OSDN Git Service

Update copyrights to 2003.
[pg-rex/syncrep.git] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor is required as an argument.
16  *
17  *      ExecutorStart() must be called at the beginning of execution of any
18  *      query plan and ExecutorEnd() should always be called at the end of
19  *      execution of a plan.
20  *
21  *      ExecutorRun accepts direction and count arguments that specify whether
22  *      the plan is to be executed forwards, backwards, and for how many tuples.
23  *
24  * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
25  * Portions Copyright (c) 1994, Regents of the University of California
26  *
27  *
28  * IDENTIFICATION
29  *        $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.214 2003/08/04 02:39:58 momjian Exp $
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34
35 #include "access/heapam.h"
36 #include "catalog/heap.h"
37 #include "catalog/namespace.h"
38 #include "commands/tablecmds.h"
39 #include "commands/trigger.h"
40 #include "executor/execdebug.h"
41 #include "executor/execdefs.h"
42 #include "miscadmin.h"
43 #include "optimizer/var.h"
44 #include "parser/parsetree.h"
45 #include "utils/acl.h"
46 #include "utils/lsyscache.h"
47
48
49 typedef struct execRowMark
50 {
51         Relation        relation;
52         Index           rti;
53         char            resname[32];
54 } execRowMark;
55
56 typedef struct evalPlanQual
57 {
58         Index           rti;
59         EState     *estate;
60         PlanState  *planstate;
61         struct evalPlanQual *next;      /* stack of active PlanQual plans */
62         struct evalPlanQual *free;      /* list of free PlanQual plans */
63 } evalPlanQual;
64
65 /* decls for local routines only used within this module */
66 static void InitPlan(QueryDesc *queryDesc, bool explainOnly);
67 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
68                                   Index resultRelationIndex,
69                                   List *rangeTable,
70                                   CmdType operation);
71 static TupleTableSlot *ExecutePlan(EState *estate, PlanState * planstate,
72                         CmdType operation,
73                         long numberTuples,
74                         ScanDirection direction,
75                         DestReceiver *dest);
76 static void ExecSelect(TupleTableSlot *slot,
77                    DestReceiver *dest,
78                    EState *estate);
79 static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
80                    EState *estate);
81 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
82                    EState *estate);
83 static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
84                    EState *estate);
85 static TupleTableSlot *EvalPlanQualNext(EState *estate);
86 static void EndEvalPlanQual(EState *estate);
87 static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation);
88 static void ExecCheckXactReadOnly(Query *parsetree, CmdType operation);
89 static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
90                                   evalPlanQual *priorepq);
91 static void EvalPlanQualStop(evalPlanQual *epq);
92
93 /* end of local decls */
94
95
96 /* ----------------------------------------------------------------
97  *              ExecutorStart
98  *
99  *              This routine must be called at the beginning of any execution of any
100  *              query plan
101  *
102  * Takes a QueryDesc previously created by CreateQueryDesc (it's not real
103  * clear why we bother to separate the two functions, but...).  The tupDesc
104  * field of the QueryDesc is filled in to describe the tuples that will be
105  * returned, and the internal fields (estate and planstate) are set up.
106  *
107  * If explainOnly is true, we are not actually intending to run the plan,
108  * only to set up for EXPLAIN; so skip unwanted side-effects.
109  *
110  * NB: the CurrentMemoryContext when this is called will become the parent
111  * of the per-query context used for this Executor invocation.
112  * ----------------------------------------------------------------
113  */
114 void
115 ExecutorStart(QueryDesc *queryDesc, bool explainOnly)
116 {
117         EState     *estate;
118         MemoryContext oldcontext;
119
120         /* sanity checks: queryDesc must not be started already */
121         Assert(queryDesc != NULL);
122         Assert(queryDesc->estate == NULL);
123
124         /*
125          * If the transaction is read-only, we need to check if any writes are
126          * planned to non-temporary tables.
127          */
128         if (!explainOnly)
129                 ExecCheckXactReadOnly(queryDesc->parsetree, queryDesc->operation);
130
131         /*
132          * Build EState, switch into per-query memory context for startup.
133          */
134         estate = CreateExecutorState();
135         queryDesc->estate = estate;
136
137         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
138
139         /*
140          * Fill in parameters, if any, from queryDesc
141          */
142         estate->es_param_list_info = queryDesc->params;
143
144         if (queryDesc->plantree->nParamExec > 0)
145                 estate->es_param_exec_vals = (ParamExecData *)
146                         palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
147
148         estate->es_instrument = queryDesc->doInstrument;
149
150         /*
151          * Make our own private copy of the current query snapshot data.
152          *
153          * This "freezes" our idea of which tuples are good and which are not for
154          * the life of this query, even if it outlives the current command and
155          * current snapshot.
156          */
157         estate->es_snapshot = CopyQuerySnapshot();
158
159         /*
160          * Initialize the plan state tree
161          */
162         InitPlan(queryDesc, explainOnly);
163
164         MemoryContextSwitchTo(oldcontext);
165 }
166
167 /* ----------------------------------------------------------------
168  *              ExecutorRun
169  *
170  *              This is the main routine of the executor module. It accepts
171  *              the query descriptor from the traffic cop and executes the
172  *              query plan.
173  *
174  *              ExecutorStart must have been called already.
175  *
176  *              If direction is NoMovementScanDirection then nothing is done
177  *              except to start up/shut down the destination.  Otherwise,
178  *              we retrieve up to 'count' tuples in the specified direction.
179  *
180  *              Note: count = 0 is interpreted as no portal limit, i.e., run to
181  *              completion.
182  *
183  * ----------------------------------------------------------------
184  */
185 TupleTableSlot *
186 ExecutorRun(QueryDesc *queryDesc,
187                         ScanDirection direction, long count)
188 {
189         EState     *estate;
190         CmdType         operation;
191         DestReceiver *dest;
192         TupleTableSlot *result;
193         MemoryContext oldcontext;
194
195         /* sanity checks */
196         Assert(queryDesc != NULL);
197
198         estate = queryDesc->estate;
199
200         Assert(estate != NULL);
201
202         /*
203          * Switch into per-query memory context
204          */
205         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
206
207         /*
208          * extract information from the query descriptor and the query
209          * feature.
210          */
211         operation = queryDesc->operation;
212         dest = queryDesc->dest;
213
214         /*
215          * startup tuple receiver
216          */
217         estate->es_processed = 0;
218         estate->es_lastoid = InvalidOid;
219
220         (*dest->startup) (dest, operation, queryDesc->tupDesc);
221
222         /*
223          * run plan
224          */
225         if (direction == NoMovementScanDirection)
226                 result = NULL;
227         else
228                 result = ExecutePlan(estate,
229                                                          queryDesc->planstate,
230                                                          operation,
231                                                          count,
232                                                          direction,
233                                                          dest);
234
235         /*
236          * shutdown receiver
237          */
238         (*dest->shutdown) (dest);
239
240         MemoryContextSwitchTo(oldcontext);
241
242         return result;
243 }
244
245 /* ----------------------------------------------------------------
246  *              ExecutorEnd
247  *
248  *              This routine must be called at the end of execution of any
249  *              query plan
250  * ----------------------------------------------------------------
251  */
252 void
253 ExecutorEnd(QueryDesc *queryDesc)
254 {
255         EState     *estate;
256         MemoryContext oldcontext;
257
258         /* sanity checks */
259         Assert(queryDesc != NULL);
260
261         estate = queryDesc->estate;
262
263         Assert(estate != NULL);
264
265         /*
266          * Switch into per-query memory context to run ExecEndPlan
267          */
268         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
269
270         ExecEndPlan(queryDesc->planstate, estate);
271
272         /*
273          * Must switch out of context before destroying it
274          */
275         MemoryContextSwitchTo(oldcontext);
276
277         /*
278          * Release EState and per-query memory context.  This should release
279          * everything the executor has allocated.
280          */
281         FreeExecutorState(estate);
282
283         /* Reset queryDesc fields that no longer point to anything */
284         queryDesc->tupDesc = NULL;
285         queryDesc->estate = NULL;
286         queryDesc->planstate = NULL;
287 }
288
289 /* ----------------------------------------------------------------
290  *              ExecutorRewind
291  *
292  *              This routine may be called on an open queryDesc to rewind it
293  *              to the start.
294  * ----------------------------------------------------------------
295  */
296 void
297 ExecutorRewind(QueryDesc *queryDesc)
298 {
299         EState     *estate;
300         MemoryContext oldcontext;
301
302         /* sanity checks */
303         Assert(queryDesc != NULL);
304
305         estate = queryDesc->estate;
306
307         Assert(estate != NULL);
308
309         /* It's probably not sensible to rescan updating queries */
310         Assert(queryDesc->operation == CMD_SELECT);
311
312         /*
313          * Switch into per-query memory context
314          */
315         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
316
317         /*
318          * rescan plan
319          */
320         ExecReScan(queryDesc->planstate, NULL);
321
322         MemoryContextSwitchTo(oldcontext);
323 }
324
325
326 /*
327  * ExecCheckRTPerms
328  *              Check access permissions for all relations listed in a range table.
329  */
330 void
331 ExecCheckRTPerms(List *rangeTable, CmdType operation)
332 {
333         List       *lp;
334
335         foreach(lp, rangeTable)
336         {
337                 RangeTblEntry *rte = lfirst(lp);
338
339                 ExecCheckRTEPerms(rte, operation);
340         }
341 }
342
343 /*
344  * ExecCheckRTEPerms
345  *              Check access permissions for a single RTE.
346  */
347 static void
348 ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation)
349 {
350         Oid                     relOid;
351         AclId           userid;
352         AclResult       aclcheck_result;
353
354         /*
355          * If it's a subquery, recursively examine its rangetable.
356          */
357         if (rte->rtekind == RTE_SUBQUERY)
358         {
359                 ExecCheckRTPerms(rte->subquery->rtable, operation);
360                 return;
361         }
362
363         /*
364          * Otherwise, only plain-relation RTEs need to be checked here.
365          * Function RTEs are checked by init_fcache when the function is
366          * prepared for execution. Join and special RTEs need no checks.
367          */
368         if (rte->rtekind != RTE_RELATION)
369                 return;
370
371         relOid = rte->relid;
372
373         /*
374          * userid to check as: current user unless we have a setuid
375          * indication.
376          *
377          * Note: GetUserId() is presently fast enough that there's no harm in
378          * calling it separately for each RTE.  If that stops being true, we
379          * could call it once in ExecCheckRTPerms and pass the userid down
380          * from there.  But for now, no need for the extra clutter.
381          */
382         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
383
384 #define CHECK(MODE)             pg_class_aclcheck(relOid, userid, MODE)
385
386         if (rte->checkForRead)
387         {
388                 aclcheck_result = CHECK(ACL_SELECT);
389                 if (aclcheck_result != ACLCHECK_OK)
390                         aclcheck_error(aclcheck_result, ACL_KIND_CLASS,
391                                                    get_rel_name(relOid));
392         }
393
394         if (rte->checkForWrite)
395         {
396                 /*
397                  * Note: write access in a SELECT context means SELECT FOR UPDATE.
398                  * Right now we don't distinguish that from true update as far as
399                  * permissions checks are concerned.
400                  */
401                 switch (operation)
402                 {
403                         case CMD_INSERT:
404                                 aclcheck_result = CHECK(ACL_INSERT);
405                                 break;
406                         case CMD_SELECT:
407                         case CMD_UPDATE:
408                                 aclcheck_result = CHECK(ACL_UPDATE);
409                                 break;
410                         case CMD_DELETE:
411                                 aclcheck_result = CHECK(ACL_DELETE);
412                                 break;
413                         default:
414                                 elog(ERROR, "unrecognized operation code: %d",
415                                          (int) operation);
416                                 aclcheck_result = ACLCHECK_OK;  /* keep compiler quiet */
417                                 break;
418                 }
419                 if (aclcheck_result != ACLCHECK_OK)
420                         aclcheck_error(aclcheck_result, ACL_KIND_CLASS,
421                                                    get_rel_name(relOid));
422         }
423 }
424
425 static void
426 ExecCheckXactReadOnly(Query *parsetree, CmdType operation)
427 {
428         if (!XactReadOnly)
429                 return;
430
431         /* CREATE TABLE AS or SELECT INTO */
432         if (operation == CMD_SELECT && parsetree->into != NULL)
433                 goto fail;
434
435         if (operation == CMD_DELETE || operation == CMD_INSERT
436                 || operation == CMD_UPDATE)
437         {
438                 List       *lp;
439
440                 foreach(lp, parsetree->rtable)
441                 {
442                         RangeTblEntry *rte = lfirst(lp);
443
444                         if (rte->rtekind != RTE_RELATION)
445                                 continue;
446
447                         if (!rte->checkForWrite)
448                                 continue;
449
450                         if (isTempNamespace(get_rel_namespace(rte->relid)))
451                                 continue;
452
453                         goto fail;
454                 }
455         }
456
457         return;
458
459 fail:
460         ereport(ERROR,
461                         (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
462                          errmsg("transaction is read-only")));
463 }
464
465
466 /* ----------------------------------------------------------------
467  *              InitPlan
468  *
469  *              Initializes the query plan: open files, allocate storage
470  *              and start up the rule manager
471  * ----------------------------------------------------------------
472  */
473 static void
474 InitPlan(QueryDesc *queryDesc, bool explainOnly)
475 {
476         CmdType         operation = queryDesc->operation;
477         Query      *parseTree = queryDesc->parsetree;
478         Plan       *plan = queryDesc->plantree;
479         EState     *estate = queryDesc->estate;
480         PlanState  *planstate;
481         List       *rangeTable;
482         Relation        intoRelationDesc;
483         bool            do_select_into;
484         TupleDesc       tupType;
485
486         /*
487          * Do permissions checks.  It's sufficient to examine the query's top
488          * rangetable here --- subplan RTEs will be checked during
489          * ExecInitSubPlan().
490          */
491         ExecCheckRTPerms(parseTree->rtable, operation);
492
493         /*
494          * get information from query descriptor
495          */
496         rangeTable = parseTree->rtable;
497
498         /*
499          * initialize the node's execution state
500          */
501         estate->es_range_table = rangeTable;
502
503         /*
504          * if there is a result relation, initialize result relation stuff
505          */
506         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
507         {
508                 List       *resultRelations = parseTree->resultRelations;
509                 int                     numResultRelations;
510                 ResultRelInfo *resultRelInfos;
511
512                 if (resultRelations != NIL)
513                 {
514                         /*
515                          * Multiple result relations (due to inheritance)
516                          * parseTree->resultRelations identifies them all
517                          */
518                         ResultRelInfo *resultRelInfo;
519
520                         numResultRelations = length(resultRelations);
521                         resultRelInfos = (ResultRelInfo *)
522                                 palloc(numResultRelations * sizeof(ResultRelInfo));
523                         resultRelInfo = resultRelInfos;
524                         while (resultRelations != NIL)
525                         {
526                                 initResultRelInfo(resultRelInfo,
527                                                                   lfirsti(resultRelations),
528                                                                   rangeTable,
529                                                                   operation);
530                                 resultRelInfo++;
531                                 resultRelations = lnext(resultRelations);
532                         }
533                 }
534                 else
535                 {
536                         /*
537                          * Single result relation identified by
538                          * parseTree->resultRelation
539                          */
540                         numResultRelations = 1;
541                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
542                         initResultRelInfo(resultRelInfos,
543                                                           parseTree->resultRelation,
544                                                           rangeTable,
545                                                           operation);
546                 }
547
548                 estate->es_result_relations = resultRelInfos;
549                 estate->es_num_result_relations = numResultRelations;
550                 /* Initialize to first or only result rel */
551                 estate->es_result_relation_info = resultRelInfos;
552         }
553         else
554         {
555                 /*
556                  * if no result relation, then set state appropriately
557                  */
558                 estate->es_result_relations = NULL;
559                 estate->es_num_result_relations = 0;
560                 estate->es_result_relation_info = NULL;
561         }
562
563         /*
564          * Detect whether we're doing SELECT INTO.  If so, set the force_oids
565          * flag appropriately so that the plan tree will be initialized with
566          * the correct tuple descriptors.
567          */
568         do_select_into = false;
569
570         if (operation == CMD_SELECT && parseTree->into != NULL)
571         {
572                 do_select_into = true;
573
574                 /*
575                  * For now, always create OIDs in SELECT INTO; this is for
576                  * backwards compatibility with pre-7.3 behavior.  Eventually we
577                  * might want to allow the user to choose.
578                  */
579                 estate->es_force_oids = true;
580         }
581
582         /*
583          * Have to lock relations selected for update
584          */
585         estate->es_rowMark = NIL;
586         if (parseTree->rowMarks != NIL)
587         {
588                 List       *l;
589
590                 foreach(l, parseTree->rowMarks)
591                 {
592                         Index           rti = lfirsti(l);
593                         Oid                     relid = getrelid(rti, rangeTable);
594                         Relation        relation;
595                         execRowMark *erm;
596
597                         relation = heap_open(relid, RowShareLock);
598                         erm = (execRowMark *) palloc(sizeof(execRowMark));
599                         erm->relation = relation;
600                         erm->rti = rti;
601                         snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rti);
602                         estate->es_rowMark = lappend(estate->es_rowMark, erm);
603                 }
604         }
605
606         /*
607          * initialize the executor "tuple" table.  We need slots for all the
608          * plan nodes, plus possibly output slots for the junkfilter(s). At
609          * this point we aren't sure if we need junkfilters, so just add slots
610          * for them unconditionally.
611          */
612         {
613                 int                     nSlots = ExecCountSlotsNode(plan);
614
615                 if (parseTree->resultRelations != NIL)
616                         nSlots += length(parseTree->resultRelations);
617                 else
618                         nSlots += 1;
619                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
620         }
621
622         /* mark EvalPlanQual not active */
623         estate->es_topPlan = plan;
624         estate->es_evalPlanQual = NULL;
625         estate->es_evTupleNull = NULL;
626         estate->es_evTuple = NULL;
627         estate->es_useEvalPlan = false;
628
629         /*
630          * initialize the private state information for all the nodes in the
631          * query tree.  This opens files, allocates storage and leaves us
632          * ready to start processing tuples.
633          */
634         planstate = ExecInitNode(plan, estate);
635
636         /*
637          * Get the tuple descriptor describing the type of tuples to return.
638          * (this is especially important if we are creating a relation with
639          * "SELECT INTO")
640          */
641         tupType = ExecGetResultType(planstate);
642
643         /*
644          * Initialize the junk filter if needed.  SELECT and INSERT queries
645          * need a filter if there are any junk attrs in the tlist.      INSERT and
646          * SELECT INTO also need a filter if the top plan node is a scan node
647          * that's not doing projection (else we'll be scribbling on the scan
648          * tuple!)      UPDATE and DELETE always need a filter, since there's
649          * always a junk 'ctid' attribute present --- no need to look first.
650          */
651         {
652                 bool            junk_filter_needed = false;
653                 List       *tlist;
654
655                 switch (operation)
656                 {
657                         case CMD_SELECT:
658                         case CMD_INSERT:
659                                 foreach(tlist, plan->targetlist)
660                                 {
661                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
662
663                                         if (tle->resdom->resjunk)
664                                         {
665                                                 junk_filter_needed = true;
666                                                 break;
667                                         }
668                                 }
669                                 if (!junk_filter_needed &&
670                                         (operation == CMD_INSERT || do_select_into))
671                                 {
672                                         if (IsA(planstate, SeqScanState) ||
673                                                 IsA(planstate, IndexScanState) ||
674                                                 IsA(planstate, TidScanState) ||
675                                                 IsA(planstate, SubqueryScanState) ||
676                                                 IsA(planstate, FunctionScanState))
677                                         {
678                                                 if (planstate->ps_ProjInfo == NULL)
679                                                         junk_filter_needed = true;
680                                         }
681                                 }
682                                 break;
683                         case CMD_UPDATE:
684                         case CMD_DELETE:
685                                 junk_filter_needed = true;
686                                 break;
687                         default:
688                                 break;
689                 }
690
691                 if (junk_filter_needed)
692                 {
693                         /*
694                          * If there are multiple result relations, each one needs its
695                          * own junk filter.  Note this is only possible for
696                          * UPDATE/DELETE, so we can't be fooled by some needing a
697                          * filter and some not.
698                          */
699                         if (parseTree->resultRelations != NIL)
700                         {
701                                 PlanState **appendplans;
702                                 int                     as_nplans;
703                                 ResultRelInfo *resultRelInfo;
704                                 int                     i;
705
706                                 /* Top plan had better be an Append here. */
707                                 Assert(IsA(plan, Append));
708                                 Assert(((Append *) plan)->isTarget);
709                                 Assert(IsA(planstate, AppendState));
710                                 appendplans = ((AppendState *) planstate)->appendplans;
711                                 as_nplans = ((AppendState *) planstate)->as_nplans;
712                                 Assert(as_nplans == estate->es_num_result_relations);
713                                 resultRelInfo = estate->es_result_relations;
714                                 for (i = 0; i < as_nplans; i++)
715                                 {
716                                         PlanState  *subplan = appendplans[i];
717                                         JunkFilter *j;
718
719                                         j = ExecInitJunkFilter(subplan->plan->targetlist,
720                                                                                    ExecGetResultType(subplan),
721                                                           ExecAllocTableSlot(estate->es_tupleTable));
722                                         resultRelInfo->ri_junkFilter = j;
723                                         resultRelInfo++;
724                                 }
725
726                                 /*
727                                  * Set active junkfilter too; at this point ExecInitAppend
728                                  * has already selected an active result relation...
729                                  */
730                                 estate->es_junkFilter =
731                                         estate->es_result_relation_info->ri_junkFilter;
732                         }
733                         else
734                         {
735                                 /* Normal case with just one JunkFilter */
736                                 JunkFilter *j;
737
738                                 j = ExecInitJunkFilter(planstate->plan->targetlist,
739                                                                            tupType,
740                                                           ExecAllocTableSlot(estate->es_tupleTable));
741                                 estate->es_junkFilter = j;
742                                 if (estate->es_result_relation_info)
743                                         estate->es_result_relation_info->ri_junkFilter = j;
744
745                                 /* For SELECT, want to return the cleaned tuple type */
746                                 if (operation == CMD_SELECT)
747                                         tupType = j->jf_cleanTupType;
748                         }
749                 }
750                 else
751                         estate->es_junkFilter = NULL;
752         }
753
754         /*
755          * If doing SELECT INTO, initialize the "into" relation.  We must wait
756          * till now so we have the "clean" result tuple type to create the new
757          * table from.
758          *
759          * If EXPLAIN, skip creating the "into" relation.
760          */
761         intoRelationDesc = (Relation) NULL;
762
763         if (do_select_into && !explainOnly)
764         {
765                 char       *intoName;
766                 Oid                     namespaceId;
767                 AclResult       aclresult;
768                 Oid                     intoRelationId;
769                 TupleDesc       tupdesc;
770
771                 /*
772                  * find namespace to create in, check permissions
773                  */
774                 intoName = parseTree->into->relname;
775                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
776
777                 aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
778                                                                                   ACL_CREATE);
779                 if (aclresult != ACLCHECK_OK)
780                         aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
781                                                    get_namespace_name(namespaceId));
782
783                 /*
784                  * have to copy tupType to get rid of constraints
785                  */
786                 tupdesc = CreateTupleDescCopy(tupType);
787
788                 intoRelationId = heap_create_with_catalog(intoName,
789                                                                                                   namespaceId,
790                                                                                                   tupdesc,
791                                                                                                   RELKIND_RELATION,
792                                                                                                   false,
793                                                                                                   ONCOMMIT_NOOP,
794                                                                                                   allowSystemTableMods);
795
796                 FreeTupleDesc(tupdesc);
797
798                 /*
799                  * Advance command counter so that the newly-created relation's
800                  * catalog tuples will be visible to heap_open.
801                  */
802                 CommandCounterIncrement();
803
804                 /*
805                  * If necessary, create a TOAST table for the into relation. Note
806                  * that AlterTableCreateToastTable ends with
807                  * CommandCounterIncrement(), so that the TOAST table will be
808                  * visible for insertion.
809                  */
810                 AlterTableCreateToastTable(intoRelationId, true);
811
812                 /*
813                  * And open the constructed table for writing.
814                  */
815                 intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
816         }
817
818         estate->es_into_relation_descriptor = intoRelationDesc;
819
820         queryDesc->tupDesc = tupType;
821         queryDesc->planstate = planstate;
822 }
823
824 /*
825  * Initialize ResultRelInfo data for one result relation
826  */
827 static void
828 initResultRelInfo(ResultRelInfo *resultRelInfo,
829                                   Index resultRelationIndex,
830                                   List *rangeTable,
831                                   CmdType operation)
832 {
833         Oid                     resultRelationOid;
834         Relation        resultRelationDesc;
835
836         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
837         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
838
839         switch (resultRelationDesc->rd_rel->relkind)
840         {
841                 case RELKIND_SEQUENCE:
842                         ereport(ERROR,
843                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
844                                          errmsg("cannot change sequence relation \"%s\"",
845                                                   RelationGetRelationName(resultRelationDesc))));
846                         break;
847                 case RELKIND_TOASTVALUE:
848                         ereport(ERROR,
849                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
850                                          errmsg("cannot change toast relation \"%s\"",
851                                                   RelationGetRelationName(resultRelationDesc))));
852                         break;
853                 case RELKIND_VIEW:
854                         ereport(ERROR,
855                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
856                                          errmsg("cannot change view relation \"%s\"",
857                                                   RelationGetRelationName(resultRelationDesc))));
858                         break;
859         }
860
861         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
862         resultRelInfo->type = T_ResultRelInfo;
863         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
864         resultRelInfo->ri_RelationDesc = resultRelationDesc;
865         resultRelInfo->ri_NumIndices = 0;
866         resultRelInfo->ri_IndexRelationDescs = NULL;
867         resultRelInfo->ri_IndexRelationInfo = NULL;
868         /* make a copy so as not to depend on relcache info not changing... */
869         resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
870         resultRelInfo->ri_TrigFunctions = NULL;
871         resultRelInfo->ri_ConstraintExprs = NULL;
872         resultRelInfo->ri_junkFilter = NULL;
873
874         /*
875          * If there are indices on the result relation, open them and save
876          * descriptors in the result relation info, so that we can add new
877          * index entries for the tuples we add/update.  We need not do this
878          * for a DELETE, however, since deletion doesn't affect indexes.
879          */
880         if (resultRelationDesc->rd_rel->relhasindex &&
881                 operation != CMD_DELETE)
882                 ExecOpenIndices(resultRelInfo);
883 }
884
885 /* ----------------------------------------------------------------
886  *              ExecEndPlan
887  *
888  *              Cleans up the query plan -- closes files and frees up storage
889  *
890  * NOTE: we are no longer very worried about freeing storage per se
891  * in this code; FreeExecutorState should be guaranteed to release all
892  * memory that needs to be released.  What we are worried about doing
893  * is closing relations and dropping buffer pins.  Thus, for example,
894  * tuple tables must be cleared or dropped to ensure pins are released.
895  * ----------------------------------------------------------------
896  */
897 void
898 ExecEndPlan(PlanState * planstate, EState *estate)
899 {
900         ResultRelInfo *resultRelInfo;
901         int                     i;
902         List       *l;
903
904         /*
905          * shut down any PlanQual processing we were doing
906          */
907         if (estate->es_evalPlanQual != NULL)
908                 EndEvalPlanQual(estate);
909
910         /*
911          * shut down the node-type-specific query processing
912          */
913         ExecEndNode(planstate);
914
915         /*
916          * destroy the executor "tuple" table.
917          */
918         ExecDropTupleTable(estate->es_tupleTable, true);
919         estate->es_tupleTable = NULL;
920
921         /*
922          * close the result relation(s) if any, but hold locks until xact
923          * commit.
924          */
925         resultRelInfo = estate->es_result_relations;
926         for (i = estate->es_num_result_relations; i > 0; i--)
927         {
928                 /* Close indices and then the relation itself */
929                 ExecCloseIndices(resultRelInfo);
930                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
931                 resultRelInfo++;
932         }
933
934         /*
935          * close the "into" relation if necessary, again keeping lock
936          */
937         if (estate->es_into_relation_descriptor != NULL)
938                 heap_close(estate->es_into_relation_descriptor, NoLock);
939
940         /*
941          * close any relations selected FOR UPDATE, again keeping locks
942          */
943         foreach(l, estate->es_rowMark)
944         {
945                 execRowMark *erm = lfirst(l);
946
947                 heap_close(erm->relation, NoLock);
948         }
949 }
950
951 /* ----------------------------------------------------------------
952  *              ExecutePlan
953  *
954  *              processes the query plan to retrieve 'numberTuples' tuples in the
955  *              direction specified.
956  *
957  *              Retrieves all tuples if numberTuples is 0
958  *
959  *              result is either a slot containing the last tuple in the case
960  *              of a SELECT or NULL otherwise.
961  *
962  * Note: the ctid attribute is a 'junk' attribute that is removed before the
963  * user can see it
964  * ----------------------------------------------------------------
965  */
966 static TupleTableSlot *
967 ExecutePlan(EState *estate,
968                         PlanState * planstate,
969                         CmdType operation,
970                         long numberTuples,
971                         ScanDirection direction,
972                         DestReceiver *dest)
973 {
974         JunkFilter *junkfilter;
975         TupleTableSlot *slot;
976         ItemPointer tupleid = NULL;
977         ItemPointerData tuple_ctid;
978         long            current_tuple_count;
979         TupleTableSlot *result;
980
981         /*
982          * initialize local variables
983          */
984         slot = NULL;
985         current_tuple_count = 0;
986         result = NULL;
987
988         /*
989          * Set the direction.
990          */
991         estate->es_direction = direction;
992
993         /*
994          * Process BEFORE EACH STATEMENT triggers
995          */
996         switch (operation)
997         {
998                 case CMD_UPDATE:
999                         ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
1000                         break;
1001                 case CMD_DELETE:
1002                         ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
1003                         break;
1004                 case CMD_INSERT:
1005                         ExecBSInsertTriggers(estate, estate->es_result_relation_info);
1006                         break;
1007                 default:
1008                         /* do nothing */
1009                         break;
1010         }
1011
1012         /*
1013          * Loop until we've processed the proper number of tuples from the
1014          * plan.
1015          */
1016
1017         for (;;)
1018         {
1019                 /* Reset the per-output-tuple exprcontext */
1020                 ResetPerTupleExprContext(estate);
1021
1022                 /*
1023                  * Execute the plan and obtain a tuple
1024                  */
1025 lnext:  ;
1026                 if (estate->es_useEvalPlan)
1027                 {
1028                         slot = EvalPlanQualNext(estate);
1029                         if (TupIsNull(slot))
1030                                 slot = ExecProcNode(planstate);
1031                 }
1032                 else
1033                         slot = ExecProcNode(planstate);
1034
1035                 /*
1036                  * if the tuple is null, then we assume there is nothing more to
1037                  * process so we just return null...
1038                  */
1039                 if (TupIsNull(slot))
1040                 {
1041                         result = NULL;
1042                         break;
1043                 }
1044
1045                 /*
1046                  * if we have a junk filter, then project a new tuple with the
1047                  * junk removed.
1048                  *
1049                  * Store this new "clean" tuple in the junkfilter's resultSlot.
1050                  * (Formerly, we stored it back over the "dirty" tuple, which is
1051                  * WRONG because that tuple slot has the wrong descriptor.)
1052                  *
1053                  * Also, extract all the junk information we need.
1054                  */
1055                 if ((junkfilter = estate->es_junkFilter) != (JunkFilter *) NULL)
1056                 {
1057                         Datum           datum;
1058                         HeapTuple       newTuple;
1059                         bool            isNull;
1060
1061                         /*
1062                          * extract the 'ctid' junk attribute.
1063                          */
1064                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
1065                         {
1066                                 if (!ExecGetJunkAttribute(junkfilter,
1067                                                                                   slot,
1068                                                                                   "ctid",
1069                                                                                   &datum,
1070                                                                                   &isNull))
1071                                         elog(ERROR, "could not find junk ctid column");
1072
1073                                 /* shouldn't ever get a null result... */
1074                                 if (isNull)
1075                                         elog(ERROR, "ctid is NULL");
1076
1077                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1078                                 tuple_ctid = *tupleid;  /* make sure we don't free the
1079                                                                                  * ctid!! */
1080                                 tupleid = &tuple_ctid;
1081                         }
1082                         else if (estate->es_rowMark != NIL)
1083                         {
1084                                 List       *l;
1085
1086                 lmark:  ;
1087                                 foreach(l, estate->es_rowMark)
1088                                 {
1089                                         execRowMark *erm = lfirst(l);
1090                                         Buffer          buffer;
1091                                         HeapTupleData tuple;
1092                                         TupleTableSlot *newSlot;
1093                                         int                     test;
1094
1095                                         if (!ExecGetJunkAttribute(junkfilter,
1096                                                                                           slot,
1097                                                                                           erm->resname,
1098                                                                                           &datum,
1099                                                                                           &isNull))
1100                                                 elog(ERROR, "could not find junk \"%s\" column",
1101                                                          erm->resname);
1102
1103                                         /* shouldn't ever get a null result... */
1104                                         if (isNull)
1105                                                 elog(ERROR, "\"%s\" is NULL", erm->resname);
1106
1107                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1108                                         test = heap_mark4update(erm->relation, &tuple, &buffer,
1109                                                                                         estate->es_snapshot->curcid);
1110                                         ReleaseBuffer(buffer);
1111                                         switch (test)
1112                                         {
1113                                                 case HeapTupleSelfUpdated:
1114                                                         /* treat it as deleted; do not process */
1115                                                         goto lnext;
1116
1117                                                 case HeapTupleMayBeUpdated:
1118                                                         break;
1119
1120                                                 case HeapTupleUpdated:
1121                                                         if (XactIsoLevel == XACT_SERIALIZABLE)
1122                                                                 ereport(ERROR,
1123                                                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1124                                                                                  errmsg("could not serialize access due to concurrent update")));
1125                                                         if (!(ItemPointerEquals(&(tuple.t_self),
1126                                                                   (ItemPointer) DatumGetPointer(datum))))
1127                                                         {
1128                                                                 newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self));
1129                                                                 if (!(TupIsNull(newSlot)))
1130                                                                 {
1131                                                                         slot = newSlot;
1132                                                                         estate->es_useEvalPlan = true;
1133                                                                         goto lmark;
1134                                                                 }
1135                                                         }
1136
1137                                                         /*
1138                                                          * if tuple was deleted or PlanQual failed for
1139                                                          * updated tuple - we must not return this
1140                                                          * tuple!
1141                                                          */
1142                                                         goto lnext;
1143
1144                                                 default:
1145                                                         elog(ERROR, "unrecognized heap_mark4update status: %u",
1146                                                                  test);
1147                                                         return (NULL);
1148                                         }
1149                                 }
1150                         }
1151
1152                         /*
1153                          * Finally create a new "clean" tuple with all junk attributes
1154                          * removed
1155                          */
1156                         newTuple = ExecRemoveJunk(junkfilter, slot);
1157
1158                         slot = ExecStoreTuple(newTuple,         /* tuple to store */
1159                                                                   junkfilter->jf_resultSlot,    /* dest slot */
1160                                                                   InvalidBuffer,                /* this tuple has no
1161                                                                                                                  * buffer */
1162                                                                   true);                /* tuple should be pfreed */
1163                 }
1164
1165                 /*
1166                  * now that we have a tuple, do the appropriate thing with it..
1167                  * either return it to the user, add it to a relation someplace,
1168                  * delete it from a relation, or modify some of its attributes.
1169                  */
1170                 switch (operation)
1171                 {
1172                         case CMD_SELECT:
1173                                 ExecSelect(slot,        /* slot containing tuple */
1174                                                    dest,        /* destination's tuple-receiver obj */
1175                                                    estate);
1176                                 result = slot;
1177                                 break;
1178
1179                         case CMD_INSERT:
1180                                 ExecInsert(slot, tupleid, estate);
1181                                 result = NULL;
1182                                 break;
1183
1184                         case CMD_DELETE:
1185                                 ExecDelete(slot, tupleid, estate);
1186                                 result = NULL;
1187                                 break;
1188
1189                         case CMD_UPDATE:
1190                                 ExecUpdate(slot, tupleid, estate);
1191                                 result = NULL;
1192                                 break;
1193
1194                         default:
1195                                 elog(ERROR, "unrecognized operation code: %d",
1196                                          (int) operation);
1197                                 result = NULL;
1198                                 break;
1199                 }
1200
1201                 /*
1202                  * check our tuple count.. if we've processed the proper number
1203                  * then quit, else loop again and process more tuples.  Zero
1204                  * numberTuples means no limit.
1205                  */
1206                 current_tuple_count++;
1207                 if (numberTuples && numberTuples == current_tuple_count)
1208                         break;
1209         }
1210
1211         /*
1212          * Process AFTER EACH STATEMENT triggers
1213          */
1214         switch (operation)
1215         {
1216                 case CMD_UPDATE:
1217                         ExecASUpdateTriggers(estate, estate->es_result_relation_info);
1218                         break;
1219                 case CMD_DELETE:
1220                         ExecASDeleteTriggers(estate, estate->es_result_relation_info);
1221                         break;
1222                 case CMD_INSERT:
1223                         ExecASInsertTriggers(estate, estate->es_result_relation_info);
1224                         break;
1225                 default:
1226                         /* do nothing */
1227                         break;
1228         }
1229
1230         /*
1231          * here, result is either a slot containing a tuple in the case of a
1232          * SELECT or NULL otherwise.
1233          */
1234         return result;
1235 }
1236
1237 /* ----------------------------------------------------------------
1238  *              ExecSelect
1239  *
1240  *              SELECTs are easy.. we just pass the tuple to the appropriate
1241  *              print function.  The only complexity is when we do a
1242  *              "SELECT INTO", in which case we insert the tuple into
1243  *              the appropriate relation (note: this is a newly created relation
1244  *              so we don't need to worry about indices or locks.)
1245  * ----------------------------------------------------------------
1246  */
1247 static void
1248 ExecSelect(TupleTableSlot *slot,
1249                    DestReceiver *dest,
1250                    EState *estate)
1251 {
1252         HeapTuple       tuple;
1253         TupleDesc       attrtype;
1254
1255         /*
1256          * get the heap tuple out of the tuple table slot
1257          */
1258         tuple = slot->val;
1259         attrtype = slot->ttc_tupleDescriptor;
1260
1261         /*
1262          * insert the tuple into the "into relation"
1263          *
1264          * XXX this probably ought to be replaced by a separate destination
1265          */
1266         if (estate->es_into_relation_descriptor != NULL)
1267         {
1268                 heap_insert(estate->es_into_relation_descriptor, tuple,
1269                                         estate->es_snapshot->curcid);
1270                 IncrAppended();
1271         }
1272
1273         /*
1274          * send the tuple to the destination
1275          */
1276         (*dest->receiveTuple) (tuple, attrtype, dest);
1277         IncrRetrieved();
1278         (estate->es_processed)++;
1279 }
1280
1281 /* ----------------------------------------------------------------
1282  *              ExecInsert
1283  *
1284  *              INSERTs are trickier.. we have to insert the tuple into
1285  *              the base relation and insert appropriate tuples into the
1286  *              index relations.
1287  * ----------------------------------------------------------------
1288  */
1289 static void
1290 ExecInsert(TupleTableSlot *slot,
1291                    ItemPointer tupleid,
1292                    EState *estate)
1293 {
1294         HeapTuple       tuple;
1295         ResultRelInfo *resultRelInfo;
1296         Relation        resultRelationDesc;
1297         int                     numIndices;
1298         Oid                     newId;
1299
1300         /*
1301          * get the heap tuple out of the tuple table slot
1302          */
1303         tuple = slot->val;
1304
1305         /*
1306          * get information on the (current) result relation
1307          */
1308         resultRelInfo = estate->es_result_relation_info;
1309         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1310
1311         /* BEFORE ROW INSERT Triggers */
1312         if (resultRelInfo->ri_TrigDesc &&
1313           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1314         {
1315                 HeapTuple       newtuple;
1316
1317                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1318
1319                 if (newtuple == NULL)   /* "do nothing" */
1320                         return;
1321
1322                 if (newtuple != tuple)  /* modified by Trigger(s) */
1323                 {
1324                         /*
1325                          * Insert modified tuple into tuple table slot, replacing the
1326                          * original.  We assume that it was allocated in per-tuple
1327                          * memory context, and therefore will go away by itself. The
1328                          * tuple table slot should not try to clear it.
1329                          */
1330                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1331                         tuple = newtuple;
1332                 }
1333         }
1334
1335         /*
1336          * Check the constraints of the tuple
1337          */
1338         if (resultRelationDesc->rd_att->constr)
1339                 ExecConstraints(resultRelInfo, slot, estate);
1340
1341         /*
1342          * insert the tuple
1343          */
1344         newId = heap_insert(resultRelationDesc, tuple,
1345                                                 estate->es_snapshot->curcid);
1346
1347         IncrAppended();
1348         (estate->es_processed)++;
1349         estate->es_lastoid = newId;
1350         setLastTid(&(tuple->t_self));
1351
1352         /*
1353          * process indices
1354          *
1355          * Note: heap_insert adds a new tuple to a relation.  As a side effect,
1356          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1357          * field.
1358          */
1359         numIndices = resultRelInfo->ri_NumIndices;
1360         if (numIndices > 0)
1361                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1362
1363         /* AFTER ROW INSERT Triggers */
1364         ExecARInsertTriggers(estate, resultRelInfo, tuple);
1365 }
1366
1367 /* ----------------------------------------------------------------
1368  *              ExecDelete
1369  *
1370  *              DELETE is like UPDATE, we delete the tuple and its
1371  *              index tuples.
1372  * ----------------------------------------------------------------
1373  */
1374 static void
1375 ExecDelete(TupleTableSlot *slot,
1376                    ItemPointer tupleid,
1377                    EState *estate)
1378 {
1379         ResultRelInfo *resultRelInfo;
1380         Relation        resultRelationDesc;
1381         ItemPointerData ctid;
1382         int                     result;
1383
1384         /*
1385          * get information on the (current) result relation
1386          */
1387         resultRelInfo = estate->es_result_relation_info;
1388         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1389
1390         /* BEFORE ROW DELETE Triggers */
1391         if (resultRelInfo->ri_TrigDesc &&
1392           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1393         {
1394                 bool            dodelete;
1395
1396                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
1397                                                                                 estate->es_snapshot->curcid);
1398
1399                 if (!dodelete)                  /* "do nothing" */
1400                         return;
1401         }
1402
1403         /*
1404          * delete the tuple
1405          */
1406 ldelete:;
1407         result = heap_delete(resultRelationDesc, tupleid,
1408                                                  &ctid,
1409                                                  estate->es_snapshot->curcid);
1410         switch (result)
1411         {
1412                 case HeapTupleSelfUpdated:
1413                         /* already deleted by self; nothing to do */
1414                         return;
1415
1416                 case HeapTupleMayBeUpdated:
1417                         break;
1418
1419                 case HeapTupleUpdated:
1420                         if (XactIsoLevel == XACT_SERIALIZABLE)
1421                                 ereport(ERROR,
1422                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1423                                                  errmsg("could not serialize access due to concurrent update")));
1424                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1425                         {
1426                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1427                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1428
1429                                 if (!TupIsNull(epqslot))
1430                                 {
1431                                         *tupleid = ctid;
1432                                         goto ldelete;
1433                                 }
1434                         }
1435                         /* tuple already deleted; nothing to do */
1436                         return;
1437
1438                 default:
1439                         elog(ERROR, "unrecognized heap_delete status: %u", result);
1440                         return;
1441         }
1442
1443         IncrDeleted();
1444         (estate->es_processed)++;
1445
1446         /*
1447          * Note: Normally one would think that we have to delete index tuples
1448          * associated with the heap tuple now..
1449          *
1450          * ... but in POSTGRES, we have no need to do this because the vacuum
1451          * daemon automatically opens an index scan and deletes index tuples
1452          * when it finds deleted heap tuples. -cim 9/27/89
1453          */
1454
1455         /* AFTER ROW DELETE Triggers */
1456         ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1457 }
1458
1459 /* ----------------------------------------------------------------
1460  *              ExecUpdate
1461  *
1462  *              note: we can't run UPDATE queries with transactions
1463  *              off because UPDATEs are actually INSERTs and our
1464  *              scan will mistakenly loop forever, updating the tuple
1465  *              it just inserted..      This should be fixed but until it
1466  *              is, we don't want to get stuck in an infinite loop
1467  *              which corrupts your database..
1468  * ----------------------------------------------------------------
1469  */
1470 static void
1471 ExecUpdate(TupleTableSlot *slot,
1472                    ItemPointer tupleid,
1473                    EState *estate)
1474 {
1475         HeapTuple       tuple;
1476         ResultRelInfo *resultRelInfo;
1477         Relation        resultRelationDesc;
1478         ItemPointerData ctid;
1479         int                     result;
1480         int                     numIndices;
1481
1482         /*
1483          * abort the operation if not running transactions
1484          */
1485         if (IsBootstrapProcessingMode())
1486                 elog(ERROR, "cannot UPDATE during bootstrap");
1487
1488         /*
1489          * get the heap tuple out of the tuple table slot
1490          */
1491         tuple = slot->val;
1492
1493         /*
1494          * get information on the (current) result relation
1495          */
1496         resultRelInfo = estate->es_result_relation_info;
1497         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1498
1499         /* BEFORE ROW UPDATE Triggers */
1500         if (resultRelInfo->ri_TrigDesc &&
1501           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1502         {
1503                 HeapTuple       newtuple;
1504
1505                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1506                                                                                 tupleid, tuple,
1507                                                                                 estate->es_snapshot->curcid);
1508
1509                 if (newtuple == NULL)   /* "do nothing" */
1510                         return;
1511
1512                 if (newtuple != tuple)  /* modified by Trigger(s) */
1513                 {
1514                         /*
1515                          * Insert modified tuple into tuple table slot, replacing the
1516                          * original.  We assume that it was allocated in per-tuple
1517                          * memory context, and therefore will go away by itself. The
1518                          * tuple table slot should not try to clear it.
1519                          */
1520                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1521                         tuple = newtuple;
1522                 }
1523         }
1524
1525         /*
1526          * Check the constraints of the tuple
1527          *
1528          * If we generate a new candidate tuple after EvalPlanQual testing, we
1529          * must loop back here and recheck constraints.  (We don't need to
1530          * redo triggers, however.      If there are any BEFORE triggers then
1531          * trigger.c will have done mark4update to lock the correct tuple, so
1532          * there's no need to do them again.)
1533          */
1534 lreplace:;
1535         if (resultRelationDesc->rd_att->constr)
1536                 ExecConstraints(resultRelInfo, slot, estate);
1537
1538         /*
1539          * replace the heap tuple
1540          */
1541         result = heap_update(resultRelationDesc, tupleid, tuple,
1542                                                  &ctid,
1543                                                  estate->es_snapshot->curcid);
1544         switch (result)
1545         {
1546                 case HeapTupleSelfUpdated:
1547                         /* already deleted by self; nothing to do */
1548                         return;
1549
1550                 case HeapTupleMayBeUpdated:
1551                         break;
1552
1553                 case HeapTupleUpdated:
1554                         if (XactIsoLevel == XACT_SERIALIZABLE)
1555                                 ereport(ERROR,
1556                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1557                                                  errmsg("could not serialize access due to concurrent update")));
1558                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1559                         {
1560                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1561                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1562
1563                                 if (!TupIsNull(epqslot))
1564                                 {
1565                                         *tupleid = ctid;
1566                                         tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot);
1567                                         slot = ExecStoreTuple(tuple,
1568                                                                         estate->es_junkFilter->jf_resultSlot,
1569                                                                                   InvalidBuffer, true);
1570                                         goto lreplace;
1571                                 }
1572                         }
1573                         /* tuple already deleted; nothing to do */
1574                         return;
1575
1576                 default:
1577                         elog(ERROR, "unrecognized heap_update status: %u", result);
1578                         return;
1579         }
1580
1581         IncrReplaced();
1582         (estate->es_processed)++;
1583
1584         /*
1585          * Note: instead of having to update the old index tuples associated
1586          * with the heap tuple, all we do is form and insert new index tuples.
1587          * This is because UPDATEs are actually DELETEs and INSERTs and index
1588          * tuple deletion is done automagically by the vacuum daemon. All we
1589          * do is insert new index tuples.  -cim 9/27/89
1590          */
1591
1592         /*
1593          * process indices
1594          *
1595          * heap_update updates a tuple in the base relation by invalidating it
1596          * and then inserting a new tuple to the relation.      As a side effect,
1597          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1598          * field.  So we now insert index tuples using the new tupleid stored
1599          * there.
1600          */
1601
1602         numIndices = resultRelInfo->ri_NumIndices;
1603         if (numIndices > 0)
1604                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1605
1606         /* AFTER ROW UPDATE Triggers */
1607         ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1608 }
1609
1610 static const char *
1611 ExecRelCheck(ResultRelInfo *resultRelInfo,
1612                          TupleTableSlot *slot, EState *estate)
1613 {
1614         Relation        rel = resultRelInfo->ri_RelationDesc;
1615         int                     ncheck = rel->rd_att->constr->num_check;
1616         ConstrCheck *check = rel->rd_att->constr->check;
1617         ExprContext *econtext;
1618         MemoryContext oldContext;
1619         List       *qual;
1620         int                     i;
1621
1622         /*
1623          * If first time through for this result relation, build expression
1624          * nodetrees for rel's constraint expressions.  Keep them in the
1625          * per-query memory context so they'll survive throughout the query.
1626          */
1627         if (resultRelInfo->ri_ConstraintExprs == NULL)
1628         {
1629                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1630                 resultRelInfo->ri_ConstraintExprs =
1631                         (List **) palloc(ncheck * sizeof(List *));
1632                 for (i = 0; i < ncheck; i++)
1633                 {
1634                         qual = (List *) stringToNode(check[i].ccbin);
1635                         resultRelInfo->ri_ConstraintExprs[i] = (List *)
1636                                 ExecPrepareExpr((Expr *) qual, estate);
1637                 }
1638                 MemoryContextSwitchTo(oldContext);
1639         }
1640
1641         /*
1642          * We will use the EState's per-tuple context for evaluating
1643          * constraint expressions (creating it if it's not already there).
1644          */
1645         econtext = GetPerTupleExprContext(estate);
1646
1647         /* Arrange for econtext's scan tuple to be the tuple under test */
1648         econtext->ecxt_scantuple = slot;
1649
1650         /* And evaluate the constraints */
1651         for (i = 0; i < ncheck; i++)
1652         {
1653                 qual = resultRelInfo->ri_ConstraintExprs[i];
1654
1655                 /*
1656                  * NOTE: SQL92 specifies that a NULL result from a constraint
1657                  * expression is not to be treated as a failure.  Therefore, tell
1658                  * ExecQual to return TRUE for NULL.
1659                  */
1660                 if (!ExecQual(qual, econtext, true))
1661                         return check[i].ccname;
1662         }
1663
1664         /* NULL result means no error */
1665         return NULL;
1666 }
1667
1668 void
1669 ExecConstraints(ResultRelInfo *resultRelInfo,
1670                                 TupleTableSlot *slot, EState *estate)
1671 {
1672         Relation        rel = resultRelInfo->ri_RelationDesc;
1673         HeapTuple       tuple = slot->val;
1674         TupleConstr *constr = rel->rd_att->constr;
1675
1676         Assert(constr);
1677
1678         if (constr->has_not_null)
1679         {
1680                 int                     natts = rel->rd_att->natts;
1681                 int                     attrChk;
1682
1683                 for (attrChk = 1; attrChk <= natts; attrChk++)
1684                 {
1685                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1686                                 heap_attisnull(tuple, attrChk))
1687                                 ereport(ERROR,
1688                                                 (errcode(ERRCODE_NOT_NULL_VIOLATION),
1689                                                  errmsg("null value for attribute \"%s\" violates NOT NULL constraint",
1690                                         NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
1691                 }
1692         }
1693
1694         if (constr->num_check > 0)
1695         {
1696                 const char *failed;
1697
1698                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1699                         ereport(ERROR,
1700                                         (errcode(ERRCODE_CHECK_VIOLATION),
1701                                          errmsg("new row for relation \"%s\" violates CHECK constraint \"%s\"",
1702                                                         RelationGetRelationName(rel), failed)));
1703         }
1704 }
1705
1706 /*
1707  * Check a modified tuple to see if we want to process its updated version
1708  * under READ COMMITTED rules.
1709  *
1710  * See backend/executor/README for some info about how this works.
1711  */
1712 TupleTableSlot *
1713 EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
1714 {
1715         evalPlanQual *epq;
1716         EState     *epqstate;
1717         Relation        relation;
1718         HeapTupleData tuple;
1719         HeapTuple       copyTuple = NULL;
1720         bool            endNode;
1721
1722         Assert(rti != 0);
1723
1724         /*
1725          * find relation containing target tuple
1726          */
1727         if (estate->es_result_relation_info != NULL &&
1728                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1729                 relation = estate->es_result_relation_info->ri_RelationDesc;
1730         else
1731         {
1732                 List       *l;
1733
1734                 relation = NULL;
1735                 foreach(l, estate->es_rowMark)
1736                 {
1737                         if (((execRowMark *) lfirst(l))->rti == rti)
1738                         {
1739                                 relation = ((execRowMark *) lfirst(l))->relation;
1740                                 break;
1741                         }
1742                 }
1743                 if (relation == NULL)
1744                         elog(ERROR, "could not find RowMark for RT index %u", rti);
1745         }
1746
1747         /*
1748          * fetch tid tuple
1749          *
1750          * Loop here to deal with updated or busy tuples
1751          */
1752         tuple.t_self = *tid;
1753         for (;;)
1754         {
1755                 Buffer          buffer;
1756
1757                 if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, false, NULL))
1758                 {
1759                         TransactionId xwait = SnapshotDirty->xmax;
1760
1761                         /* xmin should not be dirty... */
1762                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1763                                 elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
1764
1765                         /*
1766                          * If tuple is being updated by other transaction then we have
1767                          * to wait for its commit/abort.
1768                          */
1769                         if (TransactionIdIsValid(xwait))
1770                         {
1771                                 ReleaseBuffer(buffer);
1772                                 XactLockTableWait(xwait);
1773                                 continue;
1774                         }
1775
1776                         /*
1777                          * We got tuple - now copy it for use by recheck query.
1778                          */
1779                         copyTuple = heap_copytuple(&tuple);
1780                         ReleaseBuffer(buffer);
1781                         break;
1782                 }
1783
1784                 /*
1785                  * Oops! Invalid tuple. Have to check is it updated or deleted.
1786                  * Note that it's possible to get invalid SnapshotDirty->tid if
1787                  * tuple updated by this transaction. Have we to check this ?
1788                  */
1789                 if (ItemPointerIsValid(&(SnapshotDirty->tid)) &&
1790                         !(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid))))
1791                 {
1792                         /* updated, so look at the updated copy */
1793                         tuple.t_self = SnapshotDirty->tid;
1794                         continue;
1795                 }
1796
1797                 /*
1798                  * Deleted or updated by this transaction; forget it.
1799                  */
1800                 return NULL;
1801         }
1802
1803         /*
1804          * For UPDATE/DELETE we have to return tid of actual row we're
1805          * executing PQ for.
1806          */
1807         *tid = tuple.t_self;
1808
1809         /*
1810          * Need to run a recheck subquery.      Find or create a PQ stack entry.
1811          */
1812         epq = estate->es_evalPlanQual;
1813         endNode = true;
1814
1815         if (epq != NULL && epq->rti == 0)
1816         {
1817                 /* Top PQ stack entry is idle, so re-use it */
1818                 Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
1819                 epq->rti = rti;
1820                 endNode = false;
1821         }
1822
1823         /*
1824          * If this is request for another RTE - Ra, - then we have to check
1825          * wasn't PlanQual requested for Ra already and if so then Ra' row was
1826          * updated again and we have to re-start old execution for Ra and
1827          * forget all what we done after Ra was suspended. Cool? -:))
1828          */
1829         if (epq != NULL && epq->rti != rti &&
1830                 epq->estate->es_evTuple[rti - 1] != NULL)
1831         {
1832                 do
1833                 {
1834                         evalPlanQual *oldepq;
1835
1836                         /* stop execution */
1837                         EvalPlanQualStop(epq);
1838                         /* pop previous PlanQual from the stack */
1839                         oldepq = epq->next;
1840                         Assert(oldepq && oldepq->rti != 0);
1841                         /* push current PQ to freePQ stack */
1842                         oldepq->free = epq;
1843                         epq = oldepq;
1844                         estate->es_evalPlanQual = epq;
1845                 } while (epq->rti != rti);
1846         }
1847
1848         /*
1849          * If we are requested for another RTE then we have to suspend
1850          * execution of current PlanQual and start execution for new one.
1851          */
1852         if (epq == NULL || epq->rti != rti)
1853         {
1854                 /* try to reuse plan used previously */
1855                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
1856
1857                 if (newepq == NULL)             /* first call or freePQ stack is empty */
1858                 {
1859                         newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
1860                         newepq->free = NULL;
1861                         newepq->estate = NULL;
1862                         newepq->planstate = NULL;
1863                 }
1864                 else
1865                 {
1866                         /* recycle previously used PlanQual */
1867                         Assert(newepq->estate == NULL);
1868                         epq->free = NULL;
1869                 }
1870                 /* push current PQ to the stack */
1871                 newepq->next = epq;
1872                 epq = newepq;
1873                 estate->es_evalPlanQual = epq;
1874                 epq->rti = rti;
1875                 endNode = false;
1876         }
1877
1878         Assert(epq->rti == rti);
1879
1880         /*
1881          * Ok - we're requested for the same RTE.  Unfortunately we still have
1882          * to end and restart execution of the plan, because ExecReScan
1883          * wouldn't ensure that upper plan nodes would reset themselves.  We
1884          * could make that work if insertion of the target tuple were
1885          * integrated with the Param mechanism somehow, so that the upper plan
1886          * nodes know that their children's outputs have changed.
1887          *
1888          * Note that the stack of free evalPlanQual nodes is quite useless at the
1889          * moment, since it only saves us from pallocing/releasing the
1890          * evalPlanQual nodes themselves.  But it will be useful once we
1891          * implement ReScan instead of end/restart for re-using PlanQual
1892          * nodes.
1893          */
1894         if (endNode)
1895         {
1896                 /* stop execution */
1897                 EvalPlanQualStop(epq);
1898         }
1899
1900         /*
1901          * Initialize new recheck query.
1902          *
1903          * Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
1904          * instead copy down changeable state from the top plan (including
1905          * es_result_relation_info, es_junkFilter) and reset locally
1906          * changeable state in the epq (including es_param_exec_vals,
1907          * es_evTupleNull).
1908          */
1909         EvalPlanQualStart(epq, estate, epq->next);
1910
1911         /*
1912          * free old RTE' tuple, if any, and store target tuple where
1913          * relation's scan node will see it
1914          */
1915         epqstate = epq->estate;
1916         if (epqstate->es_evTuple[rti - 1] != NULL)
1917                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
1918         epqstate->es_evTuple[rti - 1] = copyTuple;
1919
1920         return EvalPlanQualNext(estate);
1921 }
1922
1923 static TupleTableSlot *
1924 EvalPlanQualNext(EState *estate)
1925 {
1926         evalPlanQual *epq = estate->es_evalPlanQual;
1927         MemoryContext oldcontext;
1928         TupleTableSlot *slot;
1929
1930         Assert(epq->rti != 0);
1931
1932 lpqnext:;
1933         oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
1934         slot = ExecProcNode(epq->planstate);
1935         MemoryContextSwitchTo(oldcontext);
1936
1937         /*
1938          * No more tuples for this PQ. Continue previous one.
1939          */
1940         if (TupIsNull(slot))
1941         {
1942                 evalPlanQual *oldepq;
1943
1944                 /* stop execution */
1945                 EvalPlanQualStop(epq);
1946                 /* pop old PQ from the stack */
1947                 oldepq = epq->next;
1948                 if (oldepq == NULL)
1949                 {
1950                         /* this is the first (oldest) PQ - mark as free */
1951                         epq->rti = 0;
1952                         estate->es_useEvalPlan = false;
1953                         /* and continue Query execution */
1954                         return (NULL);
1955                 }
1956                 Assert(oldepq->rti != 0);
1957                 /* push current PQ to freePQ stack */
1958                 oldepq->free = epq;
1959                 epq = oldepq;
1960                 estate->es_evalPlanQual = epq;
1961                 goto lpqnext;
1962         }
1963
1964         return (slot);
1965 }
1966
1967 static void
1968 EndEvalPlanQual(EState *estate)
1969 {
1970         evalPlanQual *epq = estate->es_evalPlanQual;
1971
1972         if (epq->rti == 0)                      /* plans already shutdowned */
1973         {
1974                 Assert(epq->next == NULL);
1975                 return;
1976         }
1977
1978         for (;;)
1979         {
1980                 evalPlanQual *oldepq;
1981
1982                 /* stop execution */
1983                 EvalPlanQualStop(epq);
1984                 /* pop old PQ from the stack */
1985                 oldepq = epq->next;
1986                 if (oldepq == NULL)
1987                 {
1988                         /* this is the first (oldest) PQ - mark as free */
1989                         epq->rti = 0;
1990                         estate->es_useEvalPlan = false;
1991                         break;
1992                 }
1993                 Assert(oldepq->rti != 0);
1994                 /* push current PQ to freePQ stack */
1995                 oldepq->free = epq;
1996                 epq = oldepq;
1997                 estate->es_evalPlanQual = epq;
1998         }
1999 }
2000
2001 /*
2002  * Start execution of one level of PlanQual.
2003  *
2004  * This is a cut-down version of ExecutorStart(): we copy some state from
2005  * the top-level estate rather than initializing it fresh.
2006  */
2007 static void
2008 EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
2009 {
2010         EState     *epqstate;
2011         int                     rtsize;
2012         MemoryContext oldcontext;
2013
2014         rtsize = length(estate->es_range_table);
2015
2016         epq->estate = epqstate = CreateExecutorState();
2017
2018         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2019
2020         /*
2021          * The epqstates share the top query's copy of unchanging state such
2022          * as the snapshot, rangetable, result-rel info, and external Param
2023          * info. They need their own copies of local state, including a tuple
2024          * table, es_param_exec_vals, etc.
2025          */
2026         epqstate->es_direction = ForwardScanDirection;
2027         epqstate->es_snapshot = estate->es_snapshot;
2028         epqstate->es_range_table = estate->es_range_table;
2029         epqstate->es_result_relations = estate->es_result_relations;
2030         epqstate->es_num_result_relations = estate->es_num_result_relations;
2031         epqstate->es_result_relation_info = estate->es_result_relation_info;
2032         epqstate->es_junkFilter = estate->es_junkFilter;
2033         epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
2034         epqstate->es_param_list_info = estate->es_param_list_info;
2035         if (estate->es_topPlan->nParamExec > 0)
2036                 epqstate->es_param_exec_vals = (ParamExecData *)
2037                         palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
2038         epqstate->es_rowMark = estate->es_rowMark;
2039         epqstate->es_instrument = estate->es_instrument;
2040         epqstate->es_force_oids = estate->es_force_oids;
2041         epqstate->es_topPlan = estate->es_topPlan;
2042
2043         /*
2044          * Each epqstate must have its own es_evTupleNull state, but all the
2045          * stack entries share es_evTuple state.  This allows sub-rechecks to
2046          * inherit the value being examined by an outer recheck.
2047          */
2048         epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
2049         if (priorepq == NULL)
2050                 /* first PQ stack entry */
2051                 epqstate->es_evTuple = (HeapTuple *)
2052                         palloc0(rtsize * sizeof(HeapTuple));
2053         else
2054                 /* later stack entries share the same storage */
2055                 epqstate->es_evTuple = priorepq->estate->es_evTuple;
2056
2057         epqstate->es_tupleTable =
2058                 ExecCreateTupleTable(estate->es_tupleTable->size);
2059
2060         epq->planstate = ExecInitNode(estate->es_topPlan, epqstate);
2061
2062         MemoryContextSwitchTo(oldcontext);
2063 }
2064
2065 /*
2066  * End execution of one level of PlanQual.
2067  *
2068  * This is a cut-down version of ExecutorEnd(); basically we want to do most
2069  * of the normal cleanup, but *not* close result relations (which we are
2070  * just sharing from the outer query).
2071  */
2072 static void
2073 EvalPlanQualStop(evalPlanQual *epq)
2074 {
2075         EState     *epqstate = epq->estate;
2076         MemoryContext oldcontext;
2077
2078         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2079
2080         ExecEndNode(epq->planstate);
2081
2082         ExecDropTupleTable(epqstate->es_tupleTable, true);
2083         epqstate->es_tupleTable = NULL;
2084
2085         if (epqstate->es_evTuple[epq->rti - 1] != NULL)
2086         {
2087                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
2088                 epqstate->es_evTuple[epq->rti - 1] = NULL;
2089         }
2090
2091         MemoryContextSwitchTo(oldcontext);
2092
2093         FreeExecutorState(epqstate);
2094
2095         epq->estate = NULL;
2096         epq->planstate = NULL;
2097 }