OSDN Git Service

157a0e37eb0fa79df3233a7a51f61269235115f6
[android-x86/external-mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24
25 #include "si_build_pm4.h"
26 #include "gfx9d.h"
27
28 #include "compiler/nir/nir_serialize.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/hash_table.h"
31 #include "util/crc32.h"
32 #include "util/u_async_debug.h"
33 #include "util/u_memory.h"
34 #include "util/u_prim.h"
35
36 #include "util/disk_cache.h"
37 #include "util/mesa-sha1.h"
38 #include "ac_exp_param.h"
39 #include "ac_shader_util.h"
40
41 /* SHADER_CACHE */
42
43 /**
44  * Return the IR binary in a buffer. For TGSI the first 4 bytes contain its
45  * size as integer.
46  */
47 void *si_get_ir_binary(struct si_shader_selector *sel)
48 {
49         struct blob blob;
50         unsigned ir_size;
51         void *ir_binary;
52
53         if (sel->tokens) {
54                 ir_binary = sel->tokens;
55                 ir_size = tgsi_num_tokens(sel->tokens) *
56                                           sizeof(struct tgsi_token);
57         } else {
58                 assert(sel->nir);
59
60                 blob_init(&blob);
61                 nir_serialize(&blob, sel->nir);
62                 ir_binary = blob.data;
63                 ir_size = blob.size;
64         }
65
66         unsigned size = 4 + ir_size + sizeof(sel->so);
67         char *result = (char*)MALLOC(size);
68         if (!result)
69                 return NULL;
70
71         *((uint32_t*)result) = size;
72         memcpy(result + 4, ir_binary, ir_size);
73         memcpy(result + 4 + ir_size, &sel->so, sizeof(sel->so));
74
75         if (sel->nir)
76                 blob_finish(&blob);
77
78         return result;
79 }
80
81 /** Copy "data" to "ptr" and return the next dword following copied data. */
82 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
83 {
84         /* data may be NULL if size == 0 */
85         if (size)
86                 memcpy(ptr, data, size);
87         ptr += DIV_ROUND_UP(size, 4);
88         return ptr;
89 }
90
91 /** Read data from "ptr". Return the next dword following the data. */
92 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
93 {
94         memcpy(data, ptr, size);
95         ptr += DIV_ROUND_UP(size, 4);
96         return ptr;
97 }
98
99 /**
100  * Write the size as uint followed by the data. Return the next dword
101  * following the copied data.
102  */
103 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
104 {
105         *ptr++ = size;
106         return write_data(ptr, data, size);
107 }
108
109 /**
110  * Read the size as uint followed by the data. Return both via parameters.
111  * Return the next dword following the data.
112  */
113 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
114 {
115         *size = *ptr++;
116         assert(*data == NULL);
117         if (!*size)
118                 return ptr;
119         *data = malloc(*size);
120         return read_data(ptr, *data, *size);
121 }
122
123 /**
124  * Return the shader binary in a buffer. The first 4 bytes contain its size
125  * as integer.
126  */
127 static void *si_get_shader_binary(struct si_shader *shader)
128 {
129         /* There is always a size of data followed by the data itself. */
130         unsigned relocs_size = shader->binary.reloc_count *
131                                sizeof(shader->binary.relocs[0]);
132         unsigned disasm_size = shader->binary.disasm_string ?
133                                strlen(shader->binary.disasm_string) + 1 : 0;
134         unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
135                                 strlen(shader->binary.llvm_ir_string) + 1 : 0;
136         unsigned size =
137                 4 + /* total size */
138                 4 + /* CRC32 of the data below */
139                 align(sizeof(shader->config), 4) +
140                 align(sizeof(shader->info), 4) +
141                 4 + align(shader->binary.code_size, 4) +
142                 4 + align(shader->binary.rodata_size, 4) +
143                 4 + align(relocs_size, 4) +
144                 4 + align(disasm_size, 4) +
145                 4 + align(llvm_ir_size, 4);
146         void *buffer = CALLOC(1, size);
147         uint32_t *ptr = (uint32_t*)buffer;
148
149         if (!buffer)
150                 return NULL;
151
152         *ptr++ = size;
153         ptr++; /* CRC32 is calculated at the end. */
154
155         ptr = write_data(ptr, &shader->config, sizeof(shader->config));
156         ptr = write_data(ptr, &shader->info, sizeof(shader->info));
157         ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
158         ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
159         ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
160         ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
161         ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
162         assert((char *)ptr - (char *)buffer == size);
163
164         /* Compute CRC32. */
165         ptr = (uint32_t*)buffer;
166         ptr++;
167         *ptr = util_hash_crc32(ptr + 1, size - 8);
168
169         return buffer;
170 }
171
172 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
173 {
174         uint32_t *ptr = (uint32_t*)binary;
175         uint32_t size = *ptr++;
176         uint32_t crc32 = *ptr++;
177         unsigned chunk_size;
178
179         if (util_hash_crc32(ptr, size - 8) != crc32) {
180                 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
181                 return false;
182         }
183
184         ptr = read_data(ptr, &shader->config, sizeof(shader->config));
185         ptr = read_data(ptr, &shader->info, sizeof(shader->info));
186         ptr = read_chunk(ptr, (void**)&shader->binary.code,
187                          &shader->binary.code_size);
188         ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
189                          &shader->binary.rodata_size);
190         ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
191         shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
192         ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
193         ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
194
195         return true;
196 }
197
198 /**
199  * Insert a shader into the cache. It's assumed the shader is not in the cache.
200  * Use si_shader_cache_load_shader before calling this.
201  *
202  * Returns false on failure, in which case the ir_binary should be freed.
203  */
204 bool si_shader_cache_insert_shader(struct si_screen *sscreen, void *ir_binary,
205                                    struct si_shader *shader,
206                                    bool insert_into_disk_cache)
207 {
208         void *hw_binary;
209         struct hash_entry *entry;
210         uint8_t key[CACHE_KEY_SIZE];
211
212         entry = _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
213         if (entry)
214                 return false; /* already added */
215
216         hw_binary = si_get_shader_binary(shader);
217         if (!hw_binary)
218                 return false;
219
220         if (_mesa_hash_table_insert(sscreen->shader_cache, ir_binary,
221                                     hw_binary) == NULL) {
222                 FREE(hw_binary);
223                 return false;
224         }
225
226         if (sscreen->disk_shader_cache && insert_into_disk_cache) {
227                 disk_cache_compute_key(sscreen->disk_shader_cache, ir_binary,
228                                        *((uint32_t *)ir_binary), key);
229                 disk_cache_put(sscreen->disk_shader_cache, key, hw_binary,
230                                *((uint32_t *) hw_binary), NULL);
231         }
232
233         return true;
234 }
235
236 bool si_shader_cache_load_shader(struct si_screen *sscreen, void *ir_binary,
237                                  struct si_shader *shader)
238 {
239         struct hash_entry *entry =
240                 _mesa_hash_table_search(sscreen->shader_cache, ir_binary);
241         if (!entry) {
242                 if (sscreen->disk_shader_cache) {
243                         unsigned char sha1[CACHE_KEY_SIZE];
244                         size_t tg_size = *((uint32_t *) ir_binary);
245
246                         disk_cache_compute_key(sscreen->disk_shader_cache,
247                                                ir_binary, tg_size, sha1);
248
249                         size_t binary_size;
250                         uint8_t *buffer =
251                                 disk_cache_get(sscreen->disk_shader_cache,
252                                                sha1, &binary_size);
253                         if (!buffer)
254                                 return false;
255
256                         if (binary_size < sizeof(uint32_t) ||
257                             *((uint32_t*)buffer) != binary_size) {
258                                  /* Something has gone wrong discard the item
259                                   * from the cache and rebuild/link from
260                                   * source.
261                                   */
262                                 assert(!"Invalid radeonsi shader disk cache "
263                                        "item!");
264
265                                 disk_cache_remove(sscreen->disk_shader_cache,
266                                                   sha1);
267                                 free(buffer);
268
269                                 return false;
270                         }
271
272                         if (!si_load_shader_binary(shader, buffer)) {
273                                 free(buffer);
274                                 return false;
275                         }
276                         free(buffer);
277
278                         if (!si_shader_cache_insert_shader(sscreen, ir_binary,
279                                                            shader, false))
280                                 FREE(ir_binary);
281                 } else {
282                         return false;
283                 }
284         } else {
285                 if (si_load_shader_binary(shader, entry->data))
286                         FREE(ir_binary);
287                 else
288                         return false;
289         }
290         p_atomic_inc(&sscreen->num_shader_cache_hits);
291         return true;
292 }
293
294 static uint32_t si_shader_cache_key_hash(const void *key)
295 {
296         /* The first dword is the key size. */
297         return util_hash_crc32(key, *(uint32_t*)key);
298 }
299
300 static bool si_shader_cache_key_equals(const void *a, const void *b)
301 {
302         uint32_t *keya = (uint32_t*)a;
303         uint32_t *keyb = (uint32_t*)b;
304
305         /* The first dword is the key size. */
306         if (*keya != *keyb)
307                 return false;
308
309         return memcmp(keya, keyb, *keya) == 0;
310 }
311
312 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
313 {
314         FREE((void*)entry->key);
315         FREE(entry->data);
316 }
317
318 bool si_init_shader_cache(struct si_screen *sscreen)
319 {
320         (void) mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
321         sscreen->shader_cache =
322                 _mesa_hash_table_create(NULL,
323                                         si_shader_cache_key_hash,
324                                         si_shader_cache_key_equals);
325
326         return sscreen->shader_cache != NULL;
327 }
328
329 void si_destroy_shader_cache(struct si_screen *sscreen)
330 {
331         if (sscreen->shader_cache)
332                 _mesa_hash_table_destroy(sscreen->shader_cache,
333                                          si_destroy_shader_cache_entry);
334         mtx_destroy(&sscreen->shader_cache_mutex);
335 }
336
337 /* SHADER STATES */
338
339 static void si_set_tesseval_regs(struct si_screen *sscreen,
340                                  struct si_shader_selector *tes,
341                                  struct si_pm4_state *pm4)
342 {
343         struct tgsi_shader_info *info = &tes->info;
344         unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
345         unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
346         bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
347         bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
348         unsigned type, partitioning, topology, distribution_mode;
349
350         switch (tes_prim_mode) {
351         case PIPE_PRIM_LINES:
352                 type = V_028B6C_TESS_ISOLINE;
353                 break;
354         case PIPE_PRIM_TRIANGLES:
355                 type = V_028B6C_TESS_TRIANGLE;
356                 break;
357         case PIPE_PRIM_QUADS:
358                 type = V_028B6C_TESS_QUAD;
359                 break;
360         default:
361                 assert(0);
362                 return;
363         }
364
365         switch (tes_spacing) {
366         case PIPE_TESS_SPACING_FRACTIONAL_ODD:
367                 partitioning = V_028B6C_PART_FRAC_ODD;
368                 break;
369         case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
370                 partitioning = V_028B6C_PART_FRAC_EVEN;
371                 break;
372         case PIPE_TESS_SPACING_EQUAL:
373                 partitioning = V_028B6C_PART_INTEGER;
374                 break;
375         default:
376                 assert(0);
377                 return;
378         }
379
380         if (tes_point_mode)
381                 topology = V_028B6C_OUTPUT_POINT;
382         else if (tes_prim_mode == PIPE_PRIM_LINES)
383                 topology = V_028B6C_OUTPUT_LINE;
384         else if (tes_vertex_order_cw)
385                 /* for some reason, this must be the other way around */
386                 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
387         else
388                 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
389
390         if (sscreen->has_distributed_tess) {
391                 if (sscreen->info.family == CHIP_FIJI ||
392                     sscreen->info.family >= CHIP_POLARIS10)
393                         distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
394                 else
395                         distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
396         } else
397                 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
398
399         si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
400                        S_028B6C_TYPE(type) |
401                        S_028B6C_PARTITIONING(partitioning) |
402                        S_028B6C_TOPOLOGY(topology) |
403                        S_028B6C_DISTRIBUTION_MODE(distribution_mode));
404 }
405
406 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
407  * whether the "fractional odd" tessellation spacing is used.
408  *
409  * Possible VGT configurations and which state should set the register:
410  *
411  *   Reg set in | VGT shader configuration   | Value
412  * ------------------------------------------------------
413  *     VS as VS | VS                         | 30
414  *     VS as ES | ES -> GS -> VS             | 30
415  *    TES as VS | LS -> HS -> VS             | 14 or 30
416  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
417  *
418  * If "shader" is NULL, it's assumed it's not LS or GS copy shader.
419  */
420 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen,
421                                          struct si_shader_selector *sel,
422                                          struct si_shader *shader,
423                                          struct si_pm4_state *pm4)
424 {
425         unsigned type = sel->type;
426
427         if (sscreen->info.family < CHIP_POLARIS10)
428                 return;
429
430         /* VS as VS, or VS as ES: */
431         if ((type == PIPE_SHADER_VERTEX &&
432              (!shader ||
433               (!shader->key.as_ls && !shader->is_gs_copy_shader))) ||
434             /* TES as VS, or TES as ES: */
435             type == PIPE_SHADER_TESS_EVAL) {
436                 unsigned vtx_reuse_depth = 30;
437
438                 if (type == PIPE_SHADER_TESS_EVAL &&
439                     sel->info.properties[TGSI_PROPERTY_TES_SPACING] ==
440                     PIPE_TESS_SPACING_FRACTIONAL_ODD)
441                         vtx_reuse_depth = 14;
442
443                 si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
444                                vtx_reuse_depth);
445         }
446 }
447
448 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
449 {
450         if (shader->pm4)
451                 si_pm4_clear_state(shader->pm4);
452         else
453                 shader->pm4 = CALLOC_STRUCT(si_pm4_state);
454
455         return shader->pm4;
456 }
457
458 static unsigned si_get_num_vs_user_sgprs(unsigned num_always_on_user_sgprs)
459 {
460         /* Add the pointer to VBO descriptors. */
461         if (HAVE_32BIT_POINTERS) {
462                 return num_always_on_user_sgprs + 1;
463         } else {
464                 assert(num_always_on_user_sgprs % 2 == 0);
465                 return num_always_on_user_sgprs + 2;
466         }
467 }
468
469 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
470 {
471         struct si_pm4_state *pm4;
472         unsigned vgpr_comp_cnt;
473         uint64_t va;
474
475         assert(sscreen->info.chip_class <= VI);
476
477         pm4 = si_get_shader_pm4_state(shader);
478         if (!pm4)
479                 return;
480
481         va = shader->bo->gpu_address;
482         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
483
484         /* We need at least 2 components for LS.
485          * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
486          * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
487          */
488         vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
489
490         si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
491         si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, S_00B524_MEM_BASE(va >> 40));
492
493         shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
494                            S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
495                            S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
496                            S_00B528_DX10_CLAMP(1) |
497                            S_00B528_FLOAT_MODE(shader->config.float_mode);
498         shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR)) |
499                            S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
500 }
501
502 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
503 {
504         struct si_pm4_state *pm4;
505         uint64_t va;
506         unsigned ls_vgpr_comp_cnt = 0;
507
508         pm4 = si_get_shader_pm4_state(shader);
509         if (!pm4)
510                 return;
511
512         va = shader->bo->gpu_address;
513         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
514
515         if (sscreen->info.chip_class >= GFX9) {
516                 si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
517                 si_pm4_set_reg(pm4, R_00B414_SPI_SHADER_PGM_HI_LS, S_00B414_MEM_BASE(va >> 40));
518
519                 /* We need at least 2 components for LS.
520                  * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
521                  * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
522                  */
523                 ls_vgpr_comp_cnt = shader->info.uses_instanceid ? 2 : 1;
524
525                 unsigned num_user_sgprs =
526                         si_get_num_vs_user_sgprs(GFX9_TCS_NUM_USER_SGPR);
527
528                 shader->config.rsrc2 =
529                         S_00B42C_USER_SGPR(num_user_sgprs) |
530                         S_00B42C_USER_SGPR_MSB(num_user_sgprs >> 5) |
531                         S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
532         } else {
533                 si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
534                 si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, S_00B424_MEM_BASE(va >> 40));
535
536                 shader->config.rsrc2 =
537                         S_00B42C_USER_SGPR(GFX6_TCS_NUM_USER_SGPR) |
538                         S_00B42C_OC_LDS_EN(1) |
539                         S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
540         }
541
542         si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
543                        S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
544                        S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
545                        S_00B428_DX10_CLAMP(1) |
546                        S_00B428_FLOAT_MODE(shader->config.float_mode) |
547                        S_00B428_LS_VGPR_COMP_CNT(ls_vgpr_comp_cnt));
548
549         if (sscreen->info.chip_class <= VI) {
550                 si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
551                                shader->config.rsrc2);
552         }
553 }
554
555 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
556 {
557         struct si_pm4_state *pm4;
558         unsigned num_user_sgprs;
559         unsigned vgpr_comp_cnt;
560         uint64_t va;
561         unsigned oc_lds_en;
562
563         assert(sscreen->info.chip_class <= VI);
564
565         pm4 = si_get_shader_pm4_state(shader);
566         if (!pm4)
567                 return;
568
569         va = shader->bo->gpu_address;
570         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
571
572         if (shader->selector->type == PIPE_SHADER_VERTEX) {
573                 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
574                 vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
575                 num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
576         } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
577                 vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
578                 num_user_sgprs = SI_TES_NUM_USER_SGPR;
579         } else
580                 unreachable("invalid shader selector type");
581
582         oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
583
584         si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
585                        shader->selector->esgs_itemsize / 4);
586         si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
587         si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(va >> 40));
588         si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
589                        S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
590                        S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
591                        S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
592                        S_00B328_DX10_CLAMP(1) |
593                        S_00B328_FLOAT_MODE(shader->config.float_mode));
594         si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
595                        S_00B32C_USER_SGPR(num_user_sgprs) |
596                        S_00B32C_OC_LDS_EN(oc_lds_en) |
597                        S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
598
599         if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
600                 si_set_tesseval_regs(sscreen, shader->selector, pm4);
601
602         polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
603 }
604
605 static unsigned si_conv_prim_to_gs_out(unsigned mode)
606 {
607         static const int prim_conv[] = {
608                 [PIPE_PRIM_POINTS]                      = V_028A6C_OUTPRIM_TYPE_POINTLIST,
609                 [PIPE_PRIM_LINES]                       = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
610                 [PIPE_PRIM_LINE_LOOP]                   = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
611                 [PIPE_PRIM_LINE_STRIP]                  = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
612                 [PIPE_PRIM_TRIANGLES]                   = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
613                 [PIPE_PRIM_TRIANGLE_STRIP]              = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
614                 [PIPE_PRIM_TRIANGLE_FAN]                = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
615                 [PIPE_PRIM_QUADS]                       = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
616                 [PIPE_PRIM_QUAD_STRIP]                  = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
617                 [PIPE_PRIM_POLYGON]                     = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
618                 [PIPE_PRIM_LINES_ADJACENCY]             = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
619                 [PIPE_PRIM_LINE_STRIP_ADJACENCY]        = V_028A6C_OUTPRIM_TYPE_LINESTRIP,
620                 [PIPE_PRIM_TRIANGLES_ADJACENCY]         = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
621                 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY]    = V_028A6C_OUTPRIM_TYPE_TRISTRIP,
622                 [PIPE_PRIM_PATCHES]                     = V_028A6C_OUTPRIM_TYPE_POINTLIST,
623         };
624         assert(mode < ARRAY_SIZE(prim_conv));
625
626         return prim_conv[mode];
627 }
628
629 struct gfx9_gs_info {
630         unsigned es_verts_per_subgroup;
631         unsigned gs_prims_per_subgroup;
632         unsigned gs_inst_prims_in_subgroup;
633         unsigned max_prims_per_subgroup;
634         unsigned lds_size;
635 };
636
637 static void gfx9_get_gs_info(struct si_shader_selector *es,
638                                    struct si_shader_selector *gs,
639                                    struct gfx9_gs_info *out)
640 {
641         unsigned gs_num_invocations = MAX2(gs->gs_num_invocations, 1);
642         unsigned input_prim = gs->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
643         bool uses_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
644                               input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
645
646         /* All these are in dwords: */
647         /* We can't allow using the whole LDS, because GS waves compete with
648          * other shader stages for LDS space. */
649         const unsigned max_lds_size = 8 * 1024;
650         const unsigned esgs_itemsize = es->esgs_itemsize / 4;
651         unsigned esgs_lds_size;
652
653         /* All these are per subgroup: */
654         const unsigned max_out_prims = 32 * 1024;
655         const unsigned max_es_verts = 255;
656         const unsigned ideal_gs_prims = 64;
657         unsigned max_gs_prims, gs_prims;
658         unsigned min_es_verts, es_verts, worst_case_es_verts;
659
660         if (uses_adjacency || gs_num_invocations > 1)
661                 max_gs_prims = 127 / gs_num_invocations;
662         else
663                 max_gs_prims = 255;
664
665         /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
666          * Make sure we don't go over the maximum value.
667          */
668         if (gs->gs_max_out_vertices > 0) {
669                 max_gs_prims = MIN2(max_gs_prims,
670                                     max_out_prims /
671                                     (gs->gs_max_out_vertices * gs_num_invocations));
672         }
673         assert(max_gs_prims > 0);
674
675         /* If the primitive has adjacency, halve the number of vertices
676          * that will be reused in multiple primitives.
677          */
678         min_es_verts = gs->gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
679
680         gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
681         worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
682
683         /* Compute ESGS LDS size based on the worst case number of ES vertices
684          * needed to create the target number of GS prims per subgroup.
685          */
686         esgs_lds_size = esgs_itemsize * worst_case_es_verts;
687
688         /* If total LDS usage is too big, refactor partitions based on ratio
689          * of ESGS item sizes.
690          */
691         if (esgs_lds_size > max_lds_size) {
692                 /* Our target GS Prims Per Subgroup was too large. Calculate
693                  * the maximum number of GS Prims Per Subgroup that will fit
694                  * into LDS, capped by the maximum that the hardware can support.
695                  */
696                 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
697                                 max_gs_prims);
698                 assert(gs_prims > 0);
699                 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
700                                            max_es_verts);
701
702                 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
703                 assert(esgs_lds_size <= max_lds_size);
704         }
705
706         /* Now calculate remaining ESGS information. */
707         if (esgs_lds_size)
708                 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
709         else
710                 es_verts = max_es_verts;
711
712         /* Vertices for adjacency primitives are not always reused, so restore
713          * it for ES_VERTS_PER_SUBGRP.
714          */
715         min_es_verts = gs->gs_input_verts_per_prim;
716
717         /* For normal primitives, the VGT only checks if they are past the ES
718          * verts per subgroup after allocating a full GS primitive and if they
719          * are, kick off a new subgroup.  But if those additional ES verts are
720          * unique (e.g. not reused) we need to make sure there is enough LDS
721          * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
722          */
723         es_verts -= min_es_verts - 1;
724
725         out->es_verts_per_subgroup = es_verts;
726         out->gs_prims_per_subgroup = gs_prims;
727         out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
728         out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup *
729                                       gs->gs_max_out_vertices;
730         out->lds_size = align(esgs_lds_size, 128) / 128;
731
732         assert(out->max_prims_per_subgroup <= max_out_prims);
733 }
734
735 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
736 {
737         struct si_shader_selector *sel = shader->selector;
738         const ubyte *num_components = sel->info.num_stream_output_components;
739         unsigned gs_num_invocations = sel->gs_num_invocations;
740         struct si_pm4_state *pm4;
741         uint64_t va;
742         unsigned max_stream = sel->max_gs_stream;
743         unsigned offset;
744
745         pm4 = si_get_shader_pm4_state(shader);
746         if (!pm4)
747                 return;
748
749         offset = num_components[0] * sel->gs_max_out_vertices;
750         si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
751         if (max_stream >= 1)
752                 offset += num_components[1] * sel->gs_max_out_vertices;
753         si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
754         if (max_stream >= 2)
755                 offset += num_components[2] * sel->gs_max_out_vertices;
756         si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
757         si_pm4_set_reg(pm4, R_028A6C_VGT_GS_OUT_PRIM_TYPE,
758                        si_conv_prim_to_gs_out(sel->gs_output_prim));
759         if (max_stream >= 3)
760                 offset += num_components[3] * sel->gs_max_out_vertices;
761         si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
762
763         /* The GSVS_RING_ITEMSIZE register takes 15 bits */
764         assert(offset < (1 << 15));
765
766         si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, sel->gs_max_out_vertices);
767
768         si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
769         si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
770         si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
771         si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
772
773         si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
774                        S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
775                        S_028B90_ENABLE(gs_num_invocations > 0));
776
777         va = shader->bo->gpu_address;
778         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
779
780         if (sscreen->info.chip_class >= GFX9) {
781                 unsigned input_prim = sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM];
782                 unsigned es_type = shader->key.part.gs.es->type;
783                 unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
784                 struct gfx9_gs_info gs_info;
785
786                 if (es_type == PIPE_SHADER_VERTEX)
787                         /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
788                         es_vgpr_comp_cnt = shader->info.uses_instanceid ? 1 : 0;
789                 else if (es_type == PIPE_SHADER_TESS_EVAL)
790                         es_vgpr_comp_cnt = shader->key.part.gs.es->info.uses_primid ? 3 : 2;
791                 else
792                         unreachable("invalid shader selector type");
793
794                 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
795                  * VGPR[0:4] are always loaded.
796                  */
797                 if (sel->info.uses_invocationid)
798                         gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
799                 else if (sel->info.uses_primid)
800                         gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
801                 else if (input_prim >= PIPE_PRIM_TRIANGLES)
802                         gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
803                 else
804                         gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
805
806                 unsigned num_user_sgprs;
807                 if (es_type == PIPE_SHADER_VERTEX)
808                         num_user_sgprs = si_get_num_vs_user_sgprs(GFX9_VSGS_NUM_USER_SGPR);
809                 else
810                         num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
811
812                 gfx9_get_gs_info(shader->key.part.gs.es, sel, &gs_info);
813
814                 si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
815                 si_pm4_set_reg(pm4, R_00B214_SPI_SHADER_PGM_HI_ES, S_00B214_MEM_BASE(va >> 40));
816
817                 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
818                                S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
819                                S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
820                                S_00B228_DX10_CLAMP(1) |
821                                S_00B228_FLOAT_MODE(shader->config.float_mode) |
822                                S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
823                 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
824                                S_00B22C_USER_SGPR(num_user_sgprs) |
825                                S_00B22C_USER_SGPR_MSB(num_user_sgprs >> 5) |
826                                S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
827                                S_00B22C_OC_LDS_EN(es_type == PIPE_SHADER_TESS_EVAL) |
828                                S_00B22C_LDS_SIZE(gs_info.lds_size) |
829                                S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
830
831                 si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
832                                S_028A44_ES_VERTS_PER_SUBGRP(gs_info.es_verts_per_subgroup) |
833                                S_028A44_GS_PRIMS_PER_SUBGRP(gs_info.gs_prims_per_subgroup) |
834                                S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_info.gs_inst_prims_in_subgroup));
835                 si_pm4_set_reg(pm4, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
836                                S_028A94_MAX_PRIMS_PER_SUBGROUP(gs_info.max_prims_per_subgroup));
837                 si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
838                                shader->key.part.gs.es->esgs_itemsize / 4);
839
840                 if (es_type == PIPE_SHADER_TESS_EVAL)
841                         si_set_tesseval_regs(sscreen, shader->key.part.gs.es, pm4);
842
843                 polaris_set_vgt_vertex_reuse(sscreen, shader->key.part.gs.es,
844                                              NULL, pm4);
845         } else {
846                 si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
847                 si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, S_00B224_MEM_BASE(va >> 40));
848
849                 si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
850                                S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
851                                S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
852                                S_00B228_DX10_CLAMP(1) |
853                                S_00B228_FLOAT_MODE(shader->config.float_mode));
854                 si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
855                                S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
856                                S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
857         }
858 }
859
860 /**
861  * Compute the state for \p shader, which will run as a vertex shader on the
862  * hardware.
863  *
864  * If \p gs is non-NULL, it points to the geometry shader for which this shader
865  * is the copy shader.
866  */
867 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
868                          struct si_shader_selector *gs)
869 {
870         const struct tgsi_shader_info *info = &shader->selector->info;
871         struct si_pm4_state *pm4;
872         unsigned num_user_sgprs;
873         unsigned nparams, vgpr_comp_cnt;
874         uint64_t va;
875         unsigned oc_lds_en;
876         unsigned window_space =
877            info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
878         bool enable_prim_id = shader->key.mono.u.vs_export_prim_id || info->uses_primid;
879
880         pm4 = si_get_shader_pm4_state(shader);
881         if (!pm4)
882                 return;
883
884         /* We always write VGT_GS_MODE in the VS state, because every switch
885          * between different shader pipelines involving a different GS or no
886          * GS at all involves a switch of the VS (different GS use different
887          * copy shaders). On the other hand, when the API switches from a GS to
888          * no GS and then back to the same GS used originally, the GS state is
889          * not sent again.
890          */
891         if (!gs) {
892                 unsigned mode = V_028A40_GS_OFF;
893
894                 /* PrimID needs GS scenario A. */
895                 if (enable_prim_id)
896                         mode = V_028A40_GS_SCENARIO_A;
897
898                 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, S_028A40_MODE(mode));
899                 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
900         } else {
901                 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
902                                ac_vgt_gs_mode(gs->gs_max_out_vertices,
903                                               sscreen->info.chip_class));
904                 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
905         }
906
907         if (sscreen->info.chip_class <= VI) {
908                 /* Reuse needs to be set off if we write oViewport. */
909                 si_pm4_set_reg(pm4, R_028AB4_VGT_REUSE_OFF,
910                                S_028AB4_REUSE_OFF(info->writes_viewport_index));
911         }
912
913         va = shader->bo->gpu_address;
914         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
915
916         if (gs) {
917                 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
918                 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
919         } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
920                 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
921                  * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
922                  * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
923                  */
924                 vgpr_comp_cnt = enable_prim_id ? 2 : (shader->info.uses_instanceid ? 1 : 0);
925
926                 if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
927                         num_user_sgprs = SI_SGPR_VS_BLIT_DATA +
928                                          info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
929                 } else {
930                         num_user_sgprs = si_get_num_vs_user_sgprs(SI_VS_NUM_USER_SGPR);
931                 }
932         } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
933                 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
934                 num_user_sgprs = SI_TES_NUM_USER_SGPR;
935         } else
936                 unreachable("invalid shader selector type");
937
938         /* VS is required to export at least one param. */
939         nparams = MAX2(shader->info.nr_param_exports, 1);
940         si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
941                        S_0286C4_VS_EXPORT_COUNT(nparams - 1));
942
943         si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
944                        S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
945                        S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
946                                                    V_02870C_SPI_SHADER_4COMP :
947                                                    V_02870C_SPI_SHADER_NONE) |
948                        S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
949                                                    V_02870C_SPI_SHADER_4COMP :
950                                                    V_02870C_SPI_SHADER_NONE) |
951                        S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
952                                                    V_02870C_SPI_SHADER_4COMP :
953                                                    V_02870C_SPI_SHADER_NONE));
954
955         oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
956
957         si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
958         si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(va >> 40));
959         si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
960                        S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
961                        S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
962                        S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
963                        S_00B128_DX10_CLAMP(1) |
964                        S_00B128_FLOAT_MODE(shader->config.float_mode));
965         si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
966                        S_00B12C_USER_SGPR(num_user_sgprs) |
967                        S_00B12C_OC_LDS_EN(oc_lds_en) |
968                        S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
969                        S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
970                        S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
971                        S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
972                        S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
973                        S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
974         if (window_space)
975                 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
976                                S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
977         else
978                 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
979                                S_028818_VTX_W0_FMT(1) |
980                                S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
981                                S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
982                                S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
983
984         if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
985                 si_set_tesseval_regs(sscreen, shader->selector, pm4);
986
987         polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader, pm4);
988 }
989
990 static unsigned si_get_ps_num_interp(struct si_shader *ps)
991 {
992         struct tgsi_shader_info *info = &ps->selector->info;
993         unsigned num_colors = !!(info->colors_read & 0x0f) +
994                               !!(info->colors_read & 0xf0);
995         unsigned num_interp = ps->selector->info.num_inputs +
996                               (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
997
998         assert(num_interp <= 32);
999         return MIN2(num_interp, 32);
1000 }
1001
1002 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1003 {
1004         unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
1005         unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
1006
1007         /* If the i-th target format is set, all previous target formats must
1008          * be non-zero to avoid hangs.
1009          */
1010         for (i = 0; i < num_targets; i++)
1011                 if (!(value & (0xf << (i * 4))))
1012                         value |= V_028714_SPI_SHADER_32_R << (i * 4);
1013
1014         return value;
1015 }
1016
1017 static void si_shader_ps(struct si_shader *shader)
1018 {
1019         struct tgsi_shader_info *info = &shader->selector->info;
1020         struct si_pm4_state *pm4;
1021         unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
1022         unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
1023         uint64_t va;
1024         unsigned input_ena = shader->config.spi_ps_input_ena;
1025
1026         /* we need to enable at least one of them, otherwise we hang the GPU */
1027         assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1028                G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1029                G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1030                G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1031                G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
1032                G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1033                G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
1034                G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1035         /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1036         assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
1037                G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1038                G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1039                G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1040                G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1041
1042         /* Validate interpolation optimization flags (read as implications). */
1043         assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
1044                (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1045                 G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1046         assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
1047                (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1048                 G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1049         assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
1050                (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
1051                 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1052         assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
1053                (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
1054                 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1055         assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
1056                (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
1057                 !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1058         assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
1059                (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
1060                 !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1061
1062         /* Validate cases when the optimizations are off (read as implications). */
1063         assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
1064                !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1065                !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1066         assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
1067                !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1068                !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1069
1070         pm4 = si_get_shader_pm4_state(shader);
1071         if (!pm4)
1072                 return;
1073
1074         /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1075          * Possible vaules:
1076          * 0 -> Position = pixel center
1077          * 1 -> Position = pixel centroid
1078          * 2 -> Position = at sample position
1079          *
1080          * From GLSL 4.5 specification, section 7.1:
1081          *   "The variable gl_FragCoord is available as an input variable from
1082          *    within fragment shaders and it holds the window relative coordinates
1083          *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1084          *    value can be for any location within the pixel, or one of the
1085          *    fragment samples. The use of centroid does not further restrict
1086          *    this value to be inside the current primitive."
1087          *
1088          * Meaning that centroid has no effect and we can return anything within
1089          * the pixel. Thus, return the value at sample position, because that's
1090          * the most accurate one shaders can get.
1091          */
1092         spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1093
1094         if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1095             TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
1096                 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
1097
1098         spi_shader_col_format = si_get_spi_shader_col_format(shader);
1099         cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
1100
1101         /* Ensure that some export memory is always allocated, for two reasons:
1102          *
1103          * 1) Correctness: The hardware ignores the EXEC mask if no export
1104          *    memory is allocated, so KILL and alpha test do not work correctly
1105          *    without this.
1106          * 2) Performance: Every shader needs at least a NULL export, even when
1107          *    it writes no color/depth output. The NULL export instruction
1108          *    stalls without this setting.
1109          *
1110          * Don't add this to CB_SHADER_MASK.
1111          */
1112         if (!spi_shader_col_format &&
1113             !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
1114                 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
1115
1116         si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
1117         si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
1118                        shader->config.spi_ps_input_addr);
1119
1120         /* Set interpolation controls. */
1121         spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
1122
1123         /* Set registers. */
1124         si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
1125         si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
1126
1127         si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
1128                        ac_get_spi_shader_z_format(info->writes_z,
1129                                                   info->writes_stencil,
1130                                                   info->writes_samplemask));
1131
1132         si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
1133         si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
1134
1135         va = shader->bo->gpu_address;
1136         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
1137         si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
1138         si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, S_00B024_MEM_BASE(va >> 40));
1139
1140         si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
1141                        S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
1142                        S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
1143                        S_00B028_DX10_CLAMP(1) |
1144                        S_00B028_FLOAT_MODE(shader->config.float_mode));
1145         si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
1146                        S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
1147                        S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
1148                        S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1149 }
1150
1151 static void si_shader_init_pm4_state(struct si_screen *sscreen,
1152                                      struct si_shader *shader)
1153 {
1154         switch (shader->selector->type) {
1155         case PIPE_SHADER_VERTEX:
1156                 if (shader->key.as_ls)
1157                         si_shader_ls(sscreen, shader);
1158                 else if (shader->key.as_es)
1159                         si_shader_es(sscreen, shader);
1160                 else
1161                         si_shader_vs(sscreen, shader, NULL);
1162                 break;
1163         case PIPE_SHADER_TESS_CTRL:
1164                 si_shader_hs(sscreen, shader);
1165                 break;
1166         case PIPE_SHADER_TESS_EVAL:
1167                 if (shader->key.as_es)
1168                         si_shader_es(sscreen, shader);
1169                 else
1170                         si_shader_vs(sscreen, shader, NULL);
1171                 break;
1172         case PIPE_SHADER_GEOMETRY:
1173                 si_shader_gs(sscreen, shader);
1174                 break;
1175         case PIPE_SHADER_FRAGMENT:
1176                 si_shader_ps(shader);
1177                 break;
1178         default:
1179                 assert(0);
1180         }
1181 }
1182
1183 static unsigned si_get_alpha_test_func(struct si_context *sctx)
1184 {
1185         /* Alpha-test should be disabled if colorbuffer 0 is integer. */
1186         if (sctx->queued.named.dsa)
1187                 return sctx->queued.named.dsa->alpha_func;
1188
1189         return PIPE_FUNC_ALWAYS;
1190 }
1191
1192 static void si_shader_selector_key_vs(struct si_context *sctx,
1193                                       struct si_shader_selector *vs,
1194                                       struct si_shader_key *key,
1195                                       struct si_vs_prolog_bits *prolog_key)
1196 {
1197         if (!sctx->vertex_elements)
1198                 return;
1199
1200         prolog_key->instance_divisor_is_one =
1201                 sctx->vertex_elements->instance_divisor_is_one;
1202         prolog_key->instance_divisor_is_fetched =
1203                 sctx->vertex_elements->instance_divisor_is_fetched;
1204
1205         /* Prefer a monolithic shader to allow scheduling divisions around
1206          * VBO loads. */
1207         if (prolog_key->instance_divisor_is_fetched)
1208                 key->opt.prefer_mono = 1;
1209
1210         unsigned count = MIN2(vs->info.num_inputs,
1211                               sctx->vertex_elements->count);
1212         memcpy(key->mono.vs_fix_fetch, sctx->vertex_elements->fix_fetch, count);
1213 }
1214
1215 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
1216                                          struct si_shader_selector *vs,
1217                                          struct si_shader_key *key)
1218 {
1219         struct si_shader_selector *ps = sctx->ps_shader.cso;
1220
1221         key->opt.clip_disable =
1222                 sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
1223                 (vs->info.clipdist_writemask ||
1224                  vs->info.writes_clipvertex) &&
1225                 !vs->info.culldist_writemask;
1226
1227         /* Find out if PS is disabled. */
1228         bool ps_disabled = true;
1229         if (ps) {
1230                 const struct si_state_blend *blend = sctx->queued.named.blend;
1231                 bool alpha_to_coverage = blend && blend->alpha_to_coverage;
1232                 bool ps_modifies_zs = ps->info.uses_kill ||
1233                                       ps->info.writes_z ||
1234                                       ps->info.writes_stencil ||
1235                                       ps->info.writes_samplemask ||
1236                                       alpha_to_coverage ||
1237                                       si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
1238                 unsigned ps_colormask = si_get_total_colormask(sctx);
1239
1240                 ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
1241                               (!ps_colormask &&
1242                                !ps_modifies_zs &&
1243                                !ps->info.writes_memory);
1244         }
1245
1246         /* Find out which VS outputs aren't used by the PS. */
1247         uint64_t outputs_written = vs->outputs_written_before_ps;
1248         uint64_t inputs_read = 0;
1249
1250         /* Ignore outputs that are not passed from VS to PS. */
1251         outputs_written &= ~((1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_POSITION, 0, true)) |
1252                              (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_PSIZE, 0, true)) |
1253                              (1ull << si_shader_io_get_unique_index(TGSI_SEMANTIC_CLIPVERTEX, 0, true)));
1254
1255         if (!ps_disabled) {
1256                 inputs_read = ps->inputs_read;
1257         }
1258
1259         uint64_t linked = outputs_written & inputs_read;
1260
1261         key->opt.kill_outputs = ~linked & outputs_written;
1262 }
1263
1264 /* Compute the key for the hw shader variant */
1265 static inline void si_shader_selector_key(struct pipe_context *ctx,
1266                                           struct si_shader_selector *sel,
1267                                           struct si_shader_key *key)
1268 {
1269         struct si_context *sctx = (struct si_context *)ctx;
1270
1271         memset(key, 0, sizeof(*key));
1272
1273         switch (sel->type) {
1274         case PIPE_SHADER_VERTEX:
1275                 si_shader_selector_key_vs(sctx, sel, key, &key->part.vs.prolog);
1276
1277                 if (sctx->tes_shader.cso)
1278                         key->as_ls = 1;
1279                 else if (sctx->gs_shader.cso)
1280                         key->as_es = 1;
1281                 else {
1282                         si_shader_selector_key_hw_vs(sctx, sel, key);
1283
1284                         if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1285                                 key->mono.u.vs_export_prim_id = 1;
1286                 }
1287                 break;
1288         case PIPE_SHADER_TESS_CTRL:
1289                 if (sctx->chip_class >= GFX9) {
1290                         si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1291                                                   key, &key->part.tcs.ls_prolog);
1292                         key->part.tcs.ls = sctx->vs_shader.cso;
1293
1294                         /* When the LS VGPR fix is needed, monolithic shaders
1295                          * can:
1296                          *  - avoid initializing EXEC in both the LS prolog
1297                          *    and the LS main part when !vs_needs_prolog
1298                          *  - remove the fixup for unused input VGPRs
1299                          */
1300                         key->part.tcs.ls_prolog.ls_vgpr_fix = sctx->ls_vgpr_fix;
1301
1302                         /* The LS output / HS input layout can be communicated
1303                          * directly instead of via user SGPRs for merged LS-HS.
1304                          * The LS VGPR fix prefers this too.
1305                          */
1306                         key->opt.prefer_mono = 1;
1307                 }
1308
1309                 key->part.tcs.epilog.prim_mode =
1310                         sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
1311                 key->part.tcs.epilog.invoc0_tess_factors_are_def =
1312                         sel->tcs_info.tessfactors_are_def_in_all_invocs;
1313                 key->part.tcs.epilog.tes_reads_tess_factors =
1314                         sctx->tes_shader.cso->info.reads_tess_factors;
1315
1316                 if (sel == sctx->fixed_func_tcs_shader.cso)
1317                         key->mono.u.ff_tcs_inputs_to_copy = sctx->vs_shader.cso->outputs_written;
1318                 break;
1319         case PIPE_SHADER_TESS_EVAL:
1320                 if (sctx->gs_shader.cso)
1321                         key->as_es = 1;
1322                 else {
1323                         si_shader_selector_key_hw_vs(sctx, sel, key);
1324
1325                         if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
1326                                 key->mono.u.vs_export_prim_id = 1;
1327                 }
1328                 break;
1329         case PIPE_SHADER_GEOMETRY:
1330                 if (sctx->chip_class >= GFX9) {
1331                         if (sctx->tes_shader.cso) {
1332                                 key->part.gs.es = sctx->tes_shader.cso;
1333                         } else {
1334                                 si_shader_selector_key_vs(sctx, sctx->vs_shader.cso,
1335                                                           key, &key->part.gs.vs_prolog);
1336                                 key->part.gs.es = sctx->vs_shader.cso;
1337                                 key->part.gs.prolog.gfx9_prev_is_vs = 1;
1338                         }
1339
1340                         /* Merged ES-GS can have unbalanced wave usage.
1341                          *
1342                          * ES threads are per-vertex, while GS threads are
1343                          * per-primitive. So without any amplification, there
1344                          * are fewer GS threads than ES threads, which can result
1345                          * in empty (no-op) GS waves. With too much amplification,
1346                          * there are more GS threads than ES threads, which
1347                          * can result in empty (no-op) ES waves.
1348                          *
1349                          * Non-monolithic shaders are implemented by setting EXEC
1350                          * at the beginning of shader parts, and don't jump to
1351                          * the end if EXEC is 0.
1352                          *
1353                          * Monolithic shaders use conditional blocks, so they can
1354                          * jump and skip empty waves of ES or GS. So set this to
1355                          * always use optimized variants, which are monolithic.
1356                          */
1357                         key->opt.prefer_mono = 1;
1358                 }
1359                 key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
1360                 break;
1361         case PIPE_SHADER_FRAGMENT: {
1362                 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1363                 struct si_state_blend *blend = sctx->queued.named.blend;
1364
1365                 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1366                     sel->info.colors_written == 0x1)
1367                         key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
1368
1369                 if (blend) {
1370                         /* Select the shader color format based on whether
1371                          * blending or alpha are needed.
1372                          */
1373                         key->part.ps.epilog.spi_shader_col_format =
1374                                 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1375                                  sctx->framebuffer.spi_shader_col_format_blend_alpha) |
1376                                 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1377                                  sctx->framebuffer.spi_shader_col_format_blend) |
1378                                 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
1379                                  sctx->framebuffer.spi_shader_col_format_alpha) |
1380                                 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
1381                                  sctx->framebuffer.spi_shader_col_format);
1382                         key->part.ps.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
1383
1384                         /* The output for dual source blending should have
1385                          * the same format as the first output.
1386                          */
1387                         if (blend->dual_src_blend)
1388                                 key->part.ps.epilog.spi_shader_col_format |=
1389                                         (key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
1390                 } else
1391                         key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1392
1393                 /* If alpha-to-coverage is enabled, we have to export alpha
1394                  * even if there is no color buffer.
1395                  */
1396                 if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1397                     blend && blend->alpha_to_coverage)
1398                         key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1399
1400                 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1401                  * to the range supported by the type if a channel has less
1402                  * than 16 bits and the export format is 16_ABGR.
1403                  */
1404                 if (sctx->chip_class <= CIK && sctx->family != CHIP_HAWAII) {
1405                         key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1406                         key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1407                 }
1408
1409                 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1410                 if (!key->part.ps.epilog.last_cbuf) {
1411                         key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1412                         key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1413                         key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1414                 }
1415
1416                 bool is_poly = !util_prim_is_points_or_lines(sctx->current_rast_prim);
1417                 bool is_line = util_prim_is_lines(sctx->current_rast_prim);
1418
1419                 key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1420                 key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1421
1422                 if (sctx->queued.named.blend) {
1423                         key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1424                                                            rs->multisample_enable;
1425                 }
1426
1427                 key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1428                 key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1429                                                            (is_line && rs->line_smooth)) &&
1430                                                           sctx->framebuffer.nr_samples <= 1;
1431                 key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1432
1433                 if (sctx->ps_iter_samples > 1 &&
1434                     sel->info.reads_samplemask) {
1435                         key->part.ps.prolog.samplemask_log_ps_iter =
1436                                 util_logbase2(sctx->ps_iter_samples);
1437                 }
1438
1439                 if (rs->force_persample_interp &&
1440                     rs->multisample_enable &&
1441                     sctx->framebuffer.nr_samples > 1 &&
1442                     sctx->ps_iter_samples > 1) {
1443                         key->part.ps.prolog.force_persp_sample_interp =
1444                                 sel->info.uses_persp_center ||
1445                                 sel->info.uses_persp_centroid;
1446
1447                         key->part.ps.prolog.force_linear_sample_interp =
1448                                 sel->info.uses_linear_center ||
1449                                 sel->info.uses_linear_centroid;
1450                 } else if (rs->multisample_enable &&
1451                            sctx->framebuffer.nr_samples > 1) {
1452                         key->part.ps.prolog.bc_optimize_for_persp =
1453                                 sel->info.uses_persp_center &&
1454                                 sel->info.uses_persp_centroid;
1455                         key->part.ps.prolog.bc_optimize_for_linear =
1456                                 sel->info.uses_linear_center &&
1457                                 sel->info.uses_linear_centroid;
1458                 } else {
1459                         /* Make sure SPI doesn't compute more than 1 pair
1460                          * of (i,j), which is the optimization here. */
1461                         key->part.ps.prolog.force_persp_center_interp =
1462                                 sel->info.uses_persp_center +
1463                                 sel->info.uses_persp_centroid +
1464                                 sel->info.uses_persp_sample > 1;
1465
1466                         key->part.ps.prolog.force_linear_center_interp =
1467                                 sel->info.uses_linear_center +
1468                                 sel->info.uses_linear_centroid +
1469                                 sel->info.uses_linear_sample > 1;
1470
1471                         if (sel->info.opcode_count[TGSI_OPCODE_INTERP_SAMPLE])
1472                                 key->mono.u.ps.interpolate_at_sample_force_center = 1;
1473                 }
1474
1475                 key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1476
1477                 /* ps_uses_fbfetch is true only if the color buffer is bound. */
1478                 if (sctx->ps_uses_fbfetch) {
1479                         struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
1480                         struct pipe_resource *tex = cb0->texture;
1481
1482                         /* 1D textures are allocated and used as 2D on GFX9. */
1483                         key->mono.u.ps.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
1484                         key->mono.u.ps.fbfetch_is_1D = sctx->chip_class != GFX9 &&
1485                                                        (tex->target == PIPE_TEXTURE_1D ||
1486                                                         tex->target == PIPE_TEXTURE_1D_ARRAY);
1487                         key->mono.u.ps.fbfetch_layered = tex->target == PIPE_TEXTURE_1D_ARRAY ||
1488                                                          tex->target == PIPE_TEXTURE_2D_ARRAY ||
1489                                                          tex->target == PIPE_TEXTURE_CUBE ||
1490                                                          tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
1491                                                          tex->target == PIPE_TEXTURE_3D;
1492                 }
1493                 break;
1494         }
1495         default:
1496                 assert(0);
1497         }
1498
1499         if (unlikely(sctx->screen->debug_flags & DBG(NO_OPT_VARIANT)))
1500                 memset(&key->opt, 0, sizeof(key->opt));
1501 }
1502
1503 static void si_build_shader_variant(struct si_shader *shader,
1504                                     int thread_index,
1505                                     bool low_priority)
1506 {
1507         struct si_shader_selector *sel = shader->selector;
1508         struct si_screen *sscreen = sel->screen;
1509         struct ac_llvm_compiler *compiler;
1510         struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1511         int r;
1512
1513         if (thread_index >= 0) {
1514                 if (low_priority) {
1515                         assert(thread_index < ARRAY_SIZE(sscreen->compiler_lowp));
1516                         compiler = &sscreen->compiler_lowp[thread_index];
1517                 } else {
1518                         assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1519                         compiler = &sscreen->compiler[thread_index];
1520                 }
1521                 if (!debug->async)
1522                         debug = NULL;
1523         } else {
1524                 assert(!low_priority);
1525                 compiler = shader->compiler_ctx_state.compiler;
1526         }
1527
1528         r = si_shader_create(sscreen, compiler, shader, debug);
1529         if (unlikely(r)) {
1530                 PRINT_ERR("Failed to build shader variant (type=%u) %d\n",
1531                          sel->type, r);
1532                 shader->compilation_failed = true;
1533                 return;
1534         }
1535
1536         if (shader->compiler_ctx_state.is_debug_context) {
1537                 FILE *f = open_memstream(&shader->shader_log,
1538                                          &shader->shader_log_size);
1539                 if (f) {
1540                         si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1541                         fclose(f);
1542                 }
1543         }
1544
1545         si_shader_init_pm4_state(sscreen, shader);
1546 }
1547
1548 static void si_build_shader_variant_low_priority(void *job, int thread_index)
1549 {
1550         struct si_shader *shader = (struct si_shader *)job;
1551
1552         assert(thread_index >= 0);
1553
1554         si_build_shader_variant(shader, thread_index, true);
1555 }
1556
1557 static const struct si_shader_key zeroed;
1558
1559 static bool si_check_missing_main_part(struct si_screen *sscreen,
1560                                        struct si_shader_selector *sel,
1561                                        struct si_compiler_ctx_state *compiler_state,
1562                                        struct si_shader_key *key)
1563 {
1564         struct si_shader **mainp = si_get_main_shader_part(sel, key);
1565
1566         if (!*mainp) {
1567                 struct si_shader *main_part = CALLOC_STRUCT(si_shader);
1568
1569                 if (!main_part)
1570                         return false;
1571
1572                 /* We can leave the fence as permanently signaled because the
1573                  * main part becomes visible globally only after it has been
1574                  * compiled. */
1575                 util_queue_fence_init(&main_part->ready);
1576
1577                 main_part->selector = sel;
1578                 main_part->key.as_es = key->as_es;
1579                 main_part->key.as_ls = key->as_ls;
1580                 main_part->is_monolithic = false;
1581
1582                 if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
1583                                            main_part, &compiler_state->debug) != 0) {
1584                         FREE(main_part);
1585                         return false;
1586                 }
1587                 *mainp = main_part;
1588         }
1589         return true;
1590 }
1591
1592 /* Select the hw shader variant depending on the current state. */
1593 static int si_shader_select_with_key(struct si_screen *sscreen,
1594                                      struct si_shader_ctx_state *state,
1595                                      struct si_compiler_ctx_state *compiler_state,
1596                                      struct si_shader_key *key,
1597                                      int thread_index)
1598 {
1599         struct si_shader_selector *sel = state->cso;
1600         struct si_shader_selector *previous_stage_sel = NULL;
1601         struct si_shader *current = state->current;
1602         struct si_shader *iter, *shader = NULL;
1603
1604 again:
1605         /* Check if we don't need to change anything.
1606          * This path is also used for most shaders that don't need multiple
1607          * variants, it will cost just a computation of the key and this
1608          * test. */
1609         if (likely(current &&
1610                    memcmp(&current->key, key, sizeof(*key)) == 0)) {
1611                 if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
1612                         if (current->is_optimized) {
1613                                 memset(&key->opt, 0, sizeof(key->opt));
1614                                 goto current_not_ready;
1615                         }
1616
1617                         util_queue_fence_wait(&current->ready);
1618                 }
1619
1620                 return current->compilation_failed ? -1 : 0;
1621         }
1622 current_not_ready:
1623
1624         /* This must be done before the mutex is locked, because async GS
1625          * compilation calls this function too, and therefore must enter
1626          * the mutex first.
1627          *
1628          * Only wait if we are in a draw call. Don't wait if we are
1629          * in a compiler thread.
1630          */
1631         if (thread_index < 0)
1632                 util_queue_fence_wait(&sel->ready);
1633
1634         mtx_lock(&sel->mutex);
1635
1636         /* Find the shader variant. */
1637         for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1638                 /* Don't check the "current" shader. We checked it above. */
1639                 if (current != iter &&
1640                     memcmp(&iter->key, key, sizeof(*key)) == 0) {
1641                         mtx_unlock(&sel->mutex);
1642
1643                         if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
1644                                 /* If it's an optimized shader and its compilation has
1645                                  * been started but isn't done, use the unoptimized
1646                                  * shader so as not to cause a stall due to compilation.
1647                                  */
1648                                 if (iter->is_optimized) {
1649                                         memset(&key->opt, 0, sizeof(key->opt));
1650                                         goto again;
1651                                 }
1652
1653                                 util_queue_fence_wait(&iter->ready);
1654                         }
1655
1656                         if (iter->compilation_failed) {
1657                                 return -1; /* skip the draw call */
1658                         }
1659
1660                         state->current = iter;
1661                         return 0;
1662                 }
1663         }
1664
1665         /* Build a new shader. */
1666         shader = CALLOC_STRUCT(si_shader);
1667         if (!shader) {
1668                 mtx_unlock(&sel->mutex);
1669                 return -ENOMEM;
1670         }
1671
1672         util_queue_fence_init(&shader->ready);
1673
1674         shader->selector = sel;
1675         shader->key = *key;
1676         shader->compiler_ctx_state = *compiler_state;
1677
1678         /* If this is a merged shader, get the first shader's selector. */
1679         if (sscreen->info.chip_class >= GFX9) {
1680                 if (sel->type == PIPE_SHADER_TESS_CTRL)
1681                         previous_stage_sel = key->part.tcs.ls;
1682                 else if (sel->type == PIPE_SHADER_GEOMETRY)
1683                         previous_stage_sel = key->part.gs.es;
1684
1685                 /* We need to wait for the previous shader. */
1686                 if (previous_stage_sel && thread_index < 0)
1687                         util_queue_fence_wait(&previous_stage_sel->ready);
1688         }
1689
1690         /* Compile the main shader part if it doesn't exist. This can happen
1691          * if the initial guess was wrong. */
1692         bool is_pure_monolithic =
1693                 sscreen->use_monolithic_shaders ||
1694                 memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1695
1696         if (!is_pure_monolithic) {
1697                 bool ok;
1698
1699                 /* Make sure the main shader part is present. This is needed
1700                  * for shaders that can be compiled as VS, LS, or ES, and only
1701                  * one of them is compiled at creation.
1702                  *
1703                  * For merged shaders, check that the starting shader's main
1704                  * part is present.
1705                  */
1706                 if (previous_stage_sel) {
1707                         struct si_shader_key shader1_key = zeroed;
1708
1709                         if (sel->type == PIPE_SHADER_TESS_CTRL)
1710                                 shader1_key.as_ls = 1;
1711                         else if (sel->type == PIPE_SHADER_GEOMETRY)
1712                                 shader1_key.as_es = 1;
1713                         else
1714                                 assert(0);
1715
1716                         mtx_lock(&previous_stage_sel->mutex);
1717                         ok = si_check_missing_main_part(sscreen,
1718                                                         previous_stage_sel,
1719                                                         compiler_state, &shader1_key);
1720                         mtx_unlock(&previous_stage_sel->mutex);
1721                 } else {
1722                         ok = si_check_missing_main_part(sscreen, sel,
1723                                                         compiler_state, key);
1724                 }
1725                 if (!ok) {
1726                         FREE(shader);
1727                         mtx_unlock(&sel->mutex);
1728                         return -ENOMEM; /* skip the draw call */
1729                 }
1730         }
1731
1732         /* Keep the reference to the 1st shader of merged shaders, so that
1733          * Gallium can't destroy it before we destroy the 2nd shader.
1734          *
1735          * Set sctx = NULL, because it's unused if we're not releasing
1736          * the shader, and we don't have any sctx here.
1737          */
1738         si_shader_selector_reference(NULL, &shader->previous_stage_sel,
1739                                      previous_stage_sel);
1740
1741         /* Monolithic-only shaders don't make a distinction between optimized
1742          * and unoptimized. */
1743         shader->is_monolithic =
1744                 is_pure_monolithic ||
1745                 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1746
1747         shader->is_optimized =
1748                 !is_pure_monolithic &&
1749                 memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1750
1751         /* If it's an optimized shader, compile it asynchronously. */
1752         if (shader->is_optimized &&
1753             !is_pure_monolithic &&
1754             thread_index < 0) {
1755                 /* Compile it asynchronously. */
1756                 util_queue_add_job(&sscreen->shader_compiler_queue_low_priority,
1757                                    shader, &shader->ready,
1758                                    si_build_shader_variant_low_priority, NULL);
1759
1760                 /* Add only after the ready fence was reset, to guard against a
1761                  * race with si_bind_XX_shader. */
1762                 if (!sel->last_variant) {
1763                         sel->first_variant = shader;
1764                         sel->last_variant = shader;
1765                 } else {
1766                         sel->last_variant->next_variant = shader;
1767                         sel->last_variant = shader;
1768                 }
1769
1770                 /* Use the default (unoptimized) shader for now. */
1771                 memset(&key->opt, 0, sizeof(key->opt));
1772                 mtx_unlock(&sel->mutex);
1773                 goto again;
1774         }
1775
1776         /* Reset the fence before adding to the variant list. */
1777         util_queue_fence_reset(&shader->ready);
1778
1779         if (!sel->last_variant) {
1780                 sel->first_variant = shader;
1781                 sel->last_variant = shader;
1782         } else {
1783                 sel->last_variant->next_variant = shader;
1784                 sel->last_variant = shader;
1785         }
1786
1787         mtx_unlock(&sel->mutex);
1788
1789         assert(!shader->is_optimized);
1790         si_build_shader_variant(shader, thread_index, false);
1791
1792         util_queue_fence_signal(&shader->ready);
1793
1794         if (!shader->compilation_failed)
1795                 state->current = shader;
1796
1797         return shader->compilation_failed ? -1 : 0;
1798 }
1799
1800 static int si_shader_select(struct pipe_context *ctx,
1801                             struct si_shader_ctx_state *state,
1802                             struct si_compiler_ctx_state *compiler_state)
1803 {
1804         struct si_context *sctx = (struct si_context *)ctx;
1805         struct si_shader_key key;
1806
1807         si_shader_selector_key(ctx, state->cso, &key);
1808         return si_shader_select_with_key(sctx->screen, state, compiler_state,
1809                                          &key, -1);
1810 }
1811
1812 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1813                                           bool streamout,
1814                                           struct si_shader_key *key)
1815 {
1816         unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1817
1818         switch (info->processor) {
1819         case PIPE_SHADER_VERTEX:
1820                 switch (next_shader) {
1821                 case PIPE_SHADER_GEOMETRY:
1822                         key->as_es = 1;
1823                         break;
1824                 case PIPE_SHADER_TESS_CTRL:
1825                 case PIPE_SHADER_TESS_EVAL:
1826                         key->as_ls = 1;
1827                         break;
1828                 default:
1829                         /* If POSITION isn't written, it can only be a HW VS
1830                          * if streamout is used. If streamout isn't used,
1831                          * assume that it's a HW LS. (the next shader is TCS)
1832                          * This heuristic is needed for separate shader objects.
1833                          */
1834                         if (!info->writes_position && !streamout)
1835                                 key->as_ls = 1;
1836                 }
1837                 break;
1838
1839         case PIPE_SHADER_TESS_EVAL:
1840                 if (next_shader == PIPE_SHADER_GEOMETRY ||
1841                     !info->writes_position)
1842                         key->as_es = 1;
1843                 break;
1844         }
1845 }
1846
1847 /**
1848  * Compile the main shader part or the monolithic shader as part of
1849  * si_shader_selector initialization. Since it can be done asynchronously,
1850  * there is no way to report compile failures to applications.
1851  */
1852 static void si_init_shader_selector_async(void *job, int thread_index)
1853 {
1854         struct si_shader_selector *sel = (struct si_shader_selector *)job;
1855         struct si_screen *sscreen = sel->screen;
1856         struct ac_llvm_compiler *compiler;
1857         struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1858
1859         assert(!debug->debug_message || debug->async);
1860         assert(thread_index >= 0);
1861         assert(thread_index < ARRAY_SIZE(sscreen->compiler));
1862         compiler = &sscreen->compiler[thread_index];
1863
1864         /* Compile the main shader part for use with a prolog and/or epilog.
1865          * If this fails, the driver will try to compile a monolithic shader
1866          * on demand.
1867          */
1868         if (!sscreen->use_monolithic_shaders) {
1869                 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1870                 void *ir_binary = NULL;
1871
1872                 if (!shader) {
1873                         fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1874                         return;
1875                 }
1876
1877                 /* We can leave the fence signaled because use of the default
1878                  * main part is guarded by the selector's ready fence. */
1879                 util_queue_fence_init(&shader->ready);
1880
1881                 shader->selector = sel;
1882                 shader->is_monolithic = false;
1883                 si_parse_next_shader_property(&sel->info,
1884                                               sel->so.num_outputs != 0,
1885                                               &shader->key);
1886
1887                 if (sel->tokens || sel->nir)
1888                         ir_binary = si_get_ir_binary(sel);
1889
1890                 /* Try to load the shader from the shader cache. */
1891                 mtx_lock(&sscreen->shader_cache_mutex);
1892
1893                 if (ir_binary &&
1894                     si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
1895                         mtx_unlock(&sscreen->shader_cache_mutex);
1896                         si_shader_dump_stats_for_shader_db(shader, debug);
1897                 } else {
1898                         mtx_unlock(&sscreen->shader_cache_mutex);
1899
1900                         /* Compile the shader if it hasn't been loaded from the cache. */
1901                         if (si_compile_tgsi_shader(sscreen, compiler, shader,
1902                                                    debug) != 0) {
1903                                 FREE(shader);
1904                                 FREE(ir_binary);
1905                                 fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1906                                 return;
1907                         }
1908
1909                         if (ir_binary) {
1910                                 mtx_lock(&sscreen->shader_cache_mutex);
1911                                 if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
1912                                         FREE(ir_binary);
1913                                 mtx_unlock(&sscreen->shader_cache_mutex);
1914                         }
1915                 }
1916
1917                 *si_get_main_shader_part(sel, &shader->key) = shader;
1918
1919                 /* Unset "outputs_written" flags for outputs converted to
1920                  * DEFAULT_VAL, so that later inter-shader optimizations don't
1921                  * try to eliminate outputs that don't exist in the final
1922                  * shader.
1923                  *
1924                  * This is only done if non-monolithic shaders are enabled.
1925                  */
1926                 if ((sel->type == PIPE_SHADER_VERTEX ||
1927                      sel->type == PIPE_SHADER_TESS_EVAL) &&
1928                     !shader->key.as_ls &&
1929                     !shader->key.as_es) {
1930                         unsigned i;
1931
1932                         for (i = 0; i < sel->info.num_outputs; i++) {
1933                                 unsigned offset = shader->info.vs_output_param_offset[i];
1934
1935                                 if (offset <= AC_EXP_PARAM_OFFSET_31)
1936                                         continue;
1937
1938                                 unsigned name = sel->info.output_semantic_name[i];
1939                                 unsigned index = sel->info.output_semantic_index[i];
1940                                 unsigned id;
1941
1942                                 switch (name) {
1943                                 case TGSI_SEMANTIC_GENERIC:
1944                                         /* don't process indices the function can't handle */
1945                                         if (index >= SI_MAX_IO_GENERIC)
1946                                                 break;
1947                                         /* fall through */
1948                                 default:
1949                                         id = si_shader_io_get_unique_index(name, index, true);
1950                                         sel->outputs_written_before_ps &= ~(1ull << id);
1951                                         break;
1952                                 case TGSI_SEMANTIC_POSITION: /* ignore these */
1953                                 case TGSI_SEMANTIC_PSIZE:
1954                                 case TGSI_SEMANTIC_CLIPVERTEX:
1955                                 case TGSI_SEMANTIC_EDGEFLAG:
1956                                         break;
1957                                 }
1958                         }
1959                 }
1960         }
1961
1962         /* The GS copy shader is always pre-compiled. */
1963         if (sel->type == PIPE_SHADER_GEOMETRY) {
1964                 sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, compiler, sel, debug);
1965                 if (!sel->gs_copy_shader) {
1966                         fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1967                         return;
1968                 }
1969
1970                 si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1971         }
1972 }
1973
1974 void si_schedule_initial_compile(struct si_context *sctx, unsigned processor,
1975                                  struct util_queue_fence *ready_fence,
1976                                  struct si_compiler_ctx_state *compiler_ctx_state,
1977                                  void *job, util_queue_execute_func execute)
1978 {
1979         util_queue_fence_init(ready_fence);
1980
1981         struct util_async_debug_callback async_debug;
1982         bool wait =
1983                 (sctx->debug.debug_message && !sctx->debug.async) ||
1984                 sctx->is_debug ||
1985                 si_can_dump_shader(sctx->screen, processor);
1986
1987         if (wait) {
1988                 u_async_debug_init(&async_debug);
1989                 compiler_ctx_state->debug = async_debug.base;
1990         }
1991
1992         util_queue_add_job(&sctx->screen->shader_compiler_queue, job,
1993                            ready_fence, execute, NULL);
1994
1995         if (wait) {
1996                 util_queue_fence_wait(ready_fence);
1997                 u_async_debug_drain(&async_debug, &sctx->debug);
1998                 u_async_debug_cleanup(&async_debug);
1999         }
2000 }
2001
2002 /* Return descriptor slot usage masks from the given shader info. */
2003 void si_get_active_slot_masks(const struct tgsi_shader_info *info,
2004                               uint32_t *const_and_shader_buffers,
2005                               uint64_t *samplers_and_images)
2006 {
2007         unsigned start, num_shaderbufs, num_constbufs, num_images, num_samplers;
2008
2009         num_shaderbufs = util_last_bit(info->shader_buffers_declared);
2010         num_constbufs = util_last_bit(info->const_buffers_declared);
2011         /* two 8-byte images share one 16-byte slot */
2012         num_images = align(util_last_bit(info->images_declared), 2);
2013         num_samplers = util_last_bit(info->samplers_declared);
2014
2015         /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
2016         start = si_get_shaderbuf_slot(num_shaderbufs - 1);
2017         *const_and_shader_buffers =
2018                 u_bit_consecutive(start, num_shaderbufs + num_constbufs);
2019
2020         /* The layout is: image[last] ... image[0], sampler[0] ... sampler[last] */
2021         start = si_get_image_slot(num_images - 1) / 2;
2022         *samplers_and_images =
2023                 u_bit_consecutive64(start, num_images / 2 + num_samplers);
2024 }
2025
2026 static void *si_create_shader_selector(struct pipe_context *ctx,
2027                                        const struct pipe_shader_state *state)
2028 {
2029         struct si_screen *sscreen = (struct si_screen *)ctx->screen;
2030         struct si_context *sctx = (struct si_context*)ctx;
2031         struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
2032         int i;
2033
2034         if (!sel)
2035                 return NULL;
2036
2037         pipe_reference_init(&sel->reference, 1);
2038         sel->screen = sscreen;
2039         sel->compiler_ctx_state.debug = sctx->debug;
2040         sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
2041
2042         sel->so = state->stream_output;
2043
2044         if (state->type == PIPE_SHADER_IR_TGSI) {
2045                 sel->tokens = tgsi_dup_tokens(state->tokens);
2046                 if (!sel->tokens) {
2047                         FREE(sel);
2048                         return NULL;
2049                 }
2050
2051                 tgsi_scan_shader(state->tokens, &sel->info);
2052                 tgsi_scan_tess_ctrl(state->tokens, &sel->info, &sel->tcs_info);
2053         } else {
2054                 assert(state->type == PIPE_SHADER_IR_NIR);
2055
2056                 sel->nir = state->ir.nir;
2057
2058                 si_nir_scan_shader(sel->nir, &sel->info);
2059                 si_nir_scan_tess_ctrl(sel->nir, &sel->info, &sel->tcs_info);
2060
2061                 si_lower_nir(sel);
2062         }
2063
2064         sel->type = sel->info.processor;
2065         p_atomic_inc(&sscreen->num_shaders_created);
2066         si_get_active_slot_masks(&sel->info,
2067                                  &sel->active_const_and_shader_buffers,
2068                                  &sel->active_samplers_and_images);
2069
2070         /* Record which streamout buffers are enabled. */
2071         for (i = 0; i < sel->so.num_outputs; i++) {
2072                 sel->enabled_streamout_buffer_mask |=
2073                         (1 << sel->so.output[i].output_buffer) <<
2074                         (sel->so.output[i].stream * 4);
2075         }
2076
2077         /* The prolog is a no-op if there are no inputs. */
2078         sel->vs_needs_prolog = sel->type == PIPE_SHADER_VERTEX &&
2079                                sel->info.num_inputs &&
2080                                !sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
2081
2082         sel->force_correct_derivs_after_kill =
2083                 sel->type == PIPE_SHADER_FRAGMENT &&
2084                 sel->info.uses_derivatives &&
2085                 sel->info.uses_kill &&
2086                 sctx->screen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL);
2087
2088         /* Set which opcode uses which (i,j) pair. */
2089         if (sel->info.uses_persp_opcode_interp_centroid)
2090                 sel->info.uses_persp_centroid = true;
2091
2092         if (sel->info.uses_linear_opcode_interp_centroid)
2093                 sel->info.uses_linear_centroid = true;
2094
2095         if (sel->info.uses_persp_opcode_interp_offset ||
2096             sel->info.uses_persp_opcode_interp_sample)
2097                 sel->info.uses_persp_center = true;
2098
2099         if (sel->info.uses_linear_opcode_interp_offset ||
2100             sel->info.uses_linear_opcode_interp_sample)
2101                 sel->info.uses_linear_center = true;
2102
2103         switch (sel->type) {
2104         case PIPE_SHADER_GEOMETRY:
2105                 sel->gs_output_prim =
2106                         sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
2107                 sel->gs_max_out_vertices =
2108                         sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
2109                 sel->gs_num_invocations =
2110                         sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
2111                 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
2112                 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
2113                                           sel->gs_max_out_vertices;
2114
2115                 sel->max_gs_stream = 0;
2116                 for (i = 0; i < sel->so.num_outputs; i++)
2117                         sel->max_gs_stream = MAX2(sel->max_gs_stream,
2118                                                   sel->so.output[i].stream);
2119
2120                 sel->gs_input_verts_per_prim =
2121                         u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
2122                 break;
2123
2124         case PIPE_SHADER_TESS_CTRL:
2125                 /* Always reserve space for these. */
2126                 sel->patch_outputs_written |=
2127                         (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0)) |
2128                         (1ull << si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0));
2129                 /* fall through */
2130         case PIPE_SHADER_VERTEX:
2131         case PIPE_SHADER_TESS_EVAL:
2132                 for (i = 0; i < sel->info.num_outputs; i++) {
2133                         unsigned name = sel->info.output_semantic_name[i];
2134                         unsigned index = sel->info.output_semantic_index[i];
2135
2136                         switch (name) {
2137                         case TGSI_SEMANTIC_TESSINNER:
2138                         case TGSI_SEMANTIC_TESSOUTER:
2139                         case TGSI_SEMANTIC_PATCH:
2140                                 sel->patch_outputs_written |=
2141                                         1ull << si_shader_io_get_unique_index_patch(name, index);
2142                                 break;
2143
2144                         case TGSI_SEMANTIC_GENERIC:
2145                                 /* don't process indices the function can't handle */
2146                                 if (index >= SI_MAX_IO_GENERIC)
2147                                         break;
2148                                 /* fall through */
2149                         default:
2150                                 sel->outputs_written |=
2151                                         1ull << si_shader_io_get_unique_index(name, index, false);
2152                                 sel->outputs_written_before_ps |=
2153                                         1ull << si_shader_io_get_unique_index(name, index, true);
2154                                 break;
2155                         case TGSI_SEMANTIC_EDGEFLAG:
2156                                 break;
2157                         }
2158                 }
2159                 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
2160                 sel->lshs_vertex_stride = sel->esgs_itemsize;
2161
2162                 /* Add 1 dword to reduce LDS bank conflicts, so that each vertex
2163                  * will start on a different bank. (except for the maximum 32*16).
2164                  */
2165                 if (sel->lshs_vertex_stride < 32*16)
2166                         sel->lshs_vertex_stride += 4;
2167
2168                 /* For the ESGS ring in LDS, add 1 dword to reduce LDS bank
2169                  * conflicts, i.e. each vertex will start at a different bank.
2170                  */
2171                 if (sctx->chip_class >= GFX9)
2172                         sel->esgs_itemsize += 4;
2173
2174                 assert(((sel->esgs_itemsize / 4) & C_028AAC_ITEMSIZE) == 0);
2175                 break;
2176
2177         case PIPE_SHADER_FRAGMENT:
2178                 for (i = 0; i < sel->info.num_inputs; i++) {
2179                         unsigned name = sel->info.input_semantic_name[i];
2180                         unsigned index = sel->info.input_semantic_index[i];
2181
2182                         switch (name) {
2183                         case TGSI_SEMANTIC_GENERIC:
2184                                 /* don't process indices the function can't handle */
2185                                 if (index >= SI_MAX_IO_GENERIC)
2186                                         break;
2187                                 /* fall through */
2188                         default:
2189                                 sel->inputs_read |=
2190                                         1ull << si_shader_io_get_unique_index(name, index, true);
2191                                 break;
2192                         case TGSI_SEMANTIC_PCOORD: /* ignore this */
2193                                 break;
2194                         }
2195                 }
2196
2197                 for (i = 0; i < 8; i++)
2198                         if (sel->info.colors_written & (1 << i))
2199                                 sel->colors_written_4bit |= 0xf << (4 * i);
2200
2201                 for (i = 0; i < sel->info.num_inputs; i++) {
2202                         if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
2203                                 int index = sel->info.input_semantic_index[i];
2204                                 sel->color_attr_index[index] = i;
2205                         }
2206                 }
2207                 break;
2208         }
2209
2210         /* PA_CL_VS_OUT_CNTL */
2211         bool misc_vec_ena =
2212                 sel->info.writes_psize || sel->info.writes_edgeflag ||
2213                 sel->info.writes_layer || sel->info.writes_viewport_index;
2214         sel->pa_cl_vs_out_cntl =
2215                 S_02881C_USE_VTX_POINT_SIZE(sel->info.writes_psize) |
2216                 S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag) |
2217                 S_02881C_USE_VTX_RENDER_TARGET_INDX(sel->info.writes_layer) |
2218                 S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
2219                 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2220                 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena);
2221         sel->clipdist_mask = sel->info.writes_clipvertex ?
2222                                      SIX_BITS : sel->info.clipdist_writemask;
2223         sel->culldist_mask = sel->info.culldist_writemask <<
2224                              sel->info.num_written_clipdistance;
2225
2226         /* DB_SHADER_CONTROL */
2227         sel->db_shader_control =
2228                 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
2229                 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
2230                 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
2231                 S_02880C_KILL_ENABLE(sel->info.uses_kill);
2232
2233         switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
2234         case TGSI_FS_DEPTH_LAYOUT_GREATER:
2235                 sel->db_shader_control |=
2236                         S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2237                 break;
2238         case TGSI_FS_DEPTH_LAYOUT_LESS:
2239                 sel->db_shader_control |=
2240                         S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2241                 break;
2242         }
2243
2244         /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2245          *
2246          *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2247          * --|-----------|------------|------------|--------------------|-------------------|-------------
2248          * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
2249          * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
2250          * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
2251          * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
2252          * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
2253          *
2254          * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2255          * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2256          *
2257          * Don't use ReZ without profiling !!!
2258          *
2259          * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2260          * shaders.
2261          */
2262         if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
2263                 /* Cases 3, 4. */
2264                 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2265                                           S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2266                                           S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
2267         } else if (sel->info.writes_memory) {
2268                 /* Case 2. */
2269                 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2270                                           S_02880C_EXEC_ON_HIER_FAIL(1);
2271         } else {
2272                 /* Case 1. */
2273                 sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2274         }
2275
2276         (void) mtx_init(&sel->mutex, mtx_plain);
2277
2278         si_schedule_initial_compile(sctx, sel->info.processor, &sel->ready,
2279                                     &sel->compiler_ctx_state, sel,
2280                                     si_init_shader_selector_async);
2281         return sel;
2282 }
2283
2284 static void si_update_streamout_state(struct si_context *sctx)
2285 {
2286         struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
2287
2288         if (!shader_with_so)
2289                 return;
2290
2291         sctx->streamout.enabled_stream_buffers_mask =
2292                 shader_with_so->enabled_streamout_buffer_mask;
2293         sctx->streamout.stride_in_dw = shader_with_so->so.stride;
2294 }
2295
2296 static void si_update_clip_regs(struct si_context *sctx,
2297                                 struct si_shader_selector *old_hw_vs,
2298                                 struct si_shader *old_hw_vs_variant,
2299                                 struct si_shader_selector *next_hw_vs,
2300                                 struct si_shader *next_hw_vs_variant)
2301 {
2302         if (next_hw_vs &&
2303             (!old_hw_vs ||
2304              old_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] !=
2305              next_hw_vs->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] ||
2306              old_hw_vs->pa_cl_vs_out_cntl != next_hw_vs->pa_cl_vs_out_cntl ||
2307              old_hw_vs->clipdist_mask != next_hw_vs->clipdist_mask ||
2308              old_hw_vs->culldist_mask != next_hw_vs->culldist_mask ||
2309              !old_hw_vs_variant ||
2310              !next_hw_vs_variant ||
2311              old_hw_vs_variant->key.opt.clip_disable !=
2312              next_hw_vs_variant->key.opt.clip_disable))
2313                 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
2314 }
2315
2316 static void si_update_common_shader_state(struct si_context *sctx)
2317 {
2318         sctx->uses_bindless_samplers =
2319                 si_shader_uses_bindless_samplers(sctx->vs_shader.cso)  ||
2320                 si_shader_uses_bindless_samplers(sctx->gs_shader.cso)  ||
2321                 si_shader_uses_bindless_samplers(sctx->ps_shader.cso)  ||
2322                 si_shader_uses_bindless_samplers(sctx->tcs_shader.cso) ||
2323                 si_shader_uses_bindless_samplers(sctx->tes_shader.cso);
2324         sctx->uses_bindless_images =
2325                 si_shader_uses_bindless_images(sctx->vs_shader.cso)  ||
2326                 si_shader_uses_bindless_images(sctx->gs_shader.cso)  ||
2327                 si_shader_uses_bindless_images(sctx->ps_shader.cso)  ||
2328                 si_shader_uses_bindless_images(sctx->tcs_shader.cso) ||
2329                 si_shader_uses_bindless_images(sctx->tes_shader.cso);
2330         sctx->do_update_shaders = true;
2331 }
2332
2333 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
2334 {
2335         struct si_context *sctx = (struct si_context *)ctx;
2336         struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2337         struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2338         struct si_shader_selector *sel = state;
2339
2340         if (sctx->vs_shader.cso == sel)
2341                 return;
2342
2343         sctx->vs_shader.cso = sel;
2344         sctx->vs_shader.current = sel ? sel->first_variant : NULL;
2345         sctx->num_vs_blit_sgprs = sel ? sel->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS] : 0;
2346
2347         si_update_common_shader_state(sctx);
2348         si_update_vs_viewport_state(sctx);
2349         si_set_active_descriptors_for_shader(sctx, sel);
2350         si_update_streamout_state(sctx);
2351         si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2352                             si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2353 }
2354
2355 static void si_update_tess_uses_prim_id(struct si_context *sctx)
2356 {
2357         sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
2358                 (sctx->tes_shader.cso &&
2359                  sctx->tes_shader.cso->info.uses_primid) ||
2360                 (sctx->tcs_shader.cso &&
2361                  sctx->tcs_shader.cso->info.uses_primid) ||
2362                 (sctx->gs_shader.cso &&
2363                  sctx->gs_shader.cso->info.uses_primid) ||
2364                 (sctx->ps_shader.cso && !sctx->gs_shader.cso &&
2365                  sctx->ps_shader.cso->info.uses_primid);
2366 }
2367
2368 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
2369 {
2370         struct si_context *sctx = (struct si_context *)ctx;
2371         struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2372         struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2373         struct si_shader_selector *sel = state;
2374         bool enable_changed = !!sctx->gs_shader.cso != !!sel;
2375
2376         if (sctx->gs_shader.cso == sel)
2377                 return;
2378
2379         sctx->gs_shader.cso = sel;
2380         sctx->gs_shader.current = sel ? sel->first_variant : NULL;
2381         sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
2382
2383         si_update_common_shader_state(sctx);
2384         sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2385
2386         if (enable_changed) {
2387                 si_shader_change_notify(sctx);
2388                 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2389                         si_update_tess_uses_prim_id(sctx);
2390         }
2391         si_update_vs_viewport_state(sctx);
2392         si_set_active_descriptors_for_shader(sctx, sel);
2393         si_update_streamout_state(sctx);
2394         si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2395                             si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2396 }
2397
2398 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
2399 {
2400         struct si_context *sctx = (struct si_context *)ctx;
2401         struct si_shader_selector *sel = state;
2402         bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
2403
2404         if (sctx->tcs_shader.cso == sel)
2405                 return;
2406
2407         sctx->tcs_shader.cso = sel;
2408         sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
2409         si_update_tess_uses_prim_id(sctx);
2410
2411         si_update_common_shader_state(sctx);
2412
2413         if (enable_changed)
2414                 sctx->last_tcs = NULL; /* invalidate derived tess state */
2415
2416         si_set_active_descriptors_for_shader(sctx, sel);
2417 }
2418
2419 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
2420 {
2421         struct si_context *sctx = (struct si_context *)ctx;
2422         struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
2423         struct si_shader *old_hw_vs_variant = si_get_vs_state(sctx);
2424         struct si_shader_selector *sel = state;
2425         bool enable_changed = !!sctx->tes_shader.cso != !!sel;
2426
2427         if (sctx->tes_shader.cso == sel)
2428                 return;
2429
2430         sctx->tes_shader.cso = sel;
2431         sctx->tes_shader.current = sel ? sel->first_variant : NULL;
2432         sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
2433         si_update_tess_uses_prim_id(sctx);
2434
2435         si_update_common_shader_state(sctx);
2436         sctx->last_rast_prim = -1; /* reset this so that it gets updated */
2437
2438         if (enable_changed) {
2439                 si_shader_change_notify(sctx);
2440                 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
2441         }
2442         si_update_vs_viewport_state(sctx);
2443         si_set_active_descriptors_for_shader(sctx, sel);
2444         si_update_streamout_state(sctx);
2445         si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant,
2446                             si_get_vs(sctx)->cso, si_get_vs_state(sctx));
2447 }
2448
2449 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
2450 {
2451         struct si_context *sctx = (struct si_context *)ctx;
2452         struct si_shader_selector *old_sel = sctx->ps_shader.cso;
2453         struct si_shader_selector *sel = state;
2454
2455         /* skip if supplied shader is one already in use */
2456         if (old_sel == sel)
2457                 return;
2458
2459         sctx->ps_shader.cso = sel;
2460         sctx->ps_shader.current = sel ? sel->first_variant : NULL;
2461
2462         si_update_common_shader_state(sctx);
2463         if (sel) {
2464                 if (sctx->ia_multi_vgt_param_key.u.uses_tess)
2465                         si_update_tess_uses_prim_id(sctx);
2466
2467                 if (!old_sel ||
2468                     old_sel->info.colors_written != sel->info.colors_written)
2469                         si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
2470
2471                 if (sctx->screen->has_out_of_order_rast &&
2472                     (!old_sel ||
2473                      old_sel->info.writes_memory != sel->info.writes_memory ||
2474                      old_sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] !=
2475                      sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]))
2476                         si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
2477         }
2478         si_set_active_descriptors_for_shader(sctx, sel);
2479         si_update_ps_colorbuf0_slot(sctx);
2480 }
2481
2482 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
2483 {
2484         if (shader->is_optimized) {
2485                 util_queue_drop_job(&sctx->screen->shader_compiler_queue_low_priority,
2486                                     &shader->ready);
2487         }
2488
2489         util_queue_fence_destroy(&shader->ready);
2490
2491         if (shader->pm4) {
2492                 switch (shader->selector->type) {
2493                 case PIPE_SHADER_VERTEX:
2494                         if (shader->key.as_ls) {
2495                                 assert(sctx->chip_class <= VI);
2496                                 si_pm4_delete_state(sctx, ls, shader->pm4);
2497                         } else if (shader->key.as_es) {
2498                                 assert(sctx->chip_class <= VI);
2499                                 si_pm4_delete_state(sctx, es, shader->pm4);
2500                         } else {
2501                                 si_pm4_delete_state(sctx, vs, shader->pm4);
2502                         }
2503                         break;
2504                 case PIPE_SHADER_TESS_CTRL:
2505                         si_pm4_delete_state(sctx, hs, shader->pm4);
2506                         break;
2507                 case PIPE_SHADER_TESS_EVAL:
2508                         if (shader->key.as_es) {
2509                                 assert(sctx->chip_class <= VI);
2510                                 si_pm4_delete_state(sctx, es, shader->pm4);
2511                         } else {
2512                                 si_pm4_delete_state(sctx, vs, shader->pm4);
2513                         }
2514                         break;
2515                 case PIPE_SHADER_GEOMETRY:
2516                         if (shader->is_gs_copy_shader)
2517                                 si_pm4_delete_state(sctx, vs, shader->pm4);
2518                         else
2519                                 si_pm4_delete_state(sctx, gs, shader->pm4);
2520                         break;
2521                 case PIPE_SHADER_FRAGMENT:
2522                         si_pm4_delete_state(sctx, ps, shader->pm4);
2523                         break;
2524                 }
2525         }
2526
2527         si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
2528         si_shader_destroy(shader);
2529         free(shader);
2530 }
2531
2532 void si_destroy_shader_selector(struct si_context *sctx,
2533                                 struct si_shader_selector *sel)
2534 {
2535         struct si_shader *p = sel->first_variant, *c;
2536         struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
2537                 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
2538                 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
2539                 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
2540                 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
2541                 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
2542         };
2543
2544         util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
2545
2546         if (current_shader[sel->type]->cso == sel) {
2547                 current_shader[sel->type]->cso = NULL;
2548                 current_shader[sel->type]->current = NULL;
2549         }
2550
2551         while (p) {
2552                 c = p->next_variant;
2553                 si_delete_shader(sctx, p);
2554                 p = c;
2555         }
2556
2557         if (sel->main_shader_part)
2558                 si_delete_shader(sctx, sel->main_shader_part);
2559         if (sel->main_shader_part_ls)
2560                 si_delete_shader(sctx, sel->main_shader_part_ls);
2561         if (sel->main_shader_part_es)
2562                 si_delete_shader(sctx, sel->main_shader_part_es);
2563         if (sel->gs_copy_shader)
2564                 si_delete_shader(sctx, sel->gs_copy_shader);
2565
2566         util_queue_fence_destroy(&sel->ready);
2567         mtx_destroy(&sel->mutex);
2568         free(sel->tokens);
2569         ralloc_free(sel->nir);
2570         free(sel);
2571 }
2572
2573 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
2574 {
2575         struct si_context *sctx = (struct si_context *)ctx;
2576         struct si_shader_selector *sel = (struct si_shader_selector *)state;
2577
2578         si_shader_selector_reference(sctx, &sel, NULL);
2579 }
2580
2581 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
2582                                      struct si_shader *vs, unsigned name,
2583                                      unsigned index, unsigned interpolate)
2584 {
2585         struct tgsi_shader_info *vsinfo = &vs->selector->info;
2586         unsigned j, offset, ps_input_cntl = 0;
2587
2588         if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
2589             (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
2590                 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2591
2592         if (name == TGSI_SEMANTIC_PCOORD ||
2593             (name == TGSI_SEMANTIC_TEXCOORD &&
2594              sctx->sprite_coord_enable & (1 << index))) {
2595                 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
2596         }
2597
2598         for (j = 0; j < vsinfo->num_outputs; j++) {
2599                 if (name == vsinfo->output_semantic_name[j] &&
2600                     index == vsinfo->output_semantic_index[j]) {
2601                         offset = vs->info.vs_output_param_offset[j];
2602
2603                         if (offset <= AC_EXP_PARAM_OFFSET_31) {
2604                                 /* The input is loaded from parameter memory. */
2605                                 ps_input_cntl |= S_028644_OFFSET(offset);
2606                         } else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2607                                 if (offset == AC_EXP_PARAM_UNDEFINED) {
2608                                         /* This can happen with depth-only rendering. */
2609                                         offset = 0;
2610                                 } else {
2611                                         /* The input is a DEFAULT_VAL constant. */
2612                                         assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
2613                                                offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
2614                                         offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
2615                                 }
2616
2617                                 ps_input_cntl = S_028644_OFFSET(0x20) |
2618                                                 S_028644_DEFAULT_VAL(offset);
2619                         }
2620                         break;
2621                 }
2622         }
2623
2624         if (name == TGSI_SEMANTIC_PRIMID)
2625                 /* PrimID is written after the last output. */
2626                 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
2627         else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
2628                 /* No corresponding output found, load defaults into input.
2629                  * Don't set any other bits.
2630                  * (FLAT_SHADE=1 completely changes behavior) */
2631                 ps_input_cntl = S_028644_OFFSET(0x20);
2632                 /* D3D 9 behaviour. GL is undefined */
2633                 if (name == TGSI_SEMANTIC_COLOR && index == 0)
2634                         ps_input_cntl |= S_028644_DEFAULT_VAL(3);
2635         }
2636         return ps_input_cntl;
2637 }
2638
2639 static void si_emit_spi_map(struct si_context *sctx)
2640 {
2641         struct si_shader *ps = sctx->ps_shader.current;
2642         struct si_shader *vs = si_get_vs_state(sctx);
2643         struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
2644         unsigned i, num_interp, num_written = 0, bcol_interp[2];
2645         unsigned spi_ps_input_cntl[32];
2646
2647         if (!ps || !ps->selector->info.num_inputs)
2648                 return;
2649
2650         num_interp = si_get_ps_num_interp(ps);
2651         assert(num_interp > 0);
2652
2653         for (i = 0; i < psinfo->num_inputs; i++) {
2654                 unsigned name = psinfo->input_semantic_name[i];
2655                 unsigned index = psinfo->input_semantic_index[i];
2656                 unsigned interpolate = psinfo->input_interpolate[i];
2657
2658                 spi_ps_input_cntl[num_written++] = si_get_ps_input_cntl(sctx, vs, name,
2659                                                             index, interpolate);
2660
2661                 if (name == TGSI_SEMANTIC_COLOR) {
2662                         assert(index < ARRAY_SIZE(bcol_interp));
2663                         bcol_interp[index] = interpolate;
2664                 }
2665         }
2666
2667         if (ps->key.part.ps.prolog.color_two_side) {
2668                 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
2669
2670                 for (i = 0; i < 2; i++) {
2671                         if (!(psinfo->colors_read & (0xf << (i * 4))))
2672                                 continue;
2673
2674                         spi_ps_input_cntl[num_written++] =
2675                           si_get_ps_input_cntl(sctx, vs, bcol, i, bcol_interp[i]);
2676
2677                 }
2678         }
2679         assert(num_interp == num_written);
2680
2681         /* R_028644_SPI_PS_INPUT_CNTL_0 */
2682         /* Dota 2: Only ~16% of SPI map updates set different values. */
2683         /* Talos: Only ~9% of SPI map updates set different values. */
2684         radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0,
2685                                     spi_ps_input_cntl,
2686                                     sctx->tracked_regs.spi_ps_input_cntl, num_interp);
2687 }
2688
2689 /**
2690  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
2691  */
2692 static void si_init_config_add_vgt_flush(struct si_context *sctx)
2693 {
2694         if (sctx->init_config_has_vgt_flush)
2695                 return;
2696
2697         /* Done by Vulkan before VGT_FLUSH. */
2698         si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2699         si_pm4_cmd_add(sctx->init_config,
2700                        EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2701         si_pm4_cmd_end(sctx->init_config, false);
2702
2703         /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
2704         si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
2705         si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2706         si_pm4_cmd_end(sctx->init_config, false);
2707         sctx->init_config_has_vgt_flush = true;
2708 }
2709
2710 /* Initialize state related to ESGS / GSVS ring buffers */
2711 static bool si_update_gs_ring_buffers(struct si_context *sctx)
2712 {
2713         struct si_shader_selector *es =
2714                 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
2715         struct si_shader_selector *gs = sctx->gs_shader.cso;
2716         struct si_pm4_state *pm4;
2717
2718         /* Chip constants. */
2719         unsigned num_se = sctx->screen->info.max_se;
2720         unsigned wave_size = 64;
2721         unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
2722         /* On SI-CI, the value comes from VGT_GS_VERTEX_REUSE = 16.
2723          * On VI+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
2724          */
2725         unsigned gs_vertex_reuse = (sctx->chip_class >= VI ? 32 : 16) * num_se;
2726         unsigned alignment = 256 * num_se;
2727         /* The maximum size is 63.999 MB per SE. */
2728         unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
2729
2730         /* Calculate the minimum size. */
2731         unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
2732                                             wave_size, alignment);
2733
2734         /* These are recommended sizes, not minimum sizes. */
2735         unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
2736                                   es->esgs_itemsize * gs->gs_input_verts_per_prim;
2737         unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2738                                   gs->max_gsvs_emit_size;
2739
2740         min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2741         esgs_ring_size = align(esgs_ring_size, alignment);
2742         gsvs_ring_size = align(gsvs_ring_size, alignment);
2743
2744         esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2745         gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2746
2747         /* Some rings don't have to be allocated if shaders don't use them.
2748          * (e.g. no varyings between ES and GS or GS and VS)
2749          *
2750          * GFX9 doesn't have the ESGS ring.
2751          */
2752         bool update_esgs = sctx->chip_class <= VI &&
2753                            esgs_ring_size &&
2754                            (!sctx->esgs_ring ||
2755                             sctx->esgs_ring->width0 < esgs_ring_size);
2756         bool update_gsvs = gsvs_ring_size &&
2757                            (!sctx->gsvs_ring ||
2758                             sctx->gsvs_ring->width0 < gsvs_ring_size);
2759
2760         if (!update_esgs && !update_gsvs)
2761                 return true;
2762
2763         if (update_esgs) {
2764                 pipe_resource_reference(&sctx->esgs_ring, NULL);
2765                 sctx->esgs_ring =
2766                         pipe_aligned_buffer_create(sctx->b.screen,
2767                                                    SI_RESOURCE_FLAG_UNMAPPABLE,
2768                                                    PIPE_USAGE_DEFAULT,
2769                                                    esgs_ring_size, alignment);
2770                 if (!sctx->esgs_ring)
2771                         return false;
2772         }
2773
2774         if (update_gsvs) {
2775                 pipe_resource_reference(&sctx->gsvs_ring, NULL);
2776                 sctx->gsvs_ring =
2777                         pipe_aligned_buffer_create(sctx->b.screen,
2778                                                    SI_RESOURCE_FLAG_UNMAPPABLE,
2779                                                    PIPE_USAGE_DEFAULT,
2780                                                    gsvs_ring_size, alignment);
2781                 if (!sctx->gsvs_ring)
2782                         return false;
2783         }
2784
2785         /* Create the "init_config_gs_rings" state. */
2786         pm4 = CALLOC_STRUCT(si_pm4_state);
2787         if (!pm4)
2788                 return false;
2789
2790         if (sctx->chip_class >= CIK) {
2791                 if (sctx->esgs_ring) {
2792                         assert(sctx->chip_class <= VI);
2793                         si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2794                                        sctx->esgs_ring->width0 / 256);
2795                 }
2796                 if (sctx->gsvs_ring)
2797                         si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2798                                        sctx->gsvs_ring->width0 / 256);
2799         } else {
2800                 if (sctx->esgs_ring)
2801                         si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2802                                        sctx->esgs_ring->width0 / 256);
2803                 if (sctx->gsvs_ring)
2804                         si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2805                                        sctx->gsvs_ring->width0 / 256);
2806         }
2807
2808         /* Set the state. */
2809         if (sctx->init_config_gs_rings)
2810                 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2811         sctx->init_config_gs_rings = pm4;
2812
2813         if (!sctx->init_config_has_vgt_flush) {
2814                 si_init_config_add_vgt_flush(sctx);
2815                 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2816         }
2817
2818         /* Flush the context to re-emit both init_config states. */
2819         sctx->initial_gfx_cs_size = 0; /* force flush */
2820         si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
2821
2822         /* Set ring bindings. */
2823         if (sctx->esgs_ring) {
2824                 assert(sctx->chip_class <= VI);
2825                 si_set_ring_buffer(sctx, SI_ES_RING_ESGS,
2826                                    sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2827                                    true, true, 4, 64, 0);
2828                 si_set_ring_buffer(sctx, SI_GS_RING_ESGS,
2829                                    sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2830                                    false, false, 0, 0, 0);
2831         }
2832         if (sctx->gsvs_ring) {
2833                 si_set_ring_buffer(sctx, SI_RING_GSVS,
2834                                    sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2835                                    false, false, 0, 0, 0);
2836         }
2837
2838         return true;
2839 }
2840
2841 static void si_shader_lock(struct si_shader *shader)
2842 {
2843         mtx_lock(&shader->selector->mutex);
2844         if (shader->previous_stage_sel) {
2845                 assert(shader->previous_stage_sel != shader->selector);
2846                 mtx_lock(&shader->previous_stage_sel->mutex);
2847         }
2848 }
2849
2850 static void si_shader_unlock(struct si_shader *shader)
2851 {
2852         if (shader->previous_stage_sel)
2853                 mtx_unlock(&shader->previous_stage_sel->mutex);
2854         mtx_unlock(&shader->selector->mutex);
2855 }
2856
2857 /**
2858  * @returns 1 if \p sel has been updated to use a new scratch buffer
2859  *          0 if not
2860  *          < 0 if there was a failure
2861  */
2862 static int si_update_scratch_buffer(struct si_context *sctx,
2863                                     struct si_shader *shader)
2864 {
2865         uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2866         int r;
2867
2868         if (!shader)
2869                 return 0;
2870
2871         /* This shader doesn't need a scratch buffer */
2872         if (shader->config.scratch_bytes_per_wave == 0)
2873                 return 0;
2874
2875         /* Prevent race conditions when updating:
2876          * - si_shader::scratch_bo
2877          * - si_shader::binary::code
2878          * - si_shader::previous_stage::binary::code.
2879          */
2880         si_shader_lock(shader);
2881
2882         /* This shader is already configured to use the current
2883          * scratch buffer. */
2884         if (shader->scratch_bo == sctx->scratch_buffer) {
2885                 si_shader_unlock(shader);
2886                 return 0;
2887         }
2888
2889         assert(sctx->scratch_buffer);
2890
2891         if (shader->previous_stage)
2892                 si_shader_apply_scratch_relocs(shader->previous_stage, scratch_va);
2893
2894         si_shader_apply_scratch_relocs(shader, scratch_va);
2895
2896         /* Replace the shader bo with a new bo that has the relocs applied. */
2897         r = si_shader_binary_upload(sctx->screen, shader);
2898         if (r) {
2899                 si_shader_unlock(shader);
2900                 return r;
2901         }
2902
2903         /* Update the shader state to use the new shader bo. */
2904         si_shader_init_pm4_state(sctx->screen, shader);
2905
2906         r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2907
2908         si_shader_unlock(shader);
2909         return 1;
2910 }
2911
2912 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2913 {
2914         return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2915 }
2916
2917 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2918 {
2919         return shader ? shader->config.scratch_bytes_per_wave : 0;
2920 }
2921
2922 static struct si_shader *si_get_tcs_current(struct si_context *sctx)
2923 {
2924         if (!sctx->tes_shader.cso)
2925                 return NULL; /* tessellation disabled */
2926
2927         return sctx->tcs_shader.cso ? sctx->tcs_shader.current :
2928                                       sctx->fixed_func_tcs_shader.current;
2929 }
2930
2931 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2932 {
2933         unsigned bytes = 0;
2934
2935         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2936         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2937         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2938         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2939
2940         if (sctx->tes_shader.cso) {
2941                 struct si_shader *tcs = si_get_tcs_current(sctx);
2942
2943                 bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(tcs));
2944         }
2945         return bytes;
2946 }
2947
2948 static bool si_update_scratch_relocs(struct si_context *sctx)
2949 {
2950         struct si_shader *tcs = si_get_tcs_current(sctx);
2951         int r;
2952
2953         /* Update the shaders, so that they are using the latest scratch.
2954          * The scratch buffer may have been changed since these shaders were
2955          * last used, so we still need to try to update them, even if they
2956          * require scratch buffers smaller than the current size.
2957          */
2958         r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2959         if (r < 0)
2960                 return false;
2961         if (r == 1)
2962                 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2963
2964         r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2965         if (r < 0)
2966                 return false;
2967         if (r == 1)
2968                 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2969
2970         r = si_update_scratch_buffer(sctx, tcs);
2971         if (r < 0)
2972                 return false;
2973         if (r == 1)
2974                 si_pm4_bind_state(sctx, hs, tcs->pm4);
2975
2976         /* VS can be bound as LS, ES, or VS. */
2977         r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2978         if (r < 0)
2979                 return false;
2980         if (r == 1) {
2981                 if (sctx->tes_shader.current)
2982                         si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2983                 else if (sctx->gs_shader.current)
2984                         si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2985                 else
2986                         si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2987         }
2988
2989         /* TES can be bound as ES or VS. */
2990         r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2991         if (r < 0)
2992                 return false;
2993         if (r == 1) {
2994                 if (sctx->gs_shader.current)
2995                         si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2996                 else
2997                         si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2998         }
2999
3000         return true;
3001 }
3002
3003 static bool si_update_spi_tmpring_size(struct si_context *sctx)
3004 {
3005         unsigned current_scratch_buffer_size =
3006                 si_get_current_scratch_buffer_size(sctx);
3007         unsigned scratch_bytes_per_wave =
3008                 si_get_max_scratch_bytes_per_wave(sctx);
3009         unsigned scratch_needed_size = scratch_bytes_per_wave *
3010                 sctx->scratch_waves;
3011         unsigned spi_tmpring_size;
3012
3013         if (scratch_needed_size > 0) {
3014                 if (scratch_needed_size > current_scratch_buffer_size) {
3015                         /* Create a bigger scratch buffer */
3016                         r600_resource_reference(&sctx->scratch_buffer, NULL);
3017
3018                         sctx->scratch_buffer =
3019                                 si_aligned_buffer_create(&sctx->screen->b,
3020                                                            SI_RESOURCE_FLAG_UNMAPPABLE,
3021                                                            PIPE_USAGE_DEFAULT,
3022                                                            scratch_needed_size, 256);
3023                         if (!sctx->scratch_buffer)
3024                                 return false;
3025
3026                         si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3027                         si_context_add_resource_size(sctx,
3028                                                      &sctx->scratch_buffer->b.b);
3029                 }
3030
3031                 if (!si_update_scratch_relocs(sctx))
3032                         return false;
3033         }
3034
3035         /* The LLVM shader backend should be reporting aligned scratch_sizes. */
3036         assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
3037                 "scratch size should already be aligned correctly.");
3038
3039         spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
3040                            S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
3041         if (spi_tmpring_size != sctx->spi_tmpring_size) {
3042                 sctx->spi_tmpring_size = spi_tmpring_size;
3043                 si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
3044         }
3045         return true;
3046 }
3047
3048 static void si_init_tess_factor_ring(struct si_context *sctx)
3049 {
3050         assert(!sctx->tess_rings);
3051
3052         /* The address must be aligned to 2^19, because the shader only
3053          * receives the high 13 bits.
3054          */
3055         sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
3056                                                     SI_RESOURCE_FLAG_32BIT,
3057                                                     PIPE_USAGE_DEFAULT,
3058                                                     sctx->screen->tess_offchip_ring_size +
3059                                                     sctx->screen->tess_factor_ring_size,
3060                                                     1 << 19);
3061         if (!sctx->tess_rings)
3062                 return;
3063
3064         si_init_config_add_vgt_flush(sctx);
3065
3066         si_pm4_add_bo(sctx->init_config, r600_resource(sctx->tess_rings),
3067                       RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS);
3068
3069         uint64_t factor_va = r600_resource(sctx->tess_rings)->gpu_address +
3070                              sctx->screen->tess_offchip_ring_size;
3071
3072         /* Append these registers to the init config state. */
3073         if (sctx->chip_class >= CIK) {
3074                 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
3075                                S_030938_SIZE(sctx->screen->tess_factor_ring_size / 4));
3076                 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
3077                                factor_va >> 8);
3078                 if (sctx->chip_class >= GFX9)
3079                         si_pm4_set_reg(sctx->init_config, R_030944_VGT_TF_MEMORY_BASE_HI,
3080                                        S_030944_BASE_HI(factor_va >> 40));
3081                 si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
3082                                sctx->screen->vgt_hs_offchip_param);
3083         } else {
3084                 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
3085                                S_008988_SIZE(sctx->screen->tess_factor_ring_size / 4));
3086                 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
3087                                factor_va >> 8);
3088                 si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3089                                sctx->screen->vgt_hs_offchip_param);
3090         }
3091
3092         /* Flush the context to re-emit the init_config state.
3093          * This is done only once in a lifetime of a context.
3094          */
3095         si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
3096         sctx->initial_gfx_cs_size = 0; /* force flush */
3097         si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3098 }
3099
3100 static void si_update_vgt_shader_config(struct si_context *sctx)
3101 {
3102         /* Calculate the index of the config.
3103          * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
3104         unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
3105         struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
3106
3107         if (!*pm4) {
3108                 uint32_t stages = 0;
3109
3110                 *pm4 = CALLOC_STRUCT(si_pm4_state);
3111
3112                 if (sctx->tes_shader.cso) {
3113                         stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
3114                                   S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3115
3116                         if (sctx->gs_shader.cso)
3117                                 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
3118                                           S_028B54_GS_EN(1) |
3119                                           S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3120                         else
3121                                 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3122                 } else if (sctx->gs_shader.cso) {
3123                         stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
3124                                   S_028B54_GS_EN(1) |
3125                                   S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3126                 }
3127
3128                 if (sctx->chip_class >= GFX9)
3129                         stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3130
3131                 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
3132         }
3133         si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
3134 }
3135
3136 bool si_update_shaders(struct si_context *sctx)
3137 {
3138         struct pipe_context *ctx = (struct pipe_context*)sctx;
3139         struct si_compiler_ctx_state compiler_state;
3140         struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3141         struct si_shader *old_vs = si_get_vs_state(sctx);
3142         bool old_clip_disable = old_vs ? old_vs->key.opt.clip_disable : false;
3143         struct si_shader *old_ps = sctx->ps_shader.current;
3144         unsigned old_spi_shader_col_format =
3145                 old_ps ? old_ps->key.part.ps.epilog.spi_shader_col_format : 0;
3146         int r;
3147
3148         compiler_state.compiler = &sctx->compiler;
3149         compiler_state.debug = sctx->debug;
3150         compiler_state.is_debug_context = sctx->is_debug;
3151
3152         /* Update stages before GS. */
3153         if (sctx->tes_shader.cso) {
3154                 if (!sctx->tess_rings) {
3155                         si_init_tess_factor_ring(sctx);
3156                         if (!sctx->tess_rings)
3157                                 return false;
3158                 }
3159
3160                 /* VS as LS */
3161                 if (sctx->chip_class <= VI) {
3162                         r = si_shader_select(ctx, &sctx->vs_shader,
3163                                              &compiler_state);
3164                         if (r)
3165                                 return false;
3166                         si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
3167                 }
3168
3169                 if (sctx->tcs_shader.cso) {
3170                         r = si_shader_select(ctx, &sctx->tcs_shader,
3171                                              &compiler_state);
3172                         if (r)
3173                                 return false;
3174                         si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
3175                 } else {
3176                         if (!sctx->fixed_func_tcs_shader.cso) {
3177                                 sctx->fixed_func_tcs_shader.cso =
3178                                         si_create_fixed_func_tcs(sctx);
3179                                 if (!sctx->fixed_func_tcs_shader.cso)
3180                                         return false;
3181                         }
3182
3183                         r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
3184                                              &compiler_state);
3185                         if (r)
3186                                 return false;
3187                         si_pm4_bind_state(sctx, hs,
3188                                           sctx->fixed_func_tcs_shader.current->pm4);
3189                 }
3190
3191                 if (sctx->gs_shader.cso) {
3192                         /* TES as ES */
3193                         if (sctx->chip_class <= VI) {
3194                                 r = si_shader_select(ctx, &sctx->tes_shader,
3195                                                      &compiler_state);
3196                                 if (r)
3197                                         return false;
3198                                 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
3199                         }
3200                 } else {
3201                         /* TES as VS */
3202                         r = si_shader_select(ctx, &sctx->tes_shader,
3203                                              &compiler_state);
3204                         if (r)
3205                                 return false;
3206                         si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
3207                 }
3208         } else if (sctx->gs_shader.cso) {
3209                 if (sctx->chip_class <= VI) {
3210                         /* VS as ES */
3211                         r = si_shader_select(ctx, &sctx->vs_shader,
3212                                              &compiler_state);
3213                         if (r)
3214                                 return false;
3215                         si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
3216
3217                         si_pm4_bind_state(sctx, ls, NULL);
3218                         si_pm4_bind_state(sctx, hs, NULL);
3219                 }
3220         } else {
3221                 /* VS as VS */
3222                 r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
3223                 if (r)
3224                         return false;
3225                 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
3226                 si_pm4_bind_state(sctx, ls, NULL);
3227                 si_pm4_bind_state(sctx, hs, NULL);
3228         }
3229
3230         /* Update GS. */
3231         if (sctx->gs_shader.cso) {
3232                 r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
3233                 if (r)
3234                         return false;
3235                 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
3236                 si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
3237
3238                 if (!si_update_gs_ring_buffers(sctx))
3239                         return false;
3240         } else {
3241                 si_pm4_bind_state(sctx, gs, NULL);
3242                 if (sctx->chip_class <= VI)
3243                         si_pm4_bind_state(sctx, es, NULL);
3244         }
3245
3246         si_update_vgt_shader_config(sctx);
3247
3248         if (old_clip_disable != si_get_vs_state(sctx)->key.opt.clip_disable)
3249                 si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3250
3251         if (sctx->ps_shader.cso) {
3252                 unsigned db_shader_control;
3253
3254                 r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
3255                 if (r)
3256                         return false;
3257                 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
3258
3259                 db_shader_control =
3260                         sctx->ps_shader.cso->db_shader_control |
3261                         S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
3262
3263                 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
3264                     sctx->sprite_coord_enable != rs->sprite_coord_enable ||
3265                     sctx->flatshade != rs->flatshade) {
3266                         sctx->sprite_coord_enable = rs->sprite_coord_enable;
3267                         sctx->flatshade = rs->flatshade;
3268                         si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
3269                 }
3270
3271                 if (sctx->screen->rbplus_allowed &&
3272                     si_pm4_state_changed(sctx, ps) &&
3273                     (!old_ps ||
3274                      old_spi_shader_col_format !=
3275                      sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format))
3276                         si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3277
3278                 if (sctx->ps_db_shader_control != db_shader_control) {
3279                         sctx->ps_db_shader_control = db_shader_control;
3280                         si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3281                         if (sctx->screen->dpbb_allowed)
3282                                 si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3283                 }
3284
3285                 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
3286                         sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
3287                         si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3288
3289                         if (sctx->chip_class == SI)
3290                                 si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3291
3292                         if (sctx->framebuffer.nr_samples <= 1)
3293                                 si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
3294                 }
3295         }
3296
3297         if (si_pm4_state_enabled_and_changed(sctx, ls) ||
3298             si_pm4_state_enabled_and_changed(sctx, hs) ||
3299             si_pm4_state_enabled_and_changed(sctx, es) ||
3300             si_pm4_state_enabled_and_changed(sctx, gs) ||
3301             si_pm4_state_enabled_and_changed(sctx, vs) ||
3302             si_pm4_state_enabled_and_changed(sctx, ps)) {
3303                 if (!si_update_spi_tmpring_size(sctx))
3304                         return false;
3305         }
3306
3307         if (sctx->chip_class >= CIK) {
3308                 if (si_pm4_state_enabled_and_changed(sctx, ls))
3309                         sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
3310                 else if (!sctx->queued.named.ls)
3311                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
3312
3313                 if (si_pm4_state_enabled_and_changed(sctx, hs))
3314                         sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
3315                 else if (!sctx->queued.named.hs)
3316                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
3317
3318                 if (si_pm4_state_enabled_and_changed(sctx, es))
3319                         sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
3320                 else if (!sctx->queued.named.es)
3321                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
3322
3323                 if (si_pm4_state_enabled_and_changed(sctx, gs))
3324                         sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
3325                 else if (!sctx->queued.named.gs)
3326                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
3327
3328                 if (si_pm4_state_enabled_and_changed(sctx, vs))
3329                         sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
3330                 else if (!sctx->queued.named.vs)
3331                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
3332
3333                 if (si_pm4_state_enabled_and_changed(sctx, ps))
3334                         sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
3335                 else if (!sctx->queued.named.ps)
3336                         sctx->prefetch_L2_mask &= ~SI_PREFETCH_PS;
3337         }
3338
3339         sctx->do_update_shaders = false;
3340         return true;
3341 }
3342
3343 static void si_emit_scratch_state(struct si_context *sctx)
3344 {
3345         struct radeon_cmdbuf *cs = sctx->gfx_cs;
3346
3347         radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3348                                sctx->spi_tmpring_size);
3349
3350         if (sctx->scratch_buffer) {
3351                 radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
3352                                       sctx->scratch_buffer, RADEON_USAGE_READWRITE,
3353                                       RADEON_PRIO_SCRATCH_BUFFER);
3354         }
3355 }
3356
3357 void si_init_shader_functions(struct si_context *sctx)
3358 {
3359         sctx->atoms.s.spi_map.emit = si_emit_spi_map;
3360         sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
3361
3362         sctx->b.create_vs_state = si_create_shader_selector;
3363         sctx->b.create_tcs_state = si_create_shader_selector;
3364         sctx->b.create_tes_state = si_create_shader_selector;
3365         sctx->b.create_gs_state = si_create_shader_selector;
3366         sctx->b.create_fs_state = si_create_shader_selector;
3367
3368         sctx->b.bind_vs_state = si_bind_vs_shader;
3369         sctx->b.bind_tcs_state = si_bind_tcs_shader;
3370         sctx->b.bind_tes_state = si_bind_tes_shader;
3371         sctx->b.bind_gs_state = si_bind_gs_shader;
3372         sctx->b.bind_fs_state = si_bind_ps_shader;
3373
3374         sctx->b.delete_vs_state = si_delete_shader_selector;
3375         sctx->b.delete_tcs_state = si_delete_shader_selector;
3376         sctx->b.delete_tes_state = si_delete_shader_selector;
3377         sctx->b.delete_gs_state = si_delete_shader_selector;
3378         sctx->b.delete_fs_state = si_delete_shader_selector;
3379 }