       /* */
512 #define D_P_10          10      /* */
513 #define D_P_11          11      /* */
514 #define D_P_12          12      /* */
515 #define D_P_13          13      /* */
516 #define D_P_14          14      /* */
517 #define D_P_15          15      /* */
518 #define D_P_16          16      /* CHI anchor pipe */
519 #define D_P_17          17      /* CHI send */
520 #define D_P_18          18      /* CHI receive */
521 #define D_P_19          19      /* CHI receive */
522 #define D_P_20          20      /* CHI receive */
523 #define D_P_21          21      /* */
524 #define D_P_22          22      /* */
525 #define D_P_23          23      /* */
526 #define D_P_24          24      /* */
527 #define D_P_25          25      /* */
528 #define D_P_26          26      /* */
529 #define D_P_27          27      /* */
530 #define D_P_28          28      /* */
531 #define D_P_29          29      /* */
532 #define D_P_30          30      /* */
533 #define D_P_31          31      /* */
534
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F       (1 << 31)       /* End of Frame */
537 #define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
538 #define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B       (1 << 15)       /* Final interrupt */
540 #define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
541 #define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v)             /* Flag Count */
543 #define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
545 #define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
547                         /* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT  ((1 << 13) - 4)
549
550 /* Receive descriptor defines */
551 #define DBRI_RD_F       (1 << 31)       /* End of Frame */
552 #define DBRI_RD_C       (1 << 30)       /* Completed buffer */
553 #define DBRI_RD_B       (1 << 15)       /* Final interrupt */
554 #define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v)             /* Buffer size */
556 #define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
557 #define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
558 #define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
559 #define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
562
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)                                \
566                 (substream->stream ==                           \
567                  SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)    \
571                 &dbri->stream_info[DBRI_STREAMNO(substream)]
572
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579         switch (len) {
580         case 32:
581                 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582         case 16:
583                 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
584         case 8:
585                 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
586         case 4:
587                 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
588         case 2:
589                 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
590         case 1:
591         case 0:
592                 break;
593         default:
594                 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
595         }
596
597         return b;
598 }
599
600 /*
601 ****************************************************************************
602 ************** DBRI initialization and command synchronization *************
603 ****************************************************************************
604
605 Commands are sent to the DBRI by building a list of them in memory,
606 then writing the address of the first list item to DBRI register 8.
607 The list is terminated with a WAIT command, which generates a
608 CPU interrupt to signal completion.
609
610 Since the DBRI can run in parallel with the CPU, several means of
611 synchronization present themselves. The method implemented here uses
612 the dbri_cmdwait() to wait for execution of batch of sent commands.
613
614 A circular command buffer is used here. A new command is being added
615 while another can be executed. The scheme works by adding two WAIT commands
616 after each sent batch of commands. When the next batch is prepared it is
617 added after the WAIT commands then the WAITs are replaced with single JUMP
618 command to the new batch. The the DBRI is forced to reread the last WAIT
619 command (replaced by the JUMP by then). If the DBRI is still executing
620 previous commands the request to reread the WAIT command is ignored.
621
622 Every time a routine wants to write commands to the DBRI, it must
623 first call dbri_cmdlock() and get pointer to a free space in
624 dbri->dma->cmd buffer. After this, the commands can be written to
625 the buffer, and dbri_cmdsend() is called with the final pointer value
626 to send them to the DBRI.
627
628 */
629
630 #define MAXLOOPS 20
631 /*
632  * Wait for the current command string to execute
633  */
634 static void dbri_cmdwait(struct snd_dbri *dbri)
635 {
636         int maxloops = MAXLOOPS;
637         unsigned long flags;
638
639         /* Delay if previous commands are still being processed */
640         spin_lock_irqsave(&dbri->lock, flags);
641         while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
642                 spin_unlock_irqrestore(&dbri->lock, flags);
643                 msleep_interruptible(1);
644                 spin_lock_irqsave(&dbri->lock, flags);
645         }
646         spin_unlock_irqrestore(&dbri->lock, flags);
647
648         if (maxloops == 0)
649                 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
650         else
651                 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
652                         MAXLOOPS - maxloops - 1);
653 }
654 /*
655  * Lock the command queue and return pointer to space for len cmd words
656  * It locks the cmdlock spinlock.
657  */
658 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 {
660         u32 dvma_addr = (u32)dbri->dma_dvma;
661
662         /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
663         len += 2;
664         spin_lock(&dbri->cmdlock);
665         if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
666                 return dbri->cmdptr + 2;
667         else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
668                 return dbri->dma->cmd;
669         else
670                 printk(KERN_ERR "DBRI: no space for commands.");
671
672         return NULL;
673 }
674
675 /*
676  * Send prepared cmd string. It works by writing a JUMP cmd into
677  * the last WAIT cmd and force DBRI to reread the cmd.
678  * The JUMP cmd points to the new cmd string.
679  * It also releases the cmdlock spinlock.
680  *
681  * Lock must be held before calling this.
682  */
683 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
684 {
685         u32 dvma_addr = (u32)dbri->dma_dvma;
686         s32 tmp, addr;
687         static int wait_id = 0;
688
689         wait_id++;
690         wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
691         *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
692         *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
693
694         /* Replace the last command with JUMP */
695         addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
696         *(dbri->cmdptr+1) = addr;
697         *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
698
699 #ifdef DBRI_DEBUG
700         if (cmd > dbri->cmdptr) {
701                 s32 *ptr;
702
703                 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
704                         dprintk(D_CMD, "cmd: %lx:%08x\n",
705                                 (unsigned long)ptr, *ptr);
706         } else {
707                 s32 *ptr = dbri->cmdptr;
708
709                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
710                 ptr++;
711                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
712                 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
713                         dprintk(D_CMD, "cmd: %lx:%08x\n",
714                                 (unsigned long)ptr, *ptr);
715         }
716 #endif
717
718         /* Reread the last command */
719         tmp = sbus_readl(dbri->regs + REG0);
720         tmp |= D_P;
721         sbus_writel(tmp, dbri->regs + REG0);
722
723         dbri->cmdptr = cmd;
724         spin_unlock(&dbri->cmdlock);
725 }
726
727 /* Lock must be held when calling this */
728 static void dbri_reset(struct snd_dbri *dbri)
729 {
730         int i;
731         u32 tmp;
732
733         dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
734                 sbus_readl(dbri->regs + REG0),
735                 sbus_readl(dbri->regs + REG2),
736                 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
737
738         sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
739         for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
740                 udelay(10);
741
742         /* A brute approach - DBRI falls back to working burst size by itself
743          * On SS20 D_S does not work, so do not try so high. */
744         tmp = sbus_readl(dbri->regs + REG0);
745         tmp |= D_G | D_E;
746         tmp &= ~D_S;
747         sbus_writel(tmp, dbri->regs + REG0);
748 }
749
750 /* Lock must not be held before calling this */
751 static void dbri_initialize(struct snd_dbri *dbri)
752 {
753         u32 dvma_addr = (u32)dbri->dma_dvma;
754         s32 *cmd;
755         u32 dma_addr;
756         unsigned long flags;
757         int n;
758
759         spin_lock_irqsave(&dbri->lock, flags);
760
761         dbri_reset(dbri);
762
763         /* Initialize pipes */
764         for (n = 0; n < DBRI_NO_PIPES; n++)
765                 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
766
767         spin_lock_init(&dbri->cmdlock);
768         /*
769          * Initialize the interrupt ring buffer.
770          */
771         dma_addr = dvma_addr + dbri_dma_off(intr, 0);
772         dbri->dma->intr[0] = dma_addr;
773         dbri->dbri_irqp = 1;
774         /*
775          * Set up the interrupt queue
776          */
777         spin_lock(&dbri->cmdlock);
778         cmd = dbri->cmdptr = dbri->dma->cmd;
779         *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
780         *(cmd++) = dma_addr;
781         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
782         dbri->cmdptr = cmd;
783         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
784         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
785         dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
786         sbus_writel(dma_addr, dbri->regs + REG8);
787         spin_unlock(&dbri->cmdlock);
788
789         spin_unlock_irqrestore(&dbri->lock, flags);
790         dbri_cmdwait(dbri);
791 }
792
793 /*
794 ****************************************************************************
795 ************************** DBRI data pipe management ***********************
796 ****************************************************************************
797
798 While DBRI control functions use the command and interrupt buffers, the
799 main data path takes the form of data pipes, which can be short (command
800 and interrupt driven), or long (attached to DMA buffers).  These functions
801 provide a rudimentary means of setting up and managing the DBRI's pipes,
802 but the calling functions have to make sure they respect the pipes' linked
803 list ordering, among other things.  The transmit and receive functions
804 here interface closely with the transmit and receive interrupt code.
805
806 */
807 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
808 {
809         return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
810 }
811
812 /* reset_pipe(dbri, pipe)
813  *
814  * Called on an in-use pipe to clear anything being transmitted or received
815  * Lock must be held before calling this.
816  */
817 static void reset_pipe(struct snd_dbri *dbri, int pipe)
818 {
819         int sdp;
820         int desc;
821         s32 *cmd;
822
823         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
824                 printk(KERN_ERR "DBRI: reset_pipe called with "
825                         "illegal pipe number\n");
826                 return;
827         }
828
829         sdp = dbri->pipes[pipe].sdp;
830         if (sdp == 0) {
831                 printk(KERN_ERR "DBRI: reset_pipe called "
832                         "on uninitialized pipe\n");
833                 return;
834         }
835
836         cmd = dbri_cmdlock(dbri, 3);
837         *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
838         *(cmd++) = 0;
839         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
840         dbri_cmdsend(dbri, cmd, 3);
841
842         desc = dbri->pipes[pipe].first_desc;
843         if (desc >= 0)
844                 do {
845                         dbri->dma->desc[desc].ba = 0;
846                         dbri->dma->desc[desc].nda = 0;
847                         desc = dbri->next_desc[desc];
848                 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
849
850         dbri->pipes[pipe].desc = -1;
851         dbri->pipes[pipe].first_desc = -1;
852 }
853
854 /*
855  * Lock must be held before calling this.
856  */
857 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
858 {
859         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
860                 printk(KERN_ERR "DBRI: setup_pipe called "
861                         "with illegal pipe number\n");
862                 return;
863         }
864
865         if ((sdp & 0xf800) != sdp) {
866                 printk(KERN_ERR "DBRI: setup_pipe called "
867                         "with strange SDP value\n");
868                 /* sdp &= 0xf800; */
869         }
870
871         /* If this is a fixed receive pipe, arrange for an interrupt
872          * every time its data changes
873          */
874         if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
875                 sdp |= D_SDP_CHANGE;
876
877         sdp |= D_PIPE(pipe);
878         dbri->pipes[pipe].sdp = sdp;
879         dbri->pipes[pipe].desc = -1;
880         dbri->pipes[pipe].first_desc = -1;
881
882         reset_pipe(dbri, pipe);
883 }
884
885 /*
886  * Lock must be held before calling this.
887  */
888 static void link_time_slot(struct snd_dbri *dbri, int pipe,
889                            int prevpipe, int nextpipe,
890                            int length, int cycle)
891 {
892         s32 *cmd;
893         int val;
894
895         if (pipe < 0 || pipe > DBRI_MAX_PIPE
896                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
897                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
898                 printk(KERN_ERR
899                     "DBRI: link_time_slot called with illegal pipe number\n");
900                 return;
901         }
902
903         if (dbri->pipes[pipe].sdp == 0
904                         || dbri->pipes[prevpipe].sdp == 0
905                         || dbri->pipes[nextpipe].sdp == 0) {
906                 printk(KERN_ERR "DBRI: link_time_slot called "
907                         "on uninitialized pipe\n");
908                 return;
909         }
910
911         dbri->pipes[prevpipe].nextpipe = pipe;
912         dbri->pipes[pipe].nextpipe = nextpipe;
913         dbri->pipes[pipe].length = length;
914
915         cmd = dbri_cmdlock(dbri, 4);
916
917         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
918                 /* Deal with CHI special case:
919                  * "If transmission on edges 0 or 1 is desired, then cycle n
920                  *  (where n = # of bit times per frame...) must be used."
921                  *                  - DBRI data sheet, page 11
922                  */
923                 if (prevpipe == 16 && cycle == 0)
924                         cycle = dbri->chi_bpf;
925
926                 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
927                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
928                 *(cmd++) = 0;
929                 *(cmd++) =
930                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931         } else {
932                 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
933                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
934                 *(cmd++) =
935                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
936                 *(cmd++) = 0;
937         }
938         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
939
940         dbri_cmdsend(dbri, cmd, 4);
941 }
942
943 #if 0
944 /*
945  * Lock must be held before calling this.
946  */
947 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
948                              enum in_or_out direction, int prevpipe,
949                              int nextpipe)
950 {
951         s32 *cmd;
952         int val;
953
954         if (pipe < 0 || pipe > DBRI_MAX_PIPE
955                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
956                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
957                 printk(KERN_ERR
958                     "DBRI: unlink_time_slot called with illegal pipe number\n");
959                 return;
960         }
961
962         cmd = dbri_cmdlock(dbri, 4);
963
964         if (direction == PIPEinput) {
965                 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
966                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
967                 *(cmd++) = D_TS_NEXT(nextpipe);
968                 *(cmd++) = 0;
969         } else {
970                 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
971                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
972                 *(cmd++) = 0;
973                 *(cmd++) = D_TS_NEXT(nextpipe);
974         }
975         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
976
977         dbri_cmdsend(dbri, cmd, 4);
978 }
979 #endif
980
981 /* xmit_fixed() / recv_fixed()
982  *
983  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
984  * expected to change much, and which we don't need to buffer.
985  * The DBRI only interrupts us when the data changes (receive pipes),
986  * or only changes the data when this function is called (transmit pipes).
987  * Only short pipes (numbers 16-31) can be used in fixed data mode.
988  *
989  * These function operate on a 32-bit field, no matter how large
990  * the actual time slot is.  The interrupt handler takes care of bit
991  * ordering and alignment.  An 8-bit time slot will always end up
992  * in the low-order 8 bits, filled either MSB-first or LSB-first,
993  * depending on the settings passed to setup_pipe().
994  *
995  * Lock must not be held before calling it.
996  */
997 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
998 {
999         s32 *cmd;
1000         unsigned long flags;
1001
1002         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1003                 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1004                 return;
1005         }
1006
1007         if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1008                 printk(KERN_ERR "DBRI: xmit_fixed: "
1009                         "Uninitialized pipe %d\n", pipe);
1010                 return;
1011         }
1012
1013         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014                 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015                 return;
1016         }
1017
1018         if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019                 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1020                         pipe);
1021                 return;
1022         }
1023
1024         /* DBRI short pipes always transmit LSB first */
1025
1026         if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1027                 data = reverse_bytes(data, dbri->pipes[pipe].length);
1028
1029         cmd = dbri_cmdlock(dbri, 3);
1030
1031         *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1032         *(cmd++) = data;
1033         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1034
1035         spin_lock_irqsave(&dbri->lock, flags);
1036         dbri_cmdsend(dbri, cmd, 3);
1037         spin_unlock_irqrestore(&dbri->lock, flags);
1038         dbri_cmdwait(dbri);
1039
1040 }
1041
1042 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1043 {
1044         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1045                 printk(KERN_ERR "DBRI: recv_fixed called with "
1046                         "illegal pipe number\n");
1047                 return;
1048         }
1049
1050         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1051                 printk(KERN_ERR "DBRI: recv_fixed called on "
1052                         "non-fixed pipe %d\n", pipe);
1053                 return;
1054         }
1055
1056         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1057                 printk(KERN_ERR "DBRI: recv_fixed called on "
1058                         "transmit pipe %d\n", pipe);
1059                 return;
1060         }
1061
1062         dbri->pipes[pipe].recv_fixed_ptr = ptr;
1063 }
1064
1065 /* setup_descs()
1066  *
1067  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1068  * with a DMA buffer.
1069  *
1070  * Only pipe numbers 0-15 can be used in this mode.
1071  *
1072  * This function takes a stream number pointing to a data buffer,
1073  * and work by building chains of descriptors which identify the
1074  * data buffers.  Buffers too large for a single descriptor will
1075  * be spread across multiple descriptors.
1076  *
1077  * All descriptors create a ring buffer.
1078  *
1079  * Lock must be held before calling this.
1080  */
1081 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1082 {
1083         struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1084         u32 dvma_addr = (u32)dbri->dma_dvma;
1085         __u32 dvma_buffer;
1086         int desc;
1087         int len;
1088         int first_desc = -1;
1089         int last_desc = -1;
1090
1091         if (info->pipe < 0 || info->pipe > 15) {
1092                 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1093                 return -2;
1094         }
1095
1096         if (dbri->pipes[info->pipe].sdp == 0) {
1097                 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1098                        info->pipe);
1099                 return -2;
1100         }
1101
1102         dvma_buffer = info->dvma_buffer;
1103         len = info->size;
1104
1105         if (streamno == DBRI_PLAY) {
1106                 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1107                         printk(KERN_ERR "DBRI: setup_descs: "
1108                                 "Called on receive pipe %d\n", info->pipe);
1109                         return -2;
1110                 }
1111         } else {
1112                 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1113                         printk(KERN_ERR
1114                             "DBRI: setup_descs: Called on transmit pipe %d\n",
1115                              info->pipe);
1116                         return -2;
1117                 }
1118                 /* Should be able to queue multiple buffers
1119                  * to receive on a pipe
1120                  */
1121                 if (pipe_active(dbri, info->pipe)) {
1122                         printk(KERN_ERR "DBRI: recv_on_pipe: "
1123                                 "Called on active pipe %d\n", info->pipe);
1124                         return -2;
1125                 }
1126
1127                 /* Make sure buffer size is multiple of four */
1128                 len &= ~3;
1129         }
1130
1131         /* Free descriptors if pipe has any */
1132         desc = dbri->pipes[info->pipe].first_desc;
1133         if (desc >= 0)
1134                 do {
1135                         dbri->dma->desc[desc].ba = 0;
1136                         dbri->dma->desc[desc].nda = 0;
1137                         desc = dbri->next_desc[desc];
1138                 } while (desc != -1 &&
1139                          desc != dbri->pipes[info->pipe].first_desc);
1140
1141         dbri->pipes[info->pipe].desc = -1;
1142         dbri->pipes[info->pipe].first_desc = -1;
1143
1144         desc = 0;
1145         while (len > 0) {
1146                 int mylen;
1147
1148                 for (; desc < DBRI_NO_DESCS; desc++) {
1149                         if (!dbri->dma->desc[desc].ba)
1150                                 break;
1151                 }
1152
1153                 if (desc == DBRI_NO_DESCS) {
1154                         printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1155                         return -1;
1156                 }
1157
1158                 if (len > DBRI_TD_MAXCNT)
1159                         mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1160                 else
1161                         mylen = len;
1162
1163                 if (mylen > period)
1164                         mylen = period;
1165
1166                 dbri->next_desc[desc] = -1;
1167                 dbri->dma->desc[desc].ba = dvma_buffer;
1168                 dbri->dma->desc[desc].nda = 0;
1169
1170                 if (streamno == DBRI_PLAY) {
1171                         dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1172                         dbri->dma->desc[desc].word4 = 0;
1173                         dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1174                 } else {
1175                         dbri->dma->desc[desc].word1 = 0;
1176                         dbri->dma->desc[desc].word4 =
1177                             DBRI_RD_B | DBRI_RD_BCNT(mylen);
1178                 }
1179
1180                 if (first_desc == -1)
1181                         first_desc = desc;
1182                 else {
1183                         dbri->next_desc[last_desc] = desc;
1184                         dbri->dma->desc[last_desc].nda =
1185                             dvma_addr + dbri_dma_off(desc, desc);
1186                 }
1187
1188                 last_desc = desc;
1189                 dvma_buffer += mylen;
1190                 len -= mylen;
1191         }
1192
1193         if (first_desc == -1 || last_desc == -1) {
1194                 printk(KERN_ERR "DBRI: setup_descs: "
1195                         " Not enough descriptors available\n");
1196                 return -1;
1197         }
1198
1199         dbri->dma->desc[last_desc].nda =
1200             dvma_addr + dbri_dma_off(desc, first_desc);
1201         dbri->next_desc[last_desc] = first_desc;
1202         dbri->pipes[info->pipe].first_desc = first_desc;
1203         dbri->pipes[info->pipe].desc = first_desc;
1204
1205 #ifdef DBRI_DEBUG
1206         for (desc = first_desc; desc != -1;) {
1207                 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1208                         desc,
1209                         dbri->dma->desc[desc].word1,
1210                         dbri->dma->desc[desc].ba,
1211                         dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1212                         desc = dbri->next_desc[desc];
1213                         if (desc == first_desc)
1214                                 break;
1215         }
1216 #endif
1217         return 0;
1218 }
1219
1220 /*
1221 ****************************************************************************
1222 ************************** DBRI - CHI interface ****************************
1223 ****************************************************************************
1224
1225 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1226 multiplexed serial interface which the DBRI can operate in either master
1227 (give clock/frame sync) or slave (take clock/frame sync) mode.
1228
1229 */
1230
1231 enum master_or_slave { CHImaster, CHIslave };
1232
1233 /*
1234  * Lock must not be held before calling it.
1235  */
1236 static void reset_chi(struct snd_dbri *dbri,
1237                       enum master_or_slave master_or_slave,
1238                       int bits_per_frame)
1239 {
1240         s32 *cmd;
1241         int val;
1242
1243         /* Set CHI Anchor: Pipe 16 */
1244
1245         cmd = dbri_cmdlock(dbri, 4);
1246         val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1247                 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1248         *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1249         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1250         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1252         dbri_cmdsend(dbri, cmd, 4);
1253
1254         dbri->pipes[16].sdp = 1;
1255         dbri->pipes[16].nextpipe = 16;
1256
1257         cmd = dbri_cmdlock(dbri, 4);
1258
1259         if (master_or_slave == CHIslave) {
1260                 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1261                  *
1262                  * CHICM  = 0 (slave mode, 8 kHz frame rate)
1263                  * IR     = give immediate CHI status interrupt
1264                  * EN     = give CHI status interrupt upon change
1265                  */
1266                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1267         } else {
1268                 /* Setup DBRI for CHI Master - generate clock, FS
1269                  *
1270                  * BPF                          =  bits per 8 kHz frame
1271                  * 12.288 MHz / CHICM_divisor   = clock rate
1272                  * FD = 1 - drive CHIFS on rising edge of CHICK
1273                  */
1274                 int clockrate = bits_per_frame * 8;
1275                 int divisor = 12288 / clockrate;
1276
1277                 if (divisor > 255 || divisor * clockrate != 12288)
1278                         printk(KERN_ERR "DBRI: illegal bits_per_frame "
1279                                 "in setup_chi\n");
1280
1281                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1282                                     | D_CHI_BPF(bits_per_frame));
1283         }
1284
1285         dbri->chi_bpf = bits_per_frame;
1286
1287         /* CHI Data Mode
1288          *
1289          * RCE   =  0 - receive on falling edge of CHICK
1290          * XCE   =  1 - transmit on rising edge of CHICK
1291          * XEN   =  1 - enable transmitter
1292          * REN   =  1 - enable receiver
1293          */
1294
1295         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1296         *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1297         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1298
1299         dbri_cmdsend(dbri, cmd, 4);
1300 }
1301
1302 /*
1303 ****************************************************************************
1304 *********************** CS4215 audio codec management **********************
1305 ****************************************************************************
1306
1307 In the standard SPARC audio configuration, the CS4215 codec is attached
1308 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1309
1310  * Lock must not be held before calling it.
1311
1312 */
1313 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1314 {
1315         unsigned long flags;
1316
1317         spin_lock_irqsave(&dbri->lock, flags);
1318         /*
1319          * Data mode:
1320          * Pipe  4: Send timeslots 1-4 (audio data)
1321          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1322          * Pipe  6: Receive timeslots 1-4 (audio data)
1323          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1324          *          interrupt, and the rest of the data (slot 5 and 8) is
1325          *          not relevant for us (only for doublechecking).
1326          *
1327          * Control mode:
1328          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1329          * Pipe 18: Receive timeslot 1 (clb).
1330          * Pipe 19: Receive timeslot 7 (version).
1331          */
1332
1333         setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1334         setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1335         setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1336         setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1337
1338         setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339         setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1340         setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341         spin_unlock_irqrestore(&dbri->lock, flags);
1342
1343         dbri_cmdwait(dbri);
1344 }
1345
1346 static int cs4215_init_data(struct cs4215 *mm)
1347 {
1348         /*
1349          * No action, memory resetting only.
1350          *
1351          * Data Time Slot 5-8
1352          * Speaker,Line and Headphone enable. Gain set to the half.
1353          * Input is mike.
1354          */
1355         mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1356         mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1357         mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1358         mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1359
1360         /*
1361          * Control Time Slot 1-4
1362          * 0: Default I/O voltage scale
1363          * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1364          * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1365          * 3: Tests disabled
1366          */
1367         mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1368         mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1369         mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1370         mm->ctrl[3] = 0;
1371
1372         mm->status = 0;
1373         mm->version = 0xff;
1374         mm->precision = 8;      /* For ULAW */
1375         mm->channels = 1;
1376
1377         return 0;
1378 }
1379
1380 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1381 {
1382         if (muted) {
1383                 dbri->mm.data[0] |= 63;
1384                 dbri->mm.data[1] |= 63;
1385                 dbri->mm.data[2] &= ~15;
1386                 dbri->mm.data[3] &= ~15;
1387         } else {
1388                 /* Start by setting the playback attenuation. */
1389                 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1390                 int left_gain = info->left_gain & 0x3f;
1391                 int right_gain = info->right_gain & 0x3f;
1392
1393                 dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1394                 dbri->mm.data[1] &= ~0x3f;
1395                 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1396                 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1397
1398                 /* Now set the recording gain. */
1399                 info = &dbri->stream_info[DBRI_REC];
1400                 left_gain = info->left_gain & 0xf;
1401                 right_gain = info->right_gain & 0xf;
1402                 dbri->mm.data[2] |= CS4215_LG(left_gain);
1403                 dbri->mm.data[3] |= CS4215_RG(right_gain);
1404         }
1405
1406         xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1407 }
1408
1409 /*
1410  * Set the CS4215 to data mode.
1411  */
1412 static void cs4215_open(struct snd_dbri *dbri)
1413 {
1414         int data_width;
1415         u32 tmp;
1416         unsigned long flags;
1417
1418         dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1419                 dbri->mm.channels, dbri->mm.precision);
1420
1421         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1422          * to make sure this takes.  This avoids clicking noises.
1423          */
1424
1425         cs4215_setdata(dbri, 1);
1426         udelay(125);
1427
1428         /*
1429          * Data mode:
1430          * Pipe  4: Send timeslots 1-4 (audio data)
1431          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1432          * Pipe  6: Receive timeslots 1-4 (audio data)
1433          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1434          *          interrupt, and the rest of the data (slot 5 and 8) is
1435          *          not relevant for us (only for doublechecking).
1436          *
1437          * Just like in control mode, the time slots are all offset by eight
1438          * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1439          * even if it's the CHI master.  Don't ask me...
1440          */
1441         spin_lock_irqsave(&dbri->lock, flags);
1442         tmp = sbus_readl(dbri->regs + REG0);
1443         tmp &= ~(D_C);          /* Disable CHI */
1444         sbus_writel(tmp, dbri->regs + REG0);
1445
1446         /* Switch CS4215 to data mode - set PIO3 to 1 */
1447         sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1448                     (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1449
1450         reset_chi(dbri, CHIslave, 128);
1451
1452         /* Note: this next doesn't work for 8-bit stereo, because the two
1453          * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1454          * (See CS4215 datasheet Fig 15)
1455          *
1456          * DBRI non-contiguous mode would be required to make this work.
1457          */
1458         data_width = dbri->mm.channels * dbri->mm.precision;
1459
1460         link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1461         link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1462         link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1463         link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1464
1465         /* FIXME: enable CHI after _setdata? */
1466         tmp = sbus_readl(dbri->regs + REG0);
1467         tmp |= D_C;             /* Enable CHI */
1468         sbus_writel(tmp, dbri->regs + REG0);
1469         spin_unlock_irqrestore(&dbri->lock, flags);
1470
1471         cs4215_setdata(dbri, 0);
1472 }
1473
1474 /*
1475  * Send the control information (i.e. audio format)
1476  */
1477 static int cs4215_setctrl(struct snd_dbri *dbri)
1478 {
1479         int i, val;
1480         u32 tmp;
1481         unsigned long flags;
1482
1483         /* FIXME - let the CPU do something useful during these delays */
1484
1485         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1486          * to make sure this takes.  This avoids clicking noises.
1487          */
1488         cs4215_setdata(dbri, 1);
1489         udelay(125);
1490
1491         /*
1492          * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1493          * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1494          */
1495         val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1496         sbus_writel(val, dbri->regs + REG2);
1497         dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1498         udelay(34);
1499
1500         /* In Control mode, the CS4215 is a slave device, so the DBRI must
1501          * operate as CHI master, supplying clocking and frame synchronization.
1502          *
1503          * In Data mode, however, the CS4215 must be CHI master to insure
1504          * that its data stream is synchronous with its codec.
1505          *
1506          * The upshot of all this?  We start by putting the DBRI into master
1507          * mode, program the CS4215 in Control mode, then switch the CS4215
1508          * into Data mode and put the DBRI into slave mode.  Various timing
1509          * requirements must be observed along the way.
1510          *
1511          * Oh, and one more thing, on a SPARCStation 20 (and maybe
1512          * others?), the addressing of the CS4215's time slots is
1513          * offset by eight bits, so we add eight to all the "cycle"
1514          * values in the Define Time Slot (DTS) commands.  This is
1515          * done in hardware by a TI 248 that delays the DBRI->4215
1516          * frame sync signal by eight clock cycles.  Anybody know why?
1517          */
1518         spin_lock_irqsave(&dbri->lock, flags);
1519         tmp = sbus_readl(dbri->regs + REG0);
1520         tmp &= ~D_C;            /* Disable CHI */
1521         sbus_writel(tmp, dbri->regs + REG0);
1522
1523         reset_chi(dbri, CHImaster, 128);
1524
1525         /*
1526          * Control mode:
1527          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1528          * Pipe 18: Receive timeslot 1 (clb).
1529          * Pipe 19: Receive timeslot 7 (version).
1530          */
1531
1532         link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1533         link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1534         link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1535         spin_unlock_irqrestore(&dbri->lock, flags);
1536
1537         /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1538         dbri->mm.ctrl[0] &= ~CS4215_CLB;
1539         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1540
1541         spin_lock_irqsave(&dbri->lock, flags);
1542         tmp = sbus_readl(dbri->regs + REG0);
1543         tmp |= D_C;             /* Enable CHI */
1544         sbus_writel(tmp, dbri->regs + REG0);
1545         spin_unlock_irqrestore(&dbri->lock, flags);
1546
1547         for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1548                 msleep_interruptible(1);
1549
1550         if (i == 0) {
1551                 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1552                         dbri->mm.status);
1553                 return -1;
1554         }
1555
1556         /* Disable changes to our copy of the version number, as we are about
1557          * to leave control mode.
1558          */
1559         recv_fixed(dbri, 19, NULL);
1560
1561         /* Terminate CS4215 control mode - data sheet says
1562          * "Set CLB=1 and send two more frames of valid control info"
1563          */
1564         dbri->mm.ctrl[0] |= CS4215_CLB;
1565         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1566
1567         /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1568         udelay(250);
1569
1570         cs4215_setdata(dbri, 0);
1571
1572         return 0;
1573 }
1574
1575 /*
1576  * Setup the codec with the sampling rate, audio format and number of
1577  * channels.
1578  * As part of the process we resend the settings for the data
1579  * timeslots as well.
1580  */
1581 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1582                           snd_pcm_format_t format, unsigned int channels)
1583 {
1584         int freq_idx;
1585         int ret = 0;
1586
1587         /* Lookup index for this rate */
1588         for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1589                 if (CS4215_FREQ[freq_idx].freq == rate)
1590                         break;
1591         }
1592         if (CS4215_FREQ[freq_idx].freq != rate) {
1593                 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1594                 return -1;
1595         }
1596
1597         switch (format) {
1598         case SNDRV_PCM_FORMAT_MU_LAW:
1599                 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1600                 dbri->mm.precision = 8;
1601                 break;
1602         case SNDRV_PCM_FORMAT_A_LAW:
1603                 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1604                 dbri->mm.precision = 8;
1605                 break;
1606         case SNDRV_PCM_FORMAT_U8:
1607                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1608                 dbri->mm.precision = 8;
1609                 break;
1610         case SNDRV_PCM_FORMAT_S16_BE:
1611                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1612                 dbri->mm.precision = 16;
1613                 break;
1614         default:
1615                 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1616                 return -1;
1617         }
1618
1619         /* Add rate parameters */
1620         dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1621         dbri->mm.ctrl[2] = CS4215_XCLK |
1622             CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1623
1624         dbri->mm.channels = channels;
1625         if (channels == 2)
1626                 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1627
1628         ret = cs4215_setctrl(dbri);
1629         if (ret == 0)
1630                 cs4215_open(dbri);      /* set codec to data mode */
1631
1632         return ret;
1633 }
1634
1635 /*
1636  *
1637  */
1638 static int cs4215_init(struct snd_dbri *dbri)
1639 {
1640         u32 reg2 = sbus_readl(dbri->regs + REG2);
1641         dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1642
1643         /* Look for the cs4215 chips */
1644         if (reg2 & D_PIO2) {
1645                 dprintk(D_MM, "Onboard CS4215 detected\n");
1646                 dbri->mm.onboard = 1;
1647         }
1648         if (reg2 & D_PIO0) {
1649                 dprintk(D_MM, "Speakerbox detected\n");
1650                 dbri->mm.onboard = 0;
1651
1652                 if (reg2 & D_PIO2) {
1653                         printk(KERN_INFO "DBRI: Using speakerbox / "
1654                                "ignoring onboard mmcodec.\n");
1655                         sbus_writel(D_ENPIO2, dbri->regs + REG2);
1656                 }
1657         }
1658
1659         if (!(reg2 & (D_PIO0 | D_PIO2))) {
1660                 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1661                 return -EIO;
1662         }
1663
1664         cs4215_setup_pipes(dbri);
1665         cs4215_init_data(&dbri->mm);
1666
1667         /* Enable capture of the status & version timeslots. */
1668         recv_fixed(dbri, 18, &dbri->mm.status);
1669         recv_fixed(dbri, 19, &dbri->mm.version);
1670
1671         dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1672         if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1673                 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1674                         dbri->mm.offset);
1675                 return -EIO;
1676         }
1677         dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1678
1679         return 0;
1680 }
1681
1682 /*
1683 ****************************************************************************
1684 *************************** DBRI interrupt handler *************************
1685 ****************************************************************************
1686
1687 The DBRI communicates with the CPU mainly via a circular interrupt
1688 buffer.  When an interrupt is signaled, the CPU walks through the
1689 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1690 Complicated interrupts are handled by dedicated functions (which
1691 appear first in this file).  Any pending interrupts can be serviced by
1692 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1693 interrupts are disabled.
1694
1695 */
1696
1697 /* xmit_descs()
1698  *
1699  * Starts transmitting the current TD's for recording/playing.
1700  * For playback, ALSA has filled the DMA memory with new data (we hope).
1701  */
1702 static void xmit_descs(struct snd_dbri *dbri)
1703 {
1704         struct dbri_streaminfo *info;
1705         u32 dvma_addr;
1706         s32 *cmd;
1707         unsigned long flags;
1708         int first_td;
1709
1710         if (dbri == NULL)
1711                 return;         /* Disabled */
1712
1713         dvma_addr = (u32)dbri->dma_dvma;
1714         info = &dbri->stream_info[DBRI_REC];
1715         spin_lock_irqsave(&dbri->lock, flags);
1716
1717         if (info->pipe >= 0) {
1718                 first_td = dbri->pipes[info->pipe].first_desc;
1719
1720                 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1721
1722                 /* Stream could be closed by the time we run. */
1723                 if (first_td >= 0) {
1724                         cmd = dbri_cmdlock(dbri, 2);
1725                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1726                                             dbri->pipes[info->pipe].sdp
1727                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1728                         *(cmd++) = dvma_addr +
1729                                    dbri_dma_off(desc, first_td);
1730                         dbri_cmdsend(dbri, cmd, 2);
1731
1732                         /* Reset our admin of the pipe. */
1733                         dbri->pipes[info->pipe].desc = first_td;
1734                 }
1735         }
1736
1737         info = &dbri->stream_info[DBRI_PLAY];
1738
1739         if (info->pipe >= 0) {
1740                 first_td = dbri->pipes[info->pipe].first_desc;
1741
1742                 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1743
1744                 /* Stream could be closed by the time we run. */
1745                 if (first_td >= 0) {
1746                         cmd = dbri_cmdlock(dbri, 2);
1747                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1748                                             dbri->pipes[info->pipe].sdp
1749                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1750                         *(cmd++) = dvma_addr +
1751                                    dbri_dma_off(desc, first_td);
1752                         dbri_cmdsend(dbri, cmd, 2);
1753
1754                         /* Reset our admin of the pipe. */
1755                         dbri->pipes[info->pipe].desc = first_td;
1756                 }
1757         }
1758
1759         spin_unlock_irqrestore(&dbri->lock, flags);
1760 }
1761
1762 /* transmission_complete_intr()
1763  *
1764  * Called by main interrupt handler when DBRI signals transmission complete
1765  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1766  *
1767  * Walks through the pipe's list of transmit buffer descriptors and marks
1768  * them as available. Stops when the first descriptor is found without
1769  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1770  *
1771  * The DMA buffers are not released. They form a ring buffer and
1772  * they are filled by ALSA while others are transmitted by DMA.
1773  *
1774  */
1775
1776 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1777 {
1778         struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1779         int td = dbri->pipes[pipe].desc;
1780         int status;
1781
1782         while (td >= 0) {
1783                 if (td >= DBRI_NO_DESCS) {
1784                         printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1785                         return;
1786                 }
1787
1788                 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1789                 if (!(status & DBRI_TD_TBC))
1790                         break;
1791
1792                 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1793
1794                 dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1795                 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1796
1797                 td = dbri->next_desc[td];
1798                 dbri->pipes[pipe].desc = td;
1799         }
1800
1801         /* Notify ALSA */
1802         spin_unlock(&dbri->lock);
1803         snd_pcm_period_elapsed(info->substream);
1804         spin_lock(&dbri->lock);
1805 }
1806
1807 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1808 {
1809         struct dbri_streaminfo *info;
1810         int rd = dbri->pipes[pipe].desc;
1811         s32 status;
1812
1813         if (rd < 0 || rd >= DBRI_NO_DESCS) {
1814                 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1815                 return;
1816         }
1817
1818         dbri->pipes[pipe].desc = dbri->next_desc[rd];
1819         status = dbri->dma->desc[rd].word1;
1820         dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1821
1822         info = &dbri->stream_info[DBRI_REC];
1823         info->offset += DBRI_RD_CNT(status);
1824
1825         /* FIXME: Check status */
1826
1827         dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1828                 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1829
1830         /* Notify ALSA */
1831         spin_unlock(&dbri->lock);
1832         snd_pcm_period_elapsed(info->substream);
1833         spin_lock(&dbri->lock);
1834 }
1835
1836 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1837 {
1838         int val = D_INTR_GETVAL(x);
1839         int channel = D_INTR_GETCHAN(x);
1840         int command = D_INTR_GETCMD(x);
1841         int code = D_INTR_GETCODE(x);
1842 #ifdef DBRI_DEBUG
1843         int rval = D_INTR_GETRVAL(x);
1844 #endif
1845
1846         if (channel == D_INTR_CMD) {
1847                 dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1848                         cmds[command], val);
1849         } else {
1850                 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1851                         channel, code, rval);
1852         }
1853
1854         switch (code) {
1855         case D_INTR_CMDI:
1856                 if (command != D_WAIT)
1857                         printk(KERN_ERR "DBRI: Command read interrupt\n");
1858                 break;
1859         case D_INTR_BRDY:
1860                 reception_complete_intr(dbri, channel);
1861                 break;
1862         case D_INTR_XCMP:
1863         case D_INTR_MINT:
1864                 transmission_complete_intr(dbri, channel);
1865                 break;
1866         case D_INTR_UNDR:
1867                 /* UNDR - Transmission underrun
1868                  * resend SDP command with clear pipe bit (C) set
1869                  */
1870                 {
1871         /* FIXME: do something useful in case of underrun */
1872                         printk(KERN_ERR "DBRI: Underrun error\n");
1873 #if 0
1874                         s32 *cmd;
1875                         int pipe = channel;
1876                         int td = dbri->pipes[pipe].desc;
1877
1878                         dbri->dma->desc[td].word4 = 0;
1879                         cmd = dbri_cmdlock(dbri, NoGetLock);
1880                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1881                                             dbri->pipes[pipe].sdp
1882                                             | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1883                         *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1884                         dbri_cmdsend(dbri, cmd);
1885 #endif
1886                 }
1887                 break;
1888         case D_INTR_FXDT:
1889                 /* FXDT - Fixed data change */
1890                 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1891                         val = reverse_bytes(val, dbri->pipes[channel].length);
1892
1893                 if (dbri->pipes[channel].recv_fixed_ptr)
1894                         *(dbri->pipes[channel].recv_fixed_ptr) = val;
1895                 break;
1896         default:
1897                 if (channel != D_INTR_CMD)
1898                         printk(KERN_WARNING
1899                                "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1900         }
1901 }
1902
1903 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1904  * buffer until it finds a zero word (indicating nothing more to do
1905  * right now).  Non-zero words require processing and are handed off
1906  * to dbri_process_one_interrupt AFTER advancing the pointer.
1907  */
1908 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1909 {
1910         s32 x;
1911
1912         while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1913                 dbri->dma->intr[dbri->dbri_irqp] = 0;
1914                 dbri->dbri_irqp++;
1915                 if (dbri->dbri_irqp == DBRI_INT_BLK)
1916                         dbri->dbri_irqp = 1;
1917
1918                 dbri_process_one_interrupt(dbri, x);
1919         }
1920 }
1921
1922 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1923 {
1924         struct snd_dbri *dbri = dev_id;
1925         static int errcnt = 0;
1926         int x;
1927
1928         if (dbri == NULL)
1929                 return IRQ_NONE;
1930         spin_lock(&dbri->lock);
1931
1932         /*
1933          * Read it, so the interrupt goes away.
1934          */
1935         x = sbus_readl(dbri->regs + REG1);
1936
1937         if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1938                 u32 tmp;
1939
1940                 if (x & D_MRR)
1941                         printk(KERN_ERR
1942                                "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1943                                x);
1944                 if (x & D_MLE)
1945                         printk(KERN_ERR
1946                                "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1947                                x);
1948                 if (x & D_LBG)
1949                         printk(KERN_ERR
1950                                "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1951                 if (x & D_MBE)
1952                         printk(KERN_ERR
1953                                "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1954
1955                 /* Some of these SBus errors cause the chip's SBus circuitry
1956                  * to be disabled, so just re-enable and try to keep going.
1957                  *
1958                  * The only one I've seen is MRR, which will be triggered
1959                  * if you let a transmit pipe underrun, then try to CDP it.
1960                  *
1961                  * If these things persist, we reset the chip.
1962                  */
1963                 if ((++errcnt) % 10 == 0) {
1964                         dprintk(D_INT, "Interrupt errors exceeded.\n");
1965                         dbri_reset(dbri);
1966                 } else {
1967                         tmp = sbus_readl(dbri->regs + REG0);
1968                         tmp &= ~(D_D);
1969                         sbus_writel(tmp, dbri->regs + REG0);
1970                 }
1971         }
1972
1973         dbri_process_interrupt_buffer(dbri);
1974
1975         spin_unlock(&dbri->lock);
1976
1977         return IRQ_HANDLED;
1978 }
1979
1980 /****************************************************************************
1981                 PCM Interface
1982 ****************************************************************************/
1983 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1984         .info           = SNDRV_PCM_INFO_MMAP |
1985                           SNDRV_PCM_INFO_INTERLEAVED |
1986                           SNDRV_PCM_INFO_BLOCK_TRANSFER |
1987                           SNDRV_PCM_INFO_MMAP_VALID |
1988                           SNDRV_PCM_INFO_BATCH,
1989         .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1990                           SNDRV_PCM_FMTBIT_A_LAW |
1991                           SNDRV_PCM_FMTBIT_U8 |
1992                           SNDRV_PCM_FMTBIT_S16_BE,
1993         .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1994         .rate_min               = 5512,
1995         .rate_max               = 48000,
1996         .channels_min           = 1,
1997         .channels_max           = 2,
1998         .buffer_bytes_max       = 64 * 1024,
1999         .period_bytes_min       = 1,
2000         .period_bytes_max       = DBRI_TD_MAXCNT,
2001         .periods_min            = 1,
2002         .periods_max            = 1024,
2003 };
2004
2005 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2006                               struct snd_pcm_hw_rule *rule)
2007 {
2008         struct snd_interval *c = hw_param_interval(params,
2009                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2010         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2011         struct snd_mask fmt;
2012
2013         snd_mask_any(&fmt);
2014         if (c->min > 1) {
2015                 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2016                 return snd_mask_refine(f, &fmt);
2017         }
2018         return 0;
2019 }
2020
2021 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2022                                 struct snd_pcm_hw_rule *rule)
2023 {
2024         struct snd_interval *c = hw_param_interval(params,
2025                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2026         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2027         struct snd_interval ch;
2028
2029         snd_interval_any(&ch);
2030         if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2031                 ch.min = 1;
2032                 ch.max = 1;
2033                 ch.integer = 1;
2034                 return snd_interval_refine(c, &ch);
2035         }
2036         return 0;
2037 }
2038
2039 static int snd_dbri_open(struct snd_pcm_substream *substream)
2040 {
2041         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2042         struct snd_pcm_runtime *runtime = substream->runtime;
2043         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2044         unsigned long flags;
2045
2046         dprintk(D_USR, "open audio output.\n");
2047         runtime->hw = snd_dbri_pcm_hw;
2048
2049         spin_lock_irqsave(&dbri->lock, flags);
2050         info->substream = substream;
2051         info->offset = 0;
2052         info->dvma_buffer = 0;
2053         info->pipe = -1;
2054         spin_unlock_irqrestore(&dbri->lock, flags);
2055
2056         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2057                             snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2058                             -1);
2059         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2060                             snd_hw_rule_channels, NULL,
2061                             SNDRV_PCM_HW_PARAM_CHANNELS,
2062                             -1);
2063
2064         cs4215_open(dbri);
2065
2066         return 0;
2067 }
2068
2069 static int snd_dbri_close(struct snd_pcm_substream *substream)
2070 {
2071         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2072         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2073
2074         dprintk(D_USR, "close audio output.\n");
2075         info->substream = NULL;
2076         info->offset = 0;
2077
2078         return 0;
2079 }
2080
2081 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2082                               struct snd_pcm_hw_params *hw_params)
2083 {
2084         struct snd_pcm_runtime *runtime = substream->runtime;
2085         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2086         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2087         int direction;
2088         int ret;
2089
2090         /* set sampling rate, audio format and number of channels */
2091         ret = cs4215_prepare(dbri, params_rate(hw_params),
2092                              params_format(hw_params),
2093                              params_channels(hw_params));
2094         if (ret != 0)
2095                 return ret;
2096
2097         if ((ret = snd_pcm_lib_malloc_pages(substream,
2098                                 params_buffer_bytes(hw_params))) < 0) {
2099                 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2100                 return ret;
2101         }
2102
2103         /* hw_params can get called multiple times. Only map the DMA once.
2104          */
2105         if (info->dvma_buffer == 0) {
2106                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2107                         direction = DMA_TO_DEVICE;
2108                 else
2109                         direction = DMA_FROM_DEVICE;
2110
2111                 info->dvma_buffer =
2112                         dma_map_single(&dbri->op->dev,
2113                                        runtime->dma_area,
2114                                        params_buffer_bytes(hw_params),
2115                                        direction);
2116         }
2117
2118         direction = params_buffer_bytes(hw_params);
2119         dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2120                 direction, info->dvma_buffer);
2121         return 0;
2122 }
2123
2124 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2125 {
2126         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2127         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2128         int direction;
2129
2130         dprintk(D_USR, "hw_free.\n");
2131
2132         /* hw_free can get called multiple times. Only unmap the DMA once.
2133          */
2134         if (info->dvma_buffer) {
2135                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2136                         direction = DMA_TO_DEVICE;
2137                 else
2138                         direction = DMA_FROM_DEVICE;
2139
2140                 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2141                                  substream->runtime->buffer_size, direction);
2142                 info->dvma_buffer = 0;
2143         }
2144         if (info->pipe != -1) {
2145                 reset_pipe(dbri, info->pipe);
2146                 info->pipe = -1;
2147         }
2148
2149         return snd_pcm_lib_free_pages(substream);
2150 }
2151
2152 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2153 {
2154         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2155         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2156         int ret;
2157
2158         info->size = snd_pcm_lib_buffer_bytes(substream);
2159         if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2160                 info->pipe = 4; /* Send pipe */
2161         else
2162                 info->pipe = 6; /* Receive pipe */
2163
2164         spin_lock_irq(&dbri->lock);
2165         info->offset = 0;
2166
2167         /* Setup the all the transmit/receive descriptors to cover the
2168          * whole DMA buffer.
2169          */
2170         ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2171                           snd_pcm_lib_period_bytes(substream));
2172
2173         spin_unlock_irq(&dbri->lock);
2174
2175         dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2176         return ret;
2177 }
2178
2179 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2180 {
2181         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2182         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2183         int ret = 0;
2184
2185         switch (cmd) {
2186         case SNDRV_PCM_TRIGGER_START:
2187                 dprintk(D_USR, "start audio, period is %d bytes\n",
2188                         (int)snd_pcm_lib_period_bytes(substream));
2189                 /* Re-submit the TDs. */
2190                 xmit_descs(dbri);
2191                 break;
2192         case SNDRV_PCM_TRIGGER_STOP:
2193                 dprintk(D_USR, "stop audio.\n");
2194                 reset_pipe(dbri, info->pipe);
2195                 break;
2196         default:
2197                 ret = -EINVAL;
2198         }
2199
2200         return ret;
2201 }
2202
2203 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2204 {
2205         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2206         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2207         snd_pcm_uframes_t ret;
2208
2209         ret = bytes_to_frames(substream->runtime, info->offset)
2210                 % substream->runtime->buffer_size;
2211         dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2212                 ret, substream->runtime->buffer_size);
2213         return ret;
2214 }
2215
2216 static const struct snd_pcm_ops snd_dbri_ops = {
2217         .open = snd_dbri_open,
2218         .close = snd_dbri_close,
2219         .ioctl = snd_pcm_lib_ioctl,
2220         .hw_params = snd_dbri_hw_params,
2221         .hw_free = snd_dbri_hw_free,
2222         .prepare = snd_dbri_prepare,
2223         .trigger = snd_dbri_trigger,
2224         .pointer = snd_dbri_pointer,
2225 };
2226
2227 static int snd_dbri_pcm(struct snd_card *card)
2228 {
2229         struct snd_pcm *pcm;
2230         int err;
2231
2232         if ((err = snd_pcm_new(card,
2233                                /* ID */             "sun_dbri",
2234                                /* device */         0,
2235                                /* playback count */ 1,
2236                                /* capture count */  1, &pcm)) < 0)
2237                 return err;
2238
2239         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2240         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2241
2242         pcm->private_data = card->private_data;
2243         pcm->info_flags = 0;
2244         strcpy(pcm->name, card->shortname);
2245
2246         if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2247                         SNDRV_DMA_TYPE_CONTINUOUS,
2248                         snd_dma_continuous_data(GFP_KERNEL),
2249                         64 * 1024, 64 * 1024)) < 0)
2250                 return err;
2251
2252         return 0;
2253 }
2254
2255 /*****************************************************************************
2256                         Mixer interface
2257 *****************************************************************************/
2258
2259 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2260                                   struct snd_ctl_elem_info *uinfo)
2261 {
2262         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2263         uinfo->count = 2;
2264         uinfo->value.integer.min = 0;
2265         if (kcontrol->private_value == DBRI_PLAY)
2266                 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2267         else
2268                 uinfo->value.integer.max = DBRI_MAX_GAIN;
2269         return 0;
2270 }
2271
2272 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2273                                  struct snd_ctl_elem_value *ucontrol)
2274 {
2275         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2276         struct dbri_streaminfo *info;
2277
2278         if (snd_BUG_ON(!dbri))
2279                 return -EINVAL;
2280         info = &dbri->stream_info[kcontrol->private_value];
2281
2282         ucontrol->value.integer.value[0] = info->left_gain;
2283         ucontrol->value.integer.value[1] = info->right_gain;
2284         return 0;
2285 }
2286
2287 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2288                                  struct snd_ctl_elem_value *ucontrol)
2289 {
2290         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2291         struct dbri_streaminfo *info =
2292                                 &dbri->stream_info[kcontrol->private_value];
2293         unsigned int vol[2];
2294         int changed = 0;
2295
2296         vol[0] = ucontrol->value.integer.value[0];
2297         vol[1] = ucontrol->value.integer.value[1];
2298         if (kcontrol->private_value == DBRI_PLAY) {
2299                 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2300                         return -EINVAL;
2301         } else {
2302                 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2303                         return -EINVAL;
2304         }
2305
2306         if (info->left_gain != vol[0]) {
2307                 info->left_gain = vol[0];
2308                 changed = 1;
2309         }
2310         if (info->right_gain != vol[1]) {
2311                 info->right_gain = vol[1];
2312                 changed = 1;
2313         }
2314         if (changed) {
2315                 /* First mute outputs, and wait 1/8000 sec (125 us)
2316                  * to make sure this takes.  This avoids clicking noises.
2317                  */
2318                 cs4215_setdata(dbri, 1);
2319                 udelay(125);
2320                 cs4215_setdata(dbri, 0);
2321         }
2322         return changed;
2323 }
2324
2325 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2326                                   struct snd_ctl_elem_info *uinfo)
2327 {
2328         int mask = (kcontrol->private_value >> 16) & 0xff;
2329
2330         uinfo->type = (mask == 1) ?
2331             SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2332         uinfo->count = 1;
2333         uinfo->value.integer.min = 0;
2334         uinfo->value.integer.max = mask;
2335         return 0;
2336 }
2337
2338 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2339                                  struct snd_ctl_elem_value *ucontrol)
2340 {
2341         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2342         int elem = kcontrol->private_value & 0xff;
2343         int shift = (kcontrol->private_value >> 8) & 0xff;
2344         int mask = (kcontrol->private_value >> 16) & 0xff;
2345         int invert = (kcontrol->private_value >> 24) & 1;
2346
2347         if (snd_BUG_ON(!dbri))
2348                 return -EINVAL;
2349
2350         if (elem < 4)
2351                 ucontrol->value.integer.value[0] =
2352                     (dbri->mm.data[elem] >> shift) & mask;
2353         else
2354                 ucontrol->value.integer.value[0] =
2355                     (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2356
2357         if (invert == 1)
2358                 ucontrol->value.integer.value[0] =
2359                     mask - ucontrol->value.integer.value[0];
2360         return 0;
2361 }
2362
2363 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2364                                  struct snd_ctl_elem_value *ucontrol)
2365 {
2366         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2367         int elem = kcontrol->private_value & 0xff;
2368         int shift = (kcontrol->private_value >> 8) & 0xff;
2369         int mask = (kcontrol->private_value >> 16) & 0xff;
2370         int invert = (kcontrol->private_value >> 24) & 1;
2371         int changed = 0;
2372         unsigned short val;
2373
2374         if (snd_BUG_ON(!dbri))
2375                 return -EINVAL;
2376
2377         val = (ucontrol->value.integer.value[0] & mask);
2378         if (invert == 1)
2379                 val = mask - val;
2380         val <<= shift;
2381
2382         if (elem < 4) {
2383                 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2384                                        ~(mask << shift)) | val;
2385                 changed = (val != dbri->mm.data[elem]);
2386         } else {
2387                 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2388                                            ~(mask << shift)) | val;
2389                 changed = (val != dbri->mm.ctrl[elem - 4]);
2390         }
2391
2392         dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2393                 "mixer-value=%ld, mm-value=0x%x\n",
2394                 mask, changed, ucontrol->value.integer.value[0],
2395                 dbri->mm.data[elem & 3]);
2396
2397         if (changed) {
2398                 /* First mute outputs, and wait 1/8000 sec (125 us)
2399                  * to make sure this takes.  This avoids clicking noises.
2400                  */
2401                 cs4215_setdata(dbri, 1);
2402                 udelay(125);
2403                 cs4215_setdata(dbri, 0);
2404         }
2405         return changed;
2406 }
2407
2408 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2409    timeslots. Shift is the bit offset in the timeslot, mask defines the
2410    number of bits. invert is a boolean for use with attenuation.
2411  */
2412 #define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2413 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2414   .info = snd_cs4215_info_single,                               \
2415   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2416   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2417                         ((invert) << 24) },
2418
2419 static struct snd_kcontrol_new dbri_controls[] = {
2420         {
2421          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2422          .name  = "Playback Volume",
2423          .info  = snd_cs4215_info_volume,
2424          .get   = snd_cs4215_get_volume,
2425          .put   = snd_cs4215_put_volume,
2426          .private_value = DBRI_PLAY,
2427          },
2428         CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2429         CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2430         CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2431         {
2432          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2433          .name  = "Capture Volume",
2434          .info  = snd_cs4215_info_volume,
2435          .get   = snd_cs4215_get_volume,
2436          .put   = snd_cs4215_put_volume,
2437          .private_value = DBRI_REC,
2438          },
2439         /* FIXME: mic/line switch */
2440         CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2441         CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2442         CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2443         CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2444 };
2445
2446 static int snd_dbri_mixer(struct snd_card *card)
2447 {
2448         int idx, err;
2449         struct snd_dbri *dbri;
2450
2451         if (snd_BUG_ON(!card || !card->private_data))
2452                 return -EINVAL;
2453         dbri = card->private_data;
2454
2455         strcpy(card->mixername, card->shortname);
2456
2457         for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2458                 err = snd_ctl_add(card,
2459                                 snd_ctl_new1(&dbri_controls[idx], dbri));
2460                 if (err < 0)
2461                         return err;
2462         }
2463
2464         for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2465                 dbri->stream_info[idx].left_gain = 0;
2466                 dbri->stream_info[idx].right_gain = 0;
2467         }
2468
2469         return 0;
2470 }
2471
2472 /****************************************************************************
2473                         /proc interface
2474 ****************************************************************************/
2475 static void dbri_regs_read(struct snd_info_entry *entry,
2476                            struct snd_info_buffer *buffer)
2477 {
2478         struct snd_dbri *dbri = entry->private_data;
2479
2480         snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2481         snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2482         snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2483         snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2484 }
2485
2486 #ifdef DBRI_DEBUG
2487 static void dbri_debug_read(struct snd_info_entry *entry,
2488                             struct snd_info_buffer *buffer)
2489 {
2490         struct snd_dbri *dbri = entry->private_data;
2491         int pipe;
2492         snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2493
2494         for (pipe = 0; pipe < 32; pipe++) {
2495                 if (pipe_active(dbri, pipe)) {
2496                         struct dbri_pipe *pptr = &dbri->pipes[pipe];
2497                         snd_iprintf(buffer,
2498                                     "Pipe %d: %s SDP=0x%x desc=%d, "
2499                                     "len=%d next %d\n",
2500                                     pipe,
2501                                    (pptr->sdp & D_SDP_TO_SER) ? "output" :
2502                                                                  "input",
2503                                     pptr->sdp, pptr->desc,
2504                                     pptr->length, pptr->nextpipe);
2505                 }
2506         }
2507 }
2508 #endif
2509
2510 static void snd_dbri_proc(struct snd_card *card)
2511 {
2512         struct snd_dbri *dbri = card->private_data;
2513         struct snd_info_entry *entry;
2514
2515         if (!snd_card_proc_new(card, "regs", &entry))
2516                 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2517
2518 #ifdef DBRI_DEBUG
2519         if (!snd_card_proc_new(card, "debug", &entry)) {
2520                 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2521                 entry->mode = S_IFREG | 0444;   /* Readable only. */
2522         }
2523 #endif
2524 }
2525
2526 /*
2527 ****************************************************************************
2528 **************************** Initialization ********************************
2529 ****************************************************************************
2530 */
2531 static void snd_dbri_free(struct snd_dbri *dbri);
2532
2533 static int snd_dbri_create(struct snd_card *card,
2534                            struct platform_device *op,
2535                            int irq, int dev)
2536 {
2537         struct snd_dbri *dbri = card->private_data;
2538         int err;
2539
2540         spin_lock_init(&dbri->lock);
2541         dbri->op = op;
2542         dbri->irq = irq;
2543
2544         dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2545                                        &dbri->dma_dvma, GFP_KERNEL);
2546         if (!dbri->dma)
2547                 return -ENOMEM;
2548
2549         dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2550                 dbri->dma, dbri->dma_dvma);
2551
2552         /* Map the registers into memory. */
2553         dbri->regs_size = resource_size(&op->resource[0]);
2554         dbri->regs = of_ioremap(&op->resource[0], 0,
2555                                 dbri->regs_size, "DBRI Registers");
2556         if (!dbri->regs) {
2557                 printk(KERN_ERR "DBRI: could not allocate registers\n");
2558                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2559                                   (void *)dbri->dma, dbri->dma_dvma);
2560                 return -EIO;
2561         }
2562
2563         err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2564                           "DBRI audio", dbri);
2565         if (err) {
2566                 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2567                 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2568                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2569                                   (void *)dbri->dma, dbri->dma_dvma);
2570                 return err;
2571         }
2572
2573         /* Do low level initialization of the DBRI and CS4215 chips */
2574         dbri_initialize(dbri);
2575         err = cs4215_init(dbri);
2576         if (err) {
2577                 snd_dbri_free(dbri);
2578                 return err;
2579         }
2580
2581         return 0;
2582 }
2583
2584 static void snd_dbri_free(struct snd_dbri *dbri)
2585 {
2586         dprintk(D_GEN, "snd_dbri_free\n");
2587         dbri_reset(dbri);
2588
2589         if (dbri->irq)
2590                 free_irq(dbri->irq, dbri);
2591
2592         if (dbri->regs)
2593                 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2594
2595         if (dbri->dma)
2596                 dma_free_coherent(&dbri->op->dev,
2597                                   sizeof(struct dbri_dma),
2598                                   (void *)dbri->dma, dbri->dma_dvma);
2599 }
2600
2601 static int dbri_probe(struct platform_device *op)
2602 {
2603         struct snd_dbri *dbri;
2604         struct resource *rp;
2605         struct snd_card *card;
2606         static int dev = 0;
2607         int irq;
2608         int err;
2609
2610         if (dev >= SNDRV_CARDS)
2611                 return -ENODEV;
2612         if (!enable[dev]) {
2613                 dev++;
2614                 return -ENOENT;
2615         }
2616
2617         irq = op->archdata.irqs[0];
2618         if (irq <= 0) {
2619                 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2620                 return -ENODEV;
2621         }
2622
2623         err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2624                            sizeof(struct snd_dbri), &card);
2625         if (err < 0)
2626                 return err;
2627
2628         strcpy(card->driver, "DBRI");
2629         strcpy(card->shortname, "Sun DBRI");
2630         rp = &op->resource[0];
2631         sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2632                 card->shortname,
2633                 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2634
2635         err = snd_dbri_create(card, op, irq, dev);
2636         if (err < 0) {
2637                 snd_card_free(card);
2638                 return err;
2639         }
2640
2641         dbri = card->private_data;
2642         err = snd_dbri_pcm(card);
2643         if (err < 0)
2644                 goto _err;
2645
2646         err = snd_dbri_mixer(card);
2647         if (err < 0)
2648                 goto _err;
2649
2650         /* /proc file handling */
2651         snd_dbri_proc(card);
2652         dev_set_drvdata(&op->dev, card);
2653
2654         err = snd_card_register(card);
2655         if (err < 0)
2656                 goto _err;
2657
2658         printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2659                dev, dbri->regs,
2660                dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2661         dev++;
2662
2663         return 0;
2664
2665 _err:
2666         snd_dbri_free(dbri);
2667         snd_card_free(card);
2668         return err;
2669 }
2670
2671 static int dbri_remove(struct platform_device *op)
2672 {
2673         struct snd_card *card = dev_get_drvdata(&op->dev);
2674
2675         snd_dbri_free(card->private_data);
2676         snd_card_free(card);
2677
2678         return 0;
2679 }
2680
2681 static const struct of_device_id dbri_match[] = {
2682         {
2683                 .name = "SUNW,DBRIe",
2684         },
2685         {
2686                 .name = "SUNW,DBRIf",
2687         },
2688         {},
2689 };
2690
2691 MODULE_DEVICE_TABLE(of, dbri_match);
2692
2693 static struct platform_driver dbri_sbus_driver = {
2694         .driver = {
2695                 .name = "dbri",
2696                 .of_match_table = dbri_match,
2697         },
2698         .probe          = dbri_probe,
2699         .remove         = dbri_remove,
2700 };
2701
2702 module_platform_driver(dbri_sbus_driver);