OSDN Git Service

5c91c02b539c156b9a2538f1be23eafd99e026d2
[android-x86/external-mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_lowering.h"
34 #include "tgsi/tgsi_parse.h"
35 #include "compiler/nir/nir.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "nir/tgsi_to_nir.h"
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41 #ifdef USE_VC4_SIMULATOR
42 #include "simpenrose/simpenrose.h"
43 #endif
44
45 static struct qreg
46 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
47
48 static void
49 resize_qreg_array(struct vc4_compile *c,
50                   struct qreg **regs,
51                   uint32_t *size,
52                   uint32_t decl_size)
53 {
54         if (*size >= decl_size)
55                 return;
56
57         uint32_t old_size = *size;
58         *size = MAX2(*size * 2, decl_size);
59         *regs = reralloc(c, *regs, struct qreg, *size);
60         if (!*regs) {
61                 fprintf(stderr, "Malloc failure\n");
62                 abort();
63         }
64
65         for (uint32_t i = old_size; i < *size; i++)
66                 (*regs)[i] = c->undef;
67 }
68
69 static struct qreg
70 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
71 {
72         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
73         uint32_t offset = intr->const_index[0];
74         struct vc4_compiler_ubo_range *range = NULL;
75         unsigned i;
76         for (i = 0; i < c->num_uniform_ranges; i++) {
77                 range = &c->ubo_ranges[i];
78                 if (offset >= range->src_offset &&
79                     offset < range->src_offset + range->size) {
80                         break;
81                 }
82         }
83         /* The driver-location-based offset always has to be within a declared
84          * uniform range.
85          */
86         assert(range);
87         if (!range->used) {
88                 range->used = true;
89                 range->dst_offset = c->next_ubo_dst_offset;
90                 c->next_ubo_dst_offset += range->size;
91                 c->num_ubo_ranges++;
92         }
93
94         offset -= range->src_offset;
95
96         /* Adjust for where we stored the TGSI register base. */
97         indirect_offset = qir_ADD(c, indirect_offset,
98                                   qir_uniform_ui(c, (range->dst_offset +
99                                                      offset)));
100
101         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
102         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
103         indirect_offset = qir_MIN(c, indirect_offset,
104                                   qir_uniform_ui(c, (range->dst_offset +
105                                                      range->size - 4)));
106
107         qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
108         c->num_texture_samples++;
109         return qir_TEX_RESULT(c);
110 }
111
112 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
113                                        enum quniform_contents contents)
114 {
115         nir_intrinsic_instr *intr =
116                 nir_intrinsic_instr_create(b->shader,
117                                            nir_intrinsic_load_uniform);
118         intr->const_index[0] = (VC4_NIR_STATE_UNIFORM_OFFSET + contents) * 4;
119         intr->num_components = 1;
120         intr->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
121         nir_ssa_dest_init(&intr->instr, &intr->dest, 1, NULL);
122         nir_builder_instr_insert(b, &intr->instr);
123         return &intr->dest.ssa;
124 }
125
126 nir_ssa_def *
127 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
128 {
129         switch (swiz) {
130         default:
131         case UTIL_FORMAT_SWIZZLE_NONE:
132                 fprintf(stderr, "warning: unknown swizzle\n");
133                 /* FALLTHROUGH */
134         case UTIL_FORMAT_SWIZZLE_0:
135                 return nir_imm_float(b, 0.0);
136         case UTIL_FORMAT_SWIZZLE_1:
137                 return nir_imm_float(b, 1.0);
138         case UTIL_FORMAT_SWIZZLE_X:
139         case UTIL_FORMAT_SWIZZLE_Y:
140         case UTIL_FORMAT_SWIZZLE_Z:
141         case UTIL_FORMAT_SWIZZLE_W:
142                 return srcs[swiz];
143         }
144 }
145
146 static struct qreg *
147 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
148 {
149         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
150                                           def->num_components);
151         _mesa_hash_table_insert(c->def_ht, def, qregs);
152         return qregs;
153 }
154
155 static struct qreg *
156 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
157 {
158         if (dest->is_ssa) {
159                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
160                 for (int i = 0; i < dest->ssa.num_components; i++)
161                         qregs[i] = c->undef;
162                 return qregs;
163         } else {
164                 nir_register *reg = dest->reg.reg;
165                 assert(dest->reg.base_offset == 0);
166                 assert(reg->num_array_elems == 0);
167                 struct hash_entry *entry =
168                         _mesa_hash_table_search(c->def_ht, reg);
169                 return entry->data;
170         }
171 }
172
173 static struct qreg
174 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
175 {
176         struct hash_entry *entry;
177         if (src.is_ssa) {
178                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
179                 assert(i < src.ssa->num_components);
180         } else {
181                 nir_register *reg = src.reg.reg;
182                 entry = _mesa_hash_table_search(c->def_ht, reg);
183                 assert(reg->num_array_elems == 0);
184                 assert(src.reg.base_offset == 0);
185                 assert(i < reg->num_components);
186         }
187
188         struct qreg *qregs = entry->data;
189         return qregs[i];
190 }
191
192 static struct qreg
193 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
194                 unsigned src)
195 {
196         assert(util_is_power_of_two(instr->dest.write_mask));
197         unsigned chan = ffs(instr->dest.write_mask) - 1;
198         struct qreg r = ntq_get_src(c, instr->src[src].src,
199                                     instr->src[src].swizzle[chan]);
200
201         assert(!instr->src[src].abs);
202         assert(!instr->src[src].negate);
203
204         return r;
205 };
206
207 static inline struct qreg
208 qir_SAT(struct vc4_compile *c, struct qreg val)
209 {
210         return qir_FMAX(c,
211                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
212                         qir_uniform_f(c, 0.0));
213 }
214
215 static struct qreg
216 ntq_rcp(struct vc4_compile *c, struct qreg x)
217 {
218         struct qreg r = qir_RCP(c, x);
219
220         /* Apply a Newton-Raphson step to improve the accuracy. */
221         r = qir_FMUL(c, r, qir_FSUB(c,
222                                     qir_uniform_f(c, 2.0),
223                                     qir_FMUL(c, x, r)));
224
225         return r;
226 }
227
228 static struct qreg
229 ntq_rsq(struct vc4_compile *c, struct qreg x)
230 {
231         struct qreg r = qir_RSQ(c, x);
232
233         /* Apply a Newton-Raphson step to improve the accuracy. */
234         r = qir_FMUL(c, r, qir_FSUB(c,
235                                     qir_uniform_f(c, 1.5),
236                                     qir_FMUL(c,
237                                              qir_uniform_f(c, 0.5),
238                                              qir_FMUL(c, x,
239                                                       qir_FMUL(c, r, r)))));
240
241         return r;
242 }
243
244 static struct qreg
245 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
246 {
247         struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
248         struct qreg high = qir_POW(c,
249                                    qir_FMUL(c,
250                                             qir_FADD(c,
251                                                      srgb,
252                                                      qir_uniform_f(c, 0.055)),
253                                             qir_uniform_f(c, 1.0 / 1.055)),
254                                    qir_uniform_f(c, 2.4));
255
256         qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
257         return qir_SEL(c, QPU_COND_NS, low, high);
258 }
259
260 static struct qreg
261 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
262 {
263         struct qreg src0_hi = qir_SHR(c, src0,
264                                       qir_uniform_ui(c, 24));
265         struct qreg src1_hi = qir_SHR(c, src1,
266                                       qir_uniform_ui(c, 24));
267
268         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
269         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
270         struct qreg lolo = qir_MUL24(c, src0, src1);
271
272         return qir_ADD(c, lolo, qir_SHL(c,
273                                         qir_ADD(c, hilo, lohi),
274                                         qir_uniform_ui(c, 24)));
275 }
276
277 static struct qreg
278 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
279 {
280         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
281                                                  qir_uniform_ui(c, 8)));
282         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
283 }
284
285 /**
286  * Emits a lowered TXF_MS from an MSAA texture.
287  *
288  * The addressing math has been lowered in NIR, and now we just need to read
289  * it like a UBO.
290  */
291 static void
292 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
293 {
294         uint32_t tile_width = 32;
295         uint32_t tile_height = 32;
296         uint32_t tile_size = (tile_height * tile_width *
297                               VC4_MAX_SAMPLES * sizeof(uint32_t));
298
299         unsigned unit = instr->texture_index;
300         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
301         uint32_t w_tiles = w / tile_width;
302         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
303         uint32_t h_tiles = h / tile_height;
304         uint32_t size = w_tiles * h_tiles * tile_size;
305
306         struct qreg addr;
307         assert(instr->num_srcs == 1);
308         assert(instr->src[0].src_type == nir_tex_src_coord);
309         addr = ntq_get_src(c, instr->src[0].src, 0);
310
311         /* Perform the clamping required by kernel validation. */
312         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
313         addr = qir_MIN(c, addr,  qir_uniform_ui(c, size - 4));
314
315         qir_TEX_DIRECT(c, addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
316
317         struct qreg tex = qir_TEX_RESULT(c);
318         c->num_texture_samples++;
319
320         struct qreg *dest = ntq_get_dest(c, &instr->dest);
321         enum pipe_format format = c->key->tex[unit].format;
322         if (util_format_is_depth_or_stencil(format)) {
323                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
324                 for (int i = 0; i < 4; i++)
325                         dest[i] = scaled;
326         } else {
327                 for (int i = 0; i < 4; i++)
328                         dest[i] = qir_UNPACK_8_F(c, tex, i);
329         }
330
331         for (int i = 0; i < 4; i++) {
332                 if (c->tex_srgb_decode[unit] & (1 << i))
333                         dest[i] = qir_srgb_decode(c, dest[i]);
334         }
335 }
336
337 static void
338 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
339 {
340         struct qreg s, t, r, lod, proj, compare;
341         bool is_txb = false, is_txl = false, has_proj = false;
342         unsigned unit = instr->texture_index;
343
344         if (instr->op == nir_texop_txf) {
345                 ntq_emit_txf(c, instr);
346                 return;
347         }
348
349         for (unsigned i = 0; i < instr->num_srcs; i++) {
350                 switch (instr->src[i].src_type) {
351                 case nir_tex_src_coord:
352                         s = ntq_get_src(c, instr->src[i].src, 0);
353                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
354                                 t = qir_uniform_f(c, 0.5);
355                         else
356                                 t = ntq_get_src(c, instr->src[i].src, 1);
357                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
358                                 r = ntq_get_src(c, instr->src[i].src, 2);
359                         break;
360                 case nir_tex_src_bias:
361                         lod = ntq_get_src(c, instr->src[i].src, 0);
362                         is_txb = true;
363                         break;
364                 case nir_tex_src_lod:
365                         lod = ntq_get_src(c, instr->src[i].src, 0);
366                         is_txl = true;
367                         break;
368                 case nir_tex_src_comparitor:
369                         compare = ntq_get_src(c, instr->src[i].src, 0);
370                         break;
371                 case nir_tex_src_projector:
372                         proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
373                         s = qir_FMUL(c, s, proj);
374                         t = qir_FMUL(c, t, proj);
375                         has_proj = true;
376                         break;
377                 default:
378                         unreachable("unknown texture source");
379                 }
380         }
381
382         struct qreg texture_u[] = {
383                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
384                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
385                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
386                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
387         };
388         uint32_t next_texture_u = 0;
389
390         /* There is no native support for GL texture rectangle coordinates, so
391          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
392          * 1]).
393          */
394         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
395                 s = qir_FMUL(c, s,
396                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
397                 t = qir_FMUL(c, t,
398                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
399         }
400
401         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
402                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
403                                            unit | (is_txl << 16));
404         }
405
406         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
407                 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
408                 struct qreg rcp_ma = qir_RCP(c, ma);
409                 s = qir_FMUL(c, s, rcp_ma);
410                 t = qir_FMUL(c, t, rcp_ma);
411                 r = qir_FMUL(c, r, rcp_ma);
412
413                 qir_TEX_R(c, r, texture_u[next_texture_u++]);
414         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
415                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
416                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
417                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
418                 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
419                           texture_u[next_texture_u++]);
420         }
421
422         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
423                 s = qir_SAT(c, s);
424         }
425
426         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
427                 t = qir_SAT(c, t);
428         }
429
430         qir_TEX_T(c, t, texture_u[next_texture_u++]);
431
432         if (is_txl || is_txb)
433                 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
434
435         qir_TEX_S(c, s, texture_u[next_texture_u++]);
436
437         c->num_texture_samples++;
438         struct qreg tex = qir_TEX_RESULT(c);
439
440         enum pipe_format format = c->key->tex[unit].format;
441
442         struct qreg *dest = ntq_get_dest(c, &instr->dest);
443         if (util_format_is_depth_or_stencil(format)) {
444                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
445                 struct qreg depth_output;
446
447                 struct qreg u0 = qir_uniform_f(c, 0.0f);
448                 struct qreg u1 = qir_uniform_f(c, 1.0f);
449                 if (c->key->tex[unit].compare_mode) {
450                         if (has_proj)
451                                 compare = qir_FMUL(c, compare, proj);
452
453                         switch (c->key->tex[unit].compare_func) {
454                         case PIPE_FUNC_NEVER:
455                                 depth_output = qir_uniform_f(c, 0.0f);
456                                 break;
457                         case PIPE_FUNC_ALWAYS:
458                                 depth_output = u1;
459                                 break;
460                         case PIPE_FUNC_EQUAL:
461                                 qir_SF(c, qir_FSUB(c, compare, normalized));
462                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
463                                 break;
464                         case PIPE_FUNC_NOTEQUAL:
465                                 qir_SF(c, qir_FSUB(c, compare, normalized));
466                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
467                                 break;
468                         case PIPE_FUNC_GREATER:
469                                 qir_SF(c, qir_FSUB(c, compare, normalized));
470                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
471                                 break;
472                         case PIPE_FUNC_GEQUAL:
473                                 qir_SF(c, qir_FSUB(c, normalized, compare));
474                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
475                                 break;
476                         case PIPE_FUNC_LESS:
477                                 qir_SF(c, qir_FSUB(c, compare, normalized));
478                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
479                                 break;
480                         case PIPE_FUNC_LEQUAL:
481                                 qir_SF(c, qir_FSUB(c, normalized, compare));
482                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
483                                 break;
484                         }
485                 } else {
486                         depth_output = normalized;
487                 }
488
489                 for (int i = 0; i < 4; i++)
490                         dest[i] = depth_output;
491         } else {
492                 for (int i = 0; i < 4; i++)
493                         dest[i] = qir_UNPACK_8_F(c, tex, i);
494         }
495
496         for (int i = 0; i < 4; i++) {
497                 if (c->tex_srgb_decode[unit] & (1 << i))
498                         dest[i] = qir_srgb_decode(c, dest[i]);
499         }
500 }
501
502 /**
503  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
504  * to zero).
505  */
506 static struct qreg
507 ntq_ffract(struct vc4_compile *c, struct qreg src)
508 {
509         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
510         struct qreg diff = qir_FSUB(c, src, trunc);
511         qir_SF(c, diff);
512         return qir_SEL(c, QPU_COND_NS,
513                        qir_FADD(c, diff, qir_uniform_f(c, 1.0)), diff);
514 }
515
516 /**
517  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
518  * zero).
519  */
520 static struct qreg
521 ntq_ffloor(struct vc4_compile *c, struct qreg src)
522 {
523         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
524
525         /* This will be < 0 if we truncated and the truncation was of a value
526          * that was < 0 in the first place.
527          */
528         qir_SF(c, qir_FSUB(c, src, trunc));
529
530         return qir_SEL(c, QPU_COND_NS,
531                        qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), trunc);
532 }
533
534 /**
535  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
536  * zero).
537  */
538 static struct qreg
539 ntq_fceil(struct vc4_compile *c, struct qreg src)
540 {
541         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
542
543         /* This will be < 0 if we truncated and the truncation was of a value
544          * that was > 0 in the first place.
545          */
546         qir_SF(c, qir_FSUB(c, trunc, src));
547
548         return qir_SEL(c, QPU_COND_NS,
549                        qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), trunc);
550 }
551
552 static struct qreg
553 ntq_fsin(struct vc4_compile *c, struct qreg src)
554 {
555         float coeff[] = {
556                 -2.0 * M_PI,
557                 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
558                 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
559                 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
560                 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
561         };
562
563         struct qreg scaled_x =
564                 qir_FMUL(c,
565                          src,
566                          qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
567
568         struct qreg x = qir_FADD(c,
569                                  ntq_ffract(c, scaled_x),
570                                  qir_uniform_f(c, -0.5));
571         struct qreg x2 = qir_FMUL(c, x, x);
572         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
573         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
574                 x = qir_FMUL(c, x, x2);
575                 sum = qir_FADD(c,
576                                sum,
577                                qir_FMUL(c,
578                                         x,
579                                         qir_uniform_f(c, coeff[i])));
580         }
581         return sum;
582 }
583
584 static struct qreg
585 ntq_fcos(struct vc4_compile *c, struct qreg src)
586 {
587         float coeff[] = {
588                 -1.0f,
589                 pow(2.0 * M_PI, 2) / (2 * 1),
590                 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
591                 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
592                 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
593                 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
594         };
595
596         struct qreg scaled_x =
597                 qir_FMUL(c, src,
598                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
599         struct qreg x_frac = qir_FADD(c,
600                                       ntq_ffract(c, scaled_x),
601                                       qir_uniform_f(c, -0.5));
602
603         struct qreg sum = qir_uniform_f(c, coeff[0]);
604         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
605         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
606         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
607                 if (i != 1)
608                         x = qir_FMUL(c, x, x2);
609
610                 struct qreg mul = qir_FMUL(c,
611                                            x,
612                                            qir_uniform_f(c, coeff[i]));
613                 if (i == 0)
614                         sum = mul;
615                 else
616                         sum = qir_FADD(c, sum, mul);
617         }
618         return sum;
619 }
620
621 static struct qreg
622 ntq_fsign(struct vc4_compile *c, struct qreg src)
623 {
624         struct qreg t = qir_get_temp(c);
625
626         qir_SF(c, src);
627         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
628         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
629         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
630         return t;
631 }
632
633 static void
634 emit_vertex_input(struct vc4_compile *c, int attr)
635 {
636         enum pipe_format format = c->vs_key->attr_formats[attr];
637         uint32_t attr_size = util_format_get_blocksize(format);
638
639         c->vattr_sizes[attr] = align(attr_size, 4);
640         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
641                 struct qreg vpm = { QFILE_VPM, attr * 4 + i };
642                 c->inputs[attr * 4 + i] = qir_MOV(c, vpm);
643                 c->num_inputs++;
644         }
645 }
646
647 static void
648 emit_fragcoord_input(struct vc4_compile *c, int attr)
649 {
650         c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
651         c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
652         c->inputs[attr * 4 + 2] =
653                 qir_FMUL(c,
654                          qir_ITOF(c, qir_FRAG_Z(c)),
655                          qir_uniform_f(c, 1.0 / 0xffffff));
656         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
657 }
658
659 static struct qreg
660 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
661                       uint8_t swizzle)
662 {
663         uint32_t i = c->num_input_slots++;
664         struct qreg vary = {
665                 QFILE_VARY,
666                 i
667         };
668
669         if (c->num_input_slots >= c->input_slots_array_size) {
670                 c->input_slots_array_size =
671                         MAX2(4, c->input_slots_array_size * 2);
672
673                 c->input_slots = reralloc(c, c->input_slots,
674                                           struct vc4_varying_slot,
675                                           c->input_slots_array_size);
676         }
677
678         c->input_slots[i].slot = slot;
679         c->input_slots[i].swizzle = swizzle;
680
681         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
682 }
683
684 static void
685 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
686 {
687         for (int i = 0; i < 4; i++) {
688                 c->inputs[attr * 4 + i] =
689                         emit_fragment_varying(c, slot, i);
690                 c->num_inputs++;
691         }
692 }
693
694 static void
695 add_output(struct vc4_compile *c,
696            uint32_t decl_offset,
697            uint8_t slot,
698            uint8_t swizzle)
699 {
700         uint32_t old_array_size = c->outputs_array_size;
701         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
702                           decl_offset + 1);
703
704         if (old_array_size != c->outputs_array_size) {
705                 c->output_slots = reralloc(c,
706                                            c->output_slots,
707                                            struct vc4_varying_slot,
708                                            c->outputs_array_size);
709         }
710
711         c->output_slots[decl_offset].slot = slot;
712         c->output_slots[decl_offset].swizzle = swizzle;
713 }
714
715 static void
716 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
717 {
718         unsigned array_id = c->num_uniform_ranges++;
719         if (array_id >= c->ubo_ranges_array_size) {
720                 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
721                                                 array_id + 1);
722                 c->ubo_ranges = reralloc(c, c->ubo_ranges,
723                                          struct vc4_compiler_ubo_range,
724                                          c->ubo_ranges_array_size);
725         }
726
727         c->ubo_ranges[array_id].dst_offset = 0;
728         c->ubo_ranges[array_id].src_offset = start;
729         c->ubo_ranges[array_id].size = size;
730         c->ubo_ranges[array_id].used = false;
731 }
732
733 static bool
734 ntq_src_is_only_ssa_def_user(nir_src *src)
735 {
736         if (!src->is_ssa)
737                 return false;
738
739         if (!list_empty(&src->ssa->if_uses))
740                 return false;
741
742         return (src->ssa->uses.next == &src->use_link &&
743                 src->ssa->uses.next->next == &src->ssa->uses);
744 }
745
746 /**
747  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
748  * bit set.
749  *
750  * However, as an optimization, it tries to find the instructions generating
751  * the sources to be packed and just emit the pack flag there, if possible.
752  */
753 static void
754 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
755 {
756         struct qreg result = qir_get_temp(c);
757         struct nir_alu_instr *vec4 = NULL;
758
759         /* If packing from a vec4 op (as expected), identify it so that we can
760          * peek back at what generated its sources.
761          */
762         if (instr->src[0].src.is_ssa &&
763             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
764             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
765             nir_op_vec4) {
766                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
767         }
768
769         /* If the pack is replicating the same channel 4 times, use the 8888
770          * pack flag.  This is common for blending using the alpha
771          * channel.
772          */
773         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
774             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
775             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
776                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
777                 *dest = qir_PACK_8888_F(c,
778                                         ntq_get_src(c, instr->src[0].src,
779                                                     instr->src[0].swizzle[0]));
780                 return;
781         }
782
783         for (int i = 0; i < 4; i++) {
784                 int swiz = instr->src[0].swizzle[i];
785                 struct qreg src;
786                 if (vec4) {
787                         src = ntq_get_src(c, vec4->src[swiz].src,
788                                           vec4->src[swiz].swizzle[0]);
789                 } else {
790                         src = ntq_get_src(c, instr->src[0].src, swiz);
791                 }
792
793                 if (vec4 &&
794                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
795                     src.file == QFILE_TEMP &&
796                     c->defs[src.index] &&
797                     qir_is_mul(c->defs[src.index]) &&
798                     !c->defs[src.index]->dst.pack) {
799                         struct qinst *rewrite = c->defs[src.index];
800                         c->defs[src.index] = NULL;
801                         rewrite->dst = result;
802                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
803                         continue;
804                 }
805
806                 qir_PACK_8_F(c, result, src, i);
807         }
808
809         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
810         *dest = result;
811 }
812
813 /** Handles sign-extended bitfield extracts for 16 bits. */
814 static struct qreg
815 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
816               struct qreg bits)
817 {
818         assert(bits.file == QFILE_UNIF &&
819                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
820                c->uniform_data[bits.index] == 16);
821
822         assert(offset.file == QFILE_UNIF &&
823                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
824         int offset_bit = c->uniform_data[offset.index];
825         assert(offset_bit % 16 == 0);
826
827         return qir_UNPACK_16_I(c, base, offset_bit / 16);
828 }
829
830 /** Handles unsigned bitfield extracts for 8 bits. */
831 static struct qreg
832 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
833               struct qreg bits)
834 {
835         assert(bits.file == QFILE_UNIF &&
836                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
837                c->uniform_data[bits.index] == 8);
838
839         assert(offset.file == QFILE_UNIF &&
840                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
841         int offset_bit = c->uniform_data[offset.index];
842         assert(offset_bit % 8 == 0);
843
844         return qir_UNPACK_8_I(c, base, offset_bit / 8);
845 }
846
847 /**
848  * If compare_instr is a valid comparison instruction, emits the
849  * compare_instr's comparison and returns the sel_instr's return value based
850  * on the compare_instr's result.
851  */
852 static bool
853 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
854                     nir_alu_instr *compare_instr,
855                     nir_alu_instr *sel_instr)
856 {
857         enum qpu_cond cond;
858
859         switch (compare_instr->op) {
860         case nir_op_feq:
861         case nir_op_ieq:
862         case nir_op_seq:
863                 cond = QPU_COND_ZS;
864                 break;
865         case nir_op_fne:
866         case nir_op_ine:
867         case nir_op_sne:
868                 cond = QPU_COND_ZC;
869                 break;
870         case nir_op_fge:
871         case nir_op_ige:
872         case nir_op_uge:
873         case nir_op_sge:
874                 cond = QPU_COND_NC;
875                 break;
876         case nir_op_flt:
877         case nir_op_ilt:
878         case nir_op_slt:
879                 cond = QPU_COND_NS;
880                 break;
881         default:
882                 return false;
883         }
884
885         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
886         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
887
888         if (nir_op_infos[compare_instr->op].input_types[0] == nir_type_float)
889                 qir_SF(c, qir_FSUB(c, src0, src1));
890         else
891                 qir_SF(c, qir_SUB(c, src0, src1));
892
893         switch (sel_instr->op) {
894         case nir_op_seq:
895         case nir_op_sne:
896         case nir_op_sge:
897         case nir_op_slt:
898                 *dest = qir_SEL(c, cond,
899                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
900                 break;
901
902         case nir_op_bcsel:
903                 *dest = qir_SEL(c, cond,
904                                 ntq_get_alu_src(c, sel_instr, 1),
905                                 ntq_get_alu_src(c, sel_instr, 2));
906                 break;
907
908         default:
909                 *dest = qir_SEL(c, cond,
910                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
911                 break;
912         }
913
914         return true;
915 }
916
917 /**
918  * Attempts to fold a comparison generating a boolean result into the
919  * condition code for selecting between two values, instead of comparing the
920  * boolean result against 0 to generate the condition code.
921  */
922 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
923                                   struct qreg *src)
924 {
925         if (!instr->src[0].src.is_ssa)
926                 goto out;
927         nir_alu_instr *compare =
928                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
929         if (!compare)
930                 goto out;
931
932         struct qreg dest;
933         if (ntq_emit_comparison(c, &dest, compare, instr))
934                 return dest;
935
936 out:
937         qir_SF(c, src[0]);
938         return qir_SEL(c, QPU_COND_NS, src[1], src[2]);
939 }
940
941 static void
942 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
943 {
944         /* Vectors are special in that they have non-scalarized writemasks,
945          * and just take the first swizzle channel for each argument in order
946          * into each writemask channel.
947          */
948         if (instr->op == nir_op_vec2 ||
949             instr->op == nir_op_vec3 ||
950             instr->op == nir_op_vec4) {
951                 struct qreg srcs[4];
952                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
953                         srcs[i] = ntq_get_src(c, instr->src[i].src,
954                                               instr->src[i].swizzle[0]);
955                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
956                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
957                         dest[i] = srcs[i];
958                 return;
959         }
960
961         if (instr->op == nir_op_pack_unorm_4x8) {
962                 ntq_emit_pack_unorm_4x8(c, instr);
963                 return;
964         }
965
966         if (instr->op == nir_op_unpack_unorm_4x8) {
967                 struct qreg src = ntq_get_src(c, instr->src[0].src,
968                                               instr->src[0].swizzle[0]);
969                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
970                 for (int i = 0; i < 4; i++) {
971                         if (instr->dest.write_mask & (1 << i))
972                                 dest[i] = qir_UNPACK_8_F(c, src, i);
973                 }
974                 return;
975         }
976
977         /* General case: We can just grab the one used channel per src. */
978         struct qreg src[nir_op_infos[instr->op].num_inputs];
979         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
980                 src[i] = ntq_get_alu_src(c, instr, i);
981         }
982
983         /* Pick the channel to store the output in. */
984         assert(!instr->dest.saturate);
985         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
986         assert(util_is_power_of_two(instr->dest.write_mask));
987         dest += ffs(instr->dest.write_mask) - 1;
988
989         switch (instr->op) {
990         case nir_op_fmov:
991         case nir_op_imov:
992                 *dest = qir_MOV(c, src[0]);
993                 break;
994         case nir_op_fmul:
995                 *dest = qir_FMUL(c, src[0], src[1]);
996                 break;
997         case nir_op_fadd:
998                 *dest = qir_FADD(c, src[0], src[1]);
999                 break;
1000         case nir_op_fsub:
1001                 *dest = qir_FSUB(c, src[0], src[1]);
1002                 break;
1003         case nir_op_fmin:
1004                 *dest = qir_FMIN(c, src[0], src[1]);
1005                 break;
1006         case nir_op_fmax:
1007                 *dest = qir_FMAX(c, src[0], src[1]);
1008                 break;
1009
1010         case nir_op_f2i:
1011         case nir_op_f2u:
1012                 *dest = qir_FTOI(c, src[0]);
1013                 break;
1014         case nir_op_i2f:
1015         case nir_op_u2f:
1016                 *dest = qir_ITOF(c, src[0]);
1017                 break;
1018         case nir_op_b2f:
1019                 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1020                 break;
1021         case nir_op_b2i:
1022                 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1023                 break;
1024         case nir_op_i2b:
1025         case nir_op_f2b:
1026                 qir_SF(c, src[0]);
1027                 *dest = qir_SEL(c, QPU_COND_ZC,
1028                                 qir_uniform_ui(c, ~0),
1029                                 qir_uniform_ui(c, 0));
1030                 break;
1031
1032         case nir_op_iadd:
1033                 *dest = qir_ADD(c, src[0], src[1]);
1034                 break;
1035         case nir_op_ushr:
1036                 *dest = qir_SHR(c, src[0], src[1]);
1037                 break;
1038         case nir_op_isub:
1039                 *dest = qir_SUB(c, src[0], src[1]);
1040                 break;
1041         case nir_op_ishr:
1042                 *dest = qir_ASR(c, src[0], src[1]);
1043                 break;
1044         case nir_op_ishl:
1045                 *dest = qir_SHL(c, src[0], src[1]);
1046                 break;
1047         case nir_op_imin:
1048                 *dest = qir_MIN(c, src[0], src[1]);
1049                 break;
1050         case nir_op_imax:
1051                 *dest = qir_MAX(c, src[0], src[1]);
1052                 break;
1053         case nir_op_iand:
1054                 *dest = qir_AND(c, src[0], src[1]);
1055                 break;
1056         case nir_op_ior:
1057                 *dest = qir_OR(c, src[0], src[1]);
1058                 break;
1059         case nir_op_ixor:
1060                 *dest = qir_XOR(c, src[0], src[1]);
1061                 break;
1062         case nir_op_inot:
1063                 *dest = qir_NOT(c, src[0]);
1064                 break;
1065
1066         case nir_op_imul:
1067                 *dest = ntq_umul(c, src[0], src[1]);
1068                 break;
1069
1070         case nir_op_seq:
1071         case nir_op_sne:
1072         case nir_op_sge:
1073         case nir_op_slt:
1074         case nir_op_feq:
1075         case nir_op_fne:
1076         case nir_op_fge:
1077         case nir_op_flt:
1078         case nir_op_ieq:
1079         case nir_op_ine:
1080         case nir_op_ige:
1081         case nir_op_uge:
1082         case nir_op_ilt:
1083                 if (!ntq_emit_comparison(c, dest, instr, instr)) {
1084                         fprintf(stderr, "Bad comparison instruction\n");
1085                 }
1086                 break;
1087
1088         case nir_op_bcsel:
1089                 *dest = ntq_emit_bcsel(c, instr, src);
1090                 break;
1091         case nir_op_fcsel:
1092                 qir_SF(c, src[0]);
1093                 *dest = qir_SEL(c, QPU_COND_ZC, src[1], src[2]);
1094                 break;
1095
1096         case nir_op_frcp:
1097                 *dest = ntq_rcp(c, src[0]);
1098                 break;
1099         case nir_op_frsq:
1100                 *dest = ntq_rsq(c, src[0]);
1101                 break;
1102         case nir_op_fexp2:
1103                 *dest = qir_EXP2(c, src[0]);
1104                 break;
1105         case nir_op_flog2:
1106                 *dest = qir_LOG2(c, src[0]);
1107                 break;
1108
1109         case nir_op_ftrunc:
1110                 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1111                 break;
1112         case nir_op_fceil:
1113                 *dest = ntq_fceil(c, src[0]);
1114                 break;
1115         case nir_op_ffract:
1116                 *dest = ntq_ffract(c, src[0]);
1117                 break;
1118         case nir_op_ffloor:
1119                 *dest = ntq_ffloor(c, src[0]);
1120                 break;
1121
1122         case nir_op_fsin:
1123                 *dest = ntq_fsin(c, src[0]);
1124                 break;
1125         case nir_op_fcos:
1126                 *dest = ntq_fcos(c, src[0]);
1127                 break;
1128
1129         case nir_op_fsign:
1130                 *dest = ntq_fsign(c, src[0]);
1131                 break;
1132
1133         case nir_op_fabs:
1134                 *dest = qir_FMAXABS(c, src[0], src[0]);
1135                 break;
1136         case nir_op_iabs:
1137                 *dest = qir_MAX(c, src[0],
1138                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1139                 break;
1140
1141         case nir_op_ibitfield_extract:
1142                 *dest = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1143                 break;
1144
1145         case nir_op_ubitfield_extract:
1146                 *dest = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1147                 break;
1148
1149         case nir_op_usadd_4x8:
1150                 *dest = qir_V8ADDS(c, src[0], src[1]);
1151                 break;
1152
1153         case nir_op_ussub_4x8:
1154                 *dest = qir_V8SUBS(c, src[0], src[1]);
1155                 break;
1156
1157         case nir_op_umin_4x8:
1158                 *dest = qir_V8MIN(c, src[0], src[1]);
1159                 break;
1160
1161         case nir_op_umax_4x8:
1162                 *dest = qir_V8MAX(c, src[0], src[1]);
1163                 break;
1164
1165         case nir_op_umul_unorm_4x8:
1166                 *dest = qir_V8MULD(c, src[0], src[1]);
1167                 break;
1168
1169         default:
1170                 fprintf(stderr, "unknown NIR ALU inst: ");
1171                 nir_print_instr(&instr->instr, stderr);
1172                 fprintf(stderr, "\n");
1173                 abort();
1174         }
1175 }
1176
1177 static void
1178 emit_frag_end(struct vc4_compile *c)
1179 {
1180         struct qreg color;
1181         if (c->output_color_index != -1) {
1182                 color = c->outputs[c->output_color_index];
1183         } else {
1184                 color = qir_uniform_ui(c, 0);
1185         }
1186
1187         if (c->discard.file != QFILE_NULL)
1188                 qir_TLB_DISCARD_SETUP(c, c->discard);
1189
1190         if (c->fs_key->stencil_enabled) {
1191                 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1192                 if (c->fs_key->stencil_twoside) {
1193                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1194                 }
1195                 if (c->fs_key->stencil_full_writemasks) {
1196                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1197                 }
1198         }
1199
1200         if (c->output_sample_mask_index != -1) {
1201                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1202         }
1203
1204         if (c->fs_key->depth_enabled) {
1205                 struct qreg z;
1206                 if (c->output_position_index != -1) {
1207                         z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1208                                                  qir_uniform_f(c, 0xffffff)));
1209                 } else {
1210                         z = qir_FRAG_Z(c);
1211                 }
1212                 qir_TLB_Z_WRITE(c, z);
1213         }
1214
1215         if (!c->msaa_per_sample_output) {
1216                 qir_TLB_COLOR_WRITE(c, color);
1217         } else {
1218                 for (int i = 0; i < VC4_MAX_SAMPLES; i++)
1219                         qir_TLB_COLOR_WRITE_MS(c, c->sample_colors[i]);
1220         }
1221 }
1222
1223 static void
1224 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1225 {
1226         struct qreg packed = qir_get_temp(c);
1227
1228         for (int i = 0; i < 2; i++) {
1229                 struct qreg scale =
1230                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1231
1232                 struct qreg packed_chan = packed;
1233                 packed_chan.pack = QPU_PACK_A_16A + i;
1234
1235                 qir_FTOI_dest(c, packed_chan,
1236                               qir_FMUL(c,
1237                                        qir_FMUL(c,
1238                                                 c->outputs[c->output_position_index + i],
1239                                                 scale),
1240                                        rcp_w));
1241         }
1242
1243         qir_VPM_WRITE(c, packed);
1244 }
1245
1246 static void
1247 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1248 {
1249         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1250         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1251
1252         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1253                                                           c->outputs[c->output_position_index + 2],
1254                                                           zscale),
1255                                               rcp_w),
1256                                   zoffset));
1257 }
1258
1259 static void
1260 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1261 {
1262         qir_VPM_WRITE(c, rcp_w);
1263 }
1264
1265 static void
1266 emit_point_size_write(struct vc4_compile *c)
1267 {
1268         struct qreg point_size;
1269
1270         if (c->output_point_size_index != -1)
1271                 point_size = c->outputs[c->output_point_size_index];
1272         else
1273                 point_size = qir_uniform_f(c, 1.0);
1274
1275         /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1276          * BCM21553).
1277          */
1278         point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1279
1280         qir_VPM_WRITE(c, point_size);
1281 }
1282
1283 /**
1284  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1285  *
1286  * The simulator insists that there be at least one vertex attribute, so
1287  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1288  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1289  * to consume it here.
1290  */
1291 static void
1292 emit_stub_vpm_read(struct vc4_compile *c)
1293 {
1294         if (c->num_inputs)
1295                 return;
1296
1297         c->vattr_sizes[0] = 4;
1298         struct qreg vpm = { QFILE_VPM, 0 };
1299         (void)qir_MOV(c, vpm);
1300         c->num_inputs++;
1301 }
1302
1303 static void
1304 emit_vert_end(struct vc4_compile *c,
1305               struct vc4_varying_slot *fs_inputs,
1306               uint32_t num_fs_inputs)
1307 {
1308         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1309
1310         emit_stub_vpm_read(c);
1311
1312         emit_scaled_viewport_write(c, rcp_w);
1313         emit_zs_write(c, rcp_w);
1314         emit_rcp_wc_write(c, rcp_w);
1315         if (c->vs_key->per_vertex_point_size)
1316                 emit_point_size_write(c);
1317
1318         for (int i = 0; i < num_fs_inputs; i++) {
1319                 struct vc4_varying_slot *input = &fs_inputs[i];
1320                 int j;
1321
1322                 for (j = 0; j < c->num_outputs; j++) {
1323                         struct vc4_varying_slot *output =
1324                                 &c->output_slots[j];
1325
1326                         if (input->slot == output->slot &&
1327                             input->swizzle == output->swizzle) {
1328                                 qir_VPM_WRITE(c, c->outputs[j]);
1329                                 break;
1330                         }
1331                 }
1332                 /* Emit padding if we didn't find a declared VS output for
1333                  * this FS input.
1334                  */
1335                 if (j == c->num_outputs)
1336                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1337         }
1338 }
1339
1340 static void
1341 emit_coord_end(struct vc4_compile *c)
1342 {
1343         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1344
1345         emit_stub_vpm_read(c);
1346
1347         for (int i = 0; i < 4; i++)
1348                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1349
1350         emit_scaled_viewport_write(c, rcp_w);
1351         emit_zs_write(c, rcp_w);
1352         emit_rcp_wc_write(c, rcp_w);
1353         if (c->vs_key->per_vertex_point_size)
1354                 emit_point_size_write(c);
1355 }
1356
1357 static void
1358 vc4_optimize_nir(struct nir_shader *s)
1359 {
1360         bool progress;
1361
1362         do {
1363                 progress = false;
1364
1365                 nir_lower_vars_to_ssa(s);
1366                 nir_lower_alu_to_scalar(s);
1367
1368                 progress = nir_copy_prop(s) || progress;
1369                 progress = nir_opt_dce(s) || progress;
1370                 progress = nir_opt_cse(s) || progress;
1371                 progress = nir_opt_peephole_select(s) || progress;
1372                 progress = nir_opt_algebraic(s) || progress;
1373                 progress = nir_opt_constant_folding(s) || progress;
1374                 progress = nir_opt_undef(s) || progress;
1375         } while (progress);
1376 }
1377
1378 static int
1379 driver_location_compare(const void *in_a, const void *in_b)
1380 {
1381         const nir_variable *const *a = in_a;
1382         const nir_variable *const *b = in_b;
1383
1384         return (*a)->data.driver_location - (*b)->data.driver_location;
1385 }
1386
1387 static void
1388 ntq_setup_inputs(struct vc4_compile *c)
1389 {
1390         unsigned num_entries = 0;
1391         nir_foreach_variable(var, &c->s->inputs)
1392                 num_entries++;
1393
1394         nir_variable *vars[num_entries];
1395
1396         unsigned i = 0;
1397         nir_foreach_variable(var, &c->s->inputs)
1398                 vars[i++] = var;
1399
1400         /* Sort the variables so that we emit the input setup in
1401          * driver_location order.  This is required for VPM reads, whose data
1402          * is fetched into the VPM in driver_location (TGSI register index)
1403          * order.
1404          */
1405         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1406
1407         for (unsigned i = 0; i < num_entries; i++) {
1408                 nir_variable *var = vars[i];
1409                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1410                 unsigned loc = var->data.driver_location;
1411
1412                 assert(array_len == 1);
1413                 (void)array_len;
1414                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1415                                   (loc + 1) * 4);
1416
1417                 if (c->stage == QSTAGE_FRAG) {
1418                         if (var->data.location == VARYING_SLOT_POS) {
1419                                 emit_fragcoord_input(c, loc);
1420                         } else if (var->data.location == VARYING_SLOT_FACE) {
1421                                 c->inputs[loc * 4 + 0] = qir_FRAG_REV_FLAG(c);
1422                         } else if (var->data.location >= VARYING_SLOT_VAR0 &&
1423                                    (c->fs_key->point_sprite_mask &
1424                                     (1 << (var->data.location -
1425                                            VARYING_SLOT_VAR0)))) {
1426                                 c->inputs[loc * 4 + 0] = c->point_x;
1427                                 c->inputs[loc * 4 + 1] = c->point_y;
1428                         } else {
1429                                 emit_fragment_input(c, loc, var->data.location);
1430                         }
1431                 } else {
1432                         emit_vertex_input(c, loc);
1433                 }
1434         }
1435 }
1436
1437 static void
1438 ntq_setup_outputs(struct vc4_compile *c)
1439 {
1440         nir_foreach_variable(var, &c->s->outputs) {
1441                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1442                 unsigned loc = var->data.driver_location * 4;
1443
1444                 assert(array_len == 1);
1445                 (void)array_len;
1446
1447                 for (int i = 0; i < 4; i++)
1448                         add_output(c, loc + i, var->data.location, i);
1449
1450                 if (c->stage == QSTAGE_FRAG) {
1451                         switch (var->data.location) {
1452                         case FRAG_RESULT_COLOR:
1453                         case FRAG_RESULT_DATA0:
1454                                 c->output_color_index = loc;
1455                                 break;
1456                         case FRAG_RESULT_DEPTH:
1457                                 c->output_position_index = loc;
1458                                 break;
1459                         case FRAG_RESULT_SAMPLE_MASK:
1460                                 c->output_sample_mask_index = loc;
1461                                 break;
1462                         }
1463                 } else {
1464                         switch (var->data.location) {
1465                         case VARYING_SLOT_POS:
1466                                 c->output_position_index = loc;
1467                                 break;
1468                         case VARYING_SLOT_PSIZ:
1469                                 c->output_point_size_index = loc;
1470                                 break;
1471                         }
1472                 }
1473         }
1474 }
1475
1476 static void
1477 ntq_setup_uniforms(struct vc4_compile *c)
1478 {
1479         nir_foreach_variable(var, &c->s->uniforms) {
1480                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1481                 unsigned array_elem_size = 4 * sizeof(float);
1482
1483                 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1484                                       array_len * array_elem_size);
1485
1486         }
1487 }
1488
1489 /**
1490  * Sets up the mapping from nir_register to struct qreg *.
1491  *
1492  * Each nir_register gets a struct qreg per 32-bit component being stored.
1493  */
1494 static void
1495 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1496 {
1497         foreach_list_typed(nir_register, nir_reg, node, list) {
1498                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1499                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1500                                                   array_len *
1501                                                   nir_reg->num_components);
1502
1503                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1504
1505                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1506                         qregs[i] = qir_uniform_ui(c, 0);
1507         }
1508 }
1509
1510 static void
1511 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1512 {
1513         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1514         for (int i = 0; i < instr->def.num_components; i++)
1515                 qregs[i] = qir_uniform_ui(c, instr->value.u[i]);
1516
1517         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1518 }
1519
1520 static void
1521 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1522 {
1523         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1524
1525         /* QIR needs there to be *some* value, so pick 0 (same as for
1526          * ntq_setup_registers().
1527          */
1528         for (int i = 0; i < instr->def.num_components; i++)
1529                 qregs[i] = qir_uniform_ui(c, 0);
1530 }
1531
1532 static void
1533 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1534 {
1535         const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1536         nir_const_value *const_offset;
1537         unsigned offset;
1538         struct qreg *dest = NULL;
1539
1540         if (info->has_dest) {
1541                 dest = ntq_get_dest(c, &instr->dest);
1542         }
1543
1544         switch (instr->intrinsic) {
1545         case nir_intrinsic_load_uniform:
1546                 assert(instr->num_components == 1);
1547                 const_offset = nir_src_as_const_value(instr->src[0]);
1548                 if (const_offset) {
1549                         offset = instr->const_index[0] + const_offset->u[0];
1550                         assert(offset % 4 == 0);
1551                         /* We need dwords */
1552                         offset = offset / 4;
1553                         if (offset < VC4_NIR_STATE_UNIFORM_OFFSET) {
1554                                 *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1555                                                     offset);
1556                         } else {
1557                                 *dest = qir_uniform(c, offset -
1558                                                     VC4_NIR_STATE_UNIFORM_OFFSET,
1559                                                     0);
1560                         }
1561                 } else {
1562                         *dest = indirect_uniform_load(c, instr);
1563                 }
1564                 break;
1565
1566         case nir_intrinsic_load_user_clip_plane:
1567                 *dest = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1568                                     instr->const_index[0]);
1569                 break;
1570
1571         case nir_intrinsic_load_sample_mask_in:
1572                 *dest = qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0);
1573                 break;
1574
1575         case nir_intrinsic_load_input:
1576                 assert(instr->num_components == 1);
1577                 const_offset = nir_src_as_const_value(instr->src[0]);
1578                 assert(const_offset && "vc4 doesn't support indirect inputs");
1579                 if (instr->const_index[0] >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1580                         assert(const_offset->u[0] == 0);
1581                         /* Reads of the per-sample color need to be done in
1582                          * order.
1583                          */
1584                         int sample_index = (instr->const_index[0] -
1585                                            VC4_NIR_TLB_COLOR_READ_INPUT);
1586                         for (int i = 0; i <= sample_index; i++) {
1587                                 if (c->color_reads[i].file == QFILE_NULL) {
1588                                         c->color_reads[i] =
1589                                                 qir_TLB_COLOR_READ(c);
1590                                 }
1591                         }
1592                         *dest = c->color_reads[sample_index];
1593                 } else {
1594                         offset = instr->const_index[0] + const_offset->u[0];
1595                         *dest = c->inputs[offset];
1596                 }
1597                 break;
1598
1599         case nir_intrinsic_store_output:
1600                 const_offset = nir_src_as_const_value(instr->src[1]);
1601                 assert(const_offset && "vc4 doesn't support indirect outputs");
1602                 offset = instr->const_index[0] + const_offset->u[0];
1603
1604                 /* MSAA color outputs are the only case where we have an
1605                  * output that's not lowered to being a store of a single 32
1606                  * bit value.
1607                  */
1608                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1609                         assert(offset == c->output_color_index);
1610                         for (int i = 0; i < 4; i++) {
1611                                 c->sample_colors[i] =
1612                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1613                                                                i));
1614                         }
1615                 } else {
1616                         assert(instr->num_components == 1);
1617                         c->outputs[offset] =
1618                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1619                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1620                 }
1621                 break;
1622
1623         case nir_intrinsic_discard:
1624                 c->discard = qir_uniform_ui(c, ~0);
1625                 break;
1626
1627         case nir_intrinsic_discard_if:
1628                 if (c->discard.file == QFILE_NULL)
1629                         c->discard = qir_uniform_ui(c, 0);
1630                 c->discard = qir_OR(c, c->discard,
1631                                     ntq_get_src(c, instr->src[0], 0));
1632                 break;
1633
1634         default:
1635                 fprintf(stderr, "Unknown intrinsic: ");
1636                 nir_print_instr(&instr->instr, stderr);
1637                 fprintf(stderr, "\n");
1638                 break;
1639         }
1640 }
1641
1642 static void
1643 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1644 {
1645         fprintf(stderr, "general IF statements not handled.\n");
1646 }
1647
1648 static void
1649 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1650 {
1651         switch (instr->type) {
1652         case nir_instr_type_alu:
1653                 ntq_emit_alu(c, nir_instr_as_alu(instr));
1654                 break;
1655
1656         case nir_instr_type_intrinsic:
1657                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1658                 break;
1659
1660         case nir_instr_type_load_const:
1661                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1662                 break;
1663
1664         case nir_instr_type_ssa_undef:
1665                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1666                 break;
1667
1668         case nir_instr_type_tex:
1669                 ntq_emit_tex(c, nir_instr_as_tex(instr));
1670                 break;
1671
1672         default:
1673                 fprintf(stderr, "Unknown NIR instr type: ");
1674                 nir_print_instr(instr, stderr);
1675                 fprintf(stderr, "\n");
1676                 abort();
1677         }
1678 }
1679
1680 static void
1681 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1682 {
1683         nir_foreach_instr(block, instr) {
1684                 ntq_emit_instr(c, instr);
1685         }
1686 }
1687
1688 static void
1689 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1690 {
1691         foreach_list_typed(nir_cf_node, node, node, list) {
1692                 switch (node->type) {
1693                         /* case nir_cf_node_loop: */
1694                 case nir_cf_node_block:
1695                         ntq_emit_block(c, nir_cf_node_as_block(node));
1696                         break;
1697
1698                 case nir_cf_node_if:
1699                         ntq_emit_if(c, nir_cf_node_as_if(node));
1700                         break;
1701
1702                 default:
1703                         assert(0);
1704                 }
1705         }
1706 }
1707
1708 static void
1709 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1710 {
1711         ntq_setup_registers(c, &impl->registers);
1712         ntq_emit_cf_list(c, &impl->body);
1713 }
1714
1715 static void
1716 nir_to_qir(struct vc4_compile *c)
1717 {
1718         ntq_setup_inputs(c);
1719         ntq_setup_outputs(c);
1720         ntq_setup_uniforms(c);
1721         ntq_setup_registers(c, &c->s->registers);
1722
1723         /* Find the main function and emit the body. */
1724         nir_foreach_function(c->s, function) {
1725                 assert(strcmp(function->name, "main") == 0);
1726                 assert(function->impl);
1727                 ntq_emit_impl(c, function->impl);
1728         }
1729 }
1730
1731 static const nir_shader_compiler_options nir_options = {
1732         .lower_ffma = true,
1733         .lower_flrp = true,
1734         .lower_fpow = true,
1735         .lower_fsat = true,
1736         .lower_fsqrt = true,
1737         .lower_negate = true,
1738 };
1739
1740 static bool
1741 count_nir_instrs_in_block(nir_block *block, void *state)
1742 {
1743         int *count = (int *) state;
1744         nir_foreach_instr(block, instr) {
1745                 *count = *count + 1;
1746         }
1747         return true;
1748 }
1749
1750 static int
1751 count_nir_instrs(nir_shader *nir)
1752 {
1753         int count = 0;
1754         nir_foreach_function(nir, function) {
1755                 if (!function->impl)
1756                         continue;
1757                 nir_foreach_block(function->impl, count_nir_instrs_in_block, &count);
1758         }
1759         return count;
1760 }
1761
1762 static struct vc4_compile *
1763 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1764                        struct vc4_key *key)
1765 {
1766         struct vc4_compile *c = qir_compile_init();
1767
1768         c->stage = stage;
1769         c->shader_state = &key->shader_state->base;
1770         c->program_id = key->shader_state->program_id;
1771         c->variant_id = key->shader_state->compiled_variant_count++;
1772
1773         c->key = key;
1774         switch (stage) {
1775         case QSTAGE_FRAG:
1776                 c->fs_key = (struct vc4_fs_key *)key;
1777                 if (c->fs_key->is_points) {
1778                         c->point_x = emit_fragment_varying(c, ~0, 0);
1779                         c->point_y = emit_fragment_varying(c, ~0, 0);
1780                 } else if (c->fs_key->is_lines) {
1781                         c->line_x = emit_fragment_varying(c, ~0, 0);
1782                 }
1783                 break;
1784         case QSTAGE_VERT:
1785                 c->vs_key = (struct vc4_vs_key *)key;
1786                 break;
1787         case QSTAGE_COORD:
1788                 c->vs_key = (struct vc4_vs_key *)key;
1789                 break;
1790         }
1791
1792         const struct tgsi_token *tokens = key->shader_state->base.tokens;
1793
1794         if (vc4_debug & VC4_DEBUG_TGSI) {
1795                 fprintf(stderr, "%s prog %d/%d TGSI:\n",
1796                         qir_get_stage_name(c->stage),
1797                         c->program_id, c->variant_id);
1798                 tgsi_dump(tokens, 0);
1799         }
1800
1801         c->s = tgsi_to_nir(tokens, &nir_options);
1802         nir_opt_global_to_local(c->s);
1803         nir_convert_to_ssa(c->s);
1804
1805         if (stage == QSTAGE_FRAG)
1806                 vc4_nir_lower_blend(c);
1807
1808         struct nir_lower_tex_options tex_options = {
1809                 /* We would need to implement txs, but we don't want the
1810                  * int/float conversions
1811                  */
1812                 .lower_rect = false,
1813
1814                 /* We want to use this, but we don't want to newton-raphson
1815                  * its rcp.
1816                  */
1817                 .lower_txp = false,
1818
1819                 /* Apply swizzles to all samplers. */
1820                 .swizzle_result = ~0,
1821         };
1822
1823         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
1824          * The format swizzling applies before sRGB decode, and
1825          * ARB_texture_swizzle is the last thing before returning the sample.
1826          */
1827         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
1828                 enum pipe_format format = c->key->tex[i].format;
1829
1830                 if (!format)
1831                         continue;
1832
1833                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
1834
1835                 for (int j = 0; j < 4; j++) {
1836                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
1837
1838                         if (arb_swiz <= 3) {
1839                                 tex_options.swizzles[i][j] =
1840                                         format_swizzle[arb_swiz];
1841                         } else {
1842                                 tex_options.swizzles[i][j] = arb_swiz;
1843                         }
1844
1845                         /* If ARB_texture_swizzle is reading from the R, G, or
1846                          * B channels of an sRGB texture, then we need to
1847                          * apply sRGB decode to this channel at sample time.
1848                          */
1849                         if (arb_swiz < 3 && util_format_is_srgb(format)) {
1850                                 c->tex_srgb_decode[i] |= (1 << j);
1851                         }
1852
1853                 }
1854         }
1855
1856         nir_lower_tex(c->s, &tex_options);
1857
1858         if (c->fs_key && c->fs_key->light_twoside)
1859                 nir_lower_two_sided_color(c->s);
1860
1861         if (stage == QSTAGE_FRAG)
1862                 nir_lower_clip_fs(c->s, c->key->ucp_enables);
1863         else
1864                 nir_lower_clip_vs(c->s, c->key->ucp_enables);
1865
1866         vc4_nir_lower_io(c);
1867         vc4_nir_lower_txf_ms(c);
1868         nir_lower_idiv(c->s);
1869         nir_lower_load_const_to_scalar(c->s);
1870
1871         vc4_optimize_nir(c->s);
1872
1873         nir_remove_dead_variables(c->s);
1874
1875         nir_convert_from_ssa(c->s, true);
1876
1877         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1878                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1879                         qir_get_stage_name(c->stage),
1880                         c->program_id, c->variant_id,
1881                         count_nir_instrs(c->s));
1882         }
1883
1884         if (vc4_debug & VC4_DEBUG_NIR) {
1885                 fprintf(stderr, "%s prog %d/%d NIR:\n",
1886                         qir_get_stage_name(c->stage),
1887                         c->program_id, c->variant_id);
1888                 nir_print_shader(c->s, stderr);
1889         }
1890
1891         nir_to_qir(c);
1892
1893         switch (stage) {
1894         case QSTAGE_FRAG:
1895                 emit_frag_end(c);
1896                 break;
1897         case QSTAGE_VERT:
1898                 emit_vert_end(c,
1899                               vc4->prog.fs->input_slots,
1900                               vc4->prog.fs->num_inputs);
1901                 break;
1902         case QSTAGE_COORD:
1903                 emit_coord_end(c);
1904                 break;
1905         }
1906
1907         if (vc4_debug & VC4_DEBUG_QIR) {
1908                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1909                         qir_get_stage_name(c->stage),
1910                         c->program_id, c->variant_id);
1911                 qir_dump(c);
1912         }
1913
1914         qir_optimize(c);
1915         qir_lower_uniforms(c);
1916
1917         qir_schedule_instructions(c);
1918
1919         if (vc4_debug & VC4_DEBUG_QIR) {
1920                 fprintf(stderr, "%s prog %d/%d QIR:\n",
1921                         qir_get_stage_name(c->stage),
1922                         c->program_id, c->variant_id);
1923                 qir_dump(c);
1924         }
1925
1926         qir_reorder_uniforms(c);
1927         vc4_generate_code(vc4, c);
1928
1929         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1930                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1931                         qir_get_stage_name(c->stage),
1932                         c->program_id, c->variant_id,
1933                         c->qpu_inst_count);
1934                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1935                         qir_get_stage_name(c->stage),
1936                         c->program_id, c->variant_id,
1937                         c->num_uniforms);
1938         }
1939
1940         ralloc_free(c->s);
1941
1942         return c;
1943 }
1944
1945 static void *
1946 vc4_shader_state_create(struct pipe_context *pctx,
1947                         const struct pipe_shader_state *cso)
1948 {
1949         struct vc4_context *vc4 = vc4_context(pctx);
1950         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1951         if (!so)
1952                 return NULL;
1953
1954         so->base.tokens = tgsi_dup_tokens(cso->tokens);
1955         so->program_id = vc4->next_uncompiled_program_id++;
1956
1957         return so;
1958 }
1959
1960 static void
1961 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1962                              struct vc4_compile *c)
1963 {
1964         int count = c->num_uniforms;
1965         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
1966
1967         uinfo->count = count;
1968         uinfo->data = ralloc_array(shader, uint32_t, count);
1969         memcpy(uinfo->data, c->uniform_data,
1970                count * sizeof(*uinfo->data));
1971         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
1972         memcpy(uinfo->contents, c->uniform_contents,
1973                count * sizeof(*uinfo->contents));
1974         uinfo->num_texture_samples = c->num_texture_samples;
1975
1976         vc4_set_shader_uniform_dirty_flags(shader);
1977 }
1978
1979 static struct vc4_compiled_shader *
1980 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
1981                         struct vc4_key *key)
1982 {
1983         struct hash_table *ht;
1984         uint32_t key_size;
1985         if (stage == QSTAGE_FRAG) {
1986                 ht = vc4->fs_cache;
1987                 key_size = sizeof(struct vc4_fs_key);
1988         } else {
1989                 ht = vc4->vs_cache;
1990                 key_size = sizeof(struct vc4_vs_key);
1991         }
1992
1993         struct vc4_compiled_shader *shader;
1994         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
1995         if (entry)
1996                 return entry->data;
1997
1998         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
1999         shader = rzalloc(NULL, struct vc4_compiled_shader);
2000
2001         shader->program_id = vc4->next_compiled_program_id++;
2002         if (stage == QSTAGE_FRAG) {
2003                 bool input_live[c->num_input_slots];
2004
2005                 memset(input_live, 0, sizeof(input_live));
2006                 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
2007                         for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2008                                 if (inst->src[i].file == QFILE_VARY)
2009                                         input_live[inst->src[i].index] = true;
2010                         }
2011                 }
2012
2013                 shader->input_slots = ralloc_array(shader,
2014                                                    struct vc4_varying_slot,
2015                                                    c->num_input_slots);
2016
2017                 for (int i = 0; i < c->num_input_slots; i++) {
2018                         struct vc4_varying_slot *slot = &c->input_slots[i];
2019
2020                         if (!input_live[i])
2021                                 continue;
2022
2023                         /* Skip non-VS-output inputs. */
2024                         if (slot->slot == (uint8_t)~0)
2025                                 continue;
2026
2027                         if (slot->slot == VARYING_SLOT_COL0 ||
2028                             slot->slot == VARYING_SLOT_COL1 ||
2029                             slot->slot == VARYING_SLOT_BFC0 ||
2030                             slot->slot == VARYING_SLOT_BFC1) {
2031                                 shader->color_inputs |= (1 << shader->num_inputs);
2032                         }
2033
2034                         shader->input_slots[shader->num_inputs] = *slot;
2035                         shader->num_inputs++;
2036                 }
2037         } else {
2038                 shader->num_inputs = c->num_inputs;
2039
2040                 shader->vattr_offsets[0] = 0;
2041                 for (int i = 0; i < 8; i++) {
2042                         shader->vattr_offsets[i + 1] =
2043                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2044
2045                         if (c->vattr_sizes[i])
2046                                 shader->vattrs_live |= (1 << i);
2047                 }
2048         }
2049
2050         copy_uniform_state_to_shader(shader, c);
2051         shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2052                                          c->qpu_inst_count * sizeof(uint64_t));
2053
2054         /* Copy the compiler UBO range state to the compiled shader, dropping
2055          * out arrays that were never referenced by an indirect load.
2056          *
2057          * (Note that QIR dead code elimination of an array access still
2058          * leaves that array alive, though)
2059          */
2060         if (c->num_ubo_ranges) {
2061                 shader->num_ubo_ranges = c->num_ubo_ranges;
2062                 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2063                                                   c->num_ubo_ranges);
2064                 uint32_t j = 0;
2065                 for (int i = 0; i < c->num_uniform_ranges; i++) {
2066                         struct vc4_compiler_ubo_range *range =
2067                                 &c->ubo_ranges[i];
2068                         if (!range->used)
2069                                 continue;
2070
2071                         shader->ubo_ranges[j].dst_offset = range->dst_offset;
2072                         shader->ubo_ranges[j].src_offset = range->src_offset;
2073                         shader->ubo_ranges[j].size = range->size;
2074                         shader->ubo_size += c->ubo_ranges[i].size;
2075                         j++;
2076                 }
2077         }
2078         if (shader->ubo_size) {
2079                 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2080                         fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2081                                 qir_get_stage_name(c->stage),
2082                                 c->program_id, c->variant_id,
2083                                 shader->ubo_size / 4);
2084                 }
2085         }
2086
2087         qir_compile_destroy(c);
2088
2089         struct vc4_key *dup_key;
2090         dup_key = ralloc_size(shader, key_size);
2091         memcpy(dup_key, key, key_size);
2092         _mesa_hash_table_insert(ht, dup_key, shader);
2093
2094         return shader;
2095 }
2096
2097 static void
2098 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2099                      struct vc4_texture_stateobj *texstate)
2100 {
2101         for (int i = 0; i < texstate->num_textures; i++) {
2102                 struct pipe_sampler_view *sampler = texstate->textures[i];
2103                 struct pipe_sampler_state *sampler_state =
2104                         texstate->samplers[i];
2105
2106                 if (!sampler)
2107                         continue;
2108
2109                 key->tex[i].format = sampler->format;
2110                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2111                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2112                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2113                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2114
2115                 if (sampler->texture->nr_samples > 1) {
2116                         key->tex[i].msaa_width = sampler->texture->width0;
2117                         key->tex[i].msaa_height = sampler->texture->height0;
2118                 } else if (sampler){
2119                         key->tex[i].compare_mode = sampler_state->compare_mode;
2120                         key->tex[i].compare_func = sampler_state->compare_func;
2121                         key->tex[i].wrap_s = sampler_state->wrap_s;
2122                         key->tex[i].wrap_t = sampler_state->wrap_t;
2123                 }
2124         }
2125
2126         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2127 }
2128
2129 static void
2130 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2131 {
2132         struct vc4_fs_key local_key;
2133         struct vc4_fs_key *key = &local_key;
2134
2135         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2136                             VC4_DIRTY_BLEND |
2137                             VC4_DIRTY_FRAMEBUFFER |
2138                             VC4_DIRTY_ZSA |
2139                             VC4_DIRTY_RASTERIZER |
2140                             VC4_DIRTY_FRAGTEX |
2141                             VC4_DIRTY_TEXSTATE |
2142                             VC4_DIRTY_UNCOMPILED_FS))) {
2143                 return;
2144         }
2145
2146         memset(key, 0, sizeof(*key));
2147         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2148         key->base.shader_state = vc4->prog.bind_fs;
2149         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2150         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2151                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2152         key->blend = vc4->blend->rt[0];
2153         if (vc4->blend->logicop_enable) {
2154                 key->logicop_func = vc4->blend->logicop_func;
2155         } else {
2156                 key->logicop_func = PIPE_LOGICOP_COPY;
2157         }
2158         key->msaa = vc4->rasterizer->base.multisample;
2159         key->sample_coverage = (vc4->rasterizer->base.multisample &&
2160                                 vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2161         key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2162         key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2163         if (vc4->framebuffer.cbufs[0])
2164                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2165
2166         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2167         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2168         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2169         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2170                               key->stencil_enabled);
2171         if (vc4->zsa->base.alpha.enabled) {
2172                 key->alpha_test = true;
2173                 key->alpha_test_func = vc4->zsa->base.alpha.func;
2174         }
2175
2176         if (key->is_points) {
2177                 key->point_sprite_mask =
2178                         vc4->rasterizer->base.sprite_coord_enable;
2179                 key->point_coord_upper_left =
2180                         (vc4->rasterizer->base.sprite_coord_mode ==
2181                          PIPE_SPRITE_COORD_UPPER_LEFT);
2182         }
2183
2184         key->light_twoside = vc4->rasterizer->base.light_twoside;
2185
2186         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2187         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2188         if (vc4->prog.fs == old_fs)
2189                 return;
2190
2191         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2192         if (vc4->rasterizer->base.flatshade &&
2193             old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2194                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2195         }
2196 }
2197
2198 static void
2199 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2200 {
2201         struct vc4_vs_key local_key;
2202         struct vc4_vs_key *key = &local_key;
2203
2204         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2205                             VC4_DIRTY_RASTERIZER |
2206                             VC4_DIRTY_VERTTEX |
2207                             VC4_DIRTY_TEXSTATE |
2208                             VC4_DIRTY_VTXSTATE |
2209                             VC4_DIRTY_UNCOMPILED_VS |
2210                             VC4_DIRTY_COMPILED_FS))) {
2211                 return;
2212         }
2213
2214         memset(key, 0, sizeof(*key));
2215         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2216         key->base.shader_state = vc4->prog.bind_vs;
2217         key->compiled_fs_id = vc4->prog.fs->program_id;
2218
2219         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2220                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2221
2222         key->per_vertex_point_size =
2223                 (prim_mode == PIPE_PRIM_POINTS &&
2224                  vc4->rasterizer->base.point_size_per_vertex);
2225
2226         struct vc4_compiled_shader *vs =
2227                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2228         if (vs != vc4->prog.vs) {
2229                 vc4->prog.vs = vs;
2230                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2231         }
2232
2233         key->is_coord = true;
2234         struct vc4_compiled_shader *cs =
2235                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2236         if (cs != vc4->prog.cs) {
2237                 vc4->prog.cs = cs;
2238                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2239         }
2240 }
2241
2242 void
2243 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2244 {
2245         vc4_update_compiled_fs(vc4, prim_mode);
2246         vc4_update_compiled_vs(vc4, prim_mode);
2247 }
2248
2249 static uint32_t
2250 fs_cache_hash(const void *key)
2251 {
2252         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2253 }
2254
2255 static uint32_t
2256 vs_cache_hash(const void *key)
2257 {
2258         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2259 }
2260
2261 static bool
2262 fs_cache_compare(const void *key1, const void *key2)
2263 {
2264         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2265 }
2266
2267 static bool
2268 vs_cache_compare(const void *key1, const void *key2)
2269 {
2270         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2271 }
2272
2273 static void
2274 delete_from_cache_if_matches(struct hash_table *ht,
2275                              struct hash_entry *entry,
2276                              struct vc4_uncompiled_shader *so)
2277 {
2278         const struct vc4_key *key = entry->key;
2279
2280         if (key->shader_state == so) {
2281                 struct vc4_compiled_shader *shader = entry->data;
2282                 _mesa_hash_table_remove(ht, entry);
2283                 vc4_bo_unreference(&shader->bo);
2284                 ralloc_free(shader);
2285         }
2286 }
2287
2288 static void
2289 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2290 {
2291         struct vc4_context *vc4 = vc4_context(pctx);
2292         struct vc4_uncompiled_shader *so = hwcso;
2293
2294         struct hash_entry *entry;
2295         hash_table_foreach(vc4->fs_cache, entry)
2296                 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2297         hash_table_foreach(vc4->vs_cache, entry)
2298                 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2299
2300         free((void *)so->base.tokens);
2301         free(so);
2302 }
2303
2304 static void
2305 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2306 {
2307         struct vc4_context *vc4 = vc4_context(pctx);
2308         vc4->prog.bind_fs = hwcso;
2309         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2310 }
2311
2312 static void
2313 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2314 {
2315         struct vc4_context *vc4 = vc4_context(pctx);
2316         vc4->prog.bind_vs = hwcso;
2317         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2318 }
2319
2320 void
2321 vc4_program_init(struct pipe_context *pctx)
2322 {
2323         struct vc4_context *vc4 = vc4_context(pctx);
2324
2325         pctx->create_vs_state = vc4_shader_state_create;
2326         pctx->delete_vs_state = vc4_shader_state_delete;
2327
2328         pctx->create_fs_state = vc4_shader_state_create;
2329         pctx->delete_fs_state = vc4_shader_state_delete;
2330
2331         pctx->bind_fs_state = vc4_fp_state_bind;
2332         pctx->bind_vs_state = vc4_vp_state_bind;
2333
2334         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2335                                                 fs_cache_compare);
2336         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2337                                                 vs_cache_compare);
2338 }
2339
2340 void
2341 vc4_program_fini(struct pipe_context *pctx)
2342 {
2343         struct vc4_context *vc4 = vc4_context(pctx);
2344
2345         struct hash_entry *entry;
2346         hash_table_foreach(vc4->fs_cache, entry) {
2347                 struct vc4_compiled_shader *shader = entry->data;
2348                 vc4_bo_unreference(&shader->bo);
2349                 ralloc_free(shader);
2350                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2351         }
2352
2353         hash_table_foreach(vc4->vs_cache, entry) {
2354                 struct vc4_compiled_shader *shader = entry->data;
2355                 vc4_bo_unreference(&shader->bo);
2356                 ralloc_free(shader);
2357                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2358         }
2359 }