OSDN Git Service

vc4: Use Rob's NIR-based user clip lowering.
[android-x86/external-mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_lowering.h"
34 #include "tgsi/tgsi_parse.h"
35 #include "glsl/nir/nir.h"
36 #include "glsl/nir/nir_builder.h"
37 #include "nir/tgsi_to_nir.h"
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41 #ifdef USE_VC4_SIMULATOR
42 #include "simpenrose/simpenrose.h"
43 #endif
44
45 static struct qreg
46 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
47
48 static void
49 resize_qreg_array(struct vc4_compile *c,
50                   struct qreg **regs,
51                   uint32_t *size,
52                   uint32_t decl_size)
53 {
54         if (*size >= decl_size)
55                 return;
56
57         uint32_t old_size = *size;
58         *size = MAX2(*size * 2, decl_size);
59         *regs = reralloc(c, *regs, struct qreg, *size);
60         if (!*regs) {
61                 fprintf(stderr, "Malloc failure\n");
62                 abort();
63         }
64
65         for (uint32_t i = old_size; i < *size; i++)
66                 (*regs)[i] = c->undef;
67 }
68
69 static struct qreg
70 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
71 {
72         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
73         uint32_t offset = intr->const_index[0];
74         struct vc4_compiler_ubo_range *range = NULL;
75         unsigned i;
76         for (i = 0; i < c->num_uniform_ranges; i++) {
77                 range = &c->ubo_ranges[i];
78                 if (offset >= range->src_offset &&
79                     offset < range->src_offset + range->size) {
80                         break;
81                 }
82         }
83         /* The driver-location-based offset always has to be within a declared
84          * uniform range.
85          */
86         assert(range);
87         if (!range->used) {
88                 range->used = true;
89                 range->dst_offset = c->next_ubo_dst_offset;
90                 c->next_ubo_dst_offset += range->size;
91                 c->num_ubo_ranges++;
92         };
93
94         offset -= range->src_offset;
95
96         /* Adjust for where we stored the TGSI register base. */
97         indirect_offset = qir_ADD(c, indirect_offset,
98                                   qir_uniform_ui(c, (range->dst_offset +
99                                                      offset)));
100
101         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
102         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
103         indirect_offset = qir_MIN(c, indirect_offset,
104                                   qir_uniform_ui(c, (range->dst_offset +
105                                                      range->size - 4)));
106
107         qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
108         c->num_texture_samples++;
109         return qir_TEX_RESULT(c);
110 }
111
112 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
113                                        enum quniform_contents contents)
114 {
115         nir_intrinsic_instr *intr =
116                 nir_intrinsic_instr_create(b->shader,
117                                            nir_intrinsic_load_uniform);
118         intr->const_index[0] = VC4_NIR_STATE_UNIFORM_OFFSET + contents;
119         intr->num_components = 1;
120         nir_ssa_dest_init(&intr->instr, &intr->dest, 1, NULL);
121         nir_builder_instr_insert(b, &intr->instr);
122         return &intr->dest.ssa;
123 }
124
125 nir_ssa_def *
126 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
127 {
128         switch (swiz) {
129         default:
130         case UTIL_FORMAT_SWIZZLE_NONE:
131                 fprintf(stderr, "warning: unknown swizzle\n");
132                 /* FALLTHROUGH */
133         case UTIL_FORMAT_SWIZZLE_0:
134                 return nir_imm_float(b, 0.0);
135         case UTIL_FORMAT_SWIZZLE_1:
136                 return nir_imm_float(b, 1.0);
137         case UTIL_FORMAT_SWIZZLE_X:
138         case UTIL_FORMAT_SWIZZLE_Y:
139         case UTIL_FORMAT_SWIZZLE_Z:
140         case UTIL_FORMAT_SWIZZLE_W:
141                 return srcs[swiz];
142         }
143 }
144
145 static struct qreg *
146 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
147 {
148         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
149                                           def->num_components);
150         _mesa_hash_table_insert(c->def_ht, def, qregs);
151         return qregs;
152 }
153
154 static struct qreg *
155 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
156 {
157         if (dest->is_ssa) {
158                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
159                 for (int i = 0; i < dest->ssa.num_components; i++)
160                         qregs[i] = c->undef;
161                 return qregs;
162         } else {
163                 nir_register *reg = dest->reg.reg;
164                 assert(dest->reg.base_offset == 0);
165                 assert(reg->num_array_elems == 0);
166                 struct hash_entry *entry =
167                         _mesa_hash_table_search(c->def_ht, reg);
168                 return entry->data;
169         }
170 }
171
172 static struct qreg
173 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
174 {
175         struct hash_entry *entry;
176         if (src.is_ssa) {
177                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
178                 assert(i < src.ssa->num_components);
179         } else {
180                 nir_register *reg = src.reg.reg;
181                 entry = _mesa_hash_table_search(c->def_ht, reg);
182                 assert(reg->num_array_elems == 0);
183                 assert(src.reg.base_offset == 0);
184                 assert(i < reg->num_components);
185         }
186
187         struct qreg *qregs = entry->data;
188         return qregs[i];
189 }
190
191 static struct qreg
192 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
193                 unsigned src)
194 {
195         assert(util_is_power_of_two(instr->dest.write_mask));
196         unsigned chan = ffs(instr->dest.write_mask) - 1;
197         struct qreg r = ntq_get_src(c, instr->src[src].src,
198                                     instr->src[src].swizzle[chan]);
199
200         assert(!instr->src[src].abs);
201         assert(!instr->src[src].negate);
202
203         return r;
204 };
205
206 static struct qreg
207 get_swizzled_channel(struct vc4_compile *c,
208                      struct qreg *srcs, int swiz)
209 {
210         switch (swiz) {
211         default:
212         case UTIL_FORMAT_SWIZZLE_NONE:
213                 fprintf(stderr, "warning: unknown swizzle\n");
214                 /* FALLTHROUGH */
215         case UTIL_FORMAT_SWIZZLE_0:
216                 return qir_uniform_f(c, 0.0);
217         case UTIL_FORMAT_SWIZZLE_1:
218                 return qir_uniform_f(c, 1.0);
219         case UTIL_FORMAT_SWIZZLE_X:
220         case UTIL_FORMAT_SWIZZLE_Y:
221         case UTIL_FORMAT_SWIZZLE_Z:
222         case UTIL_FORMAT_SWIZZLE_W:
223                 return srcs[swiz];
224         }
225 }
226
227 static inline struct qreg
228 qir_SAT(struct vc4_compile *c, struct qreg val)
229 {
230         return qir_FMAX(c,
231                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
232                         qir_uniform_f(c, 0.0));
233 }
234
235 static struct qreg
236 ntq_rcp(struct vc4_compile *c, struct qreg x)
237 {
238         struct qreg r = qir_RCP(c, x);
239
240         /* Apply a Newton-Raphson step to improve the accuracy. */
241         r = qir_FMUL(c, r, qir_FSUB(c,
242                                     qir_uniform_f(c, 2.0),
243                                     qir_FMUL(c, x, r)));
244
245         return r;
246 }
247
248 static struct qreg
249 ntq_rsq(struct vc4_compile *c, struct qreg x)
250 {
251         struct qreg r = qir_RSQ(c, x);
252
253         /* Apply a Newton-Raphson step to improve the accuracy. */
254         r = qir_FMUL(c, r, qir_FSUB(c,
255                                     qir_uniform_f(c, 1.5),
256                                     qir_FMUL(c,
257                                              qir_uniform_f(c, 0.5),
258                                              qir_FMUL(c, x,
259                                                       qir_FMUL(c, r, r)))));
260
261         return r;
262 }
263
264 static struct qreg
265 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
266 {
267         struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
268         struct qreg high = qir_POW(c,
269                                    qir_FMUL(c,
270                                             qir_FADD(c,
271                                                      srgb,
272                                                      qir_uniform_f(c, 0.055)),
273                                             qir_uniform_f(c, 1.0 / 1.055)),
274                                    qir_uniform_f(c, 2.4));
275
276         qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
277         return qir_SEL_X_Y_NS(c, low, high);
278 }
279
280 static struct qreg
281 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
282 {
283         struct qreg src0_hi = qir_SHR(c, src0,
284                                       qir_uniform_ui(c, 24));
285         struct qreg src1_hi = qir_SHR(c, src1,
286                                       qir_uniform_ui(c, 24));
287
288         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
289         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
290         struct qreg lolo = qir_MUL24(c, src0, src1);
291
292         return qir_ADD(c, lolo, qir_SHL(c,
293                                         qir_ADD(c, hilo, lohi),
294                                         qir_uniform_ui(c, 24)));
295 }
296
297 static void
298 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
299 {
300         struct qreg s, t, r, lod, proj, compare;
301         bool is_txb = false, is_txl = false, has_proj = false;
302         unsigned unit = instr->sampler_index;
303
304         for (unsigned i = 0; i < instr->num_srcs; i++) {
305                 switch (instr->src[i].src_type) {
306                 case nir_tex_src_coord:
307                         s = ntq_get_src(c, instr->src[i].src, 0);
308                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
309                                 t = qir_uniform_f(c, 0.5);
310                         else
311                                 t = ntq_get_src(c, instr->src[i].src, 1);
312                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
313                                 r = ntq_get_src(c, instr->src[i].src, 2);
314                         break;
315                 case nir_tex_src_bias:
316                         lod = ntq_get_src(c, instr->src[i].src, 0);
317                         is_txb = true;
318                         break;
319                 case nir_tex_src_lod:
320                         lod = ntq_get_src(c, instr->src[i].src, 0);
321                         is_txl = true;
322                         break;
323                 case nir_tex_src_comparitor:
324                         compare = ntq_get_src(c, instr->src[i].src, 0);
325                         break;
326                 case nir_tex_src_projector:
327                         proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
328                         s = qir_FMUL(c, s, proj);
329                         t = qir_FMUL(c, t, proj);
330                         has_proj = true;
331                         break;
332                 default:
333                         unreachable("unknown texture source");
334                 }
335         }
336
337         struct qreg texture_u[] = {
338                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
339                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
340                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
341                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
342         };
343         uint32_t next_texture_u = 0;
344
345         /* There is no native support for GL texture rectangle coordinates, so
346          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
347          * 1]).
348          */
349         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
350                 s = qir_FMUL(c, s,
351                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
352                 t = qir_FMUL(c, t,
353                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
354         }
355
356         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
357                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
358                                            unit | (is_txl << 16));
359         }
360
361         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
362                 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
363                 struct qreg rcp_ma = qir_RCP(c, ma);
364                 s = qir_FMUL(c, s, rcp_ma);
365                 t = qir_FMUL(c, t, rcp_ma);
366                 r = qir_FMUL(c, r, rcp_ma);
367
368                 qir_TEX_R(c, r, texture_u[next_texture_u++]);
369         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
370                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
371                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
372                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
373                 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
374                           texture_u[next_texture_u++]);
375         }
376
377         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
378                 s = qir_SAT(c, s);
379         }
380
381         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
382                 t = qir_SAT(c, t);
383         }
384
385         qir_TEX_T(c, t, texture_u[next_texture_u++]);
386
387         if (is_txl || is_txb)
388                 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
389
390         qir_TEX_S(c, s, texture_u[next_texture_u++]);
391
392         c->num_texture_samples++;
393         struct qreg tex = qir_TEX_RESULT(c);
394
395         enum pipe_format format = c->key->tex[unit].format;
396
397         struct qreg unpacked[4];
398         if (util_format_is_depth_or_stencil(format)) {
399                 struct qreg depthf = qir_ITOF(c, qir_SHR(c, tex,
400                                                          qir_uniform_ui(c, 8)));
401                 struct qreg normalized = qir_FMUL(c, depthf,
402                                                   qir_uniform_f(c, 1.0f/0xffffff));
403
404                 struct qreg depth_output;
405
406                 struct qreg one = qir_uniform_f(c, 1.0f);
407                 if (c->key->tex[unit].compare_mode) {
408                         if (has_proj)
409                                 compare = qir_FMUL(c, compare, proj);
410
411                         switch (c->key->tex[unit].compare_func) {
412                         case PIPE_FUNC_NEVER:
413                                 depth_output = qir_uniform_f(c, 0.0f);
414                                 break;
415                         case PIPE_FUNC_ALWAYS:
416                                 depth_output = one;
417                                 break;
418                         case PIPE_FUNC_EQUAL:
419                                 qir_SF(c, qir_FSUB(c, compare, normalized));
420                                 depth_output = qir_SEL_X_0_ZS(c, one);
421                                 break;
422                         case PIPE_FUNC_NOTEQUAL:
423                                 qir_SF(c, qir_FSUB(c, compare, normalized));
424                                 depth_output = qir_SEL_X_0_ZC(c, one);
425                                 break;
426                         case PIPE_FUNC_GREATER:
427                                 qir_SF(c, qir_FSUB(c, compare, normalized));
428                                 depth_output = qir_SEL_X_0_NC(c, one);
429                                 break;
430                         case PIPE_FUNC_GEQUAL:
431                                 qir_SF(c, qir_FSUB(c, normalized, compare));
432                                 depth_output = qir_SEL_X_0_NS(c, one);
433                                 break;
434                         case PIPE_FUNC_LESS:
435                                 qir_SF(c, qir_FSUB(c, compare, normalized));
436                                 depth_output = qir_SEL_X_0_NS(c, one);
437                                 break;
438                         case PIPE_FUNC_LEQUAL:
439                                 qir_SF(c, qir_FSUB(c, normalized, compare));
440                                 depth_output = qir_SEL_X_0_NC(c, one);
441                                 break;
442                         }
443                 } else {
444                         depth_output = normalized;
445                 }
446
447                 for (int i = 0; i < 4; i++)
448                         unpacked[i] = depth_output;
449         } else {
450                 for (int i = 0; i < 4; i++)
451                         unpacked[i] = qir_UNPACK_8_F(c, tex, i);
452         }
453
454         const uint8_t *format_swiz = vc4_get_format_swizzle(format);
455         struct qreg texture_output[4];
456         for (int i = 0; i < 4; i++) {
457                 texture_output[i] = get_swizzled_channel(c, unpacked,
458                                                          format_swiz[i]);
459         }
460
461         if (util_format_is_srgb(format)) {
462                 for (int i = 0; i < 3; i++)
463                         texture_output[i] = qir_srgb_decode(c,
464                                                             texture_output[i]);
465         }
466
467         struct qreg *dest = ntq_get_dest(c, &instr->dest);
468         for (int i = 0; i < 4; i++) {
469                 dest[i] = get_swizzled_channel(c, texture_output,
470                                                c->key->tex[unit].swizzle[i]);
471         }
472 }
473
474 /**
475  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
476  * to zero).
477  */
478 static struct qreg
479 ntq_ffract(struct vc4_compile *c, struct qreg src)
480 {
481         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
482         struct qreg diff = qir_FSUB(c, src, trunc);
483         qir_SF(c, diff);
484         return qir_SEL_X_Y_NS(c,
485                               qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
486                               diff);
487 }
488
489 /**
490  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
491  * zero).
492  */
493 static struct qreg
494 ntq_ffloor(struct vc4_compile *c, struct qreg src)
495 {
496         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
497
498         /* This will be < 0 if we truncated and the truncation was of a value
499          * that was < 0 in the first place.
500          */
501         qir_SF(c, qir_FSUB(c, src, trunc));
502
503         return qir_SEL_X_Y_NS(c,
504                               qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
505                               trunc);
506 }
507
508 /**
509  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
510  * zero).
511  */
512 static struct qreg
513 ntq_fceil(struct vc4_compile *c, struct qreg src)
514 {
515         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
516
517         /* This will be < 0 if we truncated and the truncation was of a value
518          * that was > 0 in the first place.
519          */
520         qir_SF(c, qir_FSUB(c, trunc, src));
521
522         return qir_SEL_X_Y_NS(c,
523                               qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
524                               trunc);
525 }
526
527 static struct qreg
528 ntq_fsin(struct vc4_compile *c, struct qreg src)
529 {
530         float coeff[] = {
531                 -2.0 * M_PI,
532                 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
533                 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
534                 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
535                 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
536         };
537
538         struct qreg scaled_x =
539                 qir_FMUL(c,
540                          src,
541                          qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
542
543         struct qreg x = qir_FADD(c,
544                                  ntq_ffract(c, scaled_x),
545                                  qir_uniform_f(c, -0.5));
546         struct qreg x2 = qir_FMUL(c, x, x);
547         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
548         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
549                 x = qir_FMUL(c, x, x2);
550                 sum = qir_FADD(c,
551                                sum,
552                                qir_FMUL(c,
553                                         x,
554                                         qir_uniform_f(c, coeff[i])));
555         }
556         return sum;
557 }
558
559 static struct qreg
560 ntq_fcos(struct vc4_compile *c, struct qreg src)
561 {
562         float coeff[] = {
563                 -1.0f,
564                 pow(2.0 * M_PI, 2) / (2 * 1),
565                 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
566                 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
567                 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
568                 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
569         };
570
571         struct qreg scaled_x =
572                 qir_FMUL(c, src,
573                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
574         struct qreg x_frac = qir_FADD(c,
575                                       ntq_ffract(c, scaled_x),
576                                       qir_uniform_f(c, -0.5));
577
578         struct qreg sum = qir_uniform_f(c, coeff[0]);
579         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
580         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
581         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
582                 if (i != 1)
583                         x = qir_FMUL(c, x, x2);
584
585                 struct qreg mul = qir_FMUL(c,
586                                            x,
587                                            qir_uniform_f(c, coeff[i]));
588                 if (i == 0)
589                         sum = mul;
590                 else
591                         sum = qir_FADD(c, sum, mul);
592         }
593         return sum;
594 }
595
596 static struct qreg
597 ntq_fsign(struct vc4_compile *c, struct qreg src)
598 {
599         qir_SF(c, src);
600         return qir_SEL_X_Y_NC(c,
601                               qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
602                               qir_uniform_f(c, -1.0));
603 }
604
605 static void
606 emit_vertex_input(struct vc4_compile *c, int attr)
607 {
608         enum pipe_format format = c->vs_key->attr_formats[attr];
609         uint32_t attr_size = util_format_get_blocksize(format);
610
611         c->vattr_sizes[attr] = align(attr_size, 4);
612         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
613                 struct qreg vpm = { QFILE_VPM, attr * 4 + i };
614                 c->inputs[attr * 4 + i] = qir_MOV(c, vpm);
615                 c->num_inputs++;
616         }
617 }
618
619 static void
620 emit_fragcoord_input(struct vc4_compile *c, int attr)
621 {
622         c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
623         c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
624         c->inputs[attr * 4 + 2] =
625                 qir_FMUL(c,
626                          qir_ITOF(c, qir_FRAG_Z(c)),
627                          qir_uniform_f(c, 1.0 / 0xffffff));
628         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
629 }
630
631 static struct qreg
632 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
633                       uint8_t swizzle)
634 {
635         uint32_t i = c->num_input_slots++;
636         struct qreg vary = {
637                 QFILE_VARY,
638                 i
639         };
640
641         if (c->num_input_slots >= c->input_slots_array_size) {
642                 c->input_slots_array_size =
643                         MAX2(4, c->input_slots_array_size * 2);
644
645                 c->input_slots = reralloc(c, c->input_slots,
646                                           struct vc4_varying_slot,
647                                           c->input_slots_array_size);
648         }
649
650         c->input_slots[i].slot = slot;
651         c->input_slots[i].swizzle = swizzle;
652
653         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
654 }
655
656 static void
657 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
658 {
659         for (int i = 0; i < 4; i++) {
660                 c->inputs[attr * 4 + i] =
661                         emit_fragment_varying(c, slot, i);
662                 c->num_inputs++;
663         }
664 }
665
666 static void
667 add_output(struct vc4_compile *c,
668            uint32_t decl_offset,
669            uint8_t slot,
670            uint8_t swizzle)
671 {
672         uint32_t old_array_size = c->outputs_array_size;
673         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
674                           decl_offset + 1);
675
676         if (old_array_size != c->outputs_array_size) {
677                 c->output_slots = reralloc(c,
678                                            c->output_slots,
679                                            struct vc4_varying_slot,
680                                            c->outputs_array_size);
681         }
682
683         c->output_slots[decl_offset].slot = slot;
684         c->output_slots[decl_offset].swizzle = swizzle;
685 }
686
687 static void
688 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
689 {
690         unsigned array_id = c->num_uniform_ranges++;
691         if (array_id >= c->ubo_ranges_array_size) {
692                 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
693                                                 array_id + 1);
694                 c->ubo_ranges = reralloc(c, c->ubo_ranges,
695                                          struct vc4_compiler_ubo_range,
696                                          c->ubo_ranges_array_size);
697         }
698
699         c->ubo_ranges[array_id].dst_offset = 0;
700         c->ubo_ranges[array_id].src_offset = start;
701         c->ubo_ranges[array_id].size = size;
702         c->ubo_ranges[array_id].used = false;
703 }
704
705 static bool
706 ntq_src_is_only_ssa_def_user(nir_src *src)
707 {
708         if (!src->is_ssa)
709                 return false;
710
711         if (!list_empty(&src->ssa->if_uses))
712                 return false;
713
714         return (src->ssa->uses.next == &src->use_link &&
715                 src->ssa->uses.next->next == &src->ssa->uses);
716 }
717
718 /**
719  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
720  * bit set.
721  *
722  * However, as an optimization, it tries to find the instructions generating
723  * the sources to be packed and just emit the pack flag there, if possible.
724  */
725 static void
726 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
727 {
728         struct qreg result = qir_get_temp(c);
729         struct nir_alu_instr *vec4 = NULL;
730
731         /* If packing from a vec4 op (as expected), identify it so that we can
732          * peek back at what generated its sources.
733          */
734         if (instr->src[0].src.is_ssa &&
735             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
736             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
737             nir_op_vec4) {
738                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
739         }
740
741         for (int i = 0; i < 4; i++) {
742                 int swiz = instr->src[0].swizzle[i];
743                 struct qreg src;
744                 if (vec4) {
745                         src = ntq_get_src(c, vec4->src[swiz].src,
746                                           vec4->src[swiz].swizzle[0]);
747                 } else {
748                         src = ntq_get_src(c, instr->src[0].src, swiz);
749                 }
750
751                 if (vec4 &&
752                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
753                     src.file == QFILE_TEMP &&
754                     c->defs[src.index] &&
755                     qir_is_mul(c->defs[src.index]) &&
756                     !c->defs[src.index]->dst.pack) {
757                         struct qinst *rewrite = c->defs[src.index];
758                         c->defs[src.index] = NULL;
759                         rewrite->dst = result;
760                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
761                         continue;
762                 }
763
764                 qir_PACK_8_F(c, result, src, i);
765         }
766
767         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
768         *dest = result;
769 }
770
771 /** Handles sign-extended bitfield extracts for 16 bits. */
772 static struct qreg
773 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
774               struct qreg bits)
775 {
776         assert(bits.file == QFILE_UNIF &&
777                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
778                c->uniform_data[bits.index] == 16);
779
780         assert(offset.file == QFILE_UNIF &&
781                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
782         int offset_bit = c->uniform_data[offset.index];
783         assert(offset_bit % 16 == 0);
784
785         return qir_UNPACK_16_I(c, base, offset_bit / 16);
786 }
787
788 /** Handles unsigned bitfield extracts for 8 bits. */
789 static struct qreg
790 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
791               struct qreg bits)
792 {
793         assert(bits.file == QFILE_UNIF &&
794                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
795                c->uniform_data[bits.index] == 8);
796
797         assert(offset.file == QFILE_UNIF &&
798                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
799         int offset_bit = c->uniform_data[offset.index];
800         assert(offset_bit % 8 == 0);
801
802         return qir_UNPACK_8_I(c, base, offset_bit / 8);
803 }
804
805 static void
806 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
807 {
808         /* Vectors are special in that they have non-scalarized writemasks,
809          * and just take the first swizzle channel for each argument in order
810          * into each writemask channel.
811          */
812         if (instr->op == nir_op_vec2 ||
813             instr->op == nir_op_vec3 ||
814             instr->op == nir_op_vec4) {
815                 struct qreg srcs[4];
816                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
817                         srcs[i] = ntq_get_src(c, instr->src[i].src,
818                                               instr->src[i].swizzle[0]);
819                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
820                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
821                         dest[i] = srcs[i];
822                 return;
823         }
824
825         if (instr->op == nir_op_pack_unorm_4x8) {
826                 ntq_emit_pack_unorm_4x8(c, instr);
827                 return;
828         }
829
830         if (instr->op == nir_op_unpack_unorm_4x8) {
831                 struct qreg src = ntq_get_src(c, instr->src[0].src,
832                                               instr->src[0].swizzle[0]);
833                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
834                 for (int i = 0; i < 4; i++) {
835                         if (instr->dest.write_mask & (1 << i))
836                                 dest[i] = qir_UNPACK_8_F(c, src, i);
837                 }
838                 return;
839         }
840
841         /* General case: We can just grab the one used channel per src. */
842         struct qreg src[nir_op_infos[instr->op].num_inputs];
843         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
844                 src[i] = ntq_get_alu_src(c, instr, i);
845         }
846
847         /* Pick the channel to store the output in. */
848         assert(!instr->dest.saturate);
849         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
850         assert(util_is_power_of_two(instr->dest.write_mask));
851         dest += ffs(instr->dest.write_mask) - 1;
852
853         switch (instr->op) {
854         case nir_op_fmov:
855         case nir_op_imov:
856                 *dest = qir_MOV(c, src[0]);
857                 break;
858         case nir_op_fmul:
859                 *dest = qir_FMUL(c, src[0], src[1]);
860                 break;
861         case nir_op_fadd:
862                 *dest = qir_FADD(c, src[0], src[1]);
863                 break;
864         case nir_op_fsub:
865                 *dest = qir_FSUB(c, src[0], src[1]);
866                 break;
867         case nir_op_fmin:
868                 *dest = qir_FMIN(c, src[0], src[1]);
869                 break;
870         case nir_op_fmax:
871                 *dest = qir_FMAX(c, src[0], src[1]);
872                 break;
873
874         case nir_op_f2i:
875         case nir_op_f2u:
876                 *dest = qir_FTOI(c, src[0]);
877                 break;
878         case nir_op_i2f:
879         case nir_op_u2f:
880                 *dest = qir_ITOF(c, src[0]);
881                 break;
882         case nir_op_b2f:
883                 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
884                 break;
885         case nir_op_b2i:
886                 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
887                 break;
888         case nir_op_i2b:
889         case nir_op_f2b:
890                 qir_SF(c, src[0]);
891                 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
892                 break;
893
894         case nir_op_iadd:
895                 *dest = qir_ADD(c, src[0], src[1]);
896                 break;
897         case nir_op_ushr:
898                 *dest = qir_SHR(c, src[0], src[1]);
899                 break;
900         case nir_op_isub:
901                 *dest = qir_SUB(c, src[0], src[1]);
902                 break;
903         case nir_op_ishr:
904                 *dest = qir_ASR(c, src[0], src[1]);
905                 break;
906         case nir_op_ishl:
907                 *dest = qir_SHL(c, src[0], src[1]);
908                 break;
909         case nir_op_imin:
910                 *dest = qir_MIN(c, src[0], src[1]);
911                 break;
912         case nir_op_imax:
913                 *dest = qir_MAX(c, src[0], src[1]);
914                 break;
915         case nir_op_iand:
916                 *dest = qir_AND(c, src[0], src[1]);
917                 break;
918         case nir_op_ior:
919                 *dest = qir_OR(c, src[0], src[1]);
920                 break;
921         case nir_op_ixor:
922                 *dest = qir_XOR(c, src[0], src[1]);
923                 break;
924         case nir_op_inot:
925                 *dest = qir_NOT(c, src[0]);
926                 break;
927
928         case nir_op_imul:
929                 *dest = ntq_umul(c, src[0], src[1]);
930                 break;
931
932         case nir_op_seq:
933                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
934                 *dest = qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
935                 break;
936         case nir_op_sne:
937                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
938                 *dest = qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
939                 break;
940         case nir_op_sge:
941                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
942                 *dest = qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
943                 break;
944         case nir_op_slt:
945                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
946                 *dest = qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
947                 break;
948         case nir_op_feq:
949                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
950                 *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
951                 break;
952         case nir_op_fne:
953                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
954                 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
955                 break;
956         case nir_op_fge:
957                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
958                 *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
959                 break;
960         case nir_op_flt:
961                 qir_SF(c, qir_FSUB(c, src[0], src[1]));
962                 *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
963                 break;
964         case nir_op_ieq:
965                 qir_SF(c, qir_SUB(c, src[0], src[1]));
966                 *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
967                 break;
968         case nir_op_ine:
969                 qir_SF(c, qir_SUB(c, src[0], src[1]));
970                 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
971                 break;
972         case nir_op_ige:
973                 qir_SF(c, qir_SUB(c, src[0], src[1]));
974                 *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
975                 break;
976         case nir_op_ilt:
977                 qir_SF(c, qir_SUB(c, src[0], src[1]));
978                 *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
979                 break;
980
981         case nir_op_bcsel:
982                 qir_SF(c, src[0]);
983                 *dest = qir_SEL_X_Y_NS(c, src[1], src[2]);
984                 break;
985         case nir_op_fcsel:
986                 qir_SF(c, src[0]);
987                 *dest = qir_SEL_X_Y_ZC(c, src[1], src[2]);
988                 break;
989
990         case nir_op_frcp:
991                 *dest = ntq_rcp(c, src[0]);
992                 break;
993         case nir_op_frsq:
994                 *dest = ntq_rsq(c, src[0]);
995                 break;
996         case nir_op_fexp2:
997                 *dest = qir_EXP2(c, src[0]);
998                 break;
999         case nir_op_flog2:
1000                 *dest = qir_LOG2(c, src[0]);
1001                 break;
1002
1003         case nir_op_ftrunc:
1004                 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1005                 break;
1006         case nir_op_fceil:
1007                 *dest = ntq_fceil(c, src[0]);
1008                 break;
1009         case nir_op_ffract:
1010                 *dest = ntq_ffract(c, src[0]);
1011                 break;
1012         case nir_op_ffloor:
1013                 *dest = ntq_ffloor(c, src[0]);
1014                 break;
1015
1016         case nir_op_fsin:
1017                 *dest = ntq_fsin(c, src[0]);
1018                 break;
1019         case nir_op_fcos:
1020                 *dest = ntq_fcos(c, src[0]);
1021                 break;
1022
1023         case nir_op_fsign:
1024                 *dest = ntq_fsign(c, src[0]);
1025                 break;
1026
1027         case nir_op_fabs:
1028                 *dest = qir_FMAXABS(c, src[0], src[0]);
1029                 break;
1030         case nir_op_iabs:
1031                 *dest = qir_MAX(c, src[0],
1032                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1033                 break;
1034
1035         case nir_op_ibitfield_extract:
1036                 *dest = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1037                 break;
1038
1039         case nir_op_ubitfield_extract:
1040                 *dest = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1041                 break;
1042
1043         default:
1044                 fprintf(stderr, "unknown NIR ALU inst: ");
1045                 nir_print_instr(&instr->instr, stderr);
1046                 fprintf(stderr, "\n");
1047                 abort();
1048         }
1049 }
1050
1051 static void
1052 emit_frag_end(struct vc4_compile *c)
1053 {
1054         struct qreg color;
1055         if (c->output_color_index != -1) {
1056                 color = c->outputs[c->output_color_index];
1057         } else {
1058                 color = qir_uniform_ui(c, 0);
1059         }
1060
1061         if (c->discard.file != QFILE_NULL)
1062                 qir_TLB_DISCARD_SETUP(c, c->discard);
1063
1064         if (c->fs_key->stencil_enabled) {
1065                 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1066                 if (c->fs_key->stencil_twoside) {
1067                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1068                 }
1069                 if (c->fs_key->stencil_full_writemasks) {
1070                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1071                 }
1072         }
1073
1074         if (c->fs_key->depth_enabled) {
1075                 struct qreg z;
1076                 if (c->output_position_index != -1) {
1077                         z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1078                                                  qir_uniform_f(c, 0xffffff)));
1079                 } else {
1080                         z = qir_FRAG_Z(c);
1081                 }
1082                 qir_TLB_Z_WRITE(c, z);
1083         }
1084
1085         qir_TLB_COLOR_WRITE(c, color);
1086 }
1087
1088 static void
1089 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1090 {
1091         struct qreg packed = qir_get_temp(c);
1092
1093         for (int i = 0; i < 2; i++) {
1094                 struct qreg scale =
1095                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1096
1097                 struct qreg packed_chan = packed;
1098                 packed_chan.pack = QPU_PACK_A_16A + i;
1099
1100                 qir_FTOI_dest(c, packed_chan,
1101                               qir_FMUL(c,
1102                                        qir_FMUL(c,
1103                                                 c->outputs[c->output_position_index + i],
1104                                                 scale),
1105                                        rcp_w));
1106         }
1107
1108         qir_VPM_WRITE(c, packed);
1109 }
1110
1111 static void
1112 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1113 {
1114         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1115         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1116
1117         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1118                                                           c->outputs[c->output_position_index + 2],
1119                                                           zscale),
1120                                               rcp_w),
1121                                   zoffset));
1122 }
1123
1124 static void
1125 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1126 {
1127         qir_VPM_WRITE(c, rcp_w);
1128 }
1129
1130 static void
1131 emit_point_size_write(struct vc4_compile *c)
1132 {
1133         struct qreg point_size;
1134
1135         if (c->output_point_size_index != -1)
1136                 point_size = c->outputs[c->output_point_size_index + 3];
1137         else
1138                 point_size = qir_uniform_f(c, 1.0);
1139
1140         /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1141          * BCM21553).
1142          */
1143         point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1144
1145         qir_VPM_WRITE(c, point_size);
1146 }
1147
1148 /**
1149  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1150  *
1151  * The simulator insists that there be at least one vertex attribute, so
1152  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1153  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1154  * to consume it here.
1155  */
1156 static void
1157 emit_stub_vpm_read(struct vc4_compile *c)
1158 {
1159         if (c->num_inputs)
1160                 return;
1161
1162         c->vattr_sizes[0] = 4;
1163         struct qreg vpm = { QFILE_VPM, 0 };
1164         (void)qir_MOV(c, vpm);
1165         c->num_inputs++;
1166 }
1167
1168 static void
1169 emit_vert_end(struct vc4_compile *c,
1170               struct vc4_varying_slot *fs_inputs,
1171               uint32_t num_fs_inputs)
1172 {
1173         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1174
1175         emit_stub_vpm_read(c);
1176
1177         emit_scaled_viewport_write(c, rcp_w);
1178         emit_zs_write(c, rcp_w);
1179         emit_rcp_wc_write(c, rcp_w);
1180         if (c->vs_key->per_vertex_point_size)
1181                 emit_point_size_write(c);
1182
1183         for (int i = 0; i < num_fs_inputs; i++) {
1184                 struct vc4_varying_slot *input = &fs_inputs[i];
1185                 int j;
1186
1187                 for (j = 0; j < c->num_outputs; j++) {
1188                         struct vc4_varying_slot *output =
1189                                 &c->output_slots[j];
1190
1191                         if (input->slot == output->slot &&
1192                             input->swizzle == output->swizzle) {
1193                                 qir_VPM_WRITE(c, c->outputs[j]);
1194                                 break;
1195                         }
1196                 }
1197                 /* Emit padding if we didn't find a declared VS output for
1198                  * this FS input.
1199                  */
1200                 if (j == c->num_outputs)
1201                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1202         }
1203 }
1204
1205 static void
1206 emit_coord_end(struct vc4_compile *c)
1207 {
1208         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1209
1210         emit_stub_vpm_read(c);
1211
1212         for (int i = 0; i < 4; i++)
1213                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1214
1215         emit_scaled_viewport_write(c, rcp_w);
1216         emit_zs_write(c, rcp_w);
1217         emit_rcp_wc_write(c, rcp_w);
1218         if (c->vs_key->per_vertex_point_size)
1219                 emit_point_size_write(c);
1220 }
1221
1222 static void
1223 vc4_optimize_nir(struct nir_shader *s)
1224 {
1225         bool progress;
1226
1227         do {
1228                 progress = false;
1229
1230                 nir_lower_vars_to_ssa(s);
1231                 nir_lower_alu_to_scalar(s);
1232
1233                 progress = nir_copy_prop(s) || progress;
1234                 progress = nir_opt_dce(s) || progress;
1235                 progress = nir_opt_cse(s) || progress;
1236                 progress = nir_opt_peephole_select(s) || progress;
1237                 progress = nir_opt_algebraic(s) || progress;
1238                 progress = nir_opt_constant_folding(s) || progress;
1239                 progress = nir_opt_undef(s) || progress;
1240         } while (progress);
1241 }
1242
1243 static int
1244 driver_location_compare(const void *in_a, const void *in_b)
1245 {
1246         const nir_variable *const *a = in_a;
1247         const nir_variable *const *b = in_b;
1248
1249         return (*a)->data.driver_location - (*b)->data.driver_location;
1250 }
1251
1252 static void
1253 ntq_setup_inputs(struct vc4_compile *c)
1254 {
1255         unsigned num_entries = 0;
1256         nir_foreach_variable(var, &c->s->inputs)
1257                 num_entries++;
1258
1259         nir_variable *vars[num_entries];
1260
1261         unsigned i = 0;
1262         nir_foreach_variable(var, &c->s->inputs)
1263                 vars[i++] = var;
1264
1265         /* Sort the variables so that we emit the input setup in
1266          * driver_location order.  This is required for VPM reads, whose data
1267          * is fetched into the VPM in driver_location (TGSI register index)
1268          * order.
1269          */
1270         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1271
1272         for (unsigned i = 0; i < num_entries; i++) {
1273                 nir_variable *var = vars[i];
1274                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1275                 unsigned loc = var->data.driver_location;
1276
1277                 assert(array_len == 1);
1278                 (void)array_len;
1279                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1280                                   (loc + 1) * 4);
1281
1282                 if (c->stage == QSTAGE_FRAG) {
1283                         if (var->data.location == VARYING_SLOT_POS) {
1284                                 emit_fragcoord_input(c, loc);
1285                         } else if (var->data.location == VARYING_SLOT_FACE) {
1286                                 c->inputs[loc * 4 + 0] = qir_FRAG_REV_FLAG(c);
1287                         } else if (var->data.location >= VARYING_SLOT_VAR0 &&
1288                                    (c->fs_key->point_sprite_mask &
1289                                     (1 << (var->data.location -
1290                                            VARYING_SLOT_VAR0)))) {
1291                                 c->inputs[loc * 4 + 0] = c->point_x;
1292                                 c->inputs[loc * 4 + 1] = c->point_y;
1293                         } else {
1294                                 emit_fragment_input(c, loc, var->data.location);
1295                         }
1296                 } else {
1297                         emit_vertex_input(c, loc);
1298                 }
1299         }
1300 }
1301
1302 static void
1303 ntq_setup_outputs(struct vc4_compile *c)
1304 {
1305         nir_foreach_variable(var, &c->s->outputs) {
1306                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1307                 unsigned loc = var->data.driver_location * 4;
1308
1309                 assert(array_len == 1);
1310                 (void)array_len;
1311
1312                 for (int i = 0; i < 4; i++)
1313                         add_output(c, loc + i, var->data.location, i);
1314
1315                 if (c->stage == QSTAGE_FRAG) {
1316                         switch (var->data.location) {
1317                         case FRAG_RESULT_COLOR:
1318                         case FRAG_RESULT_DATA0:
1319                                 c->output_color_index = loc;
1320                                 break;
1321                         case FRAG_RESULT_DEPTH:
1322                                 c->output_position_index = loc;
1323                                 break;
1324                         }
1325                 } else {
1326                         switch (var->data.location) {
1327                         case VARYING_SLOT_POS:
1328                                 c->output_position_index = loc;
1329                                 break;
1330                         case VARYING_SLOT_PSIZ:
1331                                 c->output_point_size_index = loc;
1332                                 break;
1333                         }
1334                 }
1335         }
1336 }
1337
1338 static void
1339 ntq_setup_uniforms(struct vc4_compile *c)
1340 {
1341         nir_foreach_variable(var, &c->s->uniforms) {
1342                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1343                 unsigned array_elem_size = 4 * sizeof(float);
1344
1345                 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1346                                       array_len * array_elem_size);
1347
1348         }
1349 }
1350
1351 /**
1352  * Sets up the mapping from nir_register to struct qreg *.
1353  *
1354  * Each nir_register gets a struct qreg per 32-bit component being stored.
1355  */
1356 static void
1357 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1358 {
1359         foreach_list_typed(nir_register, nir_reg, node, list) {
1360                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1361                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1362                                                   array_len *
1363                                                   nir_reg->num_components);
1364
1365                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1366
1367                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1368                         qregs[i] = qir_uniform_ui(c, 0);
1369         }
1370 }
1371
1372 static void
1373 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1374 {
1375         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1376         for (int i = 0; i < instr->def.num_components; i++)
1377                 qregs[i] = qir_uniform_ui(c, instr->value.u[i]);
1378
1379         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1380 }
1381
1382 static void
1383 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1384 {
1385         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1386
1387         /* QIR needs there to be *some* value, so pick 0 (same as for
1388          * ntq_setup_registers().
1389          */
1390         for (int i = 0; i < instr->def.num_components; i++)
1391                 qregs[i] = qir_uniform_ui(c, 0);
1392 }
1393
1394 static void
1395 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1396 {
1397         const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1398         struct qreg *dest = NULL;
1399
1400         if (info->has_dest) {
1401                 dest = ntq_get_dest(c, &instr->dest);
1402         }
1403
1404         switch (instr->intrinsic) {
1405         case nir_intrinsic_load_uniform:
1406                 assert(instr->num_components == 1);
1407                 if (instr->const_index[0] < VC4_NIR_STATE_UNIFORM_OFFSET) {
1408                         *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1409                                             instr->const_index[0]);
1410                 } else {
1411                         *dest = qir_uniform(c, instr->const_index[0] -
1412                                             VC4_NIR_STATE_UNIFORM_OFFSET,
1413                                             0);
1414                 }
1415                 break;
1416
1417         case nir_intrinsic_load_uniform_indirect:
1418                 *dest = indirect_uniform_load(c, instr);
1419
1420                 break;
1421
1422         case nir_intrinsic_load_user_clip_plane:
1423                 *dest = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1424                                     instr->const_index[0]);
1425                 break;
1426
1427         case nir_intrinsic_load_input:
1428                 assert(instr->num_components == 1);
1429                 if (instr->const_index[0] == VC4_NIR_TLB_COLOR_READ_INPUT) {
1430                         *dest = qir_TLB_COLOR_READ(c);
1431                 } else {
1432                         *dest = c->inputs[instr->const_index[0]];
1433                 }
1434                 break;
1435
1436         case nir_intrinsic_store_output:
1437                 assert(instr->num_components == 1);
1438                 c->outputs[instr->const_index[0]] =
1439                         qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1440                 c->num_outputs = MAX2(c->num_outputs, instr->const_index[0] + 1);
1441                 break;
1442
1443         case nir_intrinsic_discard:
1444                 c->discard = qir_uniform_ui(c, ~0);
1445                 break;
1446
1447         case nir_intrinsic_discard_if:
1448                 if (c->discard.file == QFILE_NULL)
1449                         c->discard = qir_uniform_ui(c, 0);
1450                 c->discard = qir_OR(c, c->discard,
1451                                     ntq_get_src(c, instr->src[0], 0));
1452                 break;
1453
1454         default:
1455                 fprintf(stderr, "Unknown intrinsic: ");
1456                 nir_print_instr(&instr->instr, stderr);
1457                 fprintf(stderr, "\n");
1458                 break;
1459         }
1460 }
1461
1462 static void
1463 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1464 {
1465         fprintf(stderr, "general IF statements not handled.\n");
1466 }
1467
1468 static void
1469 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1470 {
1471         switch (instr->type) {
1472         case nir_instr_type_alu:
1473                 ntq_emit_alu(c, nir_instr_as_alu(instr));
1474                 break;
1475
1476         case nir_instr_type_intrinsic:
1477                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1478                 break;
1479
1480         case nir_instr_type_load_const:
1481                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1482                 break;
1483
1484         case nir_instr_type_ssa_undef:
1485                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1486                 break;
1487
1488         case nir_instr_type_tex:
1489                 ntq_emit_tex(c, nir_instr_as_tex(instr));
1490                 break;
1491
1492         default:
1493                 fprintf(stderr, "Unknown NIR instr type: ");
1494                 nir_print_instr(instr, stderr);
1495                 fprintf(stderr, "\n");
1496                 abort();
1497         }
1498 }
1499
1500 static void
1501 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1502 {
1503         nir_foreach_instr(block, instr) {
1504                 ntq_emit_instr(c, instr);
1505         }
1506 }
1507
1508 static void
1509 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1510 {
1511         foreach_list_typed(nir_cf_node, node, node, list) {
1512                 switch (node->type) {
1513                         /* case nir_cf_node_loop: */
1514                 case nir_cf_node_block:
1515                         ntq_emit_block(c, nir_cf_node_as_block(node));
1516                         break;
1517
1518                 case nir_cf_node_if:
1519                         ntq_emit_if(c, nir_cf_node_as_if(node));
1520                         break;
1521
1522                 default:
1523                         assert(0);
1524                 }
1525         }
1526 }
1527
1528 static void
1529 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1530 {
1531         ntq_setup_registers(c, &impl->registers);
1532         ntq_emit_cf_list(c, &impl->body);
1533 }
1534
1535 static void
1536 nir_to_qir(struct vc4_compile *c)
1537 {
1538         ntq_setup_inputs(c);
1539         ntq_setup_outputs(c);
1540         ntq_setup_uniforms(c);
1541         ntq_setup_registers(c, &c->s->registers);
1542
1543         /* Find the main function and emit the body. */
1544         nir_foreach_overload(c->s, overload) {
1545                 assert(strcmp(overload->function->name, "main") == 0);
1546                 assert(overload->impl);
1547                 ntq_emit_impl(c, overload->impl);
1548         }
1549 }
1550
1551 static const nir_shader_compiler_options nir_options = {
1552         .lower_ffma = true,
1553         .lower_flrp = true,
1554         .lower_fpow = true,
1555         .lower_fsat = true,
1556         .lower_fsqrt = true,
1557         .lower_negate = true,
1558 };
1559
1560 static bool
1561 count_nir_instrs_in_block(nir_block *block, void *state)
1562 {
1563         int *count = (int *) state;
1564         nir_foreach_instr(block, instr) {
1565                 *count = *count + 1;
1566         }
1567         return true;
1568 }
1569
1570 static int
1571 count_nir_instrs(nir_shader *nir)
1572 {
1573         int count = 0;
1574         nir_foreach_overload(nir, overload) {
1575                 if (!overload->impl)
1576                         continue;
1577                 nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count);
1578         }
1579         return count;
1580 }
1581
1582 static struct vc4_compile *
1583 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1584                        struct vc4_key *key)
1585 {
1586         struct vc4_compile *c = qir_compile_init();
1587
1588         c->stage = stage;
1589         c->shader_state = &key->shader_state->base;
1590         c->program_id = key->shader_state->program_id;
1591         c->variant_id = key->shader_state->compiled_variant_count++;
1592
1593         c->key = key;
1594         switch (stage) {
1595         case QSTAGE_FRAG:
1596                 c->fs_key = (struct vc4_fs_key *)key;
1597                 if (c->fs_key->is_points) {
1598                         c->point_x = emit_fragment_varying(c, ~0, 0);
1599                         c->point_y = emit_fragment_varying(c, ~0, 0);
1600                 } else if (c->fs_key->is_lines) {
1601                         c->line_x = emit_fragment_varying(c, ~0, 0);
1602                 }
1603                 break;
1604         case QSTAGE_VERT:
1605                 c->vs_key = (struct vc4_vs_key *)key;
1606                 break;
1607         case QSTAGE_COORD:
1608                 c->vs_key = (struct vc4_vs_key *)key;
1609                 break;
1610         }
1611
1612         const struct tgsi_token *tokens = key->shader_state->base.tokens;
1613
1614         if (vc4_debug & VC4_DEBUG_TGSI) {
1615                 fprintf(stderr, "%s prog %d/%d TGSI:\n",
1616                         qir_get_stage_name(c->stage),
1617                         c->program_id, c->variant_id);
1618                 tgsi_dump(tokens, 0);
1619         }
1620
1621         c->s = tgsi_to_nir(tokens, &nir_options);
1622         nir_opt_global_to_local(c->s);
1623         nir_convert_to_ssa(c->s);
1624
1625         if (stage == QSTAGE_FRAG)
1626                 vc4_nir_lower_blend(c);
1627
1628         if (c->fs_key && c->fs_key->light_twoside)
1629                 nir_lower_two_sided_color(c->s);
1630
1631         if (stage == QSTAGE_FRAG)
1632                 nir_lower_clip_fs(c->s, c->key->ucp_enables);
1633         else
1634                 nir_lower_clip_vs(c->s, c->key->ucp_enables);
1635
1636         vc4_nir_lower_io(c);
1637         nir_lower_idiv(c->s);
1638         nir_lower_load_const_to_scalar(c->s);
1639
1640         vc4_optimize_nir(c->s);
1641
1642         nir_remove_dead_variables(c->s);
1643
1644         nir_convert_from_ssa(c->s, true);
1645
1646         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1647                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1648                         qir_get_stage_name(c->stage),
1649                         c->program_id, c->variant_id,
1650                         count_nir_instrs(c->s));
1651         }
1652
1653         if (vc4_debug & VC4_DEBUG_NIR) {
1654                 fprintf(stderr, "%s prog %d/%d NIR:\n",
1655                         qir_get_stage_name(c->stage),
1656                         c->program_id, c->variant_id);
1657                 nir_print_shader(c->s, stderr);
1658         }
1659
1660         nir_to_qir(c);
1661
1662         switch (stage) {
1663         case QSTAGE_FRAG:
1664                 emit_frag_end(c);
1665                 break;
1666         case QSTAGE_VERT:
1667                 emit_vert_end(c,
1668                               vc4->prog.fs->input_slots,
1669                               vc4->prog.fs->num_inputs);
1670                 break;
1671         case QSTAGE_COORD:
1672                 emit_coord_end(c);
1673                 break;
1674         }
1675
1676         if (vc4_debug & VC4_DEBUG_QIR) {
1677                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1678                         qir_get_stage_name(c->stage),
1679                         c->program_id, c->variant_id);
1680                 qir_dump(c);
1681         }
1682
1683         qir_optimize(c);
1684         qir_lower_uniforms(c);
1685
1686         if (vc4_debug & VC4_DEBUG_QIR) {
1687                 fprintf(stderr, "%s prog %d/%d QIR:\n",
1688                         qir_get_stage_name(c->stage),
1689                         c->program_id, c->variant_id);
1690                 qir_dump(c);
1691         }
1692         qir_reorder_uniforms(c);
1693         vc4_generate_code(vc4, c);
1694
1695         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1696                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1697                         qir_get_stage_name(c->stage),
1698                         c->program_id, c->variant_id,
1699                         c->qpu_inst_count);
1700                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1701                         qir_get_stage_name(c->stage),
1702                         c->program_id, c->variant_id,
1703                         c->num_uniforms);
1704         }
1705
1706         ralloc_free(c->s);
1707
1708         return c;
1709 }
1710
1711 static void *
1712 vc4_shader_state_create(struct pipe_context *pctx,
1713                         const struct pipe_shader_state *cso)
1714 {
1715         struct vc4_context *vc4 = vc4_context(pctx);
1716         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1717         if (!so)
1718                 return NULL;
1719
1720         so->base.tokens = tgsi_dup_tokens(cso->tokens);
1721         so->program_id = vc4->next_uncompiled_program_id++;
1722
1723         return so;
1724 }
1725
1726 static void
1727 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1728                              struct vc4_compile *c)
1729 {
1730         int count = c->num_uniforms;
1731         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
1732
1733         uinfo->count = count;
1734         uinfo->data = ralloc_array(shader, uint32_t, count);
1735         memcpy(uinfo->data, c->uniform_data,
1736                count * sizeof(*uinfo->data));
1737         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
1738         memcpy(uinfo->contents, c->uniform_contents,
1739                count * sizeof(*uinfo->contents));
1740         uinfo->num_texture_samples = c->num_texture_samples;
1741
1742         vc4_set_shader_uniform_dirty_flags(shader);
1743 }
1744
1745 static struct vc4_compiled_shader *
1746 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
1747                         struct vc4_key *key)
1748 {
1749         struct hash_table *ht;
1750         uint32_t key_size;
1751         if (stage == QSTAGE_FRAG) {
1752                 ht = vc4->fs_cache;
1753                 key_size = sizeof(struct vc4_fs_key);
1754         } else {
1755                 ht = vc4->vs_cache;
1756                 key_size = sizeof(struct vc4_vs_key);
1757         }
1758
1759         struct vc4_compiled_shader *shader;
1760         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
1761         if (entry)
1762                 return entry->data;
1763
1764         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
1765         shader = rzalloc(NULL, struct vc4_compiled_shader);
1766
1767         shader->program_id = vc4->next_compiled_program_id++;
1768         if (stage == QSTAGE_FRAG) {
1769                 bool input_live[c->num_input_slots];
1770
1771                 memset(input_live, 0, sizeof(input_live));
1772                 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
1773                         for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
1774                                 if (inst->src[i].file == QFILE_VARY)
1775                                         input_live[inst->src[i].index] = true;
1776                         }
1777                 }
1778
1779                 shader->input_slots = ralloc_array(shader,
1780                                                    struct vc4_varying_slot,
1781                                                    c->num_input_slots);
1782
1783                 for (int i = 0; i < c->num_input_slots; i++) {
1784                         struct vc4_varying_slot *slot = &c->input_slots[i];
1785
1786                         if (!input_live[i])
1787                                 continue;
1788
1789                         /* Skip non-VS-output inputs. */
1790                         if (slot->slot == (uint8_t)~0)
1791                                 continue;
1792
1793                         if (slot->slot == VARYING_SLOT_COL0 ||
1794                             slot->slot == VARYING_SLOT_COL1 ||
1795                             slot->slot == VARYING_SLOT_BFC0 ||
1796                             slot->slot == VARYING_SLOT_BFC1) {
1797                                 shader->color_inputs |= (1 << shader->num_inputs);
1798                         }
1799
1800                         shader->input_slots[shader->num_inputs] = *slot;
1801                         shader->num_inputs++;
1802                 }
1803         } else {
1804                 shader->num_inputs = c->num_inputs;
1805
1806                 shader->vattr_offsets[0] = 0;
1807                 for (int i = 0; i < 8; i++) {
1808                         shader->vattr_offsets[i + 1] =
1809                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
1810
1811                         if (c->vattr_sizes[i])
1812                                 shader->vattrs_live |= (1 << i);
1813                 }
1814         }
1815
1816         copy_uniform_state_to_shader(shader, c);
1817         shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
1818                                          c->qpu_inst_count * sizeof(uint64_t));
1819
1820         /* Copy the compiler UBO range state to the compiled shader, dropping
1821          * out arrays that were never referenced by an indirect load.
1822          *
1823          * (Note that QIR dead code elimination of an array access still
1824          * leaves that array alive, though)
1825          */
1826         if (c->num_ubo_ranges) {
1827                 shader->num_ubo_ranges = c->num_ubo_ranges;
1828                 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
1829                                                   c->num_ubo_ranges);
1830                 uint32_t j = 0;
1831                 for (int i = 0; i < c->num_uniform_ranges; i++) {
1832                         struct vc4_compiler_ubo_range *range =
1833                                 &c->ubo_ranges[i];
1834                         if (!range->used)
1835                                 continue;
1836
1837                         shader->ubo_ranges[j].dst_offset = range->dst_offset;
1838                         shader->ubo_ranges[j].src_offset = range->src_offset;
1839                         shader->ubo_ranges[j].size = range->size;
1840                         shader->ubo_size += c->ubo_ranges[i].size;
1841                         j++;
1842                 }
1843         }
1844         if (shader->ubo_size) {
1845                 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1846                         fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
1847                                 qir_get_stage_name(c->stage),
1848                                 c->program_id, c->variant_id,
1849                                 shader->ubo_size / 4);
1850                 }
1851         }
1852
1853         qir_compile_destroy(c);
1854
1855         struct vc4_key *dup_key;
1856         dup_key = ralloc_size(shader, key_size);
1857         memcpy(dup_key, key, key_size);
1858         _mesa_hash_table_insert(ht, dup_key, shader);
1859
1860         return shader;
1861 }
1862
1863 static void
1864 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
1865                      struct vc4_texture_stateobj *texstate)
1866 {
1867         for (int i = 0; i < texstate->num_textures; i++) {
1868                 struct pipe_sampler_view *sampler = texstate->textures[i];
1869                 struct pipe_sampler_state *sampler_state =
1870                         texstate->samplers[i];
1871
1872                 if (sampler) {
1873                         key->tex[i].format = sampler->format;
1874                         key->tex[i].swizzle[0] = sampler->swizzle_r;
1875                         key->tex[i].swizzle[1] = sampler->swizzle_g;
1876                         key->tex[i].swizzle[2] = sampler->swizzle_b;
1877                         key->tex[i].swizzle[3] = sampler->swizzle_a;
1878                         key->tex[i].compare_mode = sampler_state->compare_mode;
1879                         key->tex[i].compare_func = sampler_state->compare_func;
1880                         key->tex[i].wrap_s = sampler_state->wrap_s;
1881                         key->tex[i].wrap_t = sampler_state->wrap_t;
1882                 }
1883         }
1884
1885         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
1886 }
1887
1888 static void
1889 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
1890 {
1891         struct vc4_fs_key local_key;
1892         struct vc4_fs_key *key = &local_key;
1893
1894         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
1895                             VC4_DIRTY_BLEND |
1896                             VC4_DIRTY_FRAMEBUFFER |
1897                             VC4_DIRTY_ZSA |
1898                             VC4_DIRTY_RASTERIZER |
1899                             VC4_DIRTY_FRAGTEX |
1900                             VC4_DIRTY_TEXSTATE |
1901                             VC4_DIRTY_UNCOMPILED_FS))) {
1902                 return;
1903         }
1904
1905         memset(key, 0, sizeof(*key));
1906         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
1907         key->base.shader_state = vc4->prog.bind_fs;
1908         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
1909         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
1910                          prim_mode <= PIPE_PRIM_LINE_STRIP);
1911         key->blend = vc4->blend->rt[0];
1912         if (vc4->blend->logicop_enable) {
1913                 key->logicop_func = vc4->blend->logicop_func;
1914         } else {
1915                 key->logicop_func = PIPE_LOGICOP_COPY;
1916         }
1917         if (vc4->framebuffer.cbufs[0])
1918                 key->color_format = vc4->framebuffer.cbufs[0]->format;
1919
1920         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
1921         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
1922         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
1923         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
1924                               key->stencil_enabled);
1925         if (vc4->zsa->base.alpha.enabled) {
1926                 key->alpha_test = true;
1927                 key->alpha_test_func = vc4->zsa->base.alpha.func;
1928         }
1929
1930         if (key->is_points) {
1931                 key->point_sprite_mask =
1932                         vc4->rasterizer->base.sprite_coord_enable;
1933                 key->point_coord_upper_left =
1934                         (vc4->rasterizer->base.sprite_coord_mode ==
1935                          PIPE_SPRITE_COORD_UPPER_LEFT);
1936         }
1937
1938         key->light_twoside = vc4->rasterizer->base.light_twoside;
1939
1940         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
1941         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
1942         if (vc4->prog.fs == old_fs)
1943                 return;
1944
1945         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
1946         if (vc4->rasterizer->base.flatshade &&
1947             old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
1948                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
1949         }
1950 }
1951
1952 static void
1953 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
1954 {
1955         struct vc4_vs_key local_key;
1956         struct vc4_vs_key *key = &local_key;
1957
1958         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
1959                             VC4_DIRTY_RASTERIZER |
1960                             VC4_DIRTY_VERTTEX |
1961                             VC4_DIRTY_TEXSTATE |
1962                             VC4_DIRTY_VTXSTATE |
1963                             VC4_DIRTY_UNCOMPILED_VS |
1964                             VC4_DIRTY_COMPILED_FS))) {
1965                 return;
1966         }
1967
1968         memset(key, 0, sizeof(*key));
1969         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
1970         key->base.shader_state = vc4->prog.bind_vs;
1971         key->compiled_fs_id = vc4->prog.fs->program_id;
1972
1973         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
1974                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
1975
1976         key->per_vertex_point_size =
1977                 (prim_mode == PIPE_PRIM_POINTS &&
1978                  vc4->rasterizer->base.point_size_per_vertex);
1979
1980         struct vc4_compiled_shader *vs =
1981                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
1982         if (vs != vc4->prog.vs) {
1983                 vc4->prog.vs = vs;
1984                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
1985         }
1986
1987         key->is_coord = true;
1988         struct vc4_compiled_shader *cs =
1989                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
1990         if (cs != vc4->prog.cs) {
1991                 vc4->prog.cs = cs;
1992                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
1993         }
1994 }
1995
1996 void
1997 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
1998 {
1999         vc4_update_compiled_fs(vc4, prim_mode);
2000         vc4_update_compiled_vs(vc4, prim_mode);
2001 }
2002
2003 static uint32_t
2004 fs_cache_hash(const void *key)
2005 {
2006         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2007 }
2008
2009 static uint32_t
2010 vs_cache_hash(const void *key)
2011 {
2012         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2013 }
2014
2015 static bool
2016 fs_cache_compare(const void *key1, const void *key2)
2017 {
2018         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2019 }
2020
2021 static bool
2022 vs_cache_compare(const void *key1, const void *key2)
2023 {
2024         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2025 }
2026
2027 static void
2028 delete_from_cache_if_matches(struct hash_table *ht,
2029                              struct hash_entry *entry,
2030                              struct vc4_uncompiled_shader *so)
2031 {
2032         const struct vc4_key *key = entry->key;
2033
2034         if (key->shader_state == so) {
2035                 struct vc4_compiled_shader *shader = entry->data;
2036                 _mesa_hash_table_remove(ht, entry);
2037                 vc4_bo_unreference(&shader->bo);
2038                 ralloc_free(shader);
2039         }
2040 }
2041
2042 static void
2043 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2044 {
2045         struct vc4_context *vc4 = vc4_context(pctx);
2046         struct vc4_uncompiled_shader *so = hwcso;
2047
2048         struct hash_entry *entry;
2049         hash_table_foreach(vc4->fs_cache, entry)
2050                 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2051         hash_table_foreach(vc4->vs_cache, entry)
2052                 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2053
2054         free((void *)so->base.tokens);
2055         free(so);
2056 }
2057
2058 static void
2059 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2060 {
2061         struct vc4_context *vc4 = vc4_context(pctx);
2062         vc4->prog.bind_fs = hwcso;
2063         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2064 }
2065
2066 static void
2067 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2068 {
2069         struct vc4_context *vc4 = vc4_context(pctx);
2070         vc4->prog.bind_vs = hwcso;
2071         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2072 }
2073
2074 void
2075 vc4_program_init(struct pipe_context *pctx)
2076 {
2077         struct vc4_context *vc4 = vc4_context(pctx);
2078
2079         pctx->create_vs_state = vc4_shader_state_create;
2080         pctx->delete_vs_state = vc4_shader_state_delete;
2081
2082         pctx->create_fs_state = vc4_shader_state_create;
2083         pctx->delete_fs_state = vc4_shader_state_delete;
2084
2085         pctx->bind_fs_state = vc4_fp_state_bind;
2086         pctx->bind_vs_state = vc4_vp_state_bind;
2087
2088         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2089                                                 fs_cache_compare);
2090         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2091                                                 vs_cache_compare);
2092 }
2093
2094 void
2095 vc4_program_fini(struct pipe_context *pctx)
2096 {
2097         struct vc4_context *vc4 = vc4_context(pctx);
2098
2099         struct hash_entry *entry;
2100         hash_table_foreach(vc4->fs_cache, entry) {
2101                 struct vc4_compiled_shader *shader = entry->data;
2102                 vc4_bo_unreference(&shader->bo);
2103                 ralloc_free(shader);
2104                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2105         }
2106
2107         hash_table_foreach(vc4->vs_cache, entry) {
2108                 struct vc4_compiled_shader *shader = entry->data;
2109                 vc4_bo_unreference(&shader->bo);
2110                 ralloc_free(shader);
2111                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2112         }
2113 }