OSDN Git Service

Merge remote branch 'origin/master' into pipe-video
[android-x86/external-mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2  * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3  * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_framebuffer.h"
27 #include "util/u_math.h"
28 #include "util/u_mm.h"
29 #include "util/u_memory.h"
30 #include "util/u_pack_color.h"
31
32 #include "tgsi/tgsi_parse.h"
33
34 #include "pipe/p_config.h"
35
36 #include "r300_cb.h"
37 #include "r300_context.h"
38 #include "r300_emit.h"
39 #include "r300_reg.h"
40 #include "r300_screen.h"
41 #include "r300_screen_buffer.h"
42 #include "r300_state_inlines.h"
43 #include "r300_fs.h"
44 #include "r300_texture.h"
45 #include "r300_vs.h"
46 #include "r300_winsys.h"
47 #include "r300_hyperz.h"
48
49 /* r300_state: Functions used to intialize state context by translating
50  * Gallium state objects into semi-native r300 state objects. */
51
52 #define UPDATE_STATE(cso, atom) \
53     if (cso != atom.state) { \
54         atom.state = cso;    \
55         r300_mark_atom_dirty(r300, &(atom));   \
56     }
57
58 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
59                                             unsigned dstRGB, unsigned dstA)
60 {
61     /* If the blend equation is ADD or REVERSE_SUBTRACT,
62      * SRC_ALPHA == 0, and the following state is set, the colorbuffer
63      * will not be changed.
64      * Notice that the dst factors are the src factors inverted. */
65     return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
66             srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
67             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
68            (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
69             srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
70             srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
71             srcA == PIPE_BLENDFACTOR_ZERO) &&
72            (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
73             dstRGB == PIPE_BLENDFACTOR_ONE) &&
74            (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
75             dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
76             dstA == PIPE_BLENDFACTOR_ONE);
77 }
78
79 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
80                                             unsigned dstRGB, unsigned dstA)
81 {
82     /* If the blend equation is ADD or REVERSE_SUBTRACT,
83      * SRC_ALPHA == 1, and the following state is set, the colorbuffer
84      * will not be changed.
85      * Notice that the dst factors are the src factors inverted. */
86     return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
87             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
88            (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
89             srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
90             srcA == PIPE_BLENDFACTOR_ZERO) &&
91            (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
92             dstRGB == PIPE_BLENDFACTOR_ONE) &&
93            (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
94             dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
95             dstA == PIPE_BLENDFACTOR_ONE);
96 }
97
98 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
99                                             unsigned dstRGB, unsigned dstA)
100 {
101     /* If the blend equation is ADD or REVERSE_SUBTRACT,
102      * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
103      * will not be changed.
104      * Notice that the dst factors are the src factors inverted. */
105     return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
106             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
107            (srcA == PIPE_BLENDFACTOR_ZERO) &&
108            (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
109             dstRGB == PIPE_BLENDFACTOR_ONE) &&
110            (dstA == PIPE_BLENDFACTOR_ONE);
111 }
112
113 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
114                                             unsigned dstRGB, unsigned dstA)
115 {
116     /* If the blend equation is ADD or REVERSE_SUBTRACT,
117      * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
118      * will not be changed.
119      * Notice that the dst factors are the src factors inverted. */
120     return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
121             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
122            (srcA == PIPE_BLENDFACTOR_ZERO) &&
123            (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
124             dstRGB == PIPE_BLENDFACTOR_ONE) &&
125            (dstA == PIPE_BLENDFACTOR_ONE);
126 }
127
128 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
129                                                   unsigned dstRGB, unsigned dstA)
130 {
131     /* If the blend equation is ADD or REVERSE_SUBTRACT,
132      * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
133      * the colorbuffer will not be changed.
134      * Notice that the dst factors are the src factors inverted. */
135     return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
136             srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
137             srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
138             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
139            (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
140             srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
141             srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
142             srcA == PIPE_BLENDFACTOR_ZERO) &&
143            (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
144             dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
145             dstRGB == PIPE_BLENDFACTOR_ONE) &&
146            (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
147             dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
148             dstA == PIPE_BLENDFACTOR_ONE);
149 }
150
151 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
152                                                   unsigned dstRGB, unsigned dstA)
153 {
154     /* If the blend equation is ADD or REVERSE_SUBTRACT,
155      * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
156      * the colorbuffer will not be changed.
157      * Notice that the dst factors are the src factors inverted. */
158     return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
159             srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
160             srcRGB == PIPE_BLENDFACTOR_ZERO) &&
161            (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
162             srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
163             srcA == PIPE_BLENDFACTOR_ZERO) &&
164            (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
165             dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
166             dstRGB == PIPE_BLENDFACTOR_ONE) &&
167            (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
168             dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
169             dstA == PIPE_BLENDFACTOR_ONE);
170 }
171
172 static unsigned bgra_cmask(unsigned mask)
173 {
174     /* Gallium uses RGBA color ordering while R300 expects BGRA. */
175
176     return ((mask & PIPE_MASK_R) << 2) |
177            ((mask & PIPE_MASK_B) >> 2) |
178            (mask & (PIPE_MASK_G | PIPE_MASK_A));
179 }
180
181 /* Create a new blend state based on the CSO blend state.
182  *
183  * This encompasses alpha blending, logic/raster ops, and blend dithering. */
184 static void* r300_create_blend_state(struct pipe_context* pipe,
185                                      const struct pipe_blend_state* state)
186 {
187     struct r300_screen* r300screen = r300_screen(pipe->screen);
188     struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
189     uint32_t blend_control = 0;       /* R300_RB3D_CBLEND: 0x4e04 */
190     uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
191     uint32_t color_channel_mask = 0;  /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */
192     uint32_t rop = 0;                 /* R300_RB3D_ROPCNTL: 0x4e18 */
193     uint32_t dither = 0;              /* R300_RB3D_DITHER_CTL: 0x4e50 */
194     CB_LOCALS;
195
196     if (state->rt[0].blend_enable)
197     {
198         unsigned eqRGB = state->rt[0].rgb_func;
199         unsigned srcRGB = state->rt[0].rgb_src_factor;
200         unsigned dstRGB = state->rt[0].rgb_dst_factor;
201
202         unsigned eqA = state->rt[0].alpha_func;
203         unsigned srcA = state->rt[0].alpha_src_factor;
204         unsigned dstA = state->rt[0].alpha_dst_factor;
205
206         /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
207          * this is just the crappy D3D naming */
208         blend_control = R300_ALPHA_BLEND_ENABLE |
209             r300_translate_blend_function(eqRGB) |
210             ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
211             ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
212
213         /* Optimization: some operations do not require the destination color.
214          *
215          * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
216          * otherwise blending gives incorrect results. It seems to be
217          * a hardware bug. */
218         if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
219             eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
220             dstRGB != PIPE_BLENDFACTOR_ZERO ||
221             dstA != PIPE_BLENDFACTOR_ZERO ||
222             srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
223             srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
224             srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
225             srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
226             srcA == PIPE_BLENDFACTOR_DST_COLOR ||
227             srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
228             srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
229             srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
230             srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
231             /* Enable reading from the colorbuffer. */
232             blend_control |= R300_READ_ENABLE;
233
234             if (r300screen->caps.is_r500) {
235                 /* Optimization: Depending on incoming pixels, we can
236                  * conditionally disable the reading in hardware... */
237                 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
238                     eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
239                     /* Disable reading if SRC_ALPHA == 0. */
240                     if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
241                          dstRGB == PIPE_BLENDFACTOR_ZERO) &&
242                         (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
243                          dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
244                          dstA == PIPE_BLENDFACTOR_ZERO)) {
245                          blend_control |= R500_SRC_ALPHA_0_NO_READ;
246                     }
247
248                     /* Disable reading if SRC_ALPHA == 1. */
249                     if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
250                          dstRGB == PIPE_BLENDFACTOR_ZERO) &&
251                         (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
252                          dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
253                          dstA == PIPE_BLENDFACTOR_ZERO)) {
254                          blend_control |= R500_SRC_ALPHA_1_NO_READ;
255                     }
256                 }
257             }
258         }
259
260         /* Optimization: discard pixels which don't change the colorbuffer.
261          *
262          * The code below is non-trivial and some math is involved.
263          *
264          * Discarding pixels must be disabled when FP16 AA is enabled.
265          * This is a hardware bug. Also, this implementation wouldn't work
266          * with FP blending enabled and equation clamping disabled.
267          *
268          * Equations other than ADD are rarely used and therefore won't be
269          * optimized. */
270         if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
271             (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
272             /* ADD: X+Y
273              * REVERSE_SUBTRACT: Y-X
274              *
275              * The idea is:
276              * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
277              * then CB will not be changed.
278              *
279              * Given the srcFactor and dstFactor variables, we can derive
280              * what src and dst should be equal to and discard appropriate
281              * pixels.
282              */
283             if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
284                 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
285             } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
286                                                     dstRGB, dstA)) {
287                 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
288             } else if (blend_discard_if_src_color_0(srcRGB, srcA,
289                                                     dstRGB, dstA)) {
290                 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
291             } else if (blend_discard_if_src_color_1(srcRGB, srcA,
292                                                     dstRGB, dstA)) {
293                 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
294             } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
295                                                           dstRGB, dstA)) {
296                 blend_control |=
297                     R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
298             } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
299                                                           dstRGB, dstA)) {
300                 blend_control |=
301                     R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
302             }
303         }
304
305         /* separate alpha */
306         if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
307             blend_control |= R300_SEPARATE_ALPHA_ENABLE;
308             alpha_blend_control =
309                 r300_translate_blend_function(eqA) |
310                 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
311                 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
312         }
313     }
314
315     /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
316     if (state->logicop_enable) {
317         rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
318                 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
319     }
320
321     /* Color channel masks for all MRTs. */
322     color_channel_mask = bgra_cmask(state->rt[0].colormask);
323     if (r300screen->caps.is_r500 && state->independent_blend_enable) {
324         if (state->rt[1].blend_enable) {
325             color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
326         }
327         if (state->rt[2].blend_enable) {
328             color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
329         }
330         if (state->rt[3].blend_enable) {
331             color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
332         }
333     }
334
335     /* Neither fglrx nor classic r300 ever set this, regardless of dithering
336      * state. Since it's an optional implementation detail, we can leave it
337      * out and never dither.
338      *
339      * This could be revisited if we ever get quality or conformance hints.
340      *
341     if (state->dither) {
342         dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
343                         R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
344     }
345     */
346
347     /* Build a command buffer. */
348     BEGIN_CB(blend->cb, 8);
349     OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
350     OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
351     OUT_CB(blend_control);
352     OUT_CB(alpha_blend_control);
353     OUT_CB(color_channel_mask);
354     OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
355     END_CB;
356
357     /* The same as above, but with no colorbuffer reads and writes. */
358     BEGIN_CB(blend->cb_no_readwrite, 8);
359     OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
360     OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
361     OUT_CB(0);
362     OUT_CB(0);
363     OUT_CB(0);
364     OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
365     END_CB;
366
367     return (void*)blend;
368 }
369
370 /* Bind blend state. */
371 static void r300_bind_blend_state(struct pipe_context* pipe,
372                                   void* state)
373 {
374     struct r300_context* r300 = r300_context(pipe);
375
376     UPDATE_STATE(state, r300->blend_state);
377 }
378
379 /* Free blend state. */
380 static void r300_delete_blend_state(struct pipe_context* pipe,
381                                     void* state)
382 {
383     FREE(state);
384 }
385
386 /* Convert float to 10bit integer */
387 static unsigned float_to_fixed10(float f)
388 {
389     return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
390 }
391
392 /* Set blend color.
393  * Setup both R300 and R500 registers, figure out later which one to write. */
394 static void r300_set_blend_color(struct pipe_context* pipe,
395                                  const struct pipe_blend_color* color)
396 {
397     struct r300_context* r300 = r300_context(pipe);
398     struct r300_blend_color_state* state =
399         (struct r300_blend_color_state*)r300->blend_color_state.state;
400     CB_LOCALS;
401
402     if (r300->screen->caps.is_r500) {
403         /* XXX if FP16 blending is enabled, we should use the FP16 format */
404         BEGIN_CB(state->cb, 3);
405         OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
406         OUT_CB(float_to_fixed10(color->color[0]) |
407                (float_to_fixed10(color->color[3]) << 16));
408         OUT_CB(float_to_fixed10(color->color[2]) |
409                (float_to_fixed10(color->color[1]) << 16));
410         END_CB;
411     } else {
412         union util_color uc;
413         util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
414
415         BEGIN_CB(state->cb, 2);
416         OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
417         END_CB;
418     }
419
420     r300_mark_atom_dirty(r300, &r300->blend_color_state);
421 }
422
423 static void r300_set_clip_state(struct pipe_context* pipe,
424                                 const struct pipe_clip_state* state)
425 {
426     struct r300_context* r300 = r300_context(pipe);
427     struct r300_clip_state *clip =
428             (struct r300_clip_state*)r300->clip_state.state;
429     CB_LOCALS;
430
431     clip->clip = *state;
432
433     if (r300->screen->caps.has_tcl) {
434         r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4;
435
436         BEGIN_CB(clip->cb, r300->clip_state.size);
437         if (state->nr) {
438            OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
439                    (r300->screen->caps.is_r500 ?
440                     R500_PVS_UCP_START : R300_PVS_UCP_START));
441            OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4);
442            OUT_CB_TABLE(state->ucp, state->nr * 4);
443         }
444         OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) |
445                 R300_PS_UCP_MODE_CLIP_AS_TRIFAN |
446                 (state->depth_clamp ? R300_CLIP_DISABLE : 0));
447         END_CB;
448
449         r300_mark_atom_dirty(r300, &r300->clip_state);
450     } else {
451         draw_set_clip_state(r300->draw, state);
452     }
453 }
454
455 static void
456 r300_set_sample_mask(struct pipe_context *pipe,
457                      unsigned sample_mask)
458 {
459 }
460
461
462 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
463  *
464  * This contains the depth buffer, stencil buffer, alpha test, and such.
465  * On the Radeon, depth and stencil buffer setup are intertwined, which is
466  * the reason for some of the strange-looking assignments across registers. */
467 static void*
468         r300_create_dsa_state(struct pipe_context* pipe,
469                               const struct pipe_depth_stencil_alpha_state* state)
470 {
471     struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
472     struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
473     CB_LOCALS;
474
475     dsa->dsa = *state;
476
477     /* Depth test setup. - separate write mask depth for decomp flush */
478     if (state->depth.writemask) {
479         dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
480     }
481
482     if (state->depth.enabled) {
483         dsa->z_buffer_control |= R300_Z_ENABLE;
484
485         dsa->z_stencil_control |=
486             (r300_translate_depth_stencil_function(state->depth.func) <<
487                 R300_Z_FUNC_SHIFT);
488     }
489
490     /* Stencil buffer setup. */
491     if (state->stencil[0].enabled) {
492         dsa->z_buffer_control |= R300_STENCIL_ENABLE;
493         dsa->z_stencil_control |=
494             (r300_translate_depth_stencil_function(state->stencil[0].func) <<
495                 R300_S_FRONT_FUNC_SHIFT) |
496             (r300_translate_stencil_op(state->stencil[0].fail_op) <<
497                 R300_S_FRONT_SFAIL_OP_SHIFT) |
498             (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
499                 R300_S_FRONT_ZPASS_OP_SHIFT) |
500             (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
501                 R300_S_FRONT_ZFAIL_OP_SHIFT);
502
503         dsa->stencil_ref_mask =
504                 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
505                 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
506
507         if (state->stencil[1].enabled) {
508             dsa->two_sided = TRUE;
509
510             dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
511             dsa->z_stencil_control |=
512             (r300_translate_depth_stencil_function(state->stencil[1].func) <<
513                 R300_S_BACK_FUNC_SHIFT) |
514             (r300_translate_stencil_op(state->stencil[1].fail_op) <<
515                 R300_S_BACK_SFAIL_OP_SHIFT) |
516             (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
517                 R300_S_BACK_ZPASS_OP_SHIFT) |
518             (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
519                 R300_S_BACK_ZFAIL_OP_SHIFT);
520
521             dsa->stencil_ref_bf =
522                 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
523                 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
524
525             if (caps->is_r500) {
526                 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
527             } else {
528                 dsa->two_sided_stencil_ref =
529                   (state->stencil[0].valuemask != state->stencil[1].valuemask ||
530                    state->stencil[0].writemask != state->stencil[1].writemask);
531             }
532         }
533     }
534
535     /* Alpha test setup. */
536     if (state->alpha.enabled) {
537         dsa->alpha_function =
538             r300_translate_alpha_function(state->alpha.func) |
539             R300_FG_ALPHA_FUNC_ENABLE;
540
541         /* We could use 10bit alpha ref but who needs that? */
542         dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
543
544         if (caps->is_r500)
545             dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
546     }
547
548     BEGIN_CB(&dsa->cb_begin, 8);
549     OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
550     OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
551     OUT_CB(dsa->z_buffer_control);
552     OUT_CB(dsa->z_stencil_control);
553     OUT_CB(dsa->stencil_ref_mask);
554     OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
555     END_CB;
556
557     BEGIN_CB(dsa->cb_no_readwrite, 8);
558     OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
559     OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
560     OUT_CB(0);
561     OUT_CB(0);
562     OUT_CB(0);
563     OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
564     END_CB;
565
566     return (void*)dsa;
567 }
568
569 static void r300_dsa_inject_stencilref(struct r300_context *r300)
570 {
571     struct r300_dsa_state *dsa =
572             (struct r300_dsa_state*)r300->dsa_state.state;
573
574     if (!dsa)
575         return;
576
577     dsa->stencil_ref_mask =
578         (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
579         r300->stencil_ref.ref_value[0];
580     dsa->stencil_ref_bf =
581         (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
582         r300->stencil_ref.ref_value[1];
583 }
584
585 /* Bind DSA state. */
586 static void r300_bind_dsa_state(struct pipe_context* pipe,
587                                 void* state)
588 {
589     struct r300_context* r300 = r300_context(pipe);
590
591     if (!state) {
592         return;
593     }
594
595     UPDATE_STATE(state, r300->dsa_state);
596
597     r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
598     r300_dsa_inject_stencilref(r300);
599 }
600
601 /* Free DSA state. */
602 static void r300_delete_dsa_state(struct pipe_context* pipe,
603                                   void* state)
604 {
605     FREE(state);
606 }
607
608 static void r300_set_stencil_ref(struct pipe_context* pipe,
609                                  const struct pipe_stencil_ref* sr)
610 {
611     struct r300_context* r300 = r300_context(pipe);
612
613     r300->stencil_ref = *sr;
614
615     r300_dsa_inject_stencilref(r300);
616     r300_mark_atom_dirty(r300, &r300->dsa_state);
617 }
618
619 static void r300_tex_set_tiling_flags(struct r300_context *r300,
620                                       struct r300_texture *tex, unsigned level)
621 {
622     /* Check if the macrotile flag needs to be changed.
623      * Skip changing the flags otherwise. */
624     if (tex->desc.macrotile[tex->surface_level] !=
625         tex->desc.macrotile[level]) {
626         /* Tiling determines how DRM treats the buffer data.
627          * We must flush CS when changing it if the buffer is referenced. */
628         if (r300->rws->cs_is_buffer_referenced(r300->cs,
629                                                tex->cs_buffer, R300_REF_CS))
630             r300->context.flush(&r300->context, 0, NULL);
631
632         r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
633                 tex->desc.microtile, tex->desc.macrotile[level],
634                 tex->desc.stride_in_bytes[0]);
635
636         tex->surface_level = level;
637     }
638 }
639
640 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
641 static void r300_fb_set_tiling_flags(struct r300_context *r300,
642                                const struct pipe_framebuffer_state *state)
643 {
644     unsigned i;
645
646     /* Set tiling flags for new surfaces. */
647     for (i = 0; i < state->nr_cbufs; i++) {
648         r300_tex_set_tiling_flags(r300,
649                                   r300_texture(state->cbufs[i]->texture),
650                                   state->cbufs[i]->u.tex.level);
651     }
652     if (state->zsbuf) {
653         r300_tex_set_tiling_flags(r300,
654                                   r300_texture(state->zsbuf->texture),
655                                   state->zsbuf->u.tex.level);
656     }
657 }
658
659 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
660                                     const char *binding)
661 {
662     struct pipe_resource *tex = surf->texture;
663     struct r300_texture *rtex = r300_texture(tex);
664
665     fprintf(stderr,
666             "r300:   %s[%i] Dim: %ix%i, Firstlayer: %i, "
667             "Lastlayer: %i, Level: %i, Format: %s\n"
668
669             "r300:     TEX: Macro: %s, Micro: %s, Pitch: %i, "
670             "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
671
672             binding, index, surf->width, surf->height,
673             surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
674             util_format_short_name(surf->format),
675
676             rtex->desc.macrotile[0] ? "YES" : " NO",
677             rtex->desc.microtile ? "YES" : " NO",
678             rtex->desc.stride_in_pixels[0],
679             tex->width0, tex->height0, tex->depth0,
680             tex->last_level, util_format_short_name(tex->format));
681 }
682
683 void r300_mark_fb_state_dirty(struct r300_context *r300,
684                               enum r300_fb_state_change change)
685 {
686     struct pipe_framebuffer_state *state = r300->fb_state.state;
687     boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
688
689     /* What is marked as dirty depends on the enum r300_fb_state_change. */
690     r300_mark_atom_dirty(r300, &r300->gpu_flush);
691     r300_mark_atom_dirty(r300, &r300->fb_state);
692     r300_mark_atom_dirty(r300, &r300->hyperz_state);
693
694     if (change == R300_CHANGED_FB_STATE) {
695         r300_mark_atom_dirty(r300, &r300->aa_state);
696         r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
697     }
698
699     /* Now compute the fb_state atom size. */
700     r300->fb_state.size = 2 + (8 * state->nr_cbufs);
701
702     if (r300->cbzb_clear)
703         r300->fb_state.size += 10;
704     else if (state->zsbuf) {
705         r300->fb_state.size += 10;
706         if (can_hyperz)
707             r300->fb_state.size += r300->screen->caps.hiz_ram ? 8 : 4;
708     }
709
710     /* The size of the rest of atoms stays the same. */
711 }
712
713 static void
714     r300_set_framebuffer_state(struct pipe_context* pipe,
715                                const struct pipe_framebuffer_state* state)
716 {
717     struct r300_context* r300 = r300_context(pipe);
718     struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
719     struct pipe_framebuffer_state *old_state = r300->fb_state.state;
720     boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ);
721     unsigned max_width, max_height, i;
722     uint32_t zbuffer_bpp = 0;
723     int blocksize;
724
725     if (r300->screen->caps.is_r500) {
726         max_width = max_height = 4096;
727     } else if (r300->screen->caps.is_r400) {
728         max_width = max_height = 4021;
729     } else {
730         max_width = max_height = 2560;
731     }
732
733     if (state->width > max_width || state->height > max_height) {
734         fprintf(stderr, "r300: Implementation error: Render targets are too "
735         "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
736         return;
737     }
738
739     /* If nr_cbufs is changed from zero to non-zero or vice versa... */
740     if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
741         r300_mark_atom_dirty(r300, &r300->blend_state);
742     }
743     /* If zsbuf is set from NULL to non-NULL or vice versa.. */
744     if (!!old_state->zsbuf != !!state->zsbuf) {
745         r300_mark_atom_dirty(r300, &r300->dsa_state);
746     }
747
748     /* The tiling flags are dependent on the surface miplevel, unfortunately. */
749     r300_fb_set_tiling_flags(r300, state);
750
751     util_copy_framebuffer_state(r300->fb_state.state, state);
752
753     r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
754     r300->validate_buffers = TRUE;
755
756     r300->z_compression = false;
757     
758     if (state->zsbuf) {
759         blocksize = util_format_get_blocksize(state->zsbuf->texture->format);
760         switch (blocksize) {
761         case 2:
762             zbuffer_bpp = 16;
763             break;
764         case 4:
765             zbuffer_bpp = 24;
766             break;
767         }
768         if (can_hyperz) {
769             struct r300_surface *zs_surf = r300_surface(state->zsbuf);
770             struct r300_texture *tex;
771             int compress = r300->screen->caps.is_rv350 ? RV350_Z_COMPRESS_88 : R300_Z_COMPRESS_44;
772             int level = zs_surf->base.u.tex.level;
773
774             tex = r300_texture(zs_surf->base.texture);
775
776             /* work out whether we can support hiz on this buffer */
777             r300_hiz_alloc_block(r300, zs_surf);
778         
779             /* work out whether we can support zmask features on this buffer */
780             r300_zmask_alloc_block(r300, zs_surf, compress);
781
782             if (tex->zmask_mem[level]) {
783                 /* compression causes hangs on 16-bit */
784                 if (zbuffer_bpp == 24)
785                     r300->z_compression = compress;
786             }
787             DBG(r300, DBG_HYPERZ,
788                 "hyper-z features: hiz: %d @ %08x z-compression: %d z-fastfill: %d @ %08x\n", tex->hiz_mem[level] ? 1 : 0,
789                 tex->hiz_mem[level] ? tex->hiz_mem[level]->ofs : 0xdeadbeef,
790                 r300->z_compression, tex->zmask_mem[level] ? 1 : 0,
791                 tex->zmask_mem[level] ? tex->zmask_mem[level]->ofs : 0xdeadbeef);
792         }
793
794         /* Polygon offset depends on the zbuffer bit depth. */
795         if (r300->zbuffer_bpp != zbuffer_bpp) {
796             r300->zbuffer_bpp = zbuffer_bpp;
797
798             if (r300->polygon_offset_enabled)
799                 r300_mark_atom_dirty(r300, &r300->rs_state);
800         }
801     }
802
803     /* Set up AA config. */
804     if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) {
805         if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
806             aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
807
808             switch (state->cbufs[0]->texture->nr_samples) {
809                 case 2:
810                     aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
811                     break;
812                 case 3:
813                     aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
814                     break;
815                 case 4:
816                     aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
817                     break;
818                 case 6:
819                     aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
820                     break;
821             }
822         } else {
823             aa->aa_config = 0;
824         }
825     }
826
827     if (DBG_ON(r300, DBG_FB)) {
828         fprintf(stderr, "r300: set_framebuffer_state:\n");
829         for (i = 0; i < state->nr_cbufs; i++) {
830             r300_print_fb_surf_info(state->cbufs[i], i, "CB");
831         }
832         if (state->zsbuf) {
833             r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
834         }
835     }
836 }
837
838 /* Create fragment shader state. */
839 static void* r300_create_fs_state(struct pipe_context* pipe,
840                                   const struct pipe_shader_state* shader)
841 {
842     struct r300_fragment_shader* fs = NULL;
843
844     fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
845
846     /* Copy state directly into shader. */
847     fs->state = *shader;
848     fs->state.tokens = tgsi_dup_tokens(shader->tokens);
849
850     return (void*)fs;
851 }
852
853 void r300_mark_fs_code_dirty(struct r300_context *r300)
854 {
855     struct r300_fragment_shader* fs = r300_fs(r300);
856
857     r300_mark_atom_dirty(r300, &r300->fs);
858     r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
859     r300_mark_atom_dirty(r300, &r300->fs_constants);
860     r300->fs.size = fs->shader->cb_code_size;
861
862     if (r300->screen->caps.is_r500) {
863         r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
864         r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
865     } else {
866         r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
867         r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
868     }
869
870     ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
871             fs->shader->code.constants_remap_table;
872 }
873
874 /* Bind fragment shader state. */
875 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
876 {
877     struct r300_context* r300 = r300_context(pipe);
878     struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
879
880     if (fs == NULL) {
881         r300->fs.state = NULL;
882         return;
883     }
884
885     r300->fs.state = fs;
886     r300_pick_fragment_shader(r300);
887     r300_mark_fs_code_dirty(r300);
888
889     r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
890 }
891
892 /* Delete fragment shader state. */
893 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
894 {
895     struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
896     struct r300_fragment_shader_code *tmp, *ptr = fs->first;
897
898     while (ptr) {
899         tmp = ptr;
900         ptr = ptr->next;
901         rc_constants_destroy(&tmp->code.constants);
902         FREE(tmp->cb_code);
903         FREE(tmp);
904     }
905     FREE((void*)fs->state.tokens);
906     FREE(shader);
907 }
908
909 static void r300_set_polygon_stipple(struct pipe_context* pipe,
910                                      const struct pipe_poly_stipple* state)
911 {
912     /* XXX no idea how to set this up, but not terribly important */
913 }
914
915 /* Create a new rasterizer state based on the CSO rasterizer state.
916  *
917  * This is a very large chunk of state, and covers most of the graphics
918  * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
919  *
920  * In a not entirely unironic sidenote, this state has nearly nothing to do
921  * with the actual block on the Radeon called the rasterizer (RS). */
922 static void* r300_create_rs_state(struct pipe_context* pipe,
923                                   const struct pipe_rasterizer_state* state)
924 {
925     struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
926     float psiz;
927     uint32_t vap_control_status;    /* R300_VAP_CNTL_STATUS: 0x2140 */
928     uint32_t point_size;            /* R300_GA_POINT_SIZE: 0x421c */
929     uint32_t point_minmax;          /* R300_GA_POINT_MINMAX: 0x4230 */
930     uint32_t line_control;          /* R300_GA_LINE_CNTL: 0x4234 */
931     uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
932     uint32_t cull_mode;             /* R300_SU_CULL_MODE: 0x42b8 */
933     uint32_t line_stipple_config;   /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
934     uint32_t line_stipple_value;    /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
935     uint32_t polygon_mode;          /* R300_GA_POLY_MODE: 0x4288 */
936     uint32_t clip_rule;             /* R300_SC_CLIP_RULE: 0x43D0 */
937
938     /* Point sprites texture coordinates, 0: lower left, 1: upper right */
939     float point_texcoord_left = 0;  /* R300_GA_POINT_S0: 0x4200 */
940     float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
941     float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
942     float point_texcoord_top = 0;   /* R300_GA_POINT_T1: 0x420c */
943     CB_LOCALS;
944
945     /* Copy rasterizer state. */
946     rs->rs = *state;
947     rs->rs_draw = *state;
948
949     rs->rs.sprite_coord_enable = state->point_quad_rasterization *
950                                  state->sprite_coord_enable;
951
952     /* Override some states for Draw. */
953     rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
954
955 #ifdef PIPE_ARCH_LITTLE_ENDIAN
956     vap_control_status = R300_VC_NO_SWAP;
957 #else
958     vap_control_status = R300_VC_32BIT_SWAP;
959 #endif
960
961     /* If no TCL engine is present, turn off the HW TCL. */
962     if (!r300_screen(pipe->screen)->caps.has_tcl) {
963         vap_control_status |= R300_VAP_TCL_BYPASS;
964     }
965
966     /* Point size width and height. */
967     point_size =
968         pack_float_16_6x(state->point_size) |
969         (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
970
971     /* Point size clamping. */
972     if (state->point_size_per_vertex) {
973         /* Per-vertex point size.
974          * Clamp to [0, max FB size] */
975         psiz = pipe->screen->get_paramf(pipe->screen,
976                                         PIPE_CAP_MAX_POINT_WIDTH);
977         point_minmax =
978             pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT;
979     } else {
980         /* We cannot disable the point-size vertex output,
981          * so clamp it. */
982         psiz = state->point_size;
983         point_minmax =
984             (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
985             (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
986     }
987
988     /* Line control. */
989     line_control = pack_float_16_6x(state->line_width) |
990         R300_GA_LINE_CNTL_END_TYPE_COMP;
991
992     /* Enable polygon mode */
993     polygon_mode = 0;
994     if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
995         state->fill_back != PIPE_POLYGON_MODE_FILL) {
996         polygon_mode = R300_GA_POLY_MODE_DUAL;
997     }
998
999     /* Front face */
1000     if (state->front_ccw) 
1001         cull_mode = R300_FRONT_FACE_CCW;
1002     else
1003         cull_mode = R300_FRONT_FACE_CW;
1004
1005     /* Polygon offset */
1006     polygon_offset_enable = 0;
1007     if (util_get_offset(state, state->fill_front)) {
1008        polygon_offset_enable |= R300_FRONT_ENABLE;
1009     }
1010     if (util_get_offset(state, state->fill_back)) {
1011        polygon_offset_enable |= R300_BACK_ENABLE;
1012     }
1013
1014     rs->polygon_offset_enable = polygon_offset_enable != 0;
1015
1016     /* Polygon mode */
1017     if (polygon_mode) {
1018        polygon_mode |=
1019           r300_translate_polygon_mode_front(state->fill_front);
1020        polygon_mode |=
1021           r300_translate_polygon_mode_back(state->fill_back);
1022     }
1023
1024     if (state->cull_face & PIPE_FACE_FRONT) {
1025         cull_mode |= R300_CULL_FRONT;
1026     }
1027     if (state->cull_face & PIPE_FACE_BACK) {
1028         cull_mode |= R300_CULL_BACK;
1029     }
1030
1031     if (state->line_stipple_enable) {
1032         line_stipple_config =
1033             R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
1034             (fui((float)state->line_stipple_factor) &
1035                 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
1036         /* XXX this might need to be scaled up */
1037         line_stipple_value = state->line_stipple_pattern;
1038     } else {
1039         line_stipple_config = 0;
1040         line_stipple_value = 0;
1041     }
1042
1043     if (state->flatshade) {
1044         rs->color_control = R300_SHADE_MODEL_FLAT;
1045     } else {
1046         rs->color_control = R300_SHADE_MODEL_SMOOTH;
1047     }
1048
1049     clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
1050
1051     /* Point sprites coord mode */
1052     if (rs->rs.sprite_coord_enable) {
1053         switch (state->sprite_coord_mode) {
1054             case PIPE_SPRITE_COORD_UPPER_LEFT:
1055                 point_texcoord_top = 0.0f;
1056                 point_texcoord_bottom = 1.0f;
1057                 break;
1058             case PIPE_SPRITE_COORD_LOWER_LEFT:
1059                 point_texcoord_top = 1.0f;
1060                 point_texcoord_bottom = 0.0f;
1061                 break;
1062         }
1063     }
1064
1065     /* Build the main command buffer. */
1066     BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
1067     OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
1068     OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
1069     OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
1070     OUT_CB(point_minmax);
1071     OUT_CB(line_control);
1072     OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
1073     OUT_CB(polygon_offset_enable);
1074     rs->cull_mode_index = 9;
1075     OUT_CB(cull_mode);
1076     OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
1077     OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
1078     OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
1079     OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
1080     OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
1081     OUT_CB_32F(point_texcoord_left);
1082     OUT_CB_32F(point_texcoord_bottom);
1083     OUT_CB_32F(point_texcoord_right);
1084     OUT_CB_32F(point_texcoord_top);
1085     END_CB;
1086
1087     /* Build the two command buffers for polygon offset setup. */
1088     if (polygon_offset_enable) {
1089         float scale = state->offset_scale * 12;
1090         float offset = state->offset_units * 4;
1091
1092         BEGIN_CB(rs->cb_poly_offset_zb16, 5);
1093         OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1094         OUT_CB_32F(scale);
1095         OUT_CB_32F(offset);
1096         OUT_CB_32F(scale);
1097         OUT_CB_32F(offset);
1098         END_CB;
1099
1100         offset = state->offset_units * 2;
1101
1102         BEGIN_CB(rs->cb_poly_offset_zb24, 5);
1103         OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
1104         OUT_CB_32F(scale);
1105         OUT_CB_32F(offset);
1106         OUT_CB_32F(scale);
1107         OUT_CB_32F(offset);
1108         END_CB;
1109     }
1110
1111     return (void*)rs;
1112 }
1113
1114 /* Bind rasterizer state. */
1115 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
1116 {
1117     struct r300_context* r300 = r300_context(pipe);
1118     struct r300_rs_state* rs = (struct r300_rs_state*)state;
1119     int last_sprite_coord_enable = r300->sprite_coord_enable;
1120     boolean last_two_sided_color = r300->two_sided_color;
1121
1122     if (r300->draw && rs) {
1123         draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
1124     }
1125
1126     if (rs) {
1127         r300->polygon_offset_enabled = rs->polygon_offset_enable;
1128         r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
1129         r300->two_sided_color = rs->rs.light_twoside;
1130     } else {
1131         r300->polygon_offset_enabled = FALSE;
1132         r300->sprite_coord_enable = 0;
1133         r300->two_sided_color = FALSE;
1134     }
1135
1136     UPDATE_STATE(state, r300->rs_state);
1137     r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
1138
1139     if (last_sprite_coord_enable != r300->sprite_coord_enable ||
1140         last_two_sided_color != r300->two_sided_color) {
1141         r300_mark_atom_dirty(r300, &r300->rs_block_state);
1142     }
1143 }
1144
1145 /* Free rasterizer state. */
1146 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
1147 {
1148     FREE(state);
1149 }
1150
1151 static void*
1152         r300_create_sampler_state(struct pipe_context* pipe,
1153                                   const struct pipe_sampler_state* state)
1154 {
1155     struct r300_context* r300 = r300_context(pipe);
1156     struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
1157     boolean is_r500 = r300->screen->caps.is_r500;
1158     int lod_bias;
1159
1160     sampler->state = *state;
1161
1162     /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
1163      * or MIN filter is NEAREST. Since texwrap produces same results
1164      * for CLAMP and CLAMP_TO_EDGE, we use them instead. */
1165     if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
1166         sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
1167         /* Wrap S. */
1168         if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
1169             sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1170         else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
1171             sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1172
1173         /* Wrap T. */
1174         if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
1175             sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1176         else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
1177             sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1178
1179         /* Wrap R. */
1180         if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
1181             sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1182         else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
1183             sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
1184     }
1185
1186     sampler->filter0 |=
1187         (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
1188         (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
1189         (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
1190
1191     sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
1192                                                    state->mag_img_filter,
1193                                                    state->min_mip_filter,
1194                                                    state->max_anisotropy > 0);
1195
1196     sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
1197
1198     /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
1199     /* We must pass these to the merge function to clamp them properly. */
1200     sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
1201     sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
1202
1203     lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
1204
1205     sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
1206
1207     /* This is very high quality anisotropic filtering for R5xx.
1208      * It's good for benchmarking the performance of texturing but
1209      * in practice we don't want to slow down the driver because it's
1210      * a pretty good performance killer. Feel free to play with it. */
1211     if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
1212         sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
1213     }
1214
1215     /* R500-specific fixups and optimizations */
1216     if (r300->screen->caps.is_r500) {
1217         sampler->filter1 |= R500_BORDER_FIX;
1218     }
1219
1220     return (void*)sampler;
1221 }
1222
1223 static void r300_bind_sampler_states(struct pipe_context* pipe,
1224                                      unsigned count,
1225                                      void** states)
1226 {
1227     struct r300_context* r300 = r300_context(pipe);
1228     struct r300_textures_state* state =
1229         (struct r300_textures_state*)r300->textures_state.state;
1230     unsigned tex_units = r300->screen->caps.num_tex_units;
1231
1232     if (count > tex_units) {
1233         return;
1234     }
1235
1236     memcpy(state->sampler_states, states, sizeof(void*) * count);
1237     state->sampler_state_count = count;
1238
1239     r300_mark_atom_dirty(r300, &r300->textures_state);
1240 }
1241
1242 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
1243                                        unsigned count,
1244                                        void** states)
1245 {
1246 }
1247
1248 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
1249 {
1250     FREE(state);
1251 }
1252
1253 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
1254 {
1255     /* This looks like a hack, but I believe it's suppose to work like
1256      * that. To illustrate how this works, let's assume you have 5 textures.
1257      * From docs, 5 and the successive numbers are:
1258      *
1259      * FOURTH_1     = 5
1260      * FOURTH_2     = 6
1261      * FOURTH_3     = 7
1262      * EIGHTH_0     = 8
1263      * EIGHTH_1     = 9
1264      *
1265      * First 3 textures will get 3/4 of size of the cache, divived evenly
1266      * between them. The last 1/4 of the cache must be divided between
1267      * the last 2 textures, each will therefore get 1/8 of the cache.
1268      * Why not just to use "5 + texture_index" ?
1269      *
1270      * This simple trick works for all "num" <= 16.
1271      */
1272     if (num <= 1)
1273         return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
1274     else
1275         return R300_TX_CACHE(num + index);
1276 }
1277
1278 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
1279                                             unsigned count,
1280                                             struct pipe_sampler_view** views)
1281 {
1282     struct r300_context* r300 = r300_context(pipe);
1283     struct r300_textures_state* state =
1284         (struct r300_textures_state*)r300->textures_state.state;
1285     struct r300_texture *texture;
1286     unsigned i, real_num_views = 0, view_index = 0;
1287     unsigned tex_units = r300->screen->caps.num_tex_units;
1288     boolean dirty_tex = FALSE;
1289
1290     if (count > tex_units) {
1291         return;
1292     }
1293
1294     /* Calculate the real number of views. */
1295     for (i = 0; i < count; i++) {
1296         if (views[i])
1297             real_num_views++;
1298     }
1299
1300     for (i = 0; i < count; i++) {
1301         pipe_sampler_view_reference(
1302                 (struct pipe_sampler_view**)&state->sampler_views[i],
1303                 views[i]);
1304
1305         if (!views[i]) {
1306             continue;
1307         }
1308
1309         /* A new sampler view (= texture)... */
1310         dirty_tex = TRUE;
1311
1312         /* Set the texrect factor in the fragment shader.
1313              * Needed for RECT and NPOT fallback. */
1314         texture = r300_texture(views[i]->texture);
1315         if (texture->desc.is_npot) {
1316             r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1317         }
1318
1319         state->sampler_views[i]->texcache_region =
1320                 r300_assign_texture_cache_region(view_index, real_num_views);
1321         view_index++;
1322     }
1323
1324     for (i = count; i < tex_units; i++) {
1325         if (state->sampler_views[i]) {
1326             pipe_sampler_view_reference(
1327                     (struct pipe_sampler_view**)&state->sampler_views[i],
1328                     NULL);
1329         }
1330     }
1331
1332     state->sampler_view_count = count;
1333
1334     r300_mark_atom_dirty(r300, &r300->textures_state);
1335     r300->validate_buffers = TRUE;
1336
1337     if (dirty_tex) {
1338         r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
1339     }
1340 }
1341
1342 static struct pipe_sampler_view *
1343 r300_create_sampler_view(struct pipe_context *pipe,
1344                          struct pipe_resource *texture,
1345                          const struct pipe_sampler_view *templ)
1346 {
1347     struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
1348     struct r300_texture *tex = r300_texture(texture);
1349     boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
1350     boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
1351
1352     if (view) {
1353         view->base = *templ;
1354         view->base.reference.count = 1;
1355         view->base.context = pipe;
1356         view->base.texture = NULL;
1357         pipe_resource_reference(&view->base.texture, texture);
1358
1359         view->swizzle[0] = templ->swizzle_r;
1360         view->swizzle[1] = templ->swizzle_g;
1361         view->swizzle[2] = templ->swizzle_b;
1362         view->swizzle[3] = templ->swizzle_a;
1363
1364         view->format = tex->tx_format;
1365         view->format.format1 |= r300_translate_texformat(templ->format,
1366                                                          view->swizzle,
1367                                                          is_r500,
1368                                                          dxtc_swizzle);
1369         if (is_r500) {
1370             view->format.format2 |= r500_tx_format_msb_bit(templ->format);
1371         }
1372     }
1373
1374     return (struct pipe_sampler_view*)view;
1375 }
1376
1377 static void
1378 r300_sampler_view_destroy(struct pipe_context *pipe,
1379                           struct pipe_sampler_view *view)
1380 {
1381    pipe_resource_reference(&view->texture, NULL);
1382    FREE(view);
1383 }
1384
1385 static void r300_set_scissor_state(struct pipe_context* pipe,
1386                                    const struct pipe_scissor_state* state)
1387 {
1388     struct r300_context* r300 = r300_context(pipe);
1389
1390     memcpy(r300->scissor_state.state, state,
1391         sizeof(struct pipe_scissor_state));
1392
1393     r300_mark_atom_dirty(r300, &r300->scissor_state);
1394 }
1395
1396 static void r300_set_viewport_state(struct pipe_context* pipe,
1397                                     const struct pipe_viewport_state* state)
1398 {
1399     struct r300_context* r300 = r300_context(pipe);
1400     struct r300_viewport_state* viewport =
1401         (struct r300_viewport_state*)r300->viewport_state.state;
1402
1403     r300->viewport = *state;
1404
1405     if (r300->draw) {
1406         draw_set_viewport_state(r300->draw, state);
1407         viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
1408         return;
1409     }
1410
1411     /* Do the transform in HW. */
1412     viewport->vte_control = R300_VTX_W0_FMT;
1413
1414     if (state->scale[0] != 1.0f) {
1415         viewport->xscale = state->scale[0];
1416         viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1417     }
1418     if (state->scale[1] != 1.0f) {
1419         viewport->yscale = state->scale[1];
1420         viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1421     }
1422     if (state->scale[2] != 1.0f) {
1423         viewport->zscale = state->scale[2];
1424         viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1425     }
1426     if (state->translate[0] != 0.0f) {
1427         viewport->xoffset = state->translate[0];
1428         viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1429     }
1430     if (state->translate[1] != 0.0f) {
1431         viewport->yoffset = state->translate[1];
1432         viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1433     }
1434     if (state->translate[2] != 0.0f) {
1435         viewport->zoffset = state->translate[2];
1436         viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1437     }
1438
1439     r300_mark_atom_dirty(r300, &r300->viewport_state);
1440     if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
1441         r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
1442     }
1443 }
1444
1445 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1446                                     unsigned count,
1447                                     const struct pipe_vertex_buffer* buffers)
1448 {
1449     struct r300_context* r300 = r300_context(pipe);
1450     struct pipe_vertex_buffer *vbo;
1451     unsigned i, max_index = (1 << 24) - 1;
1452     boolean any_user_buffer = FALSE;
1453     struct pipe_vertex_buffer dummy_vb = {0};
1454
1455     /* There must be at least one vertex buffer set, otherwise it locks up. */
1456     if (!count) {
1457         dummy_vb.buffer = r300->dummy_vb;
1458         dummy_vb.max_index = r300->dummy_vb->width0 / 4;
1459         buffers = &dummy_vb;
1460         count = 1;
1461     }
1462
1463     if (count == r300->vertex_buffer_count &&
1464         memcmp(r300->vertex_buffer, buffers,
1465             sizeof(struct pipe_vertex_buffer) * count) == 0) {
1466         return;
1467     }
1468
1469     if (r300->screen->caps.has_tcl) {
1470         /* HW TCL. */
1471         r300->incompatible_vb_layout = FALSE;
1472
1473         /* Check if the strides and offsets are aligned to the size of DWORD. */
1474         for (i = 0; i < count; i++) {
1475             if (buffers[i].buffer) {
1476                 if (buffers[i].stride % 4 != 0 ||
1477                     buffers[i].buffer_offset % 4 != 0) {
1478                     r300->incompatible_vb_layout = TRUE;
1479                     break;
1480                 }
1481             }
1482         }
1483
1484         for (i = 0; i < count; i++) {
1485             /* Why, yes, I AM casting away constness. How did you know? */
1486             vbo = (struct pipe_vertex_buffer*)&buffers[i];
1487
1488             /* Skip NULL buffers */
1489             if (!buffers[i].buffer) {
1490                 continue;
1491             }
1492
1493             if (r300_buffer_is_user_buffer(vbo->buffer)) {
1494                 any_user_buffer = TRUE;
1495             }
1496
1497             /* The stride of zero means we will be fetching only the first
1498              * vertex, so don't care about max_index. */
1499             if (!vbo->stride)
1500                 continue;
1501
1502             if (vbo->max_index == ~0) {
1503                 vbo->max_index =
1504                         (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride;
1505             }
1506
1507             max_index = MIN2(vbo->max_index, max_index);
1508         }
1509
1510         r300->any_user_vbs = any_user_buffer;
1511         r300->vertex_buffer_max_index = max_index;
1512         r300->aos_dirty = TRUE;
1513         r300->validate_buffers = TRUE;
1514     } else {
1515         /* SW TCL. */
1516         draw_set_vertex_buffers(r300->draw, count, buffers);
1517     }
1518
1519     /* Common code. */
1520     for (i = 0; i < count; i++) {
1521         /* Reference our buffer. */
1522         pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1523     }
1524     for (; i < r300->vertex_buffer_count; i++) {
1525         /* Dereference any old buffers. */
1526         pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL);
1527     }
1528
1529     memcpy(r300->vertex_buffer, buffers,
1530         sizeof(struct pipe_vertex_buffer) * count);
1531     r300->vertex_buffer_count = count;
1532 }
1533
1534 static void r300_set_index_buffer(struct pipe_context* pipe,
1535                                   const struct pipe_index_buffer *ib)
1536 {
1537     struct r300_context* r300 = r300_context(pipe);
1538
1539     if (ib) {
1540         pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
1541         memcpy(&r300->index_buffer, ib, sizeof(r300->index_buffer));
1542     }
1543     else {
1544         pipe_resource_reference(&r300->index_buffer.buffer, NULL);
1545         memset(&r300->index_buffer, 0, sizeof(r300->index_buffer));
1546     }
1547
1548     if (r300->screen->caps.has_tcl) {
1549         r300->validate_buffers = TRUE;
1550     }
1551     else {
1552         draw_set_index_buffer(r300->draw, ib);
1553     }
1554 }
1555
1556 /* Initialize the PSC tables. */
1557 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1558 {
1559     struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1560     uint16_t type, swizzle;
1561     enum pipe_format format;
1562     unsigned i;
1563
1564     if (velems->count > 16) {
1565         fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
1566                 " requested %i, using 16.\n", velems->count);
1567         velems->count = 16;
1568     }
1569
1570     /* Vertex shaders have no semantics on their inputs,
1571      * so PSC should just route stuff based on the vertex elements,
1572      * and not on attrib information. */
1573     for (i = 0; i < velems->count; i++) {
1574         format = velems->hw_format[i];
1575
1576         type = r300_translate_vertex_data_type(format);
1577         if (type == R300_INVALID_FORMAT) {
1578             fprintf(stderr, "r300: Bad vertex format %s.\n",
1579                     util_format_short_name(format));
1580             assert(0);
1581             abort();
1582         }
1583
1584         type |= i << R300_DST_VEC_LOC_SHIFT;
1585         swizzle = r300_translate_vertex_data_swizzle(format);
1586
1587         if (i & 1) {
1588             vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1589             vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1590         } else {
1591             vstream->vap_prog_stream_cntl[i >> 1] |= type;
1592             vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1593         }
1594     }
1595
1596     /* Set the last vector in the PSC. */
1597     if (i) {
1598         i -= 1;
1599     }
1600     vstream->vap_prog_stream_cntl[i >> 1] |=
1601         (R300_LAST_VEC << (i & 1 ? 16 : 0));
1602
1603     vstream->count = (i >> 1) + 1;
1604 }
1605
1606 #define FORMAT_REPLACE(what, withwhat) \
1607     case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break
1608
1609 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1610                                                unsigned count,
1611                                                const struct pipe_vertex_element* attribs)
1612 {
1613     struct r300_vertex_element_state *velems;
1614     unsigned i;
1615     enum pipe_format *format;
1616     struct pipe_vertex_element dummy_attrib = {0};
1617
1618     /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
1619     if (!count) {
1620         dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
1621         attribs = &dummy_attrib;
1622         count = 1;
1623     }
1624
1625     assert(count <= PIPE_MAX_ATTRIBS);
1626     velems = CALLOC_STRUCT(r300_vertex_element_state);
1627     if (velems != NULL) {
1628         velems->count = count;
1629         memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1630
1631         if (r300_screen(pipe->screen)->caps.has_tcl) {
1632             /* Set the best hw format in case the original format is not
1633              * supported by hw. */
1634             for (i = 0; i < count; i++) {
1635                 velems->hw_format[i] = velems->velem[i].src_format;
1636                 format = &velems->hw_format[i];
1637
1638                 /* This is basically the list of unsupported formats.
1639                  * For now we don't care about the alignment, that's going to
1640                  * be sorted out after the PSC setup. */
1641                 switch (*format) {
1642                     FORMAT_REPLACE(R64_FLOAT,           R32_FLOAT);
1643                     FORMAT_REPLACE(R64G64_FLOAT,        R32G32_FLOAT);
1644                     FORMAT_REPLACE(R64G64B64_FLOAT,     R32G32B32_FLOAT);
1645                     FORMAT_REPLACE(R64G64B64A64_FLOAT,  R32G32B32A32_FLOAT);
1646
1647                     FORMAT_REPLACE(R32_UNORM,           R32_FLOAT);
1648                     FORMAT_REPLACE(R32G32_UNORM,        R32G32_FLOAT);
1649                     FORMAT_REPLACE(R32G32B32_UNORM,     R32G32B32_FLOAT);
1650                     FORMAT_REPLACE(R32G32B32A32_UNORM,  R32G32B32A32_FLOAT);
1651
1652                     FORMAT_REPLACE(R32_USCALED,         R32_FLOAT);
1653                     FORMAT_REPLACE(R32G32_USCALED,      R32G32_FLOAT);
1654                     FORMAT_REPLACE(R32G32B32_USCALED,   R32G32B32_FLOAT);
1655                     FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
1656
1657                     FORMAT_REPLACE(R32_SNORM,           R32_FLOAT);
1658                     FORMAT_REPLACE(R32G32_SNORM,        R32G32_FLOAT);
1659                     FORMAT_REPLACE(R32G32B32_SNORM,     R32G32B32_FLOAT);
1660                     FORMAT_REPLACE(R32G32B32A32_SNORM,  R32G32B32A32_FLOAT);
1661
1662                     FORMAT_REPLACE(R32_SSCALED,         R32_FLOAT);
1663                     FORMAT_REPLACE(R32G32_SSCALED,      R32G32_FLOAT);
1664                     FORMAT_REPLACE(R32G32B32_SSCALED,   R32G32B32_FLOAT);
1665                     FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
1666
1667                     FORMAT_REPLACE(R32_FIXED,           R32_FLOAT);
1668                     FORMAT_REPLACE(R32G32_FIXED,        R32G32_FLOAT);
1669                     FORMAT_REPLACE(R32G32B32_FIXED,     R32G32B32_FLOAT);
1670                     FORMAT_REPLACE(R32G32B32A32_FIXED,  R32G32B32A32_FLOAT);
1671
1672                     default:;
1673                 }
1674
1675                 velems->incompatible_layout =
1676                         velems->incompatible_layout ||
1677                         velems->velem[i].src_format != velems->hw_format[i] ||
1678                         velems->velem[i].src_offset % 4 != 0;
1679             }
1680
1681             /* Now setup PSC.
1682              * The unused components will be replaced by (..., 0, 1). */
1683             r300_vertex_psc(velems);
1684
1685             /* Align the formats to the size of DWORD.
1686              * We only care about the blocksizes of the formats since
1687              * swizzles are already set up.
1688              * Also compute the vertex size. */
1689             for (i = 0; i < count; i++) {
1690                 /* This is OK because we check for aligned strides too
1691                  * elsewhere. */
1692                 velems->hw_format_size[i] =
1693                     align(util_format_get_blocksize(velems->hw_format[i]), 4);
1694                 velems->vertex_size_dwords += velems->hw_format_size[i] / 4;
1695             }
1696         }
1697     }
1698     return velems;
1699 }
1700
1701 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1702                                             void *state)
1703 {
1704     struct r300_context *r300 = r300_context(pipe);
1705     struct r300_vertex_element_state *velems = state;
1706
1707     if (velems == NULL) {
1708         return;
1709     }
1710
1711     r300->velems = velems;
1712
1713     if (r300->draw) {
1714         draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1715         return;
1716     }
1717
1718     UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1719     r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1720     r300->aos_dirty = TRUE;
1721 }
1722
1723 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1724 {
1725    FREE(state);
1726 }
1727
1728 static void* r300_create_vs_state(struct pipe_context* pipe,
1729                                   const struct pipe_shader_state* shader)
1730 {
1731     struct r300_context* r300 = r300_context(pipe);
1732     struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1733
1734     /* Copy state directly into shader. */
1735     vs->state = *shader;
1736     vs->state.tokens = tgsi_dup_tokens(shader->tokens);
1737
1738     if (r300->screen->caps.has_tcl) {
1739         r300_init_vs_outputs(vs);
1740         r300_translate_vertex_shader(r300, vs);
1741     } else {
1742         r300_draw_init_vertex_shader(r300->draw, vs);
1743     }
1744
1745     return vs;
1746 }
1747
1748 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1749 {
1750     struct r300_context* r300 = r300_context(pipe);
1751     struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1752
1753     if (vs == NULL) {
1754         r300->vs_state.state = NULL;
1755         return;
1756     }
1757     if (vs == r300->vs_state.state) {
1758         return;
1759     }
1760     r300->vs_state.state = vs;
1761
1762     /* The majority of the RS block bits is dependent on the vertex shader. */
1763     r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
1764
1765     if (r300->screen->caps.has_tcl) {
1766         unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
1767         r300_mark_atom_dirty(r300, &r300->vs_state);
1768         r300->vs_state.size =
1769                 vs->code.length + 9 +
1770         (vs->code.num_fc_ops ? vs->code.num_fc_ops * fc_op_dwords + 4 : 0);
1771
1772         r300_mark_atom_dirty(r300, &r300->vs_constants);
1773         r300->vs_constants.size =
1774                 2 +
1775                 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
1776                 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
1777
1778         ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
1779                 vs->code.constants_remap_table;
1780
1781         r300_mark_atom_dirty(r300, &r300->pvs_flush);
1782     } else {
1783         draw_bind_vertex_shader(r300->draw,
1784                 (struct draw_vertex_shader*)vs->draw_vs);
1785     }
1786 }
1787
1788 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1789 {
1790     struct r300_context* r300 = r300_context(pipe);
1791     struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1792
1793     if (r300->screen->caps.has_tcl) {
1794         rc_constants_destroy(&vs->code.constants);
1795         if (vs->code.constants_remap_table)
1796             FREE(vs->code.constants_remap_table);
1797     } else {
1798         draw_delete_vertex_shader(r300->draw,
1799                 (struct draw_vertex_shader*)vs->draw_vs);
1800     }
1801
1802     FREE((void*)vs->state.tokens);
1803     FREE(shader);
1804 }
1805
1806 static void r300_set_constant_buffer(struct pipe_context *pipe,
1807                                      uint shader, uint index,
1808                                      struct pipe_resource *buf)
1809 {
1810     struct r300_context* r300 = r300_context(pipe);
1811     struct r300_constant_buffer *cbuf;
1812     uint32_t *mapped;
1813
1814     switch (shader) {
1815         case PIPE_SHADER_VERTEX:
1816             cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
1817             break;
1818         case PIPE_SHADER_FRAGMENT:
1819             cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
1820             break;
1821         default:
1822             return;
1823     }
1824
1825     if (buf == NULL || buf->width0 == 0 ||
1826         (mapped = (uint32_t*)r300_buffer(buf)->constant_buffer) == NULL) {
1827         return;
1828     }
1829
1830     if (shader == PIPE_SHADER_FRAGMENT ||
1831         (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
1832         assert((buf->width0 % (4 * sizeof(float))) == 0);
1833         cbuf->ptr = mapped;
1834     }
1835
1836     if (shader == PIPE_SHADER_VERTEX) {
1837         if (r300->screen->caps.has_tcl) {
1838             struct r300_vertex_shader *vs =
1839                     (struct r300_vertex_shader*)r300->vs_state.state;
1840
1841             if (!vs) {
1842                 cbuf->buffer_base = 0;
1843                 return;
1844             }
1845
1846             cbuf->buffer_base = r300->vs_const_base;
1847             r300->vs_const_base += vs->code.constants.Count;
1848             if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
1849                 r300->vs_const_base = vs->code.constants.Count;
1850                 cbuf->buffer_base = 0;
1851                 r300_mark_atom_dirty(r300, &r300->pvs_flush);
1852             }
1853             r300_mark_atom_dirty(r300, &r300->vs_constants);
1854         } else if (r300->draw) {
1855             draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
1856                 0, mapped, buf->width0);
1857         }
1858     } else if (shader == PIPE_SHADER_FRAGMENT) {
1859         r300_mark_atom_dirty(r300, &r300->fs_constants);
1860     }
1861 }
1862
1863 void r300_init_state_functions(struct r300_context* r300)
1864 {
1865     r300->context.create_blend_state = r300_create_blend_state;
1866     r300->context.bind_blend_state = r300_bind_blend_state;
1867     r300->context.delete_blend_state = r300_delete_blend_state;
1868
1869     r300->context.set_blend_color = r300_set_blend_color;
1870
1871     r300->context.set_clip_state = r300_set_clip_state;
1872     r300->context.set_sample_mask = r300_set_sample_mask;
1873
1874     r300->context.set_constant_buffer = r300_set_constant_buffer;
1875
1876     r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1877     r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1878     r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1879
1880     r300->context.set_stencil_ref = r300_set_stencil_ref;
1881
1882     r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1883
1884     r300->context.create_fs_state = r300_create_fs_state;
1885     r300->context.bind_fs_state = r300_bind_fs_state;
1886     r300->context.delete_fs_state = r300_delete_fs_state;
1887
1888     r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1889
1890     r300->context.create_rasterizer_state = r300_create_rs_state;
1891     r300->context.bind_rasterizer_state = r300_bind_rs_state;
1892     r300->context.delete_rasterizer_state = r300_delete_rs_state;
1893
1894     r300->context.create_sampler_state = r300_create_sampler_state;
1895     r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1896     r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1897     r300->context.delete_sampler_state = r300_delete_sampler_state;
1898
1899     r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1900     r300->context.create_sampler_view = r300_create_sampler_view;
1901     r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1902
1903     r300->context.set_scissor_state = r300_set_scissor_state;
1904
1905     r300->context.set_viewport_state = r300_set_viewport_state;
1906
1907     r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1908     r300->context.set_index_buffer = r300_set_index_buffer;
1909
1910     r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1911     r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1912     r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1913
1914     r300->context.create_vs_state = r300_create_vs_state;
1915     r300->context.bind_vs_state = r300_bind_vs_state;
1916     r300->context.delete_vs_state = r300_delete_vs_state;
1917 }