OSDN Git Service

Merge remote-tracking branch 'mesa/12.0' into marshmallow-x86
[android-x86/external-mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "nir/tgsi_to_nir.h"
37 #include "vc4_context.h"
38 #include "vc4_qpu.h"
39 #include "vc4_qir.h"
40 #ifdef USE_VC4_SIMULATOR
41 #include "simpenrose/simpenrose.h"
42 #endif
43
44 static struct qreg
45 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
46
47 static void
48 resize_qreg_array(struct vc4_compile *c,
49                   struct qreg **regs,
50                   uint32_t *size,
51                   uint32_t decl_size)
52 {
53         if (*size >= decl_size)
54                 return;
55
56         uint32_t old_size = *size;
57         *size = MAX2(*size * 2, decl_size);
58         *regs = reralloc(c, *regs, struct qreg, *size);
59         if (!*regs) {
60                 fprintf(stderr, "Malloc failure\n");
61                 abort();
62         }
63
64         for (uint32_t i = old_size; i < *size; i++)
65                 (*regs)[i] = c->undef;
66 }
67
68 static struct qreg
69 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
70 {
71         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
72         uint32_t offset = intr->const_index[0];
73         struct vc4_compiler_ubo_range *range = NULL;
74         unsigned i;
75         for (i = 0; i < c->num_uniform_ranges; i++) {
76                 range = &c->ubo_ranges[i];
77                 if (offset >= range->src_offset &&
78                     offset < range->src_offset + range->size) {
79                         break;
80                 }
81         }
82         /* The driver-location-based offset always has to be within a declared
83          * uniform range.
84          */
85         assert(range);
86         if (!range->used) {
87                 range->used = true;
88                 range->dst_offset = c->next_ubo_dst_offset;
89                 c->next_ubo_dst_offset += range->size;
90                 c->num_ubo_ranges++;
91         }
92
93         offset -= range->src_offset;
94
95         /* Adjust for where we stored the TGSI register base. */
96         indirect_offset = qir_ADD(c, indirect_offset,
97                                   qir_uniform_ui(c, (range->dst_offset +
98                                                      offset)));
99
100         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
101         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
102         indirect_offset = qir_MIN(c, indirect_offset,
103                                   qir_uniform_ui(c, (range->dst_offset +
104                                                      range->size - 4)));
105
106         qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
107         c->num_texture_samples++;
108         return qir_TEX_RESULT(c);
109 }
110
111 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
112                                        enum quniform_contents contents)
113 {
114         nir_intrinsic_instr *intr =
115                 nir_intrinsic_instr_create(b->shader,
116                                            nir_intrinsic_load_uniform);
117         intr->const_index[0] = (VC4_NIR_STATE_UNIFORM_OFFSET + contents) * 4;
118         intr->num_components = 1;
119         intr->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
120         nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL);
121         nir_builder_instr_insert(b, &intr->instr);
122         return &intr->dest.ssa;
123 }
124
125 nir_ssa_def *
126 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
127 {
128         switch (swiz) {
129         default:
130         case PIPE_SWIZZLE_NONE:
131                 fprintf(stderr, "warning: unknown swizzle\n");
132                 /* FALLTHROUGH */
133         case PIPE_SWIZZLE_0:
134                 return nir_imm_float(b, 0.0);
135         case PIPE_SWIZZLE_1:
136                 return nir_imm_float(b, 1.0);
137         case PIPE_SWIZZLE_X:
138         case PIPE_SWIZZLE_Y:
139         case PIPE_SWIZZLE_Z:
140         case PIPE_SWIZZLE_W:
141                 return srcs[swiz];
142         }
143 }
144
145 static struct qreg *
146 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
147 {
148         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
149                                           def->num_components);
150         _mesa_hash_table_insert(c->def_ht, def, qregs);
151         return qregs;
152 }
153
154 static struct qreg *
155 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
156 {
157         if (dest->is_ssa) {
158                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
159                 for (int i = 0; i < dest->ssa.num_components; i++)
160                         qregs[i] = c->undef;
161                 return qregs;
162         } else {
163                 nir_register *reg = dest->reg.reg;
164                 assert(dest->reg.base_offset == 0);
165                 assert(reg->num_array_elems == 0);
166                 struct hash_entry *entry =
167                         _mesa_hash_table_search(c->def_ht, reg);
168                 return entry->data;
169         }
170 }
171
172 static struct qreg
173 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
174 {
175         struct hash_entry *entry;
176         if (src.is_ssa) {
177                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
178                 assert(i < src.ssa->num_components);
179         } else {
180                 nir_register *reg = src.reg.reg;
181                 entry = _mesa_hash_table_search(c->def_ht, reg);
182                 assert(reg->num_array_elems == 0);
183                 assert(src.reg.base_offset == 0);
184                 assert(i < reg->num_components);
185         }
186
187         struct qreg *qregs = entry->data;
188         return qregs[i];
189 }
190
191 static struct qreg
192 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
193                 unsigned src)
194 {
195         assert(util_is_power_of_two(instr->dest.write_mask));
196         unsigned chan = ffs(instr->dest.write_mask) - 1;
197         struct qreg r = ntq_get_src(c, instr->src[src].src,
198                                     instr->src[src].swizzle[chan]);
199
200         assert(!instr->src[src].abs);
201         assert(!instr->src[src].negate);
202
203         return r;
204 };
205
206 static inline struct qreg
207 qir_SAT(struct vc4_compile *c, struct qreg val)
208 {
209         return qir_FMAX(c,
210                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
211                         qir_uniform_f(c, 0.0));
212 }
213
214 static struct qreg
215 ntq_rcp(struct vc4_compile *c, struct qreg x)
216 {
217         struct qreg r = qir_RCP(c, x);
218
219         /* Apply a Newton-Raphson step to improve the accuracy. */
220         r = qir_FMUL(c, r, qir_FSUB(c,
221                                     qir_uniform_f(c, 2.0),
222                                     qir_FMUL(c, x, r)));
223
224         return r;
225 }
226
227 static struct qreg
228 ntq_rsq(struct vc4_compile *c, struct qreg x)
229 {
230         struct qreg r = qir_RSQ(c, x);
231
232         /* Apply a Newton-Raphson step to improve the accuracy. */
233         r = qir_FMUL(c, r, qir_FSUB(c,
234                                     qir_uniform_f(c, 1.5),
235                                     qir_FMUL(c,
236                                              qir_uniform_f(c, 0.5),
237                                              qir_FMUL(c, x,
238                                                       qir_FMUL(c, r, r)))));
239
240         return r;
241 }
242
243 static struct qreg
244 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
245 {
246         struct qreg src0_hi = qir_SHR(c, src0,
247                                       qir_uniform_ui(c, 24));
248         struct qreg src1_hi = qir_SHR(c, src1,
249                                       qir_uniform_ui(c, 24));
250
251         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
252         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
253         struct qreg lolo = qir_MUL24(c, src0, src1);
254
255         return qir_ADD(c, lolo, qir_SHL(c,
256                                         qir_ADD(c, hilo, lohi),
257                                         qir_uniform_ui(c, 24)));
258 }
259
260 static struct qreg
261 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
262 {
263         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
264                                                  qir_uniform_ui(c, 8)));
265         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
266 }
267
268 /**
269  * Emits a lowered TXF_MS from an MSAA texture.
270  *
271  * The addressing math has been lowered in NIR, and now we just need to read
272  * it like a UBO.
273  */
274 static void
275 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
276 {
277         uint32_t tile_width = 32;
278         uint32_t tile_height = 32;
279         uint32_t tile_size = (tile_height * tile_width *
280                               VC4_MAX_SAMPLES * sizeof(uint32_t));
281
282         unsigned unit = instr->texture_index;
283         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
284         uint32_t w_tiles = w / tile_width;
285         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
286         uint32_t h_tiles = h / tile_height;
287         uint32_t size = w_tiles * h_tiles * tile_size;
288
289         struct qreg addr;
290         assert(instr->num_srcs == 1);
291         assert(instr->src[0].src_type == nir_tex_src_coord);
292         addr = ntq_get_src(c, instr->src[0].src, 0);
293
294         /* Perform the clamping required by kernel validation. */
295         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
296         addr = qir_MIN(c, addr,  qir_uniform_ui(c, size - 4));
297
298         qir_TEX_DIRECT(c, addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
299
300         struct qreg tex = qir_TEX_RESULT(c);
301         c->num_texture_samples++;
302
303         struct qreg *dest = ntq_get_dest(c, &instr->dest);
304         enum pipe_format format = c->key->tex[unit].format;
305         if (util_format_is_depth_or_stencil(format)) {
306                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
307                 for (int i = 0; i < 4; i++)
308                         dest[i] = scaled;
309         } else {
310                 for (int i = 0; i < 4; i++)
311                         dest[i] = qir_UNPACK_8_F(c, tex, i);
312         }
313 }
314
315 static void
316 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
317 {
318         struct qreg s, t, r, lod, compare;
319         bool is_txb = false, is_txl = false;
320         unsigned unit = instr->texture_index;
321
322         if (instr->op == nir_texop_txf) {
323                 ntq_emit_txf(c, instr);
324                 return;
325         }
326
327         for (unsigned i = 0; i < instr->num_srcs; i++) {
328                 switch (instr->src[i].src_type) {
329                 case nir_tex_src_coord:
330                         s = ntq_get_src(c, instr->src[i].src, 0);
331                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
332                                 t = qir_uniform_f(c, 0.5);
333                         else
334                                 t = ntq_get_src(c, instr->src[i].src, 1);
335                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
336                                 r = ntq_get_src(c, instr->src[i].src, 2);
337                         break;
338                 case nir_tex_src_bias:
339                         lod = ntq_get_src(c, instr->src[i].src, 0);
340                         is_txb = true;
341                         break;
342                 case nir_tex_src_lod:
343                         lod = ntq_get_src(c, instr->src[i].src, 0);
344                         is_txl = true;
345                         break;
346                 case nir_tex_src_comparitor:
347                         compare = ntq_get_src(c, instr->src[i].src, 0);
348                         break;
349                 default:
350                         unreachable("unknown texture source");
351                 }
352         }
353
354         struct qreg texture_u[] = {
355                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
356                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
357                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
358                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
359         };
360         uint32_t next_texture_u = 0;
361
362         /* There is no native support for GL texture rectangle coordinates, so
363          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
364          * 1]).
365          */
366         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
367                 s = qir_FMUL(c, s,
368                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
369                 t = qir_FMUL(c, t,
370                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
371         }
372
373         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
374                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
375                                            unit | (is_txl << 16));
376         }
377
378         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
379                 qir_TEX_R(c, r, texture_u[next_texture_u++]);
380         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
381                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
382                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
383                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
384                 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
385                           texture_u[next_texture_u++]);
386         }
387
388         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
389                 s = qir_SAT(c, s);
390         }
391
392         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
393                 t = qir_SAT(c, t);
394         }
395
396         qir_TEX_T(c, t, texture_u[next_texture_u++]);
397
398         if (is_txl || is_txb)
399                 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
400
401         qir_TEX_S(c, s, texture_u[next_texture_u++]);
402
403         c->num_texture_samples++;
404         struct qreg tex = qir_TEX_RESULT(c);
405
406         enum pipe_format format = c->key->tex[unit].format;
407
408         struct qreg *dest = ntq_get_dest(c, &instr->dest);
409         if (util_format_is_depth_or_stencil(format)) {
410                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
411                 struct qreg depth_output;
412
413                 struct qreg u0 = qir_uniform_f(c, 0.0f);
414                 struct qreg u1 = qir_uniform_f(c, 1.0f);
415                 if (c->key->tex[unit].compare_mode) {
416                         switch (c->key->tex[unit].compare_func) {
417                         case PIPE_FUNC_NEVER:
418                                 depth_output = qir_uniform_f(c, 0.0f);
419                                 break;
420                         case PIPE_FUNC_ALWAYS:
421                                 depth_output = u1;
422                                 break;
423                         case PIPE_FUNC_EQUAL:
424                                 qir_SF(c, qir_FSUB(c, compare, normalized));
425                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
426                                 break;
427                         case PIPE_FUNC_NOTEQUAL:
428                                 qir_SF(c, qir_FSUB(c, compare, normalized));
429                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
430                                 break;
431                         case PIPE_FUNC_GREATER:
432                                 qir_SF(c, qir_FSUB(c, compare, normalized));
433                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
434                                 break;
435                         case PIPE_FUNC_GEQUAL:
436                                 qir_SF(c, qir_FSUB(c, normalized, compare));
437                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
438                                 break;
439                         case PIPE_FUNC_LESS:
440                                 qir_SF(c, qir_FSUB(c, compare, normalized));
441                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
442                                 break;
443                         case PIPE_FUNC_LEQUAL:
444                                 qir_SF(c, qir_FSUB(c, normalized, compare));
445                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
446                                 break;
447                         }
448                 } else {
449                         depth_output = normalized;
450                 }
451
452                 for (int i = 0; i < 4; i++)
453                         dest[i] = depth_output;
454         } else {
455                 for (int i = 0; i < 4; i++)
456                         dest[i] = qir_UNPACK_8_F(c, tex, i);
457         }
458 }
459
460 /**
461  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
462  * to zero).
463  */
464 static struct qreg
465 ntq_ffract(struct vc4_compile *c, struct qreg src)
466 {
467         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
468         struct qreg diff = qir_FSUB(c, src, trunc);
469         qir_SF(c, diff);
470         return qir_SEL(c, QPU_COND_NS,
471                        qir_FADD(c, diff, qir_uniform_f(c, 1.0)), diff);
472 }
473
474 /**
475  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
476  * zero).
477  */
478 static struct qreg
479 ntq_ffloor(struct vc4_compile *c, struct qreg src)
480 {
481         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
482
483         /* This will be < 0 if we truncated and the truncation was of a value
484          * that was < 0 in the first place.
485          */
486         qir_SF(c, qir_FSUB(c, src, trunc));
487
488         return qir_SEL(c, QPU_COND_NS,
489                        qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), trunc);
490 }
491
492 /**
493  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
494  * zero).
495  */
496 static struct qreg
497 ntq_fceil(struct vc4_compile *c, struct qreg src)
498 {
499         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
500
501         /* This will be < 0 if we truncated and the truncation was of a value
502          * that was > 0 in the first place.
503          */
504         qir_SF(c, qir_FSUB(c, trunc, src));
505
506         return qir_SEL(c, QPU_COND_NS,
507                        qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), trunc);
508 }
509
510 static struct qreg
511 ntq_fsin(struct vc4_compile *c, struct qreg src)
512 {
513         float coeff[] = {
514                 -2.0 * M_PI,
515                 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
516                 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
517                 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
518                 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
519         };
520
521         struct qreg scaled_x =
522                 qir_FMUL(c,
523                          src,
524                          qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
525
526         struct qreg x = qir_FADD(c,
527                                  ntq_ffract(c, scaled_x),
528                                  qir_uniform_f(c, -0.5));
529         struct qreg x2 = qir_FMUL(c, x, x);
530         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
531         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
532                 x = qir_FMUL(c, x, x2);
533                 sum = qir_FADD(c,
534                                sum,
535                                qir_FMUL(c,
536                                         x,
537                                         qir_uniform_f(c, coeff[i])));
538         }
539         return sum;
540 }
541
542 static struct qreg
543 ntq_fcos(struct vc4_compile *c, struct qreg src)
544 {
545         float coeff[] = {
546                 -1.0f,
547                 pow(2.0 * M_PI, 2) / (2 * 1),
548                 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
549                 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
550                 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
551                 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
552         };
553
554         struct qreg scaled_x =
555                 qir_FMUL(c, src,
556                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
557         struct qreg x_frac = qir_FADD(c,
558                                       ntq_ffract(c, scaled_x),
559                                       qir_uniform_f(c, -0.5));
560
561         struct qreg sum = qir_uniform_f(c, coeff[0]);
562         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
563         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
564         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
565                 if (i != 1)
566                         x = qir_FMUL(c, x, x2);
567
568                 struct qreg mul = qir_FMUL(c,
569                                            x,
570                                            qir_uniform_f(c, coeff[i]));
571                 if (i == 0)
572                         sum = mul;
573                 else
574                         sum = qir_FADD(c, sum, mul);
575         }
576         return sum;
577 }
578
579 static struct qreg
580 ntq_fsign(struct vc4_compile *c, struct qreg src)
581 {
582         struct qreg t = qir_get_temp(c);
583
584         qir_SF(c, src);
585         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
586         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
587         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
588         return t;
589 }
590
591 static void
592 emit_vertex_input(struct vc4_compile *c, int attr)
593 {
594         enum pipe_format format = c->vs_key->attr_formats[attr];
595         uint32_t attr_size = util_format_get_blocksize(format);
596
597         c->vattr_sizes[attr] = align(attr_size, 4);
598         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
599                 c->inputs[attr * 4 + i] =
600                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
601                 c->num_inputs++;
602         }
603 }
604
605 static void
606 emit_fragcoord_input(struct vc4_compile *c, int attr)
607 {
608         c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
609         c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
610         c->inputs[attr * 4 + 2] =
611                 qir_FMUL(c,
612                          qir_ITOF(c, qir_FRAG_Z(c)),
613                          qir_uniform_f(c, 1.0 / 0xffffff));
614         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
615 }
616
617 static struct qreg
618 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
619                       uint8_t swizzle)
620 {
621         uint32_t i = c->num_input_slots++;
622         struct qreg vary = {
623                 QFILE_VARY,
624                 i
625         };
626
627         if (c->num_input_slots >= c->input_slots_array_size) {
628                 c->input_slots_array_size =
629                         MAX2(4, c->input_slots_array_size * 2);
630
631                 c->input_slots = reralloc(c, c->input_slots,
632                                           struct vc4_varying_slot,
633                                           c->input_slots_array_size);
634         }
635
636         c->input_slots[i].slot = slot;
637         c->input_slots[i].swizzle = swizzle;
638
639         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
640 }
641
642 static void
643 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
644 {
645         for (int i = 0; i < 4; i++) {
646                 c->inputs[attr * 4 + i] =
647                         emit_fragment_varying(c, slot, i);
648                 c->num_inputs++;
649         }
650 }
651
652 static void
653 add_output(struct vc4_compile *c,
654            uint32_t decl_offset,
655            uint8_t slot,
656            uint8_t swizzle)
657 {
658         uint32_t old_array_size = c->outputs_array_size;
659         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
660                           decl_offset + 1);
661
662         if (old_array_size != c->outputs_array_size) {
663                 c->output_slots = reralloc(c,
664                                            c->output_slots,
665                                            struct vc4_varying_slot,
666                                            c->outputs_array_size);
667         }
668
669         c->output_slots[decl_offset].slot = slot;
670         c->output_slots[decl_offset].swizzle = swizzle;
671 }
672
673 static void
674 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
675 {
676         unsigned array_id = c->num_uniform_ranges++;
677         if (array_id >= c->ubo_ranges_array_size) {
678                 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
679                                                 array_id + 1);
680                 c->ubo_ranges = reralloc(c, c->ubo_ranges,
681                                          struct vc4_compiler_ubo_range,
682                                          c->ubo_ranges_array_size);
683         }
684
685         c->ubo_ranges[array_id].dst_offset = 0;
686         c->ubo_ranges[array_id].src_offset = start;
687         c->ubo_ranges[array_id].size = size;
688         c->ubo_ranges[array_id].used = false;
689 }
690
691 static bool
692 ntq_src_is_only_ssa_def_user(nir_src *src)
693 {
694         if (!src->is_ssa)
695                 return false;
696
697         if (!list_empty(&src->ssa->if_uses))
698                 return false;
699
700         return (src->ssa->uses.next == &src->use_link &&
701                 src->ssa->uses.next->next == &src->ssa->uses);
702 }
703
704 /**
705  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
706  * bit set.
707  *
708  * However, as an optimization, it tries to find the instructions generating
709  * the sources to be packed and just emit the pack flag there, if possible.
710  */
711 static void
712 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
713 {
714         struct qreg result = qir_get_temp(c);
715         struct nir_alu_instr *vec4 = NULL;
716
717         /* If packing from a vec4 op (as expected), identify it so that we can
718          * peek back at what generated its sources.
719          */
720         if (instr->src[0].src.is_ssa &&
721             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
722             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
723             nir_op_vec4) {
724                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
725         }
726
727         /* If the pack is replicating the same channel 4 times, use the 8888
728          * pack flag.  This is common for blending using the alpha
729          * channel.
730          */
731         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
732             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
733             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
734                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
735                 *dest = qir_PACK_8888_F(c,
736                                         ntq_get_src(c, instr->src[0].src,
737                                                     instr->src[0].swizzle[0]));
738                 return;
739         }
740
741         for (int i = 0; i < 4; i++) {
742                 int swiz = instr->src[0].swizzle[i];
743                 struct qreg src;
744                 if (vec4) {
745                         src = ntq_get_src(c, vec4->src[swiz].src,
746                                           vec4->src[swiz].swizzle[0]);
747                 } else {
748                         src = ntq_get_src(c, instr->src[0].src, swiz);
749                 }
750
751                 if (vec4 &&
752                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
753                     src.file == QFILE_TEMP &&
754                     c->defs[src.index] &&
755                     qir_is_mul(c->defs[src.index]) &&
756                     !c->defs[src.index]->dst.pack) {
757                         struct qinst *rewrite = c->defs[src.index];
758                         c->defs[src.index] = NULL;
759                         rewrite->dst = result;
760                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
761                         continue;
762                 }
763
764                 qir_PACK_8_F(c, result, src, i);
765         }
766
767         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
768         *dest = result;
769 }
770
771 /** Handles sign-extended bitfield extracts for 16 bits. */
772 static struct qreg
773 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
774               struct qreg bits)
775 {
776         assert(bits.file == QFILE_UNIF &&
777                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
778                c->uniform_data[bits.index] == 16);
779
780         assert(offset.file == QFILE_UNIF &&
781                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
782         int offset_bit = c->uniform_data[offset.index];
783         assert(offset_bit % 16 == 0);
784
785         return qir_UNPACK_16_I(c, base, offset_bit / 16);
786 }
787
788 /** Handles unsigned bitfield extracts for 8 bits. */
789 static struct qreg
790 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
791               struct qreg bits)
792 {
793         assert(bits.file == QFILE_UNIF &&
794                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
795                c->uniform_data[bits.index] == 8);
796
797         assert(offset.file == QFILE_UNIF &&
798                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
799         int offset_bit = c->uniform_data[offset.index];
800         assert(offset_bit % 8 == 0);
801
802         return qir_UNPACK_8_I(c, base, offset_bit / 8);
803 }
804
805 /**
806  * If compare_instr is a valid comparison instruction, emits the
807  * compare_instr's comparison and returns the sel_instr's return value based
808  * on the compare_instr's result.
809  */
810 static bool
811 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
812                     nir_alu_instr *compare_instr,
813                     nir_alu_instr *sel_instr)
814 {
815         enum qpu_cond cond;
816
817         switch (compare_instr->op) {
818         case nir_op_feq:
819         case nir_op_ieq:
820         case nir_op_seq:
821                 cond = QPU_COND_ZS;
822                 break;
823         case nir_op_fne:
824         case nir_op_ine:
825         case nir_op_sne:
826                 cond = QPU_COND_ZC;
827                 break;
828         case nir_op_fge:
829         case nir_op_ige:
830         case nir_op_uge:
831         case nir_op_sge:
832                 cond = QPU_COND_NC;
833                 break;
834         case nir_op_flt:
835         case nir_op_ilt:
836         case nir_op_slt:
837                 cond = QPU_COND_NS;
838                 break;
839         default:
840                 return false;
841         }
842
843         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
844         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
845
846         unsigned unsized_type =
847                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
848         if (unsized_type == nir_type_float)
849                 qir_SF(c, qir_FSUB(c, src0, src1));
850         else
851                 qir_SF(c, qir_SUB(c, src0, src1));
852
853         switch (sel_instr->op) {
854         case nir_op_seq:
855         case nir_op_sne:
856         case nir_op_sge:
857         case nir_op_slt:
858                 *dest = qir_SEL(c, cond,
859                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
860                 break;
861
862         case nir_op_bcsel:
863                 *dest = qir_SEL(c, cond,
864                                 ntq_get_alu_src(c, sel_instr, 1),
865                                 ntq_get_alu_src(c, sel_instr, 2));
866                 break;
867
868         default:
869                 *dest = qir_SEL(c, cond,
870                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
871                 break;
872         }
873
874         return true;
875 }
876
877 /**
878  * Attempts to fold a comparison generating a boolean result into the
879  * condition code for selecting between two values, instead of comparing the
880  * boolean result against 0 to generate the condition code.
881  */
882 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
883                                   struct qreg *src)
884 {
885         if (!instr->src[0].src.is_ssa)
886                 goto out;
887         nir_alu_instr *compare =
888                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
889         if (!compare)
890                 goto out;
891
892         struct qreg dest;
893         if (ntq_emit_comparison(c, &dest, compare, instr))
894                 return dest;
895
896 out:
897         qir_SF(c, src[0]);
898         return qir_SEL(c, QPU_COND_NS, src[1], src[2]);
899 }
900
901 static void
902 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
903 {
904         /* Vectors are special in that they have non-scalarized writemasks,
905          * and just take the first swizzle channel for each argument in order
906          * into each writemask channel.
907          */
908         if (instr->op == nir_op_vec2 ||
909             instr->op == nir_op_vec3 ||
910             instr->op == nir_op_vec4) {
911                 struct qreg srcs[4];
912                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
913                         srcs[i] = ntq_get_src(c, instr->src[i].src,
914                                               instr->src[i].swizzle[0]);
915                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
916                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
917                         dest[i] = srcs[i];
918                 return;
919         }
920
921         if (instr->op == nir_op_pack_unorm_4x8) {
922                 ntq_emit_pack_unorm_4x8(c, instr);
923                 return;
924         }
925
926         if (instr->op == nir_op_unpack_unorm_4x8) {
927                 struct qreg src = ntq_get_src(c, instr->src[0].src,
928                                               instr->src[0].swizzle[0]);
929                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
930                 for (int i = 0; i < 4; i++) {
931                         if (instr->dest.write_mask & (1 << i))
932                                 dest[i] = qir_UNPACK_8_F(c, src, i);
933                 }
934                 return;
935         }
936
937         /* General case: We can just grab the one used channel per src. */
938         struct qreg src[nir_op_infos[instr->op].num_inputs];
939         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
940                 src[i] = ntq_get_alu_src(c, instr, i);
941         }
942
943         /* Pick the channel to store the output in. */
944         assert(!instr->dest.saturate);
945         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
946         assert(util_is_power_of_two(instr->dest.write_mask));
947         dest += ffs(instr->dest.write_mask) - 1;
948
949         switch (instr->op) {
950         case nir_op_fmov:
951         case nir_op_imov:
952                 *dest = qir_MOV(c, src[0]);
953                 break;
954         case nir_op_fmul:
955                 *dest = qir_FMUL(c, src[0], src[1]);
956                 break;
957         case nir_op_fadd:
958                 *dest = qir_FADD(c, src[0], src[1]);
959                 break;
960         case nir_op_fsub:
961                 *dest = qir_FSUB(c, src[0], src[1]);
962                 break;
963         case nir_op_fmin:
964                 *dest = qir_FMIN(c, src[0], src[1]);
965                 break;
966         case nir_op_fmax:
967                 *dest = qir_FMAX(c, src[0], src[1]);
968                 break;
969
970         case nir_op_f2i:
971         case nir_op_f2u:
972                 *dest = qir_FTOI(c, src[0]);
973                 break;
974         case nir_op_i2f:
975         case nir_op_u2f:
976                 *dest = qir_ITOF(c, src[0]);
977                 break;
978         case nir_op_b2f:
979                 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
980                 break;
981         case nir_op_b2i:
982                 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
983                 break;
984         case nir_op_i2b:
985         case nir_op_f2b:
986                 qir_SF(c, src[0]);
987                 *dest = qir_SEL(c, QPU_COND_ZC,
988                                 qir_uniform_ui(c, ~0),
989                                 qir_uniform_ui(c, 0));
990                 break;
991
992         case nir_op_iadd:
993                 *dest = qir_ADD(c, src[0], src[1]);
994                 break;
995         case nir_op_ushr:
996                 *dest = qir_SHR(c, src[0], src[1]);
997                 break;
998         case nir_op_isub:
999                 *dest = qir_SUB(c, src[0], src[1]);
1000                 break;
1001         case nir_op_ishr:
1002                 *dest = qir_ASR(c, src[0], src[1]);
1003                 break;
1004         case nir_op_ishl:
1005                 *dest = qir_SHL(c, src[0], src[1]);
1006                 break;
1007         case nir_op_imin:
1008                 *dest = qir_MIN(c, src[0], src[1]);
1009                 break;
1010         case nir_op_imax:
1011                 *dest = qir_MAX(c, src[0], src[1]);
1012                 break;
1013         case nir_op_iand:
1014                 *dest = qir_AND(c, src[0], src[1]);
1015                 break;
1016         case nir_op_ior:
1017                 *dest = qir_OR(c, src[0], src[1]);
1018                 break;
1019         case nir_op_ixor:
1020                 *dest = qir_XOR(c, src[0], src[1]);
1021                 break;
1022         case nir_op_inot:
1023                 *dest = qir_NOT(c, src[0]);
1024                 break;
1025
1026         case nir_op_imul:
1027                 *dest = ntq_umul(c, src[0], src[1]);
1028                 break;
1029
1030         case nir_op_seq:
1031         case nir_op_sne:
1032         case nir_op_sge:
1033         case nir_op_slt:
1034         case nir_op_feq:
1035         case nir_op_fne:
1036         case nir_op_fge:
1037         case nir_op_flt:
1038         case nir_op_ieq:
1039         case nir_op_ine:
1040         case nir_op_ige:
1041         case nir_op_uge:
1042         case nir_op_ilt:
1043                 if (!ntq_emit_comparison(c, dest, instr, instr)) {
1044                         fprintf(stderr, "Bad comparison instruction\n");
1045                 }
1046                 break;
1047
1048         case nir_op_bcsel:
1049                 *dest = ntq_emit_bcsel(c, instr, src);
1050                 break;
1051         case nir_op_fcsel:
1052                 qir_SF(c, src[0]);
1053                 *dest = qir_SEL(c, QPU_COND_ZC, src[1], src[2]);
1054                 break;
1055
1056         case nir_op_frcp:
1057                 *dest = ntq_rcp(c, src[0]);
1058                 break;
1059         case nir_op_frsq:
1060                 *dest = ntq_rsq(c, src[0]);
1061                 break;
1062         case nir_op_fexp2:
1063                 *dest = qir_EXP2(c, src[0]);
1064                 break;
1065         case nir_op_flog2:
1066                 *dest = qir_LOG2(c, src[0]);
1067                 break;
1068
1069         case nir_op_ftrunc:
1070                 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1071                 break;
1072         case nir_op_fceil:
1073                 *dest = ntq_fceil(c, src[0]);
1074                 break;
1075         case nir_op_ffract:
1076                 *dest = ntq_ffract(c, src[0]);
1077                 break;
1078         case nir_op_ffloor:
1079                 *dest = ntq_ffloor(c, src[0]);
1080                 break;
1081
1082         case nir_op_fsin:
1083                 *dest = ntq_fsin(c, src[0]);
1084                 break;
1085         case nir_op_fcos:
1086                 *dest = ntq_fcos(c, src[0]);
1087                 break;
1088
1089         case nir_op_fsign:
1090                 *dest = ntq_fsign(c, src[0]);
1091                 break;
1092
1093         case nir_op_fabs:
1094                 *dest = qir_FMAXABS(c, src[0], src[0]);
1095                 break;
1096         case nir_op_iabs:
1097                 *dest = qir_MAX(c, src[0],
1098                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1099                 break;
1100
1101         case nir_op_ibitfield_extract:
1102                 *dest = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1103                 break;
1104
1105         case nir_op_ubitfield_extract:
1106                 *dest = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1107                 break;
1108
1109         case nir_op_usadd_4x8:
1110                 *dest = qir_V8ADDS(c, src[0], src[1]);
1111                 break;
1112
1113         case nir_op_ussub_4x8:
1114                 *dest = qir_V8SUBS(c, src[0], src[1]);
1115                 break;
1116
1117         case nir_op_umin_4x8:
1118                 *dest = qir_V8MIN(c, src[0], src[1]);
1119                 break;
1120
1121         case nir_op_umax_4x8:
1122                 *dest = qir_V8MAX(c, src[0], src[1]);
1123                 break;
1124
1125         case nir_op_umul_unorm_4x8:
1126                 *dest = qir_V8MULD(c, src[0], src[1]);
1127                 break;
1128
1129         default:
1130                 fprintf(stderr, "unknown NIR ALU inst: ");
1131                 nir_print_instr(&instr->instr, stderr);
1132                 fprintf(stderr, "\n");
1133                 abort();
1134         }
1135 }
1136
1137 static void
1138 emit_frag_end(struct vc4_compile *c)
1139 {
1140         struct qreg color;
1141         if (c->output_color_index != -1) {
1142                 color = c->outputs[c->output_color_index];
1143         } else {
1144                 color = qir_uniform_ui(c, 0);
1145         }
1146
1147         uint32_t discard_cond = QPU_COND_ALWAYS;
1148         if (c->discard.file != QFILE_NULL) {
1149                 qir_SF(c, c->discard);
1150                 discard_cond = QPU_COND_ZS;
1151         }
1152
1153         if (c->fs_key->stencil_enabled) {
1154                 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1155                              qir_uniform(c, QUNIFORM_STENCIL, 0));
1156                 if (c->fs_key->stencil_twoside) {
1157                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1158                                      qir_uniform(c, QUNIFORM_STENCIL, 1));
1159                 }
1160                 if (c->fs_key->stencil_full_writemasks) {
1161                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1162                                      qir_uniform(c, QUNIFORM_STENCIL, 2));
1163                 }
1164         }
1165
1166         if (c->output_sample_mask_index != -1) {
1167                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1168         }
1169
1170         if (c->fs_key->depth_enabled) {
1171                 if (c->output_position_index != -1) {
1172                         qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1173                                       qir_FMUL(c,
1174                                                c->outputs[c->output_position_index + 2],
1175                                                qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1176                 } else {
1177                         qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1178                                      qir_FRAG_Z(c))->cond = discard_cond;
1179                 }
1180         }
1181
1182         if (!c->msaa_per_sample_output) {
1183                 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1184                              color)->cond = discard_cond;
1185         } else {
1186                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1187                         qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1188                                      c->sample_colors[i])->cond = discard_cond;
1189                 }
1190         }
1191 }
1192
1193 static void
1194 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1195 {
1196         struct qreg packed = qir_get_temp(c);
1197
1198         for (int i = 0; i < 2; i++) {
1199                 struct qreg scale =
1200                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1201
1202                 struct qreg packed_chan = packed;
1203                 packed_chan.pack = QPU_PACK_A_16A + i;
1204
1205                 qir_FTOI_dest(c, packed_chan,
1206                               qir_FMUL(c,
1207                                        qir_FMUL(c,
1208                                                 c->outputs[c->output_position_index + i],
1209                                                 scale),
1210                                        rcp_w));
1211         }
1212
1213         qir_VPM_WRITE(c, packed);
1214 }
1215
1216 static void
1217 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1218 {
1219         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1220         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1221
1222         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1223                                                           c->outputs[c->output_position_index + 2],
1224                                                           zscale),
1225                                               rcp_w),
1226                                   zoffset));
1227 }
1228
1229 static void
1230 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1231 {
1232         qir_VPM_WRITE(c, rcp_w);
1233 }
1234
1235 static void
1236 emit_point_size_write(struct vc4_compile *c)
1237 {
1238         struct qreg point_size;
1239
1240         if (c->output_point_size_index != -1)
1241                 point_size = c->outputs[c->output_point_size_index];
1242         else
1243                 point_size = qir_uniform_f(c, 1.0);
1244
1245         /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1246          * BCM21553).
1247          */
1248         point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1249
1250         qir_VPM_WRITE(c, point_size);
1251 }
1252
1253 /**
1254  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1255  *
1256  * The simulator insists that there be at least one vertex attribute, so
1257  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1258  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1259  * to consume it here.
1260  */
1261 static void
1262 emit_stub_vpm_read(struct vc4_compile *c)
1263 {
1264         if (c->num_inputs)
1265                 return;
1266
1267         c->vattr_sizes[0] = 4;
1268         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1269         c->num_inputs++;
1270 }
1271
1272 static void
1273 emit_vert_end(struct vc4_compile *c,
1274               struct vc4_varying_slot *fs_inputs,
1275               uint32_t num_fs_inputs)
1276 {
1277         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1278
1279         emit_stub_vpm_read(c);
1280
1281         emit_scaled_viewport_write(c, rcp_w);
1282         emit_zs_write(c, rcp_w);
1283         emit_rcp_wc_write(c, rcp_w);
1284         if (c->vs_key->per_vertex_point_size)
1285                 emit_point_size_write(c);
1286
1287         for (int i = 0; i < num_fs_inputs; i++) {
1288                 struct vc4_varying_slot *input = &fs_inputs[i];
1289                 int j;
1290
1291                 for (j = 0; j < c->num_outputs; j++) {
1292                         struct vc4_varying_slot *output =
1293                                 &c->output_slots[j];
1294
1295                         if (input->slot == output->slot &&
1296                             input->swizzle == output->swizzle) {
1297                                 qir_VPM_WRITE(c, c->outputs[j]);
1298                                 break;
1299                         }
1300                 }
1301                 /* Emit padding if we didn't find a declared VS output for
1302                  * this FS input.
1303                  */
1304                 if (j == c->num_outputs)
1305                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1306         }
1307 }
1308
1309 static void
1310 emit_coord_end(struct vc4_compile *c)
1311 {
1312         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1313
1314         emit_stub_vpm_read(c);
1315
1316         for (int i = 0; i < 4; i++)
1317                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1318
1319         emit_scaled_viewport_write(c, rcp_w);
1320         emit_zs_write(c, rcp_w);
1321         emit_rcp_wc_write(c, rcp_w);
1322         if (c->vs_key->per_vertex_point_size)
1323                 emit_point_size_write(c);
1324 }
1325
1326 static void
1327 vc4_optimize_nir(struct nir_shader *s)
1328 {
1329         bool progress;
1330
1331         do {
1332                 progress = false;
1333
1334                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1335                 NIR_PASS_V(s, nir_lower_alu_to_scalar);
1336                 NIR_PASS_V(s, nir_lower_phis_to_scalar);
1337
1338                 NIR_PASS(progress, s, nir_copy_prop);
1339                 NIR_PASS(progress, s, nir_opt_dce);
1340                 NIR_PASS(progress, s, nir_opt_cse);
1341                 NIR_PASS(progress, s, nir_opt_peephole_select);
1342                 NIR_PASS(progress, s, nir_opt_algebraic);
1343                 NIR_PASS(progress, s, nir_opt_constant_folding);
1344                 NIR_PASS(progress, s, nir_opt_undef);
1345         } while (progress);
1346 }
1347
1348 static int
1349 driver_location_compare(const void *in_a, const void *in_b)
1350 {
1351         const nir_variable *const *a = in_a;
1352         const nir_variable *const *b = in_b;
1353
1354         return (*a)->data.driver_location - (*b)->data.driver_location;
1355 }
1356
1357 static void
1358 ntq_setup_inputs(struct vc4_compile *c)
1359 {
1360         unsigned num_entries = 0;
1361         nir_foreach_variable(var, &c->s->inputs)
1362                 num_entries++;
1363
1364         nir_variable *vars[num_entries];
1365
1366         unsigned i = 0;
1367         nir_foreach_variable(var, &c->s->inputs)
1368                 vars[i++] = var;
1369
1370         /* Sort the variables so that we emit the input setup in
1371          * driver_location order.  This is required for VPM reads, whose data
1372          * is fetched into the VPM in driver_location (TGSI register index)
1373          * order.
1374          */
1375         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1376
1377         for (unsigned i = 0; i < num_entries; i++) {
1378                 nir_variable *var = vars[i];
1379                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1380                 unsigned loc = var->data.driver_location;
1381
1382                 assert(array_len == 1);
1383                 (void)array_len;
1384                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1385                                   (loc + 1) * 4);
1386
1387                 if (c->stage == QSTAGE_FRAG) {
1388                         if (var->data.location == VARYING_SLOT_POS) {
1389                                 emit_fragcoord_input(c, loc);
1390                         } else if (var->data.location >= VARYING_SLOT_VAR0 &&
1391                                    (c->fs_key->point_sprite_mask &
1392                                     (1 << (var->data.location -
1393                                            VARYING_SLOT_VAR0)))) {
1394                                 c->inputs[loc * 4 + 0] = c->point_x;
1395                                 c->inputs[loc * 4 + 1] = c->point_y;
1396                         } else {
1397                                 emit_fragment_input(c, loc, var->data.location);
1398                         }
1399                 } else {
1400                         emit_vertex_input(c, loc);
1401                 }
1402         }
1403 }
1404
1405 static void
1406 ntq_setup_outputs(struct vc4_compile *c)
1407 {
1408         nir_foreach_variable(var, &c->s->outputs) {
1409                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1410                 unsigned loc = var->data.driver_location * 4;
1411
1412                 assert(array_len == 1);
1413                 (void)array_len;
1414
1415                 for (int i = 0; i < 4; i++)
1416                         add_output(c, loc + i, var->data.location, i);
1417
1418                 if (c->stage == QSTAGE_FRAG) {
1419                         switch (var->data.location) {
1420                         case FRAG_RESULT_COLOR:
1421                         case FRAG_RESULT_DATA0:
1422                                 c->output_color_index = loc;
1423                                 break;
1424                         case FRAG_RESULT_DEPTH:
1425                                 c->output_position_index = loc;
1426                                 break;
1427                         case FRAG_RESULT_SAMPLE_MASK:
1428                                 c->output_sample_mask_index = loc;
1429                                 break;
1430                         }
1431                 } else {
1432                         switch (var->data.location) {
1433                         case VARYING_SLOT_POS:
1434                                 c->output_position_index = loc;
1435                                 break;
1436                         case VARYING_SLOT_PSIZ:
1437                                 c->output_point_size_index = loc;
1438                                 break;
1439                         }
1440                 }
1441         }
1442 }
1443
1444 static void
1445 ntq_setup_uniforms(struct vc4_compile *c)
1446 {
1447         nir_foreach_variable(var, &c->s->uniforms) {
1448                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1449                 unsigned array_elem_size = 4 * sizeof(float);
1450
1451                 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1452                                       array_len * array_elem_size);
1453
1454         }
1455 }
1456
1457 /**
1458  * Sets up the mapping from nir_register to struct qreg *.
1459  *
1460  * Each nir_register gets a struct qreg per 32-bit component being stored.
1461  */
1462 static void
1463 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1464 {
1465         foreach_list_typed(nir_register, nir_reg, node, list) {
1466                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1467                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1468                                                   array_len *
1469                                                   nir_reg->num_components);
1470
1471                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1472
1473                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1474                         qregs[i] = qir_uniform_ui(c, 0);
1475         }
1476 }
1477
1478 static void
1479 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1480 {
1481         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1482         for (int i = 0; i < instr->def.num_components; i++)
1483                 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]);
1484
1485         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1486 }
1487
1488 static void
1489 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1490 {
1491         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1492
1493         /* QIR needs there to be *some* value, so pick 0 (same as for
1494          * ntq_setup_registers().
1495          */
1496         for (int i = 0; i < instr->def.num_components; i++)
1497                 qregs[i] = qir_uniform_ui(c, 0);
1498 }
1499
1500 static void
1501 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1502 {
1503         const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1504         nir_const_value *const_offset;
1505         unsigned offset;
1506         struct qreg *dest = NULL;
1507
1508         if (info->has_dest) {
1509                 dest = ntq_get_dest(c, &instr->dest);
1510         }
1511
1512         switch (instr->intrinsic) {
1513         case nir_intrinsic_load_uniform:
1514                 assert(instr->num_components == 1);
1515                 const_offset = nir_src_as_const_value(instr->src[0]);
1516                 if (const_offset) {
1517                         offset = instr->const_index[0] + const_offset->u32[0];
1518                         assert(offset % 4 == 0);
1519                         /* We need dwords */
1520                         offset = offset / 4;
1521                         if (offset < VC4_NIR_STATE_UNIFORM_OFFSET) {
1522                                 *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1523                                                     offset);
1524                         } else {
1525                                 *dest = qir_uniform(c, offset -
1526                                                     VC4_NIR_STATE_UNIFORM_OFFSET,
1527                                                     0);
1528                         }
1529                 } else {
1530                         *dest = indirect_uniform_load(c, instr);
1531                 }
1532                 break;
1533
1534         case nir_intrinsic_load_user_clip_plane:
1535                 for (int i = 0; i < instr->num_components; i++) {
1536                         dest[i] = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1537                                               instr->const_index[0] * 4 + i);
1538                 }
1539                 break;
1540
1541         case nir_intrinsic_load_sample_mask_in:
1542                 *dest = qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0);
1543                 break;
1544
1545         case nir_intrinsic_load_front_face:
1546                 /* The register contains 0 (front) or 1 (back), and we need to
1547                  * turn it into a NIR bool where true means front.
1548                  */
1549                 *dest = qir_ADD(c,
1550                                 qir_uniform_ui(c, -1),
1551                                 qir_reg(QFILE_FRAG_REV_FLAG, 0));
1552                 break;
1553
1554         case nir_intrinsic_load_input:
1555                 assert(instr->num_components == 1);
1556                 const_offset = nir_src_as_const_value(instr->src[0]);
1557                 assert(const_offset && "vc4 doesn't support indirect inputs");
1558                 if (instr->const_index[0] >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1559                         assert(const_offset->u32[0] == 0);
1560                         /* Reads of the per-sample color need to be done in
1561                          * order.
1562                          */
1563                         int sample_index = (instr->const_index[0] -
1564                                            VC4_NIR_TLB_COLOR_READ_INPUT);
1565                         for (int i = 0; i <= sample_index; i++) {
1566                                 if (c->color_reads[i].file == QFILE_NULL) {
1567                                         c->color_reads[i] =
1568                                                 qir_TLB_COLOR_READ(c);
1569                                 }
1570                         }
1571                         *dest = c->color_reads[sample_index];
1572                 } else {
1573                         offset = instr->const_index[0] + const_offset->u32[0];
1574                         *dest = c->inputs[offset];
1575                 }
1576                 break;
1577
1578         case nir_intrinsic_store_output:
1579                 const_offset = nir_src_as_const_value(instr->src[1]);
1580                 assert(const_offset && "vc4 doesn't support indirect outputs");
1581                 offset = instr->const_index[0] + const_offset->u32[0];
1582
1583                 /* MSAA color outputs are the only case where we have an
1584                  * output that's not lowered to being a store of a single 32
1585                  * bit value.
1586                  */
1587                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1588                         assert(offset == c->output_color_index);
1589                         for (int i = 0; i < 4; i++) {
1590                                 c->sample_colors[i] =
1591                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1592                                                                i));
1593                         }
1594                 } else {
1595                         assert(instr->num_components == 1);
1596                         c->outputs[offset] =
1597                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1598                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1599                 }
1600                 break;
1601
1602         case nir_intrinsic_discard:
1603                 c->discard = qir_uniform_ui(c, ~0);
1604                 break;
1605
1606         case nir_intrinsic_discard_if:
1607                 if (c->discard.file == QFILE_NULL)
1608                         c->discard = qir_uniform_ui(c, 0);
1609                 c->discard = qir_OR(c, c->discard,
1610                                     ntq_get_src(c, instr->src[0], 0));
1611                 break;
1612
1613         default:
1614                 fprintf(stderr, "Unknown intrinsic: ");
1615                 nir_print_instr(&instr->instr, stderr);
1616                 fprintf(stderr, "\n");
1617                 break;
1618         }
1619 }
1620
1621 static void
1622 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1623 {
1624         fprintf(stderr, "general IF statements not handled.\n");
1625 }
1626
1627 static void
1628 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1629 {
1630         switch (instr->type) {
1631         case nir_instr_type_alu:
1632                 ntq_emit_alu(c, nir_instr_as_alu(instr));
1633                 break;
1634
1635         case nir_instr_type_intrinsic:
1636                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1637                 break;
1638
1639         case nir_instr_type_load_const:
1640                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1641                 break;
1642
1643         case nir_instr_type_ssa_undef:
1644                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1645                 break;
1646
1647         case nir_instr_type_tex:
1648                 ntq_emit_tex(c, nir_instr_as_tex(instr));
1649                 break;
1650
1651         default:
1652                 fprintf(stderr, "Unknown NIR instr type: ");
1653                 nir_print_instr(instr, stderr);
1654                 fprintf(stderr, "\n");
1655                 abort();
1656         }
1657 }
1658
1659 static void
1660 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1661 {
1662         nir_foreach_instr(instr, block) {
1663                 ntq_emit_instr(c, instr);
1664         }
1665 }
1666
1667 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
1668
1669 static void
1670 ntq_emit_loop(struct vc4_compile *c, nir_loop *nloop)
1671 {
1672         fprintf(stderr, "LOOPS not fully handled. Rendering errors likely.\n");
1673         ntq_emit_cf_list(c, &nloop->body);
1674 }
1675
1676 static void
1677 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
1678 {
1679         fprintf(stderr, "FUNCTIONS not handled.\n");
1680         abort();
1681 }
1682
1683 static void
1684 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1685 {
1686         foreach_list_typed(nir_cf_node, node, node, list) {
1687                 switch (node->type) {
1688                 case nir_cf_node_block:
1689                         ntq_emit_block(c, nir_cf_node_as_block(node));
1690                         break;
1691
1692                 case nir_cf_node_if:
1693                         ntq_emit_if(c, nir_cf_node_as_if(node));
1694                         break;
1695
1696                 case nir_cf_node_loop:
1697                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
1698                         break;
1699
1700                 case nir_cf_node_function:
1701                         ntq_emit_function(c, nir_cf_node_as_function(node));
1702                         break;
1703
1704                 default:
1705                         fprintf(stderr, "Unknown NIR node type\n");
1706                         abort();
1707                 }
1708         }
1709 }
1710
1711 static void
1712 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1713 {
1714         ntq_setup_registers(c, &impl->registers);
1715         ntq_emit_cf_list(c, &impl->body);
1716 }
1717
1718 static void
1719 nir_to_qir(struct vc4_compile *c)
1720 {
1721         ntq_setup_inputs(c);
1722         ntq_setup_outputs(c);
1723         ntq_setup_uniforms(c);
1724         ntq_setup_registers(c, &c->s->registers);
1725
1726         /* Find the main function and emit the body. */
1727         nir_foreach_function(function, c->s) {
1728                 assert(strcmp(function->name, "main") == 0);
1729                 assert(function->impl);
1730                 ntq_emit_impl(c, function->impl);
1731         }
1732 }
1733
1734 static const nir_shader_compiler_options nir_options = {
1735         .lower_extract_byte = true,
1736         .lower_extract_word = true,
1737         .lower_ffma = true,
1738         .lower_flrp32 = true,
1739         .lower_fpow = true,
1740         .lower_fsat = true,
1741         .lower_fsqrt = true,
1742         .lower_negate = true,
1743 };
1744
1745 static int
1746 count_nir_instrs(nir_shader *nir)
1747 {
1748         int count = 0;
1749         nir_foreach_function(function, nir) {
1750                 if (!function->impl)
1751                         continue;
1752                 nir_foreach_block(block, function->impl) {
1753                         nir_foreach_instr(instr, block)
1754                                 count++;
1755                 }
1756         }
1757         return count;
1758 }
1759
1760 static struct vc4_compile *
1761 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1762                        struct vc4_key *key)
1763 {
1764         struct vc4_compile *c = qir_compile_init();
1765
1766         c->stage = stage;
1767         c->shader_state = &key->shader_state->base;
1768         c->program_id = key->shader_state->program_id;
1769         c->variant_id =
1770                 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
1771
1772         c->key = key;
1773         switch (stage) {
1774         case QSTAGE_FRAG:
1775                 c->fs_key = (struct vc4_fs_key *)key;
1776                 if (c->fs_key->is_points) {
1777                         c->point_x = emit_fragment_varying(c, ~0, 0);
1778                         c->point_y = emit_fragment_varying(c, ~0, 0);
1779                 } else if (c->fs_key->is_lines) {
1780                         c->line_x = emit_fragment_varying(c, ~0, 0);
1781                 }
1782                 break;
1783         case QSTAGE_VERT:
1784                 c->vs_key = (struct vc4_vs_key *)key;
1785                 break;
1786         case QSTAGE_COORD:
1787                 c->vs_key = (struct vc4_vs_key *)key;
1788                 break;
1789         }
1790
1791         c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
1792         NIR_PASS_V(c->s, nir_opt_global_to_local);
1793         NIR_PASS_V(c->s, nir_convert_to_ssa);
1794
1795         if (stage == QSTAGE_FRAG)
1796                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
1797
1798         struct nir_lower_tex_options tex_options = {
1799                 /* We would need to implement txs, but we don't want the
1800                  * int/float conversions
1801                  */
1802                 .lower_rect = false,
1803
1804                 .lower_txp = ~0,
1805
1806                 /* Apply swizzles to all samplers. */
1807                 .swizzle_result = ~0,
1808         };
1809
1810         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
1811          * The format swizzling applies before sRGB decode, and
1812          * ARB_texture_swizzle is the last thing before returning the sample.
1813          */
1814         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
1815                 enum pipe_format format = c->key->tex[i].format;
1816
1817                 if (!format)
1818                         continue;
1819
1820                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
1821
1822                 for (int j = 0; j < 4; j++) {
1823                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
1824
1825                         if (arb_swiz <= 3) {
1826                                 tex_options.swizzles[i][j] =
1827                                         format_swizzle[arb_swiz];
1828                         } else {
1829                                 tex_options.swizzles[i][j] = arb_swiz;
1830                         }
1831                 }
1832
1833                 if (util_format_is_srgb(format))
1834                         tex_options.lower_srgb |= (1 << i);
1835         }
1836
1837         NIR_PASS_V(c->s, nir_normalize_cubemap_coords);
1838         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
1839
1840         if (c->fs_key && c->fs_key->light_twoside)
1841                 NIR_PASS_V(c->s, nir_lower_two_sided_color);
1842
1843         if (c->vs_key && c->vs_key->clamp_color)
1844                 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
1845
1846         if (stage == QSTAGE_FRAG)
1847                 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
1848         else
1849                 NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables);
1850
1851         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
1852         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
1853         NIR_PASS_V(c->s, nir_lower_idiv);
1854         NIR_PASS_V(c->s, nir_lower_load_const_to_scalar);
1855
1856         vc4_optimize_nir(c->s);
1857
1858         NIR_PASS_V(c->s, nir_remove_dead_variables, nir_var_local);
1859         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
1860
1861         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1862                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1863                         qir_get_stage_name(c->stage),
1864                         c->program_id, c->variant_id,
1865                         count_nir_instrs(c->s));
1866         }
1867
1868         if (vc4_debug & VC4_DEBUG_NIR) {
1869                 fprintf(stderr, "%s prog %d/%d NIR:\n",
1870                         qir_get_stage_name(c->stage),
1871                         c->program_id, c->variant_id);
1872                 nir_print_shader(c->s, stderr);
1873         }
1874
1875         nir_to_qir(c);
1876
1877         switch (stage) {
1878         case QSTAGE_FRAG:
1879                 emit_frag_end(c);
1880                 break;
1881         case QSTAGE_VERT:
1882                 emit_vert_end(c,
1883                               vc4->prog.fs->input_slots,
1884                               vc4->prog.fs->num_inputs);
1885                 break;
1886         case QSTAGE_COORD:
1887                 emit_coord_end(c);
1888                 break;
1889         }
1890
1891         if (vc4_debug & VC4_DEBUG_QIR) {
1892                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1893                         qir_get_stage_name(c->stage),
1894                         c->program_id, c->variant_id);
1895                 qir_dump(c);
1896                 fprintf(stderr, "\n");
1897         }
1898
1899         qir_optimize(c);
1900         qir_lower_uniforms(c);
1901
1902         qir_schedule_instructions(c);
1903
1904         if (vc4_debug & VC4_DEBUG_QIR) {
1905                 fprintf(stderr, "%s prog %d/%d QIR:\n",
1906                         qir_get_stage_name(c->stage),
1907                         c->program_id, c->variant_id);
1908                 qir_dump(c);
1909                 fprintf(stderr, "\n");
1910         }
1911
1912         qir_reorder_uniforms(c);
1913         vc4_generate_code(vc4, c);
1914
1915         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1916                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1917                         qir_get_stage_name(c->stage),
1918                         c->program_id, c->variant_id,
1919                         c->qpu_inst_count);
1920                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1921                         qir_get_stage_name(c->stage),
1922                         c->program_id, c->variant_id,
1923                         c->num_uniforms);
1924         }
1925
1926         ralloc_free(c->s);
1927
1928         return c;
1929 }
1930
1931 static void *
1932 vc4_shader_state_create(struct pipe_context *pctx,
1933                         const struct pipe_shader_state *cso)
1934 {
1935         struct vc4_context *vc4 = vc4_context(pctx);
1936         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1937         if (!so)
1938                 return NULL;
1939
1940         so->program_id = vc4->next_uncompiled_program_id++;
1941
1942         nir_shader *s = tgsi_to_nir(cso->tokens, &nir_options);
1943
1944         if (vc4_debug & VC4_DEBUG_TGSI) {
1945                 fprintf(stderr, "%s prog %d TGSI:\n",
1946                         gl_shader_stage_name(s->stage),
1947                         so->program_id);
1948                 tgsi_dump(cso->tokens, 0);
1949                 fprintf(stderr, "\n");
1950         }
1951
1952         so->base.type = PIPE_SHADER_IR_NIR;
1953         so->base.ir.nir = s;
1954
1955         return so;
1956 }
1957
1958 static void
1959 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1960                              struct vc4_compile *c)
1961 {
1962         int count = c->num_uniforms;
1963         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
1964
1965         uinfo->count = count;
1966         uinfo->data = ralloc_array(shader, uint32_t, count);
1967         memcpy(uinfo->data, c->uniform_data,
1968                count * sizeof(*uinfo->data));
1969         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
1970         memcpy(uinfo->contents, c->uniform_contents,
1971                count * sizeof(*uinfo->contents));
1972         uinfo->num_texture_samples = c->num_texture_samples;
1973
1974         vc4_set_shader_uniform_dirty_flags(shader);
1975 }
1976
1977 static struct vc4_compiled_shader *
1978 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
1979                         struct vc4_key *key)
1980 {
1981         struct hash_table *ht;
1982         uint32_t key_size;
1983         if (stage == QSTAGE_FRAG) {
1984                 ht = vc4->fs_cache;
1985                 key_size = sizeof(struct vc4_fs_key);
1986         } else {
1987                 ht = vc4->vs_cache;
1988                 key_size = sizeof(struct vc4_vs_key);
1989         }
1990
1991         struct vc4_compiled_shader *shader;
1992         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
1993         if (entry)
1994                 return entry->data;
1995
1996         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
1997         shader = rzalloc(NULL, struct vc4_compiled_shader);
1998
1999         shader->program_id = vc4->next_compiled_program_id++;
2000         if (stage == QSTAGE_FRAG) {
2001                 bool input_live[c->num_input_slots];
2002
2003                 memset(input_live, 0, sizeof(input_live));
2004                 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
2005                         for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2006                                 if (inst->src[i].file == QFILE_VARY)
2007                                         input_live[inst->src[i].index] = true;
2008                         }
2009                 }
2010
2011                 shader->input_slots = ralloc_array(shader,
2012                                                    struct vc4_varying_slot,
2013                                                    c->num_input_slots);
2014
2015                 for (int i = 0; i < c->num_input_slots; i++) {
2016                         struct vc4_varying_slot *slot = &c->input_slots[i];
2017
2018                         if (!input_live[i])
2019                                 continue;
2020
2021                         /* Skip non-VS-output inputs. */
2022                         if (slot->slot == (uint8_t)~0)
2023                                 continue;
2024
2025                         if (slot->slot == VARYING_SLOT_COL0 ||
2026                             slot->slot == VARYING_SLOT_COL1 ||
2027                             slot->slot == VARYING_SLOT_BFC0 ||
2028                             slot->slot == VARYING_SLOT_BFC1) {
2029                                 shader->color_inputs |= (1 << shader->num_inputs);
2030                         }
2031
2032                         shader->input_slots[shader->num_inputs] = *slot;
2033                         shader->num_inputs++;
2034                 }
2035
2036                 /* Note: the temporary clone in c->s has been freed. */
2037                 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2038                 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2039                         shader->disable_early_z = true;
2040         } else {
2041                 shader->num_inputs = c->num_inputs;
2042
2043                 shader->vattr_offsets[0] = 0;
2044                 for (int i = 0; i < 8; i++) {
2045                         shader->vattr_offsets[i + 1] =
2046                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2047
2048                         if (c->vattr_sizes[i])
2049                                 shader->vattrs_live |= (1 << i);
2050                 }
2051         }
2052
2053         copy_uniform_state_to_shader(shader, c);
2054         shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2055                                          c->qpu_inst_count * sizeof(uint64_t));
2056
2057         /* Copy the compiler UBO range state to the compiled shader, dropping
2058          * out arrays that were never referenced by an indirect load.
2059          *
2060          * (Note that QIR dead code elimination of an array access still
2061          * leaves that array alive, though)
2062          */
2063         if (c->num_ubo_ranges) {
2064                 shader->num_ubo_ranges = c->num_ubo_ranges;
2065                 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2066                                                   c->num_ubo_ranges);
2067                 uint32_t j = 0;
2068                 for (int i = 0; i < c->num_uniform_ranges; i++) {
2069                         struct vc4_compiler_ubo_range *range =
2070                                 &c->ubo_ranges[i];
2071                         if (!range->used)
2072                                 continue;
2073
2074                         shader->ubo_ranges[j].dst_offset = range->dst_offset;
2075                         shader->ubo_ranges[j].src_offset = range->src_offset;
2076                         shader->ubo_ranges[j].size = range->size;
2077                         shader->ubo_size += c->ubo_ranges[i].size;
2078                         j++;
2079                 }
2080         }
2081         if (shader->ubo_size) {
2082                 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2083                         fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2084                                 qir_get_stage_name(c->stage),
2085                                 c->program_id, c->variant_id,
2086                                 shader->ubo_size / 4);
2087                 }
2088         }
2089
2090         qir_compile_destroy(c);
2091
2092         struct vc4_key *dup_key;
2093         dup_key = ralloc_size(shader, key_size);
2094         memcpy(dup_key, key, key_size);
2095         _mesa_hash_table_insert(ht, dup_key, shader);
2096
2097         return shader;
2098 }
2099
2100 static void
2101 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2102                      struct vc4_texture_stateobj *texstate)
2103 {
2104         for (int i = 0; i < texstate->num_textures; i++) {
2105                 struct pipe_sampler_view *sampler = texstate->textures[i];
2106                 struct pipe_sampler_state *sampler_state =
2107                         texstate->samplers[i];
2108
2109                 if (!sampler)
2110                         continue;
2111
2112                 key->tex[i].format = sampler->format;
2113                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2114                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2115                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2116                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2117
2118                 if (sampler->texture->nr_samples > 1) {
2119                         key->tex[i].msaa_width = sampler->texture->width0;
2120                         key->tex[i].msaa_height = sampler->texture->height0;
2121                 } else if (sampler){
2122                         key->tex[i].compare_mode = sampler_state->compare_mode;
2123                         key->tex[i].compare_func = sampler_state->compare_func;
2124                         key->tex[i].wrap_s = sampler_state->wrap_s;
2125                         key->tex[i].wrap_t = sampler_state->wrap_t;
2126                 }
2127         }
2128
2129         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2130 }
2131
2132 static void
2133 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2134 {
2135         struct vc4_fs_key local_key;
2136         struct vc4_fs_key *key = &local_key;
2137
2138         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2139                             VC4_DIRTY_BLEND |
2140                             VC4_DIRTY_FRAMEBUFFER |
2141                             VC4_DIRTY_ZSA |
2142                             VC4_DIRTY_RASTERIZER |
2143                             VC4_DIRTY_SAMPLE_MASK |
2144                             VC4_DIRTY_FRAGTEX |
2145                             VC4_DIRTY_TEXSTATE |
2146                             VC4_DIRTY_UNCOMPILED_FS))) {
2147                 return;
2148         }
2149
2150         memset(key, 0, sizeof(*key));
2151         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2152         key->base.shader_state = vc4->prog.bind_fs;
2153         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2154         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2155                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2156         key->blend = vc4->blend->rt[0];
2157         if (vc4->blend->logicop_enable) {
2158                 key->logicop_func = vc4->blend->logicop_func;
2159         } else {
2160                 key->logicop_func = PIPE_LOGICOP_COPY;
2161         }
2162         if (vc4->msaa) {
2163                 key->msaa = vc4->rasterizer->base.multisample;
2164                 key->sample_coverage = (vc4->rasterizer->base.multisample &&
2165                                         vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2166                 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2167                 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2168         }
2169
2170         if (vc4->framebuffer.cbufs[0])
2171                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2172
2173         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2174         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2175         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2176         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2177                               key->stencil_enabled);
2178         if (vc4->zsa->base.alpha.enabled) {
2179                 key->alpha_test = true;
2180                 key->alpha_test_func = vc4->zsa->base.alpha.func;
2181         }
2182
2183         if (key->is_points) {
2184                 key->point_sprite_mask =
2185                         vc4->rasterizer->base.sprite_coord_enable;
2186                 key->point_coord_upper_left =
2187                         (vc4->rasterizer->base.sprite_coord_mode ==
2188                          PIPE_SPRITE_COORD_UPPER_LEFT);
2189         }
2190
2191         key->light_twoside = vc4->rasterizer->base.light_twoside;
2192
2193         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2194         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2195         if (vc4->prog.fs == old_fs)
2196                 return;
2197
2198         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2199         if (vc4->rasterizer->base.flatshade &&
2200             old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2201                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2202         }
2203 }
2204
2205 static void
2206 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2207 {
2208         struct vc4_vs_key local_key;
2209         struct vc4_vs_key *key = &local_key;
2210
2211         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2212                             VC4_DIRTY_RASTERIZER |
2213                             VC4_DIRTY_VERTTEX |
2214                             VC4_DIRTY_TEXSTATE |
2215                             VC4_DIRTY_VTXSTATE |
2216                             VC4_DIRTY_UNCOMPILED_VS |
2217                             VC4_DIRTY_COMPILED_FS))) {
2218                 return;
2219         }
2220
2221         memset(key, 0, sizeof(*key));
2222         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2223         key->base.shader_state = vc4->prog.bind_vs;
2224         key->compiled_fs_id = vc4->prog.fs->program_id;
2225         key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
2226
2227         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2228                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2229
2230         key->per_vertex_point_size =
2231                 (prim_mode == PIPE_PRIM_POINTS &&
2232                  vc4->rasterizer->base.point_size_per_vertex);
2233
2234         struct vc4_compiled_shader *vs =
2235                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2236         if (vs != vc4->prog.vs) {
2237                 vc4->prog.vs = vs;
2238                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2239         }
2240
2241         key->is_coord = true;
2242         struct vc4_compiled_shader *cs =
2243                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2244         if (cs != vc4->prog.cs) {
2245                 vc4->prog.cs = cs;
2246                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2247         }
2248 }
2249
2250 void
2251 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2252 {
2253         vc4_update_compiled_fs(vc4, prim_mode);
2254         vc4_update_compiled_vs(vc4, prim_mode);
2255 }
2256
2257 static uint32_t
2258 fs_cache_hash(const void *key)
2259 {
2260         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2261 }
2262
2263 static uint32_t
2264 vs_cache_hash(const void *key)
2265 {
2266         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2267 }
2268
2269 static bool
2270 fs_cache_compare(const void *key1, const void *key2)
2271 {
2272         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2273 }
2274
2275 static bool
2276 vs_cache_compare(const void *key1, const void *key2)
2277 {
2278         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2279 }
2280
2281 static void
2282 delete_from_cache_if_matches(struct hash_table *ht,
2283                              struct hash_entry *entry,
2284                              struct vc4_uncompiled_shader *so)
2285 {
2286         const struct vc4_key *key = entry->key;
2287
2288         if (key->shader_state == so) {
2289                 struct vc4_compiled_shader *shader = entry->data;
2290                 _mesa_hash_table_remove(ht, entry);
2291                 vc4_bo_unreference(&shader->bo);
2292                 ralloc_free(shader);
2293         }
2294 }
2295
2296 static void
2297 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2298 {
2299         struct vc4_context *vc4 = vc4_context(pctx);
2300         struct vc4_uncompiled_shader *so = hwcso;
2301
2302         struct hash_entry *entry;
2303         hash_table_foreach(vc4->fs_cache, entry)
2304                 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2305         hash_table_foreach(vc4->vs_cache, entry)
2306                 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2307
2308         ralloc_free(so->base.ir.nir);
2309         free(so);
2310 }
2311
2312 static void
2313 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2314 {
2315         struct vc4_context *vc4 = vc4_context(pctx);
2316         vc4->prog.bind_fs = hwcso;
2317         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2318 }
2319
2320 static void
2321 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2322 {
2323         struct vc4_context *vc4 = vc4_context(pctx);
2324         vc4->prog.bind_vs = hwcso;
2325         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2326 }
2327
2328 void
2329 vc4_program_init(struct pipe_context *pctx)
2330 {
2331         struct vc4_context *vc4 = vc4_context(pctx);
2332
2333         pctx->create_vs_state = vc4_shader_state_create;
2334         pctx->delete_vs_state = vc4_shader_state_delete;
2335
2336         pctx->create_fs_state = vc4_shader_state_create;
2337         pctx->delete_fs_state = vc4_shader_state_delete;
2338
2339         pctx->bind_fs_state = vc4_fp_state_bind;
2340         pctx->bind_vs_state = vc4_vp_state_bind;
2341
2342         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2343                                                 fs_cache_compare);
2344         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2345                                                 vs_cache_compare);
2346 }
2347
2348 void
2349 vc4_program_fini(struct pipe_context *pctx)
2350 {
2351         struct vc4_context *vc4 = vc4_context(pctx);
2352
2353         struct hash_entry *entry;
2354         hash_table_foreach(vc4->fs_cache, entry) {
2355                 struct vc4_compiled_shader *shader = entry->data;
2356                 vc4_bo_unreference(&shader->bo);
2357                 ralloc_free(shader);
2358                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2359         }
2360
2361         hash_table_foreach(vc4->vs_cache, entry) {
2362                 struct vc4_compiled_shader *shader = entry->data;
2363                 vc4_bo_unreference(&shader->bo);
2364                 ralloc_free(shader);
2365                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2366         }
2367 }