OSDN Git Service

radeonsi: remove the shader parameter from si_set_ring_buffer
[android-x86/external-mesa.git] / src / gallium / drivers / radeonsi / si_state_shaders.c
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Christian König <christian.koenig@amd.com>
25  *      Marek Olšák <maraeo@gmail.com>
26  */
27
28 #include "si_pipe.h"
29 #include "si_shader.h"
30 #include "sid.h"
31 #include "radeon/r600_cs.h"
32
33 #include "tgsi/tgsi_parse.h"
34 #include "tgsi/tgsi_ureg.h"
35 #include "util/hash_table.h"
36 #include "util/u_hash.h"
37 #include "util/u_memory.h"
38 #include "util/u_prim.h"
39 #include "util/u_simple_shaders.h"
40
41 /* SHADER_CACHE */
42
43 /**
44  * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
45  * integer.
46  */
47 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
48 {
49         unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
50                              sizeof(struct tgsi_token);
51         unsigned size = 4 + tgsi_size + sizeof(sel->so);
52         char *result = (char*)MALLOC(size);
53
54         if (!result)
55                 return NULL;
56
57         *((uint32_t*)result) = size;
58         memcpy(result + 4, sel->tokens, tgsi_size);
59         memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
60         return result;
61 }
62
63 /** Copy "data" to "ptr" and return the next dword following copied data. */
64 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
65 {
66         memcpy(ptr, data, size);
67         ptr += DIV_ROUND_UP(size, 4);
68         return ptr;
69 }
70
71 /** Read data from "ptr". Return the next dword following the data. */
72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74         memcpy(data, ptr, size);
75         ptr += DIV_ROUND_UP(size, 4);
76         return ptr;
77 }
78
79 /**
80  * Write the size as uint followed by the data. Return the next dword
81  * following the copied data.
82  */
83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85         *ptr++ = size;
86         return write_data(ptr, data, size);
87 }
88
89 /**
90  * Read the size as uint followed by the data. Return both via parameters.
91  * Return the next dword following the data.
92  */
93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95         *size = *ptr++;
96         assert(*data == NULL);
97         *data = malloc(*size);
98         return read_data(ptr, *data, *size);
99 }
100
101 /**
102  * Return the shader binary in a buffer. The first 4 bytes contain its size
103  * as integer.
104  */
105 static void *si_get_shader_binary(struct si_shader *shader)
106 {
107         /* There is always a size of data followed by the data itself. */
108         unsigned relocs_size = shader->binary.reloc_count *
109                                sizeof(shader->binary.relocs[0]);
110         unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
111         unsigned size =
112                 4 + /* total size */
113                 4 + /* CRC32 of the data below */
114                 align(sizeof(shader->config), 4) +
115                 align(sizeof(shader->info), 4) +
116                 4 + align(shader->binary.code_size, 4) +
117                 4 + align(shader->binary.rodata_size, 4) +
118                 4 + align(relocs_size, 4) +
119                 4 + align(disasm_size, 4);
120         void *buffer = CALLOC(1, size);
121         uint32_t *ptr = (uint32_t*)buffer;
122
123         if (!buffer)
124                 return NULL;
125
126         *ptr++ = size;
127         ptr++; /* CRC32 is calculated at the end. */
128
129         ptr = write_data(ptr, &shader->config, sizeof(shader->config));
130         ptr = write_data(ptr, &shader->info, sizeof(shader->info));
131         ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
132         ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
133         ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
134         ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
135         assert((char *)ptr - (char *)buffer == size);
136
137         /* Compute CRC32. */
138         ptr = (uint32_t*)buffer;
139         ptr++;
140         *ptr = util_hash_crc32(ptr + 1, size - 8);
141
142         return buffer;
143 }
144
145 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
146 {
147         uint32_t *ptr = (uint32_t*)binary;
148         uint32_t size = *ptr++;
149         uint32_t crc32 = *ptr++;
150         unsigned chunk_size;
151
152         if (util_hash_crc32(ptr, size - 8) != crc32) {
153                 fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
154                 return false;
155         }
156
157         ptr = read_data(ptr, &shader->config, sizeof(shader->config));
158         ptr = read_data(ptr, &shader->info, sizeof(shader->info));
159         ptr = read_chunk(ptr, (void**)&shader->binary.code,
160                          &shader->binary.code_size);
161         ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
162                          &shader->binary.rodata_size);
163         ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
164         shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
165         ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
166
167         return true;
168 }
169
170 /**
171  * Insert a shader into the cache. It's assumed the shader is not in the cache.
172  * Use si_shader_cache_load_shader before calling this.
173  *
174  * Returns false on failure, in which case the tgsi_binary should be freed.
175  */
176 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
177                                           void *tgsi_binary,
178                                           struct si_shader *shader)
179 {
180         void *hw_binary = si_get_shader_binary(shader);
181
182         if (!hw_binary)
183                 return false;
184
185         if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
186                                     hw_binary) == NULL) {
187                 FREE(hw_binary);
188                 return false;
189         }
190
191         return true;
192 }
193
194 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
195                                         void *tgsi_binary,
196                                         struct si_shader *shader)
197 {
198         struct hash_entry *entry =
199                 _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
200         if (!entry)
201                 return false;
202
203         return si_load_shader_binary(shader, entry->data);
204 }
205
206 static uint32_t si_shader_cache_key_hash(const void *key)
207 {
208         /* The first dword is the key size. */
209         return util_hash_crc32(key, *(uint32_t*)key);
210 }
211
212 static bool si_shader_cache_key_equals(const void *a, const void *b)
213 {
214         uint32_t *keya = (uint32_t*)a;
215         uint32_t *keyb = (uint32_t*)b;
216
217         /* The first dword is the key size. */
218         if (*keya != *keyb)
219                 return false;
220
221         return memcmp(keya, keyb, *keya) == 0;
222 }
223
224 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
225 {
226         FREE((void*)entry->key);
227         FREE(entry->data);
228 }
229
230 bool si_init_shader_cache(struct si_screen *sscreen)
231 {
232         pipe_mutex_init(sscreen->shader_cache_mutex);
233         sscreen->shader_cache =
234                 _mesa_hash_table_create(NULL,
235                                         si_shader_cache_key_hash,
236                                         si_shader_cache_key_equals);
237         return sscreen->shader_cache != NULL;
238 }
239
240 void si_destroy_shader_cache(struct si_screen *sscreen)
241 {
242         if (sscreen->shader_cache)
243                 _mesa_hash_table_destroy(sscreen->shader_cache,
244                                          si_destroy_shader_cache_entry);
245         pipe_mutex_destroy(sscreen->shader_cache_mutex);
246 }
247
248 /* SHADER STATES */
249
250 static void si_set_tesseval_regs(struct si_shader *shader,
251                                  struct si_pm4_state *pm4)
252 {
253         struct tgsi_shader_info *info = &shader->selector->info;
254         unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
255         unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
256         bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
257         bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
258         unsigned type, partitioning, topology;
259
260         switch (tes_prim_mode) {
261         case PIPE_PRIM_LINES:
262                 type = V_028B6C_TESS_ISOLINE;
263                 break;
264         case PIPE_PRIM_TRIANGLES:
265                 type = V_028B6C_TESS_TRIANGLE;
266                 break;
267         case PIPE_PRIM_QUADS:
268                 type = V_028B6C_TESS_QUAD;
269                 break;
270         default:
271                 assert(0);
272                 return;
273         }
274
275         switch (tes_spacing) {
276         case PIPE_TESS_SPACING_FRACTIONAL_ODD:
277                 partitioning = V_028B6C_PART_FRAC_ODD;
278                 break;
279         case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
280                 partitioning = V_028B6C_PART_FRAC_EVEN;
281                 break;
282         case PIPE_TESS_SPACING_EQUAL:
283                 partitioning = V_028B6C_PART_INTEGER;
284                 break;
285         default:
286                 assert(0);
287                 return;
288         }
289
290         if (tes_point_mode)
291                 topology = V_028B6C_OUTPUT_POINT;
292         else if (tes_prim_mode == PIPE_PRIM_LINES)
293                 topology = V_028B6C_OUTPUT_LINE;
294         else if (tes_vertex_order_cw)
295                 /* for some reason, this must be the other way around */
296                 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
297         else
298                 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
299
300         si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
301                        S_028B6C_TYPE(type) |
302                        S_028B6C_PARTITIONING(partitioning) |
303                        S_028B6C_TOPOLOGY(topology));
304 }
305
306 static void si_shader_ls(struct si_shader *shader)
307 {
308         struct si_pm4_state *pm4;
309         unsigned vgpr_comp_cnt;
310         uint64_t va;
311
312         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
313         if (!pm4)
314                 return;
315
316         va = shader->bo->gpu_address;
317         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
318
319         /* We need at least 2 components for LS.
320          * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
321         vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
322
323         si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
324         si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
325
326         shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
327                            S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
328                            S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
329                            S_00B528_DX10_CLAMP(1) |
330                            S_00B528_FLOAT_MODE(shader->config.float_mode);
331         shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
332                            S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
333 }
334
335 static void si_shader_hs(struct si_shader *shader)
336 {
337         struct si_pm4_state *pm4;
338         uint64_t va;
339
340         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
341         if (!pm4)
342                 return;
343
344         va = shader->bo->gpu_address;
345         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
346
347         si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
348         si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
349         si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
350                        S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
351                        S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
352                        S_00B428_DX10_CLAMP(1) |
353                        S_00B428_FLOAT_MODE(shader->config.float_mode));
354         si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
355                        S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
356                        S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
357 }
358
359 static void si_shader_es(struct si_shader *shader)
360 {
361         struct si_pm4_state *pm4;
362         unsigned num_user_sgprs;
363         unsigned vgpr_comp_cnt;
364         uint64_t va;
365
366         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
367
368         if (!pm4)
369                 return;
370
371         va = shader->bo->gpu_address;
372         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
373
374         if (shader->selector->type == PIPE_SHADER_VERTEX) {
375                 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
376                 num_user_sgprs = SI_ES_NUM_USER_SGPR;
377         } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
378                 vgpr_comp_cnt = 3; /* all components are needed for TES */
379                 num_user_sgprs = SI_TES_NUM_USER_SGPR;
380         } else
381                 unreachable("invalid shader selector type");
382
383         si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
384                        shader->selector->esgs_itemsize / 4);
385         si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
386         si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
387         si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
388                        S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
389                        S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
390                        S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
391                        S_00B328_DX10_CLAMP(1) |
392                        S_00B328_FLOAT_MODE(shader->config.float_mode));
393         si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
394                        S_00B32C_USER_SGPR(num_user_sgprs) |
395                        S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
396
397         if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
398                 si_set_tesseval_regs(shader, pm4);
399 }
400
401 /**
402  * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
403  * geometry shader.
404  */
405 static uint32_t si_vgt_gs_mode(struct si_shader *shader)
406 {
407         unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
408         unsigned cut_mode;
409
410         if (gs_max_vert_out <= 128) {
411                 cut_mode = V_028A40_GS_CUT_128;
412         } else if (gs_max_vert_out <= 256) {
413                 cut_mode = V_028A40_GS_CUT_256;
414         } else if (gs_max_vert_out <= 512) {
415                 cut_mode = V_028A40_GS_CUT_512;
416         } else {
417                 assert(gs_max_vert_out <= 1024);
418                 cut_mode = V_028A40_GS_CUT_1024;
419         }
420
421         return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
422                S_028A40_CUT_MODE(cut_mode)|
423                S_028A40_ES_WRITE_OPTIMIZE(1) |
424                S_028A40_GS_WRITE_OPTIMIZE(1);
425 }
426
427 static void si_shader_gs(struct si_shader *shader)
428 {
429         unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
430         unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
431         unsigned gs_num_invocations = shader->selector->gs_num_invocations;
432         struct si_pm4_state *pm4;
433         uint64_t va;
434         unsigned max_stream = shader->selector->max_gs_stream;
435
436         /* The GSVS_RING_ITEMSIZE register takes 15 bits */
437         assert(gsvs_itemsize < (1 << 15));
438
439         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
440
441         if (!pm4)
442                 return;
443
444         si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader));
445
446         si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
447         si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
448         si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
449
450         si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
451
452         si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
453
454         si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
455         si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
456         si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
457         si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
458
459         si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
460                        S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
461                        S_028B90_ENABLE(gs_num_invocations > 0));
462
463         va = shader->bo->gpu_address;
464         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
465         si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
466         si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
467
468         si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
469                        S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
470                        S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
471                        S_00B228_DX10_CLAMP(1) |
472                        S_00B228_FLOAT_MODE(shader->config.float_mode));
473         si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
474                        S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
475                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
476 }
477
478 /**
479  * Compute the state for \p shader, which will run as a vertex shader on the
480  * hardware.
481  *
482  * If \p gs is non-NULL, it points to the geometry shader for which this shader
483  * is the copy shader.
484  */
485 static void si_shader_vs(struct si_shader *shader, struct si_shader *gs)
486 {
487         struct si_pm4_state *pm4;
488         unsigned num_user_sgprs;
489         unsigned nparams, vgpr_comp_cnt;
490         uint64_t va;
491         unsigned window_space =
492            shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
493         bool enable_prim_id = si_vs_exports_prim_id(shader);
494
495         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
496
497         if (!pm4)
498                 return;
499
500         /* We always write VGT_GS_MODE in the VS state, because every switch
501          * between different shader pipelines involving a different GS or no
502          * GS at all involves a switch of the VS (different GS use different
503          * copy shaders). On the other hand, when the API switches from a GS to
504          * no GS and then back to the same GS used originally, the GS state is
505          * not sent again.
506          */
507         if (!gs) {
508                 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
509                                S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
510                 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
511         } else {
512                 si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
513                 si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
514         }
515
516         va = shader->bo->gpu_address;
517         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
518
519         if (gs) {
520                 vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
521                 num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
522         } else if (shader->selector->type == PIPE_SHADER_VERTEX) {
523                 vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
524                 num_user_sgprs = SI_VS_NUM_USER_SGPR;
525         } else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
526                 vgpr_comp_cnt = 3; /* all components are needed for TES */
527                 num_user_sgprs = SI_TES_NUM_USER_SGPR;
528         } else
529                 unreachable("invalid shader selector type");
530
531         /* VS is required to export at least one param. */
532         nparams = MAX2(shader->info.nr_param_exports, 1);
533         si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
534                        S_0286C4_VS_EXPORT_COUNT(nparams - 1));
535
536         si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
537                        S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
538                        S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
539                                                    V_02870C_SPI_SHADER_4COMP :
540                                                    V_02870C_SPI_SHADER_NONE) |
541                        S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
542                                                    V_02870C_SPI_SHADER_4COMP :
543                                                    V_02870C_SPI_SHADER_NONE) |
544                        S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
545                                                    V_02870C_SPI_SHADER_4COMP :
546                                                    V_02870C_SPI_SHADER_NONE));
547
548         si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
549         si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
550         si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
551                        S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
552                        S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
553                        S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
554                        S_00B128_DX10_CLAMP(1) |
555                        S_00B128_FLOAT_MODE(shader->config.float_mode));
556         si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
557                        S_00B12C_USER_SGPR(num_user_sgprs) |
558                        S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
559                        S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
560                        S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
561                        S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
562                        S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
563                        S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
564         if (window_space)
565                 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
566                                S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
567         else
568                 si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
569                                S_028818_VTX_W0_FMT(1) |
570                                S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
571                                S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
572                                S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
573
574         if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
575                 si_set_tesseval_regs(shader, pm4);
576 }
577
578 static unsigned si_get_ps_num_interp(struct si_shader *ps)
579 {
580         struct tgsi_shader_info *info = &ps->selector->info;
581         unsigned num_colors = !!(info->colors_read & 0x0f) +
582                               !!(info->colors_read & 0xf0);
583         unsigned num_interp = ps->selector->info.num_inputs +
584                               (ps->key.ps.prolog.color_two_side ? num_colors : 0);
585
586         assert(num_interp <= 32);
587         return MIN2(num_interp, 32);
588 }
589
590 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
591 {
592         unsigned value = shader->key.ps.epilog.spi_shader_col_format;
593         unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
594
595         /* If the i-th target format is set, all previous target formats must
596          * be non-zero to avoid hangs.
597          */
598         for (i = 0; i < num_targets; i++)
599                 if (!(value & (0xf << (i * 4))))
600                         value |= V_028714_SPI_SHADER_32_R << (i * 4);
601
602         return value;
603 }
604
605 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
606 {
607         unsigned i, cb_shader_mask = 0;
608
609         for (i = 0; i < 8; i++) {
610                 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
611                 case V_028714_SPI_SHADER_ZERO:
612                         break;
613                 case V_028714_SPI_SHADER_32_R:
614                         cb_shader_mask |= 0x1 << (i * 4);
615                         break;
616                 case V_028714_SPI_SHADER_32_GR:
617                         cb_shader_mask |= 0x3 << (i * 4);
618                         break;
619                 case V_028714_SPI_SHADER_32_AR:
620                         cb_shader_mask |= 0x9 << (i * 4);
621                         break;
622                 case V_028714_SPI_SHADER_FP16_ABGR:
623                 case V_028714_SPI_SHADER_UNORM16_ABGR:
624                 case V_028714_SPI_SHADER_SNORM16_ABGR:
625                 case V_028714_SPI_SHADER_UINT16_ABGR:
626                 case V_028714_SPI_SHADER_SINT16_ABGR:
627                 case V_028714_SPI_SHADER_32_ABGR:
628                         cb_shader_mask |= 0xf << (i * 4);
629                         break;
630                 default:
631                         assert(0);
632                 }
633         }
634         return cb_shader_mask;
635 }
636
637 static void si_shader_ps(struct si_shader *shader)
638 {
639         struct tgsi_shader_info *info = &shader->selector->info;
640         struct si_pm4_state *pm4;
641         unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
642         unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
643         uint64_t va;
644         bool has_centroid;
645         unsigned input_ena = shader->config.spi_ps_input_ena;
646
647         /* we need to enable at least one of them, otherwise we hang the GPU */
648         assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
649                G_0286CC_PERSP_CENTER_ENA(input_ena) ||
650                G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
651                G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
652                G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
653                G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
654                G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
655                G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
656
657         pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
658
659         if (!pm4)
660                 return;
661
662         /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
663          * Possible vaules:
664          * 0 -> Position = pixel center
665          * 1 -> Position = pixel centroid
666          * 2 -> Position = at sample position
667          *
668          * From GLSL 4.5 specification, section 7.1:
669          *   "The variable gl_FragCoord is available as an input variable from
670          *    within fragment shaders and it holds the window relative coordinates
671          *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
672          *    value can be for any location within the pixel, or one of the
673          *    fragment samples. The use of centroid does not further restrict
674          *    this value to be inside the current primitive."
675          *
676          * Meaning that centroid has no effect and we can return anything within
677          * the pixel. Thus, return the value at sample position, because that's
678          * the most accurate one shaders can get.
679          */
680         spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
681
682         if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
683             TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
684                 spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
685
686         spi_shader_col_format = si_get_spi_shader_col_format(shader);
687         cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
688
689         /* This must be non-zero for alpha-test/kill to work.
690          * The hardware ignores the EXEC mask if no export memory is allocated.
691          * Don't add this to CB_SHADER_MASK.
692          */
693         if (!spi_shader_col_format &&
694             !info->writes_z && !info->writes_stencil && !info->writes_samplemask &&
695             (shader->selector->info.uses_kill ||
696              shader->key.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS))
697                 spi_shader_col_format = V_028714_SPI_SHADER_32_R;
698
699         si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
700         si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
701                        shader->config.spi_ps_input_addr);
702
703         /* Set interpolation controls. */
704         has_centroid = G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena) ||
705                        G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena);
706
707         spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader)) |
708                             S_0286D8_BC_OPTIMIZE_DISABLE(has_centroid);
709
710         /* Set registers. */
711         si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
712         si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
713
714         si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
715                        info->writes_samplemask ? V_028710_SPI_SHADER_32_ABGR :
716                        info->writes_stencil ? V_028710_SPI_SHADER_32_GR :
717                        info->writes_z ? V_028710_SPI_SHADER_32_R :
718                        V_028710_SPI_SHADER_ZERO);
719
720         si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
721         si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
722
723         va = shader->bo->gpu_address;
724         si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
725         si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
726         si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
727
728         si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
729                        S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
730                        S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
731                        S_00B028_DX10_CLAMP(1) |
732                        S_00B028_FLOAT_MODE(shader->config.float_mode));
733         si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
734                        S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
735                        S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
736                        S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
737
738         /* Prefer RE_Z if the shader is complex enough. The requirement is either:
739          * - the shader uses at least 2 VMEM instructions, or
740          * - the code size is at least 50 2-dword instructions or 100 1-dword
741          *   instructions.
742          *
743          * Shaders with side effects that must execute independently of the
744          * depth test require LATE_Z.
745          */
746         if (info->writes_memory &&
747             !info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
748                 shader->z_order = V_02880C_LATE_Z;
749         else if (info->num_memory_instructions >= 2 ||
750                  shader->binary.code_size > 100*4)
751                 shader->z_order = V_02880C_EARLY_Z_THEN_RE_Z;
752         else
753                 shader->z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
754 }
755
756 static void si_shader_init_pm4_state(struct si_shader *shader)
757 {
758
759         if (shader->pm4)
760                 si_pm4_free_state_simple(shader->pm4);
761
762         switch (shader->selector->type) {
763         case PIPE_SHADER_VERTEX:
764                 if (shader->key.vs.as_ls)
765                         si_shader_ls(shader);
766                 else if (shader->key.vs.as_es)
767                         si_shader_es(shader);
768                 else
769                         si_shader_vs(shader, NULL);
770                 break;
771         case PIPE_SHADER_TESS_CTRL:
772                 si_shader_hs(shader);
773                 break;
774         case PIPE_SHADER_TESS_EVAL:
775                 if (shader->key.tes.as_es)
776                         si_shader_es(shader);
777                 else
778                         si_shader_vs(shader, NULL);
779                 break;
780         case PIPE_SHADER_GEOMETRY:
781                 si_shader_gs(shader);
782                 si_shader_vs(shader->gs_copy_shader, shader);
783                 break;
784         case PIPE_SHADER_FRAGMENT:
785                 si_shader_ps(shader);
786                 break;
787         default:
788                 assert(0);
789         }
790 }
791
792 static unsigned si_get_alpha_test_func(struct si_context *sctx)
793 {
794         /* Alpha-test should be disabled if colorbuffer 0 is integer. */
795         if (sctx->queued.named.dsa &&
796             !sctx->framebuffer.cb0_is_integer)
797                 return sctx->queued.named.dsa->alpha_func;
798
799         return PIPE_FUNC_ALWAYS;
800 }
801
802 /* Compute the key for the hw shader variant */
803 static inline void si_shader_selector_key(struct pipe_context *ctx,
804                                           struct si_shader_selector *sel,
805                                           union si_shader_key *key)
806 {
807         struct si_context *sctx = (struct si_context *)ctx;
808         unsigned i;
809
810         memset(key, 0, sizeof(*key));
811
812         switch (sel->type) {
813         case PIPE_SHADER_VERTEX:
814                 if (sctx->vertex_elements) {
815                         unsigned count = MIN2(sel->info.num_inputs,
816                                               sctx->vertex_elements->count);
817                         for (i = 0; i < count; ++i)
818                                 key->vs.prolog.instance_divisors[i] =
819                                         sctx->vertex_elements->elements[i].instance_divisor;
820                 }
821                 if (sctx->tes_shader.cso)
822                         key->vs.as_ls = 1;
823                 else if (sctx->gs_shader.cso)
824                         key->vs.as_es = 1;
825
826                 if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
827                     sctx->ps_shader.cso->info.uses_primid)
828                         key->vs.epilog.export_prim_id = 1;
829                 break;
830         case PIPE_SHADER_TESS_CTRL:
831                 key->tcs.epilog.prim_mode =
832                         sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
833                 break;
834         case PIPE_SHADER_TESS_EVAL:
835                 if (sctx->gs_shader.cso)
836                         key->tes.as_es = 1;
837                 else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
838                         key->tes.epilog.export_prim_id = 1;
839                 break;
840         case PIPE_SHADER_GEOMETRY:
841                 break;
842         case PIPE_SHADER_FRAGMENT: {
843                 struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
844                 struct si_state_blend *blend = sctx->queued.named.blend;
845
846                 if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
847                     sel->info.colors_written == 0x1)
848                         key->ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
849
850                 if (blend) {
851                         /* Select the shader color format based on whether
852                          * blending or alpha are needed.
853                          */
854                         key->ps.epilog.spi_shader_col_format =
855                                 (blend->blend_enable_4bit & blend->need_src_alpha_4bit &
856                                  sctx->framebuffer.spi_shader_col_format_blend_alpha) |
857                                 (blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
858                                  sctx->framebuffer.spi_shader_col_format_blend) |
859                                 (~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
860                                  sctx->framebuffer.spi_shader_col_format_alpha) |
861                                 (~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
862                                  sctx->framebuffer.spi_shader_col_format);
863                 } else
864                         key->ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
865
866                 /* If alpha-to-coverage is enabled, we have to export alpha
867                  * even if there is no color buffer.
868                  */
869                 if (!(key->ps.epilog.spi_shader_col_format & 0xf) &&
870                     blend && blend->alpha_to_coverage)
871                         key->ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
872
873                 /* On SI and CIK except Hawaii, the CB doesn't clamp outputs
874                  * to the range supported by the type if a channel has less
875                  * than 16 bits and the export format is 16_ABGR.
876                  */
877                 if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
878                         key->ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
879
880                 /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
881                 if (!key->ps.epilog.last_cbuf) {
882                         key->ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
883                         key->ps.epilog.color_is_int8 &= sel->info.colors_written;
884                 }
885
886                 if (rs) {
887                         bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
888                                         sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
889                                        sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
890                         bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
891
892                         key->ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
893
894                         if (sctx->queued.named.blend) {
895                                 key->ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
896                                                               rs->multisample_enable &&
897                                                               !sctx->framebuffer.cb0_is_integer;
898                         }
899
900                         key->ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
901                         key->ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
902                                                               (is_line && rs->line_smooth)) &&
903                                                              sctx->framebuffer.nr_samples <= 1;
904                         key->ps.epilog.clamp_color = rs->clamp_fragment_color;
905
906                         key->ps.prolog.force_persample_interp =
907                                 rs->force_persample_interp &&
908                                 rs->multisample_enable &&
909                                 sctx->framebuffer.nr_samples > 1 &&
910                                 sctx->ps_iter_samples > 1 &&
911                                 (sel->info.uses_persp_center ||
912                                  sel->info.uses_persp_centroid ||
913                                  sel->info.uses_linear_center ||
914                                  sel->info.uses_linear_centroid);
915                 }
916
917                 key->ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
918                 break;
919         }
920         default:
921                 assert(0);
922         }
923 }
924
925 /* Select the hw shader variant depending on the current state. */
926 static int si_shader_select_with_key(struct pipe_context *ctx,
927                                      struct si_shader_ctx_state *state,
928                                      union si_shader_key *key)
929 {
930         struct si_context *sctx = (struct si_context *)ctx;
931         struct si_shader_selector *sel = state->cso;
932         struct si_shader *current = state->current;
933         struct si_shader *iter, *shader = NULL;
934         int r;
935
936         /* Check if we don't need to change anything.
937          * This path is also used for most shaders that don't need multiple
938          * variants, it will cost just a computation of the key and this
939          * test. */
940         if (likely(current && memcmp(&current->key, key, sizeof(*key)) == 0))
941                 return 0;
942
943         pipe_mutex_lock(sel->mutex);
944
945         /* Find the shader variant. */
946         for (iter = sel->first_variant; iter; iter = iter->next_variant) {
947                 /* Don't check the "current" shader. We checked it above. */
948                 if (current != iter &&
949                     memcmp(&iter->key, key, sizeof(*key)) == 0) {
950                         state->current = iter;
951                         pipe_mutex_unlock(sel->mutex);
952                         return 0;
953                 }
954         }
955
956         /* Build a new shader. */
957         shader = CALLOC_STRUCT(si_shader);
958         if (!shader) {
959                 pipe_mutex_unlock(sel->mutex);
960                 return -ENOMEM;
961         }
962         shader->selector = sel;
963         shader->key = *key;
964
965         r = si_shader_create(sctx->screen, sctx->tm, shader, &sctx->b.debug);
966         if (unlikely(r)) {
967                 R600_ERR("Failed to build shader variant (type=%u) %d\n",
968                          sel->type, r);
969                 FREE(shader);
970                 pipe_mutex_unlock(sel->mutex);
971                 return r;
972         }
973         si_shader_init_pm4_state(shader);
974
975         if (!sel->last_variant) {
976                 sel->first_variant = shader;
977                 sel->last_variant = shader;
978         } else {
979                 sel->last_variant->next_variant = shader;
980                 sel->last_variant = shader;
981         }
982         state->current = shader;
983         pipe_mutex_unlock(sel->mutex);
984         return 0;
985 }
986
987 static int si_shader_select(struct pipe_context *ctx,
988                             struct si_shader_ctx_state *state)
989 {
990         union si_shader_key key;
991
992         si_shader_selector_key(ctx, state->cso, &key);
993         return si_shader_select_with_key(ctx, state, &key);
994 }
995
996 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
997                                           union si_shader_key *key)
998 {
999         unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1000
1001         switch (info->processor) {
1002         case TGSI_PROCESSOR_VERTEX:
1003                 switch (next_shader) {
1004                 case TGSI_PROCESSOR_GEOMETRY:
1005                         key->vs.as_es = 1;
1006                         break;
1007                 case TGSI_PROCESSOR_TESS_CTRL:
1008                 case TGSI_PROCESSOR_TESS_EVAL:
1009                         key->vs.as_ls = 1;
1010                         break;
1011                 }
1012                 break;
1013
1014         case TGSI_PROCESSOR_TESS_EVAL:
1015                 if (next_shader == TGSI_PROCESSOR_GEOMETRY)
1016                         key->tes.as_es = 1;
1017                 break;
1018         }
1019 }
1020
1021 static void *si_create_shader_selector(struct pipe_context *ctx,
1022                                        const struct pipe_shader_state *state)
1023 {
1024         struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1025         struct si_context *sctx = (struct si_context*)ctx;
1026         struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1027         int i;
1028
1029         if (!sel)
1030                 return NULL;
1031
1032         sel->tokens = tgsi_dup_tokens(state->tokens);
1033         if (!sel->tokens) {
1034                 FREE(sel);
1035                 return NULL;
1036         }
1037
1038         sel->so = state->stream_output;
1039         tgsi_scan_shader(state->tokens, &sel->info);
1040         sel->type = util_pipe_shader_from_tgsi_processor(sel->info.processor);
1041         p_atomic_inc(&sscreen->b.num_shaders_created);
1042
1043         /* Set which opcode uses which (i,j) pair. */
1044         if (sel->info.uses_persp_opcode_interp_centroid)
1045                 sel->info.uses_persp_centroid = true;
1046
1047         if (sel->info.uses_linear_opcode_interp_centroid)
1048                 sel->info.uses_linear_centroid = true;
1049
1050         if (sel->info.uses_persp_opcode_interp_offset ||
1051             sel->info.uses_persp_opcode_interp_sample)
1052                 sel->info.uses_persp_center = true;
1053
1054         if (sel->info.uses_linear_opcode_interp_offset ||
1055             sel->info.uses_linear_opcode_interp_sample)
1056                 sel->info.uses_linear_center = true;
1057
1058         switch (sel->type) {
1059         case PIPE_SHADER_GEOMETRY:
1060                 sel->gs_output_prim =
1061                         sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1062                 sel->gs_max_out_vertices =
1063                         sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1064                 sel->gs_num_invocations =
1065                         sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1066                 sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1067                 sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1068                                           sel->gs_max_out_vertices;
1069
1070                 sel->max_gs_stream = 0;
1071                 for (i = 0; i < sel->so.num_outputs; i++)
1072                         sel->max_gs_stream = MAX2(sel->max_gs_stream,
1073                                                   sel->so.output[i].stream);
1074
1075                 sel->gs_input_verts_per_prim =
1076                         u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1077                 break;
1078
1079         case PIPE_SHADER_VERTEX:
1080         case PIPE_SHADER_TESS_CTRL:
1081         case PIPE_SHADER_TESS_EVAL:
1082                 for (i = 0; i < sel->info.num_outputs; i++) {
1083                         unsigned name = sel->info.output_semantic_name[i];
1084                         unsigned index = sel->info.output_semantic_index[i];
1085
1086                         switch (name) {
1087                         case TGSI_SEMANTIC_TESSINNER:
1088                         case TGSI_SEMANTIC_TESSOUTER:
1089                         case TGSI_SEMANTIC_PATCH:
1090                                 sel->patch_outputs_written |=
1091                                         1llu << si_shader_io_get_unique_index(name, index);
1092                                 break;
1093                         default:
1094                                 sel->outputs_written |=
1095                                         1llu << si_shader_io_get_unique_index(name, index);
1096                         }
1097                 }
1098                 sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1099                 break;
1100
1101         case PIPE_SHADER_FRAGMENT:
1102                 for (i = 0; i < 8; i++)
1103                         if (sel->info.colors_written & (1 << i))
1104                                 sel->colors_written_4bit |= 0xf << (4 * i);
1105
1106                 for (i = 0; i < sel->info.num_inputs; i++) {
1107                         if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1108                                 int index = sel->info.input_semantic_index[i];
1109                                 sel->color_attr_index[index] = i;
1110                         }
1111                 }
1112                 break;
1113         }
1114
1115         /* DB_SHADER_CONTROL */
1116         sel->db_shader_control =
1117                 S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1118                 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1119                 S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1120                 S_02880C_KILL_ENABLE(sel->info.uses_kill);
1121
1122         switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1123         case TGSI_FS_DEPTH_LAYOUT_GREATER:
1124                 sel->db_shader_control |=
1125                         S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1126                 break;
1127         case TGSI_FS_DEPTH_LAYOUT_LESS:
1128                 sel->db_shader_control |=
1129                         S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1130                 break;
1131         }
1132
1133         if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
1134                 sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1);
1135
1136         if (sel->info.writes_memory)
1137                 sel->db_shader_control |= S_02880C_EXEC_ON_HIER_FAIL(1) |
1138                                           S_02880C_EXEC_ON_NOOP(1);
1139
1140         /* Compile the main shader part for use with a prolog and/or epilog. */
1141         if (sel->type != PIPE_SHADER_GEOMETRY &&
1142             !sscreen->use_monolithic_shaders) {
1143                 struct si_shader *shader = CALLOC_STRUCT(si_shader);
1144                 void *tgsi_binary;
1145
1146                 if (!shader)
1147                         goto error;
1148
1149                 shader->selector = sel;
1150                 si_parse_next_shader_property(&sel->info, &shader->key);
1151
1152                 tgsi_binary = si_get_tgsi_binary(sel);
1153
1154                 /* Try to load the shader from the shader cache. */
1155                 pipe_mutex_lock(sscreen->shader_cache_mutex);
1156
1157                 if (tgsi_binary &&
1158                     si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1159                         FREE(tgsi_binary);
1160                 } else {
1161                         /* Compile the shader if it hasn't been loaded from the cache. */
1162                         if (si_compile_tgsi_shader(sscreen, sctx->tm, shader, false,
1163                                                    &sctx->b.debug) != 0) {
1164                                 FREE(shader);
1165                                 FREE(tgsi_binary);
1166                                 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1167                                 goto error;
1168                         }
1169
1170                         if (tgsi_binary &&
1171                             !si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1172                                 FREE(tgsi_binary);
1173                 }
1174                 pipe_mutex_unlock(sscreen->shader_cache_mutex);
1175
1176                 sel->main_shader_part = shader;
1177         }
1178
1179         /* Pre-compilation. */
1180         if (sel->type == PIPE_SHADER_GEOMETRY ||
1181             sscreen->b.debug_flags & DBG_PRECOMPILE) {
1182                 struct si_shader_ctx_state state = {sel};
1183                 union si_shader_key key;
1184
1185                 memset(&key, 0, sizeof(key));
1186                 si_parse_next_shader_property(&sel->info, &key);
1187
1188                 /* Set reasonable defaults, so that the shader key doesn't
1189                  * cause any code to be eliminated.
1190                  */
1191                 switch (sel->type) {
1192                 case PIPE_SHADER_TESS_CTRL:
1193                         key.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1194                         break;
1195                 case PIPE_SHADER_FRAGMENT:
1196                         key.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1197                         for (i = 0; i < 8; i++)
1198                                 if (sel->info.colors_written & (1 << i))
1199                                         key.ps.epilog.spi_shader_col_format |=
1200                                                 V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1201                         break;
1202                 }
1203
1204                 if (si_shader_select_with_key(ctx, &state, &key))
1205                         goto error;
1206         }
1207
1208         pipe_mutex_init(sel->mutex);
1209         return sel;
1210
1211 error:
1212         fprintf(stderr, "radeonsi: can't create a shader\n");
1213         tgsi_free_tokens(sel->tokens);
1214         FREE(sel);
1215         return NULL;
1216 }
1217
1218 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1219 {
1220         struct si_context *sctx = (struct si_context *)ctx;
1221         struct si_shader_selector *sel = state;
1222
1223         if (sctx->vs_shader.cso == sel)
1224                 return;
1225
1226         sctx->vs_shader.cso = sel;
1227         sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1228         si_mark_atom_dirty(sctx, &sctx->clip_regs);
1229         r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1230 }
1231
1232 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1233 {
1234         struct si_context *sctx = (struct si_context *)ctx;
1235         struct si_shader_selector *sel = state;
1236         bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1237
1238         if (sctx->gs_shader.cso == sel)
1239                 return;
1240
1241         sctx->gs_shader.cso = sel;
1242         sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1243         si_mark_atom_dirty(sctx, &sctx->clip_regs);
1244         sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1245
1246         if (enable_changed)
1247                 si_shader_change_notify(sctx);
1248         r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1249 }
1250
1251 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1252 {
1253         struct si_context *sctx = (struct si_context *)ctx;
1254         struct si_shader_selector *sel = state;
1255         bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1256
1257         if (sctx->tcs_shader.cso == sel)
1258                 return;
1259
1260         sctx->tcs_shader.cso = sel;
1261         sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1262
1263         if (enable_changed)
1264                 sctx->last_tcs = NULL; /* invalidate derived tess state */
1265 }
1266
1267 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1268 {
1269         struct si_context *sctx = (struct si_context *)ctx;
1270         struct si_shader_selector *sel = state;
1271         bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1272
1273         if (sctx->tes_shader.cso == sel)
1274                 return;
1275
1276         sctx->tes_shader.cso = sel;
1277         sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1278         si_mark_atom_dirty(sctx, &sctx->clip_regs);
1279         sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1280
1281         if (enable_changed) {
1282                 si_shader_change_notify(sctx);
1283                 sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1284         }
1285         r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1286 }
1287
1288 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1289 {
1290         struct si_context *sctx = (struct si_context *)ctx;
1291         struct si_shader_selector *sel = state;
1292
1293         /* skip if supplied shader is one already in use */
1294         if (sctx->ps_shader.cso == sel)
1295                 return;
1296
1297         sctx->ps_shader.cso = sel;
1298         sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1299         si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1300 }
1301
1302 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1303 {
1304         if (shader->pm4) {
1305                 switch (shader->selector->type) {
1306                 case PIPE_SHADER_VERTEX:
1307                         if (shader->key.vs.as_ls)
1308                                 si_pm4_delete_state(sctx, ls, shader->pm4);
1309                         else if (shader->key.vs.as_es)
1310                                 si_pm4_delete_state(sctx, es, shader->pm4);
1311                         else
1312                                 si_pm4_delete_state(sctx, vs, shader->pm4);
1313                         break;
1314                 case PIPE_SHADER_TESS_CTRL:
1315                         si_pm4_delete_state(sctx, hs, shader->pm4);
1316                         break;
1317                 case PIPE_SHADER_TESS_EVAL:
1318                         if (shader->key.tes.as_es)
1319                                 si_pm4_delete_state(sctx, es, shader->pm4);
1320                         else
1321                                 si_pm4_delete_state(sctx, vs, shader->pm4);
1322                         break;
1323                 case PIPE_SHADER_GEOMETRY:
1324                         si_pm4_delete_state(sctx, gs, shader->pm4);
1325                         si_pm4_delete_state(sctx, vs, shader->gs_copy_shader->pm4);
1326                         break;
1327                 case PIPE_SHADER_FRAGMENT:
1328                         si_pm4_delete_state(sctx, ps, shader->pm4);
1329                         break;
1330                 }
1331         }
1332
1333         si_shader_destroy(shader);
1334         free(shader);
1335 }
1336
1337 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1338 {
1339         struct si_context *sctx = (struct si_context *)ctx;
1340         struct si_shader_selector *sel = (struct si_shader_selector *)state;
1341         struct si_shader *p = sel->first_variant, *c;
1342         struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1343                 [PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1344                 [PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1345                 [PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1346                 [PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1347                 [PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1348         };
1349
1350         if (current_shader[sel->type]->cso == sel) {
1351                 current_shader[sel->type]->cso = NULL;
1352                 current_shader[sel->type]->current = NULL;
1353         }
1354
1355         while (p) {
1356                 c = p->next_variant;
1357                 si_delete_shader(sctx, p);
1358                 p = c;
1359         }
1360
1361         if (sel->main_shader_part)
1362                 si_delete_shader(sctx, sel->main_shader_part);
1363
1364         pipe_mutex_destroy(sel->mutex);
1365         free(sel->tokens);
1366         free(sel);
1367 }
1368
1369 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1370                                      struct si_shader *vs, unsigned name,
1371                                      unsigned index, unsigned interpolate)
1372 {
1373         struct tgsi_shader_info *vsinfo = &vs->selector->info;
1374         unsigned j, ps_input_cntl = 0;
1375
1376         if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1377             (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1378                 ps_input_cntl |= S_028644_FLAT_SHADE(1);
1379
1380         if (name == TGSI_SEMANTIC_PCOORD ||
1381             (name == TGSI_SEMANTIC_TEXCOORD &&
1382              sctx->sprite_coord_enable & (1 << index))) {
1383                 ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1384         }
1385
1386         for (j = 0; j < vsinfo->num_outputs; j++) {
1387                 if (name == vsinfo->output_semantic_name[j] &&
1388                     index == vsinfo->output_semantic_index[j]) {
1389                         ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[j]);
1390                         break;
1391                 }
1392         }
1393
1394         if (name == TGSI_SEMANTIC_PRIMID)
1395                 /* PrimID is written after the last output. */
1396                 ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1397         else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1398                 /* No corresponding output found, load defaults into input.
1399                  * Don't set any other bits.
1400                  * (FLAT_SHADE=1 completely changes behavior) */
1401                 ps_input_cntl = S_028644_OFFSET(0x20);
1402         }
1403         return ps_input_cntl;
1404 }
1405
1406 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1407 {
1408         struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1409         struct si_shader *ps = sctx->ps_shader.current;
1410         struct si_shader *vs = si_get_vs_state(sctx);
1411         struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1412         unsigned i, num_interp, num_written = 0, bcol_interp[2];
1413
1414         if (!ps || !ps->selector->info.num_inputs)
1415                 return;
1416
1417         num_interp = si_get_ps_num_interp(ps);
1418         assert(num_interp > 0);
1419         radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1420
1421         for (i = 0; i < psinfo->num_inputs; i++) {
1422                 unsigned name = psinfo->input_semantic_name[i];
1423                 unsigned index = psinfo->input_semantic_index[i];
1424                 unsigned interpolate = psinfo->input_interpolate[i];
1425
1426                 radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1427                                                      interpolate));
1428                 num_written++;
1429
1430                 if (name == TGSI_SEMANTIC_COLOR) {
1431                         assert(index < ARRAY_SIZE(bcol_interp));
1432                         bcol_interp[index] = interpolate;
1433                 }
1434         }
1435
1436         if (ps->key.ps.prolog.color_two_side) {
1437                 unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1438
1439                 for (i = 0; i < 2; i++) {
1440                         if (!(psinfo->colors_read & (0xf << (i * 4))))
1441                                 continue;
1442
1443                         radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1444                                                              i, bcol_interp[i]));
1445                         num_written++;
1446                 }
1447         }
1448         assert(num_interp == num_written);
1449 }
1450
1451 /**
1452  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1453  */
1454 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1455 {
1456         if (sctx->init_config_has_vgt_flush)
1457                 return;
1458
1459         /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1460         si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1461         si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1462         si_pm4_cmd_end(sctx->init_config, false);
1463         sctx->init_config_has_vgt_flush = true;
1464 }
1465
1466 /* Initialize state related to ESGS / GSVS ring buffers */
1467 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1468 {
1469         struct si_shader_selector *es =
1470                 sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1471         struct si_shader_selector *gs = sctx->gs_shader.cso;
1472         struct si_pm4_state *pm4;
1473
1474         /* Chip constants. */
1475         unsigned num_se = sctx->screen->b.info.max_se;
1476         unsigned wave_size = 64;
1477         unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1478         unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1479         unsigned alignment = 256 * num_se;
1480         /* The maximum size is 63.999 MB per SE. */
1481         unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1482
1483         /* Calculate the minimum size. */
1484         unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1485                                             wave_size, alignment);
1486
1487         /* These are recommended sizes, not minimum sizes. */
1488         unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1489                                   es->esgs_itemsize * gs->gs_input_verts_per_prim;
1490         unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1491                                   gs->max_gsvs_emit_size * (gs->max_gs_stream + 1);
1492
1493         min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1494         esgs_ring_size = align(esgs_ring_size, alignment);
1495         gsvs_ring_size = align(gsvs_ring_size, alignment);
1496
1497         esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1498         gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1499
1500         /* Some rings don't have to be allocated if shaders don't use them.
1501          * (e.g. no varyings between ES and GS or GS and VS)
1502          */
1503         bool update_esgs = esgs_ring_size &&
1504                            (!sctx->esgs_ring ||
1505                             sctx->esgs_ring->width0 < esgs_ring_size);
1506         bool update_gsvs = gsvs_ring_size &&
1507                            (!sctx->gsvs_ring ||
1508                             sctx->gsvs_ring->width0 < gsvs_ring_size);
1509
1510         if (!update_esgs && !update_gsvs)
1511                 return true;
1512
1513         if (update_esgs) {
1514                 pipe_resource_reference(&sctx->esgs_ring, NULL);
1515                 sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1516                                                      PIPE_USAGE_DEFAULT,
1517                                                      esgs_ring_size);
1518                 if (!sctx->esgs_ring)
1519                         return false;
1520         }
1521
1522         if (update_gsvs) {
1523                 pipe_resource_reference(&sctx->gsvs_ring, NULL);
1524                 sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1525                                                      PIPE_USAGE_DEFAULT,
1526                                                      gsvs_ring_size);
1527                 if (!sctx->gsvs_ring)
1528                         return false;
1529         }
1530
1531         /* Create the "init_config_gs_rings" state. */
1532         pm4 = CALLOC_STRUCT(si_pm4_state);
1533         if (!pm4)
1534                 return false;
1535
1536         if (sctx->b.chip_class >= CIK) {
1537                 if (sctx->esgs_ring)
1538                         si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
1539                                        sctx->esgs_ring->width0 / 256);
1540                 if (sctx->gsvs_ring)
1541                         si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
1542                                        sctx->gsvs_ring->width0 / 256);
1543         } else {
1544                 if (sctx->esgs_ring)
1545                         si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
1546                                        sctx->esgs_ring->width0 / 256);
1547                 if (sctx->gsvs_ring)
1548                         si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
1549                                        sctx->gsvs_ring->width0 / 256);
1550         }
1551
1552         /* Set the state. */
1553         if (sctx->init_config_gs_rings)
1554                 si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
1555         sctx->init_config_gs_rings = pm4;
1556
1557         if (!sctx->init_config_has_vgt_flush) {
1558                 si_init_config_add_vgt_flush(sctx);
1559                 si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1560         }
1561
1562         /* Flush the context to re-emit both init_config states. */
1563         sctx->b.initial_gfx_cs_size = 0; /* force flush */
1564         si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1565
1566         /* Set ring bindings. */
1567         if (sctx->esgs_ring) {
1568                 si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
1569                                    sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1570                                    true, true, 4, 64, 0);
1571                 si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
1572                                    sctx->esgs_ring, 0, sctx->esgs_ring->width0,
1573                                    false, false, 0, 0, 0);
1574         }
1575         if (sctx->gsvs_ring)
1576                 si_set_ring_buffer(&sctx->b.b, SI_VS_RING_GSVS,
1577                                    sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
1578                                    false, false, 0, 0, 0);
1579         return true;
1580 }
1581
1582 static void si_update_gsvs_ring_bindings(struct si_context *sctx)
1583 {
1584         unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
1585         uint64_t offset;
1586
1587         if (!sctx->gsvs_ring || gsvs_itemsize == sctx->last_gsvs_itemsize)
1588                 return;
1589
1590         sctx->last_gsvs_itemsize = gsvs_itemsize;
1591
1592         si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS0,
1593                            sctx->gsvs_ring, gsvs_itemsize,
1594                            64, true, true, 4, 16, 0);
1595
1596         offset = gsvs_itemsize * 64;
1597         si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS1,
1598                            sctx->gsvs_ring, gsvs_itemsize,
1599                            64, true, true, 4, 16, offset);
1600
1601         offset = (gsvs_itemsize * 2) * 64;
1602         si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS2,
1603                            sctx->gsvs_ring, gsvs_itemsize,
1604                            64, true, true, 4, 16, offset);
1605
1606         offset = (gsvs_itemsize * 3) * 64;
1607         si_set_ring_buffer(&sctx->b.b, SI_GS_RING_GSVS3,
1608                            sctx->gsvs_ring, gsvs_itemsize,
1609                            64, true, true, 4, 16, offset);
1610 }
1611
1612 /**
1613  * @returns 1 if \p sel has been updated to use a new scratch buffer
1614  *          0 if not
1615  *          < 0 if there was a failure
1616  */
1617 static int si_update_scratch_buffer(struct si_context *sctx,
1618                                     struct si_shader *shader)
1619 {
1620         uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
1621         int r;
1622
1623         if (!shader)
1624                 return 0;
1625
1626         /* This shader doesn't need a scratch buffer */
1627         if (shader->config.scratch_bytes_per_wave == 0)
1628                 return 0;
1629
1630         /* This shader is already configured to use the current
1631          * scratch buffer. */
1632         if (shader->scratch_bo == sctx->scratch_buffer)
1633                 return 0;
1634
1635         assert(sctx->scratch_buffer);
1636
1637         si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
1638
1639         /* Replace the shader bo with a new bo that has the relocs applied. */
1640         r = si_shader_binary_upload(sctx->screen, shader);
1641         if (r)
1642                 return r;
1643
1644         /* Update the shader state to use the new shader bo. */
1645         si_shader_init_pm4_state(shader);
1646
1647         r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
1648
1649         return 1;
1650 }
1651
1652 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
1653 {
1654         return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
1655 }
1656
1657 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
1658 {
1659         return shader ? shader->config.scratch_bytes_per_wave : 0;
1660 }
1661
1662 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
1663 {
1664         unsigned bytes = 0;
1665
1666         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
1667         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
1668         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
1669         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
1670         bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
1671         return bytes;
1672 }
1673
1674 static bool si_update_spi_tmpring_size(struct si_context *sctx)
1675 {
1676         unsigned current_scratch_buffer_size =
1677                 si_get_current_scratch_buffer_size(sctx);
1678         unsigned scratch_bytes_per_wave =
1679                 si_get_max_scratch_bytes_per_wave(sctx);
1680         unsigned scratch_needed_size = scratch_bytes_per_wave *
1681                 sctx->scratch_waves;
1682         unsigned spi_tmpring_size;
1683         int r;
1684
1685         if (scratch_needed_size > 0) {
1686                 if (scratch_needed_size > current_scratch_buffer_size) {
1687                         /* Create a bigger scratch buffer */
1688                         pipe_resource_reference(
1689                                         (struct pipe_resource**)&sctx->scratch_buffer,
1690                                         NULL);
1691
1692                         sctx->scratch_buffer =
1693                                         si_resource_create_custom(&sctx->screen->b.b,
1694                                         PIPE_USAGE_DEFAULT, scratch_needed_size);
1695                         if (!sctx->scratch_buffer)
1696                                 return false;
1697                         sctx->emit_scratch_reloc = true;
1698                 }
1699
1700                 /* Update the shaders, so they are using the latest scratch.  The
1701                  * scratch buffer may have been changed since these shaders were
1702                  * last used, so we still need to try to update them, even if
1703                  * they require scratch buffers smaller than the current size.
1704                  */
1705                 r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
1706                 if (r < 0)
1707                         return false;
1708                 if (r == 1)
1709                         si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1710
1711                 r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
1712                 if (r < 0)
1713                         return false;
1714                 if (r == 1)
1715                         si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1716
1717                 r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
1718                 if (r < 0)
1719                         return false;
1720                 if (r == 1)
1721                         si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1722
1723                 /* VS can be bound as LS, ES, or VS. */
1724                 r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
1725                 if (r < 0)
1726                         return false;
1727                 if (r == 1) {
1728                         if (sctx->tes_shader.current)
1729                                 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1730                         else if (sctx->gs_shader.current)
1731                                 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1732                         else
1733                                 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1734                 }
1735
1736                 /* TES can be bound as ES or VS. */
1737                 r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
1738                 if (r < 0)
1739                         return false;
1740                 if (r == 1) {
1741                         if (sctx->gs_shader.current)
1742                                 si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1743                         else
1744                                 si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1745                 }
1746         }
1747
1748         /* The LLVM shader backend should be reporting aligned scratch_sizes. */
1749         assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
1750                 "scratch size should already be aligned correctly.");
1751
1752         spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
1753                            S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
1754         if (spi_tmpring_size != sctx->spi_tmpring_size) {
1755                 sctx->spi_tmpring_size = spi_tmpring_size;
1756                 sctx->emit_scratch_reloc = true;
1757         }
1758         return true;
1759 }
1760
1761 static void si_init_tess_factor_ring(struct si_context *sctx)
1762 {
1763         assert(!sctx->tf_ring);
1764
1765         sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
1766                                            PIPE_USAGE_DEFAULT,
1767                                            32768 * sctx->screen->b.info.max_se);
1768         if (!sctx->tf_ring)
1769                 return;
1770
1771         assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
1772
1773         si_init_config_add_vgt_flush(sctx);
1774
1775         /* Append these registers to the init config state. */
1776         if (sctx->b.chip_class >= CIK) {
1777                 si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
1778                                S_030938_SIZE(sctx->tf_ring->width0 / 4));
1779                 si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
1780                                r600_resource(sctx->tf_ring)->gpu_address >> 8);
1781         } else {
1782                 si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
1783                                S_008988_SIZE(sctx->tf_ring->width0 / 4));
1784                 si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
1785                                r600_resource(sctx->tf_ring)->gpu_address >> 8);
1786         }
1787
1788         /* Flush the context to re-emit the init_config state.
1789          * This is done only once in a lifetime of a context.
1790          */
1791         si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
1792         sctx->b.initial_gfx_cs_size = 0; /* force flush */
1793         si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
1794
1795         si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
1796                            0, sctx->tf_ring->width0, false, false, 0, 0, 0);
1797 }
1798
1799 /**
1800  * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
1801  * VS passes its outputs to TES directly, so the fixed-function shader only
1802  * has to write TESSOUTER and TESSINNER.
1803  */
1804 static void si_generate_fixed_func_tcs(struct si_context *sctx)
1805 {
1806         struct ureg_src outer, inner;
1807         struct ureg_dst tessouter, tessinner;
1808         struct ureg_program *ureg = ureg_create(TGSI_PROCESSOR_TESS_CTRL);
1809
1810         if (!ureg)
1811                 return; /* if we get here, we're screwed */
1812
1813         assert(!sctx->fixed_func_tcs_shader.cso);
1814
1815         outer = ureg_DECL_system_value(ureg,
1816                                        TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
1817         inner = ureg_DECL_system_value(ureg,
1818                                        TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
1819
1820         tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
1821         tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
1822
1823         ureg_MOV(ureg, tessouter, outer);
1824         ureg_MOV(ureg, tessinner, inner);
1825         ureg_END(ureg);
1826
1827         sctx->fixed_func_tcs_shader.cso =
1828                 ureg_create_shader_and_destroy(ureg, &sctx->b.b);
1829 }
1830
1831 static void si_update_vgt_shader_config(struct si_context *sctx)
1832 {
1833         /* Calculate the index of the config.
1834          * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
1835         unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
1836         struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
1837
1838         if (!*pm4) {
1839                 uint32_t stages = 0;
1840
1841                 *pm4 = CALLOC_STRUCT(si_pm4_state);
1842
1843                 if (sctx->tes_shader.cso) {
1844                         stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
1845                                   S_028B54_HS_EN(1);
1846
1847                         if (sctx->gs_shader.cso)
1848                                 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
1849                                           S_028B54_GS_EN(1) |
1850                                           S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1851                         else
1852                                 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
1853                 } else if (sctx->gs_shader.cso) {
1854                         stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
1855                                   S_028B54_GS_EN(1) |
1856                                   S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
1857                 }
1858
1859                 si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
1860         }
1861         si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
1862 }
1863
1864 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
1865 {
1866         struct pipe_stream_output_info *so = &shader->so;
1867         uint32_t enabled_stream_buffers_mask = 0;
1868         int i;
1869
1870         for (i = 0; i < so->num_outputs; i++)
1871                 enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
1872         sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
1873         sctx->b.streamout.stride_in_dw = shader->so.stride;
1874 }
1875
1876 bool si_update_shaders(struct si_context *sctx)
1877 {
1878         struct pipe_context *ctx = (struct pipe_context*)sctx;
1879         struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
1880         int r;
1881
1882         /* Update stages before GS. */
1883         if (sctx->tes_shader.cso) {
1884                 if (!sctx->tf_ring) {
1885                         si_init_tess_factor_ring(sctx);
1886                         if (!sctx->tf_ring)
1887                                 return false;
1888                 }
1889
1890                 /* VS as LS */
1891                 r = si_shader_select(ctx, &sctx->vs_shader);
1892                 if (r)
1893                         return false;
1894                 si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
1895
1896                 if (sctx->tcs_shader.cso) {
1897                         r = si_shader_select(ctx, &sctx->tcs_shader);
1898                         if (r)
1899                                 return false;
1900                         si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
1901                 } else {
1902                         if (!sctx->fixed_func_tcs_shader.cso) {
1903                                 si_generate_fixed_func_tcs(sctx);
1904                                 if (!sctx->fixed_func_tcs_shader.cso)
1905                                         return false;
1906                         }
1907
1908                         r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
1909                         if (r)
1910                                 return false;
1911                         si_pm4_bind_state(sctx, hs,
1912                                           sctx->fixed_func_tcs_shader.current->pm4);
1913                 }
1914
1915                 r = si_shader_select(ctx, &sctx->tes_shader);
1916                 if (r)
1917                         return false;
1918
1919                 if (sctx->gs_shader.cso) {
1920                         /* TES as ES */
1921                         si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
1922                 } else {
1923                         /* TES as VS */
1924                         si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
1925                         si_update_so(sctx, sctx->tes_shader.cso);
1926                 }
1927         } else if (sctx->gs_shader.cso) {
1928                 /* VS as ES */
1929                 r = si_shader_select(ctx, &sctx->vs_shader);
1930                 if (r)
1931                         return false;
1932                 si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
1933         } else {
1934                 /* VS as VS */
1935                 r = si_shader_select(ctx, &sctx->vs_shader);
1936                 if (r)
1937                         return false;
1938                 si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
1939                 si_update_so(sctx, sctx->vs_shader.cso);
1940         }
1941
1942         /* Update GS. */
1943         if (sctx->gs_shader.cso) {
1944                 r = si_shader_select(ctx, &sctx->gs_shader);
1945                 if (r)
1946                         return false;
1947                 si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
1948                 si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
1949                 si_update_so(sctx, sctx->gs_shader.cso);
1950
1951                 if (!si_update_gs_ring_buffers(sctx))
1952                         return false;
1953
1954                 si_update_gsvs_ring_bindings(sctx);
1955         } else {
1956                 si_pm4_bind_state(sctx, gs, NULL);
1957                 si_pm4_bind_state(sctx, es, NULL);
1958         }
1959
1960         si_update_vgt_shader_config(sctx);
1961
1962         if (sctx->ps_shader.cso) {
1963                 unsigned db_shader_control;
1964
1965                 r = si_shader_select(ctx, &sctx->ps_shader);
1966                 if (r)
1967                         return false;
1968                 si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
1969
1970                 db_shader_control =
1971                         sctx->ps_shader.cso->db_shader_control |
1972                         S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS) |
1973                         S_02880C_Z_ORDER(sctx->ps_shader.current->z_order);
1974
1975                 if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
1976                     sctx->sprite_coord_enable != rs->sprite_coord_enable ||
1977                     sctx->flatshade != rs->flatshade) {
1978                         sctx->sprite_coord_enable = rs->sprite_coord_enable;
1979                         sctx->flatshade = rs->flatshade;
1980                         si_mark_atom_dirty(sctx, &sctx->spi_map);
1981                 }
1982
1983                 if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
1984                         si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1985
1986                 if (sctx->ps_db_shader_control != db_shader_control) {
1987                         sctx->ps_db_shader_control = db_shader_control;
1988                         si_mark_atom_dirty(sctx, &sctx->db_render_state);
1989                 }
1990
1991                 if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing) {
1992                         sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.epilog.poly_line_smoothing;
1993                         si_mark_atom_dirty(sctx, &sctx->msaa_config);
1994
1995                         if (sctx->b.chip_class == SI)
1996                                 si_mark_atom_dirty(sctx, &sctx->db_render_state);
1997                 }
1998         }
1999
2000         if (si_pm4_state_changed(sctx, ls) ||
2001             si_pm4_state_changed(sctx, hs) ||
2002             si_pm4_state_changed(sctx, es) ||
2003             si_pm4_state_changed(sctx, gs) ||
2004             si_pm4_state_changed(sctx, vs) ||
2005             si_pm4_state_changed(sctx, ps)) {
2006                 if (!si_update_spi_tmpring_size(sctx))
2007                         return false;
2008         }
2009         return true;
2010 }
2011
2012 void si_init_shader_functions(struct si_context *sctx)
2013 {
2014         si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2015
2016         sctx->b.b.create_vs_state = si_create_shader_selector;
2017         sctx->b.b.create_tcs_state = si_create_shader_selector;
2018         sctx->b.b.create_tes_state = si_create_shader_selector;
2019         sctx->b.b.create_gs_state = si_create_shader_selector;
2020         sctx->b.b.create_fs_state = si_create_shader_selector;
2021
2022         sctx->b.b.bind_vs_state = si_bind_vs_shader;
2023         sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2024         sctx->b.b.bind_tes_state = si_bind_tes_shader;
2025         sctx->b.b.bind_gs_state = si_bind_gs_shader;
2026         sctx->b.b.bind_fs_state = si_bind_ps_shader;
2027
2028         sctx->b.b.delete_vs_state = si_delete_shader_selector;
2029         sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2030         sctx->b.b.delete_tes_state = si_delete_shader_selector;
2031         sctx->b.b.delete_gs_state = si_delete_shader_selector;
2032         sctx->b.b.delete_fs_state = si_delete_shader_selector;
2033 }