OSDN Git Service

d1e893a76a97b20c570cebc5507a3a5b00fe6f37
[android-x86/external-mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "nir/tgsi_to_nir.h"
37 #include "vc4_context.h"
38 #include "vc4_qpu.h"
39 #include "vc4_qir.h"
40 #ifdef USE_VC4_SIMULATOR
41 #include "simpenrose/simpenrose.h"
42 #endif
43
44 static struct qreg
45 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
46
47 static void
48 resize_qreg_array(struct vc4_compile *c,
49                   struct qreg **regs,
50                   uint32_t *size,
51                   uint32_t decl_size)
52 {
53         if (*size >= decl_size)
54                 return;
55
56         uint32_t old_size = *size;
57         *size = MAX2(*size * 2, decl_size);
58         *regs = reralloc(c, *regs, struct qreg, *size);
59         if (!*regs) {
60                 fprintf(stderr, "Malloc failure\n");
61                 abort();
62         }
63
64         for (uint32_t i = old_size; i < *size; i++)
65                 (*regs)[i] = c->undef;
66 }
67
68 static struct qreg
69 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
70 {
71         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
72         uint32_t offset = intr->const_index[0];
73         struct vc4_compiler_ubo_range *range = NULL;
74         unsigned i;
75         for (i = 0; i < c->num_uniform_ranges; i++) {
76                 range = &c->ubo_ranges[i];
77                 if (offset >= range->src_offset &&
78                     offset < range->src_offset + range->size) {
79                         break;
80                 }
81         }
82         /* The driver-location-based offset always has to be within a declared
83          * uniform range.
84          */
85         assert(range);
86         if (!range->used) {
87                 range->used = true;
88                 range->dst_offset = c->next_ubo_dst_offset;
89                 c->next_ubo_dst_offset += range->size;
90                 c->num_ubo_ranges++;
91         }
92
93         offset -= range->src_offset;
94
95         /* Adjust for where we stored the TGSI register base. */
96         indirect_offset = qir_ADD(c, indirect_offset,
97                                   qir_uniform_ui(c, (range->dst_offset +
98                                                      offset)));
99
100         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
101         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
102         indirect_offset = qir_MIN(c, indirect_offset,
103                                   qir_uniform_ui(c, (range->dst_offset +
104                                                      range->size - 4)));
105
106         qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
107         c->num_texture_samples++;
108         return qir_TEX_RESULT(c);
109 }
110
111 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
112                                        enum quniform_contents contents)
113 {
114         nir_intrinsic_instr *intr =
115                 nir_intrinsic_instr_create(b->shader,
116                                            nir_intrinsic_load_uniform);
117         intr->const_index[0] = (VC4_NIR_STATE_UNIFORM_OFFSET + contents) * 4;
118         intr->num_components = 1;
119         intr->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
120         nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL);
121         nir_builder_instr_insert(b, &intr->instr);
122         return &intr->dest.ssa;
123 }
124
125 nir_ssa_def *
126 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
127 {
128         switch (swiz) {
129         default:
130         case UTIL_FORMAT_SWIZZLE_NONE:
131                 fprintf(stderr, "warning: unknown swizzle\n");
132                 /* FALLTHROUGH */
133         case UTIL_FORMAT_SWIZZLE_0:
134                 return nir_imm_float(b, 0.0);
135         case UTIL_FORMAT_SWIZZLE_1:
136                 return nir_imm_float(b, 1.0);
137         case UTIL_FORMAT_SWIZZLE_X:
138         case UTIL_FORMAT_SWIZZLE_Y:
139         case UTIL_FORMAT_SWIZZLE_Z:
140         case UTIL_FORMAT_SWIZZLE_W:
141                 return srcs[swiz];
142         }
143 }
144
145 static struct qreg *
146 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
147 {
148         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
149                                           def->num_components);
150         _mesa_hash_table_insert(c->def_ht, def, qregs);
151         return qregs;
152 }
153
154 static struct qreg *
155 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
156 {
157         if (dest->is_ssa) {
158                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
159                 for (int i = 0; i < dest->ssa.num_components; i++)
160                         qregs[i] = c->undef;
161                 return qregs;
162         } else {
163                 nir_register *reg = dest->reg.reg;
164                 assert(dest->reg.base_offset == 0);
165                 assert(reg->num_array_elems == 0);
166                 struct hash_entry *entry =
167                         _mesa_hash_table_search(c->def_ht, reg);
168                 return entry->data;
169         }
170 }
171
172 static struct qreg
173 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
174 {
175         struct hash_entry *entry;
176         if (src.is_ssa) {
177                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
178                 assert(i < src.ssa->num_components);
179         } else {
180                 nir_register *reg = src.reg.reg;
181                 entry = _mesa_hash_table_search(c->def_ht, reg);
182                 assert(reg->num_array_elems == 0);
183                 assert(src.reg.base_offset == 0);
184                 assert(i < reg->num_components);
185         }
186
187         struct qreg *qregs = entry->data;
188         return qregs[i];
189 }
190
191 static struct qreg
192 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
193                 unsigned src)
194 {
195         assert(util_is_power_of_two(instr->dest.write_mask));
196         unsigned chan = ffs(instr->dest.write_mask) - 1;
197         struct qreg r = ntq_get_src(c, instr->src[src].src,
198                                     instr->src[src].swizzle[chan]);
199
200         assert(!instr->src[src].abs);
201         assert(!instr->src[src].negate);
202
203         return r;
204 };
205
206 static inline struct qreg
207 qir_SAT(struct vc4_compile *c, struct qreg val)
208 {
209         return qir_FMAX(c,
210                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
211                         qir_uniform_f(c, 0.0));
212 }
213
214 static struct qreg
215 ntq_rcp(struct vc4_compile *c, struct qreg x)
216 {
217         struct qreg r = qir_RCP(c, x);
218
219         /* Apply a Newton-Raphson step to improve the accuracy. */
220         r = qir_FMUL(c, r, qir_FSUB(c,
221                                     qir_uniform_f(c, 2.0),
222                                     qir_FMUL(c, x, r)));
223
224         return r;
225 }
226
227 static struct qreg
228 ntq_rsq(struct vc4_compile *c, struct qreg x)
229 {
230         struct qreg r = qir_RSQ(c, x);
231
232         /* Apply a Newton-Raphson step to improve the accuracy. */
233         r = qir_FMUL(c, r, qir_FSUB(c,
234                                     qir_uniform_f(c, 1.5),
235                                     qir_FMUL(c,
236                                              qir_uniform_f(c, 0.5),
237                                              qir_FMUL(c, x,
238                                                       qir_FMUL(c, r, r)))));
239
240         return r;
241 }
242
243 static struct qreg
244 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
245 {
246         struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
247         struct qreg high = qir_POW(c,
248                                    qir_FMUL(c,
249                                             qir_FADD(c,
250                                                      srgb,
251                                                      qir_uniform_f(c, 0.055)),
252                                             qir_uniform_f(c, 1.0 / 1.055)),
253                                    qir_uniform_f(c, 2.4));
254
255         qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
256         return qir_SEL(c, QPU_COND_NS, low, high);
257 }
258
259 static struct qreg
260 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
261 {
262         struct qreg src0_hi = qir_SHR(c, src0,
263                                       qir_uniform_ui(c, 24));
264         struct qreg src1_hi = qir_SHR(c, src1,
265                                       qir_uniform_ui(c, 24));
266
267         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
268         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
269         struct qreg lolo = qir_MUL24(c, src0, src1);
270
271         return qir_ADD(c, lolo, qir_SHL(c,
272                                         qir_ADD(c, hilo, lohi),
273                                         qir_uniform_ui(c, 24)));
274 }
275
276 static struct qreg
277 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
278 {
279         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
280                                                  qir_uniform_ui(c, 8)));
281         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
282 }
283
284 /**
285  * Emits a lowered TXF_MS from an MSAA texture.
286  *
287  * The addressing math has been lowered in NIR, and now we just need to read
288  * it like a UBO.
289  */
290 static void
291 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
292 {
293         uint32_t tile_width = 32;
294         uint32_t tile_height = 32;
295         uint32_t tile_size = (tile_height * tile_width *
296                               VC4_MAX_SAMPLES * sizeof(uint32_t));
297
298         unsigned unit = instr->texture_index;
299         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
300         uint32_t w_tiles = w / tile_width;
301         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
302         uint32_t h_tiles = h / tile_height;
303         uint32_t size = w_tiles * h_tiles * tile_size;
304
305         struct qreg addr;
306         assert(instr->num_srcs == 1);
307         assert(instr->src[0].src_type == nir_tex_src_coord);
308         addr = ntq_get_src(c, instr->src[0].src, 0);
309
310         /* Perform the clamping required by kernel validation. */
311         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
312         addr = qir_MIN(c, addr,  qir_uniform_ui(c, size - 4));
313
314         qir_TEX_DIRECT(c, addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
315
316         struct qreg tex = qir_TEX_RESULT(c);
317         c->num_texture_samples++;
318
319         struct qreg *dest = ntq_get_dest(c, &instr->dest);
320         enum pipe_format format = c->key->tex[unit].format;
321         if (util_format_is_depth_or_stencil(format)) {
322                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
323                 for (int i = 0; i < 4; i++)
324                         dest[i] = scaled;
325         } else {
326                 for (int i = 0; i < 4; i++)
327                         dest[i] = qir_UNPACK_8_F(c, tex, i);
328         }
329
330         for (int i = 0; i < 4; i++) {
331                 if (c->tex_srgb_decode[unit] & (1 << i))
332                         dest[i] = qir_srgb_decode(c, dest[i]);
333         }
334 }
335
336 static void
337 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
338 {
339         struct qreg s, t, r, lod, proj, compare;
340         bool is_txb = false, is_txl = false, has_proj = false;
341         unsigned unit = instr->texture_index;
342
343         if (instr->op == nir_texop_txf) {
344                 ntq_emit_txf(c, instr);
345                 return;
346         }
347
348         for (unsigned i = 0; i < instr->num_srcs; i++) {
349                 switch (instr->src[i].src_type) {
350                 case nir_tex_src_coord:
351                         s = ntq_get_src(c, instr->src[i].src, 0);
352                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
353                                 t = qir_uniform_f(c, 0.5);
354                         else
355                                 t = ntq_get_src(c, instr->src[i].src, 1);
356                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
357                                 r = ntq_get_src(c, instr->src[i].src, 2);
358                         break;
359                 case nir_tex_src_bias:
360                         lod = ntq_get_src(c, instr->src[i].src, 0);
361                         is_txb = true;
362                         break;
363                 case nir_tex_src_lod:
364                         lod = ntq_get_src(c, instr->src[i].src, 0);
365                         is_txl = true;
366                         break;
367                 case nir_tex_src_comparitor:
368                         compare = ntq_get_src(c, instr->src[i].src, 0);
369                         break;
370                 case nir_tex_src_projector:
371                         proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
372                         s = qir_FMUL(c, s, proj);
373                         t = qir_FMUL(c, t, proj);
374                         has_proj = true;
375                         break;
376                 default:
377                         unreachable("unknown texture source");
378                 }
379         }
380
381         struct qreg texture_u[] = {
382                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
383                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
384                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
385                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
386         };
387         uint32_t next_texture_u = 0;
388
389         /* There is no native support for GL texture rectangle coordinates, so
390          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
391          * 1]).
392          */
393         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
394                 s = qir_FMUL(c, s,
395                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
396                 t = qir_FMUL(c, t,
397                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
398         }
399
400         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
401                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
402                                            unit | (is_txl << 16));
403         }
404
405         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
406                 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
407                 struct qreg rcp_ma = qir_RCP(c, ma);
408                 s = qir_FMUL(c, s, rcp_ma);
409                 t = qir_FMUL(c, t, rcp_ma);
410                 r = qir_FMUL(c, r, rcp_ma);
411
412                 qir_TEX_R(c, r, texture_u[next_texture_u++]);
413         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
414                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
415                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
416                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
417                 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
418                           texture_u[next_texture_u++]);
419         }
420
421         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
422                 s = qir_SAT(c, s);
423         }
424
425         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
426                 t = qir_SAT(c, t);
427         }
428
429         qir_TEX_T(c, t, texture_u[next_texture_u++]);
430
431         if (is_txl || is_txb)
432                 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
433
434         qir_TEX_S(c, s, texture_u[next_texture_u++]);
435
436         c->num_texture_samples++;
437         struct qreg tex = qir_TEX_RESULT(c);
438
439         enum pipe_format format = c->key->tex[unit].format;
440
441         struct qreg *dest = ntq_get_dest(c, &instr->dest);
442         if (util_format_is_depth_or_stencil(format)) {
443                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
444                 struct qreg depth_output;
445
446                 struct qreg u0 = qir_uniform_f(c, 0.0f);
447                 struct qreg u1 = qir_uniform_f(c, 1.0f);
448                 if (c->key->tex[unit].compare_mode) {
449                         if (has_proj)
450                                 compare = qir_FMUL(c, compare, proj);
451
452                         switch (c->key->tex[unit].compare_func) {
453                         case PIPE_FUNC_NEVER:
454                                 depth_output = qir_uniform_f(c, 0.0f);
455                                 break;
456                         case PIPE_FUNC_ALWAYS:
457                                 depth_output = u1;
458                                 break;
459                         case PIPE_FUNC_EQUAL:
460                                 qir_SF(c, qir_FSUB(c, compare, normalized));
461                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
462                                 break;
463                         case PIPE_FUNC_NOTEQUAL:
464                                 qir_SF(c, qir_FSUB(c, compare, normalized));
465                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
466                                 break;
467                         case PIPE_FUNC_GREATER:
468                                 qir_SF(c, qir_FSUB(c, compare, normalized));
469                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
470                                 break;
471                         case PIPE_FUNC_GEQUAL:
472                                 qir_SF(c, qir_FSUB(c, normalized, compare));
473                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
474                                 break;
475                         case PIPE_FUNC_LESS:
476                                 qir_SF(c, qir_FSUB(c, compare, normalized));
477                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
478                                 break;
479                         case PIPE_FUNC_LEQUAL:
480                                 qir_SF(c, qir_FSUB(c, normalized, compare));
481                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
482                                 break;
483                         }
484                 } else {
485                         depth_output = normalized;
486                 }
487
488                 for (int i = 0; i < 4; i++)
489                         dest[i] = depth_output;
490         } else {
491                 for (int i = 0; i < 4; i++)
492                         dest[i] = qir_UNPACK_8_F(c, tex, i);
493         }
494
495         for (int i = 0; i < 4; i++) {
496                 if (c->tex_srgb_decode[unit] & (1 << i))
497                         dest[i] = qir_srgb_decode(c, dest[i]);
498         }
499 }
500
501 /**
502  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
503  * to zero).
504  */
505 static struct qreg
506 ntq_ffract(struct vc4_compile *c, struct qreg src)
507 {
508         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
509         struct qreg diff = qir_FSUB(c, src, trunc);
510         qir_SF(c, diff);
511         return qir_SEL(c, QPU_COND_NS,
512                        qir_FADD(c, diff, qir_uniform_f(c, 1.0)), diff);
513 }
514
515 /**
516  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
517  * zero).
518  */
519 static struct qreg
520 ntq_ffloor(struct vc4_compile *c, struct qreg src)
521 {
522         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
523
524         /* This will be < 0 if we truncated and the truncation was of a value
525          * that was < 0 in the first place.
526          */
527         qir_SF(c, qir_FSUB(c, src, trunc));
528
529         return qir_SEL(c, QPU_COND_NS,
530                        qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), trunc);
531 }
532
533 /**
534  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
535  * zero).
536  */
537 static struct qreg
538 ntq_fceil(struct vc4_compile *c, struct qreg src)
539 {
540         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
541
542         /* This will be < 0 if we truncated and the truncation was of a value
543          * that was > 0 in the first place.
544          */
545         qir_SF(c, qir_FSUB(c, trunc, src));
546
547         return qir_SEL(c, QPU_COND_NS,
548                        qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), trunc);
549 }
550
551 static struct qreg
552 ntq_fsin(struct vc4_compile *c, struct qreg src)
553 {
554         float coeff[] = {
555                 -2.0 * M_PI,
556                 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
557                 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
558                 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
559                 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
560         };
561
562         struct qreg scaled_x =
563                 qir_FMUL(c,
564                          src,
565                          qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
566
567         struct qreg x = qir_FADD(c,
568                                  ntq_ffract(c, scaled_x),
569                                  qir_uniform_f(c, -0.5));
570         struct qreg x2 = qir_FMUL(c, x, x);
571         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
572         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
573                 x = qir_FMUL(c, x, x2);
574                 sum = qir_FADD(c,
575                                sum,
576                                qir_FMUL(c,
577                                         x,
578                                         qir_uniform_f(c, coeff[i])));
579         }
580         return sum;
581 }
582
583 static struct qreg
584 ntq_fcos(struct vc4_compile *c, struct qreg src)
585 {
586         float coeff[] = {
587                 -1.0f,
588                 pow(2.0 * M_PI, 2) / (2 * 1),
589                 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
590                 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
591                 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
592                 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
593         };
594
595         struct qreg scaled_x =
596                 qir_FMUL(c, src,
597                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
598         struct qreg x_frac = qir_FADD(c,
599                                       ntq_ffract(c, scaled_x),
600                                       qir_uniform_f(c, -0.5));
601
602         struct qreg sum = qir_uniform_f(c, coeff[0]);
603         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
604         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
605         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
606                 if (i != 1)
607                         x = qir_FMUL(c, x, x2);
608
609                 struct qreg mul = qir_FMUL(c,
610                                            x,
611                                            qir_uniform_f(c, coeff[i]));
612                 if (i == 0)
613                         sum = mul;
614                 else
615                         sum = qir_FADD(c, sum, mul);
616         }
617         return sum;
618 }
619
620 static struct qreg
621 ntq_fsign(struct vc4_compile *c, struct qreg src)
622 {
623         struct qreg t = qir_get_temp(c);
624
625         qir_SF(c, src);
626         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
627         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
628         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
629         return t;
630 }
631
632 static void
633 emit_vertex_input(struct vc4_compile *c, int attr)
634 {
635         enum pipe_format format = c->vs_key->attr_formats[attr];
636         uint32_t attr_size = util_format_get_blocksize(format);
637
638         c->vattr_sizes[attr] = align(attr_size, 4);
639         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
640                 c->inputs[attr * 4 + i] =
641                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
642                 c->num_inputs++;
643         }
644 }
645
646 static void
647 emit_fragcoord_input(struct vc4_compile *c, int attr)
648 {
649         c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
650         c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
651         c->inputs[attr * 4 + 2] =
652                 qir_FMUL(c,
653                          qir_ITOF(c, qir_FRAG_Z(c)),
654                          qir_uniform_f(c, 1.0 / 0xffffff));
655         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
656 }
657
658 static struct qreg
659 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
660                       uint8_t swizzle)
661 {
662         uint32_t i = c->num_input_slots++;
663         struct qreg vary = {
664                 QFILE_VARY,
665                 i
666         };
667
668         if (c->num_input_slots >= c->input_slots_array_size) {
669                 c->input_slots_array_size =
670                         MAX2(4, c->input_slots_array_size * 2);
671
672                 c->input_slots = reralloc(c, c->input_slots,
673                                           struct vc4_varying_slot,
674                                           c->input_slots_array_size);
675         }
676
677         c->input_slots[i].slot = slot;
678         c->input_slots[i].swizzle = swizzle;
679
680         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
681 }
682
683 static void
684 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
685 {
686         for (int i = 0; i < 4; i++) {
687                 c->inputs[attr * 4 + i] =
688                         emit_fragment_varying(c, slot, i);
689                 c->num_inputs++;
690         }
691 }
692
693 static void
694 add_output(struct vc4_compile *c,
695            uint32_t decl_offset,
696            uint8_t slot,
697            uint8_t swizzle)
698 {
699         uint32_t old_array_size = c->outputs_array_size;
700         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
701                           decl_offset + 1);
702
703         if (old_array_size != c->outputs_array_size) {
704                 c->output_slots = reralloc(c,
705                                            c->output_slots,
706                                            struct vc4_varying_slot,
707                                            c->outputs_array_size);
708         }
709
710         c->output_slots[decl_offset].slot = slot;
711         c->output_slots[decl_offset].swizzle = swizzle;
712 }
713
714 static void
715 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
716 {
717         unsigned array_id = c->num_uniform_ranges++;
718         if (array_id >= c->ubo_ranges_array_size) {
719                 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
720                                                 array_id + 1);
721                 c->ubo_ranges = reralloc(c, c->ubo_ranges,
722                                          struct vc4_compiler_ubo_range,
723                                          c->ubo_ranges_array_size);
724         }
725
726         c->ubo_ranges[array_id].dst_offset = 0;
727         c->ubo_ranges[array_id].src_offset = start;
728         c->ubo_ranges[array_id].size = size;
729         c->ubo_ranges[array_id].used = false;
730 }
731
732 static bool
733 ntq_src_is_only_ssa_def_user(nir_src *src)
734 {
735         if (!src->is_ssa)
736                 return false;
737
738         if (!list_empty(&src->ssa->if_uses))
739                 return false;
740
741         return (src->ssa->uses.next == &src->use_link &&
742                 src->ssa->uses.next->next == &src->ssa->uses);
743 }
744
745 /**
746  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
747  * bit set.
748  *
749  * However, as an optimization, it tries to find the instructions generating
750  * the sources to be packed and just emit the pack flag there, if possible.
751  */
752 static void
753 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
754 {
755         struct qreg result = qir_get_temp(c);
756         struct nir_alu_instr *vec4 = NULL;
757
758         /* If packing from a vec4 op (as expected), identify it so that we can
759          * peek back at what generated its sources.
760          */
761         if (instr->src[0].src.is_ssa &&
762             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
763             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
764             nir_op_vec4) {
765                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
766         }
767
768         /* If the pack is replicating the same channel 4 times, use the 8888
769          * pack flag.  This is common for blending using the alpha
770          * channel.
771          */
772         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
773             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
774             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
775                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
776                 *dest = qir_PACK_8888_F(c,
777                                         ntq_get_src(c, instr->src[0].src,
778                                                     instr->src[0].swizzle[0]));
779                 return;
780         }
781
782         for (int i = 0; i < 4; i++) {
783                 int swiz = instr->src[0].swizzle[i];
784                 struct qreg src;
785                 if (vec4) {
786                         src = ntq_get_src(c, vec4->src[swiz].src,
787                                           vec4->src[swiz].swizzle[0]);
788                 } else {
789                         src = ntq_get_src(c, instr->src[0].src, swiz);
790                 }
791
792                 if (vec4 &&
793                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
794                     src.file == QFILE_TEMP &&
795                     c->defs[src.index] &&
796                     qir_is_mul(c->defs[src.index]) &&
797                     !c->defs[src.index]->dst.pack) {
798                         struct qinst *rewrite = c->defs[src.index];
799                         c->defs[src.index] = NULL;
800                         rewrite->dst = result;
801                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
802                         continue;
803                 }
804
805                 qir_PACK_8_F(c, result, src, i);
806         }
807
808         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
809         *dest = result;
810 }
811
812 /** Handles sign-extended bitfield extracts for 16 bits. */
813 static struct qreg
814 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
815               struct qreg bits)
816 {
817         assert(bits.file == QFILE_UNIF &&
818                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
819                c->uniform_data[bits.index] == 16);
820
821         assert(offset.file == QFILE_UNIF &&
822                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
823         int offset_bit = c->uniform_data[offset.index];
824         assert(offset_bit % 16 == 0);
825
826         return qir_UNPACK_16_I(c, base, offset_bit / 16);
827 }
828
829 /** Handles unsigned bitfield extracts for 8 bits. */
830 static struct qreg
831 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
832               struct qreg bits)
833 {
834         assert(bits.file == QFILE_UNIF &&
835                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
836                c->uniform_data[bits.index] == 8);
837
838         assert(offset.file == QFILE_UNIF &&
839                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
840         int offset_bit = c->uniform_data[offset.index];
841         assert(offset_bit % 8 == 0);
842
843         return qir_UNPACK_8_I(c, base, offset_bit / 8);
844 }
845
846 /**
847  * If compare_instr is a valid comparison instruction, emits the
848  * compare_instr's comparison and returns the sel_instr's return value based
849  * on the compare_instr's result.
850  */
851 static bool
852 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
853                     nir_alu_instr *compare_instr,
854                     nir_alu_instr *sel_instr)
855 {
856         enum qpu_cond cond;
857
858         switch (compare_instr->op) {
859         case nir_op_feq:
860         case nir_op_ieq:
861         case nir_op_seq:
862                 cond = QPU_COND_ZS;
863                 break;
864         case nir_op_fne:
865         case nir_op_ine:
866         case nir_op_sne:
867                 cond = QPU_COND_ZC;
868                 break;
869         case nir_op_fge:
870         case nir_op_ige:
871         case nir_op_uge:
872         case nir_op_sge:
873                 cond = QPU_COND_NC;
874                 break;
875         case nir_op_flt:
876         case nir_op_ilt:
877         case nir_op_slt:
878                 cond = QPU_COND_NS;
879                 break;
880         default:
881                 return false;
882         }
883
884         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
885         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
886
887         unsigned unsized_type =
888                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
889         if (unsized_type == nir_type_float)
890                 qir_SF(c, qir_FSUB(c, src0, src1));
891         else
892                 qir_SF(c, qir_SUB(c, src0, src1));
893
894         switch (sel_instr->op) {
895         case nir_op_seq:
896         case nir_op_sne:
897         case nir_op_sge:
898         case nir_op_slt:
899                 *dest = qir_SEL(c, cond,
900                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
901                 break;
902
903         case nir_op_bcsel:
904                 *dest = qir_SEL(c, cond,
905                                 ntq_get_alu_src(c, sel_instr, 1),
906                                 ntq_get_alu_src(c, sel_instr, 2));
907                 break;
908
909         default:
910                 *dest = qir_SEL(c, cond,
911                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
912                 break;
913         }
914
915         return true;
916 }
917
918 /**
919  * Attempts to fold a comparison generating a boolean result into the
920  * condition code for selecting between two values, instead of comparing the
921  * boolean result against 0 to generate the condition code.
922  */
923 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
924                                   struct qreg *src)
925 {
926         if (!instr->src[0].src.is_ssa)
927                 goto out;
928         nir_alu_instr *compare =
929                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
930         if (!compare)
931                 goto out;
932
933         struct qreg dest;
934         if (ntq_emit_comparison(c, &dest, compare, instr))
935                 return dest;
936
937 out:
938         qir_SF(c, src[0]);
939         return qir_SEL(c, QPU_COND_NS, src[1], src[2]);
940 }
941
942 static void
943 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
944 {
945         /* Vectors are special in that they have non-scalarized writemasks,
946          * and just take the first swizzle channel for each argument in order
947          * into each writemask channel.
948          */
949         if (instr->op == nir_op_vec2 ||
950             instr->op == nir_op_vec3 ||
951             instr->op == nir_op_vec4) {
952                 struct qreg srcs[4];
953                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
954                         srcs[i] = ntq_get_src(c, instr->src[i].src,
955                                               instr->src[i].swizzle[0]);
956                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
957                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
958                         dest[i] = srcs[i];
959                 return;
960         }
961
962         if (instr->op == nir_op_pack_unorm_4x8) {
963                 ntq_emit_pack_unorm_4x8(c, instr);
964                 return;
965         }
966
967         if (instr->op == nir_op_unpack_unorm_4x8) {
968                 struct qreg src = ntq_get_src(c, instr->src[0].src,
969                                               instr->src[0].swizzle[0]);
970                 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
971                 for (int i = 0; i < 4; i++) {
972                         if (instr->dest.write_mask & (1 << i))
973                                 dest[i] = qir_UNPACK_8_F(c, src, i);
974                 }
975                 return;
976         }
977
978         /* General case: We can just grab the one used channel per src. */
979         struct qreg src[nir_op_infos[instr->op].num_inputs];
980         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
981                 src[i] = ntq_get_alu_src(c, instr, i);
982         }
983
984         /* Pick the channel to store the output in. */
985         assert(!instr->dest.saturate);
986         struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
987         assert(util_is_power_of_two(instr->dest.write_mask));
988         dest += ffs(instr->dest.write_mask) - 1;
989
990         switch (instr->op) {
991         case nir_op_fmov:
992         case nir_op_imov:
993                 *dest = qir_MOV(c, src[0]);
994                 break;
995         case nir_op_fmul:
996                 *dest = qir_FMUL(c, src[0], src[1]);
997                 break;
998         case nir_op_fadd:
999                 *dest = qir_FADD(c, src[0], src[1]);
1000                 break;
1001         case nir_op_fsub:
1002                 *dest = qir_FSUB(c, src[0], src[1]);
1003                 break;
1004         case nir_op_fmin:
1005                 *dest = qir_FMIN(c, src[0], src[1]);
1006                 break;
1007         case nir_op_fmax:
1008                 *dest = qir_FMAX(c, src[0], src[1]);
1009                 break;
1010
1011         case nir_op_f2i:
1012         case nir_op_f2u:
1013                 *dest = qir_FTOI(c, src[0]);
1014                 break;
1015         case nir_op_i2f:
1016         case nir_op_u2f:
1017                 *dest = qir_ITOF(c, src[0]);
1018                 break;
1019         case nir_op_b2f:
1020                 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1021                 break;
1022         case nir_op_b2i:
1023                 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1024                 break;
1025         case nir_op_i2b:
1026         case nir_op_f2b:
1027                 qir_SF(c, src[0]);
1028                 *dest = qir_SEL(c, QPU_COND_ZC,
1029                                 qir_uniform_ui(c, ~0),
1030                                 qir_uniform_ui(c, 0));
1031                 break;
1032
1033         case nir_op_iadd:
1034                 *dest = qir_ADD(c, src[0], src[1]);
1035                 break;
1036         case nir_op_ushr:
1037                 *dest = qir_SHR(c, src[0], src[1]);
1038                 break;
1039         case nir_op_isub:
1040                 *dest = qir_SUB(c, src[0], src[1]);
1041                 break;
1042         case nir_op_ishr:
1043                 *dest = qir_ASR(c, src[0], src[1]);
1044                 break;
1045         case nir_op_ishl:
1046                 *dest = qir_SHL(c, src[0], src[1]);
1047                 break;
1048         case nir_op_imin:
1049                 *dest = qir_MIN(c, src[0], src[1]);
1050                 break;
1051         case nir_op_imax:
1052                 *dest = qir_MAX(c, src[0], src[1]);
1053                 break;
1054         case nir_op_iand:
1055                 *dest = qir_AND(c, src[0], src[1]);
1056                 break;
1057         case nir_op_ior:
1058                 *dest = qir_OR(c, src[0], src[1]);
1059                 break;
1060         case nir_op_ixor:
1061                 *dest = qir_XOR(c, src[0], src[1]);
1062                 break;
1063         case nir_op_inot:
1064                 *dest = qir_NOT(c, src[0]);
1065                 break;
1066
1067         case nir_op_imul:
1068                 *dest = ntq_umul(c, src[0], src[1]);
1069                 break;
1070
1071         case nir_op_seq:
1072         case nir_op_sne:
1073         case nir_op_sge:
1074         case nir_op_slt:
1075         case nir_op_feq:
1076         case nir_op_fne:
1077         case nir_op_fge:
1078         case nir_op_flt:
1079         case nir_op_ieq:
1080         case nir_op_ine:
1081         case nir_op_ige:
1082         case nir_op_uge:
1083         case nir_op_ilt:
1084                 if (!ntq_emit_comparison(c, dest, instr, instr)) {
1085                         fprintf(stderr, "Bad comparison instruction\n");
1086                 }
1087                 break;
1088
1089         case nir_op_bcsel:
1090                 *dest = ntq_emit_bcsel(c, instr, src);
1091                 break;
1092         case nir_op_fcsel:
1093                 qir_SF(c, src[0]);
1094                 *dest = qir_SEL(c, QPU_COND_ZC, src[1], src[2]);
1095                 break;
1096
1097         case nir_op_frcp:
1098                 *dest = ntq_rcp(c, src[0]);
1099                 break;
1100         case nir_op_frsq:
1101                 *dest = ntq_rsq(c, src[0]);
1102                 break;
1103         case nir_op_fexp2:
1104                 *dest = qir_EXP2(c, src[0]);
1105                 break;
1106         case nir_op_flog2:
1107                 *dest = qir_LOG2(c, src[0]);
1108                 break;
1109
1110         case nir_op_ftrunc:
1111                 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1112                 break;
1113         case nir_op_fceil:
1114                 *dest = ntq_fceil(c, src[0]);
1115                 break;
1116         case nir_op_ffract:
1117                 *dest = ntq_ffract(c, src[0]);
1118                 break;
1119         case nir_op_ffloor:
1120                 *dest = ntq_ffloor(c, src[0]);
1121                 break;
1122
1123         case nir_op_fsin:
1124                 *dest = ntq_fsin(c, src[0]);
1125                 break;
1126         case nir_op_fcos:
1127                 *dest = ntq_fcos(c, src[0]);
1128                 break;
1129
1130         case nir_op_fsign:
1131                 *dest = ntq_fsign(c, src[0]);
1132                 break;
1133
1134         case nir_op_fabs:
1135                 *dest = qir_FMAXABS(c, src[0], src[0]);
1136                 break;
1137         case nir_op_iabs:
1138                 *dest = qir_MAX(c, src[0],
1139                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1140                 break;
1141
1142         case nir_op_ibitfield_extract:
1143                 *dest = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1144                 break;
1145
1146         case nir_op_ubitfield_extract:
1147                 *dest = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1148                 break;
1149
1150         case nir_op_usadd_4x8:
1151                 *dest = qir_V8ADDS(c, src[0], src[1]);
1152                 break;
1153
1154         case nir_op_ussub_4x8:
1155                 *dest = qir_V8SUBS(c, src[0], src[1]);
1156                 break;
1157
1158         case nir_op_umin_4x8:
1159                 *dest = qir_V8MIN(c, src[0], src[1]);
1160                 break;
1161
1162         case nir_op_umax_4x8:
1163                 *dest = qir_V8MAX(c, src[0], src[1]);
1164                 break;
1165
1166         case nir_op_umul_unorm_4x8:
1167                 *dest = qir_V8MULD(c, src[0], src[1]);
1168                 break;
1169
1170         default:
1171                 fprintf(stderr, "unknown NIR ALU inst: ");
1172                 nir_print_instr(&instr->instr, stderr);
1173                 fprintf(stderr, "\n");
1174                 abort();
1175         }
1176 }
1177
1178 static void
1179 emit_frag_end(struct vc4_compile *c)
1180 {
1181         struct qreg color;
1182         if (c->output_color_index != -1) {
1183                 color = c->outputs[c->output_color_index];
1184         } else {
1185                 color = qir_uniform_ui(c, 0);
1186         }
1187
1188         uint32_t discard_cond = QPU_COND_ALWAYS;
1189         if (c->discard.file != QFILE_NULL) {
1190                 qir_SF(c, c->discard);
1191                 discard_cond = QPU_COND_ZS;
1192         }
1193
1194         if (c->fs_key->stencil_enabled) {
1195                 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1196                 if (c->fs_key->stencil_twoside) {
1197                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1198                 }
1199                 if (c->fs_key->stencil_full_writemasks) {
1200                         qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1201                 }
1202         }
1203
1204         if (c->output_sample_mask_index != -1) {
1205                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1206         }
1207
1208         if (c->fs_key->depth_enabled) {
1209                 struct qreg z;
1210                 if (c->output_position_index != -1) {
1211                         z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1212                                                  qir_uniform_f(c, 0xffffff)));
1213                 } else {
1214                         z = qir_FRAG_Z(c);
1215                 }
1216                 struct qinst *inst = qir_TLB_Z_WRITE(c, z);
1217                 inst->cond = discard_cond;
1218         }
1219
1220         if (!c->msaa_per_sample_output) {
1221                 struct qinst *inst = qir_TLB_COLOR_WRITE(c, color);
1222                 inst->cond = discard_cond;
1223         } else {
1224                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1225                         struct qinst *inst = qir_TLB_COLOR_WRITE_MS(c, c->sample_colors[i]);
1226                         inst->cond = discard_cond;
1227                 }
1228         }
1229 }
1230
1231 static void
1232 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1233 {
1234         struct qreg packed = qir_get_temp(c);
1235
1236         for (int i = 0; i < 2; i++) {
1237                 struct qreg scale =
1238                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1239
1240                 struct qreg packed_chan = packed;
1241                 packed_chan.pack = QPU_PACK_A_16A + i;
1242
1243                 qir_FTOI_dest(c, packed_chan,
1244                               qir_FMUL(c,
1245                                        qir_FMUL(c,
1246                                                 c->outputs[c->output_position_index + i],
1247                                                 scale),
1248                                        rcp_w));
1249         }
1250
1251         qir_VPM_WRITE(c, packed);
1252 }
1253
1254 static void
1255 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1256 {
1257         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1258         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1259
1260         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1261                                                           c->outputs[c->output_position_index + 2],
1262                                                           zscale),
1263                                               rcp_w),
1264                                   zoffset));
1265 }
1266
1267 static void
1268 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1269 {
1270         qir_VPM_WRITE(c, rcp_w);
1271 }
1272
1273 static void
1274 emit_point_size_write(struct vc4_compile *c)
1275 {
1276         struct qreg point_size;
1277
1278         if (c->output_point_size_index != -1)
1279                 point_size = c->outputs[c->output_point_size_index];
1280         else
1281                 point_size = qir_uniform_f(c, 1.0);
1282
1283         /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1284          * BCM21553).
1285          */
1286         point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1287
1288         qir_VPM_WRITE(c, point_size);
1289 }
1290
1291 /**
1292  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1293  *
1294  * The simulator insists that there be at least one vertex attribute, so
1295  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1296  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1297  * to consume it here.
1298  */
1299 static void
1300 emit_stub_vpm_read(struct vc4_compile *c)
1301 {
1302         if (c->num_inputs)
1303                 return;
1304
1305         c->vattr_sizes[0] = 4;
1306         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1307         c->num_inputs++;
1308 }
1309
1310 static void
1311 emit_vert_end(struct vc4_compile *c,
1312               struct vc4_varying_slot *fs_inputs,
1313               uint32_t num_fs_inputs)
1314 {
1315         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1316
1317         emit_stub_vpm_read(c);
1318
1319         emit_scaled_viewport_write(c, rcp_w);
1320         emit_zs_write(c, rcp_w);
1321         emit_rcp_wc_write(c, rcp_w);
1322         if (c->vs_key->per_vertex_point_size)
1323                 emit_point_size_write(c);
1324
1325         for (int i = 0; i < num_fs_inputs; i++) {
1326                 struct vc4_varying_slot *input = &fs_inputs[i];
1327                 int j;
1328
1329                 for (j = 0; j < c->num_outputs; j++) {
1330                         struct vc4_varying_slot *output =
1331                                 &c->output_slots[j];
1332
1333                         if (input->slot == output->slot &&
1334                             input->swizzle == output->swizzle) {
1335                                 qir_VPM_WRITE(c, c->outputs[j]);
1336                                 break;
1337                         }
1338                 }
1339                 /* Emit padding if we didn't find a declared VS output for
1340                  * this FS input.
1341                  */
1342                 if (j == c->num_outputs)
1343                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1344         }
1345 }
1346
1347 static void
1348 emit_coord_end(struct vc4_compile *c)
1349 {
1350         struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1351
1352         emit_stub_vpm_read(c);
1353
1354         for (int i = 0; i < 4; i++)
1355                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1356
1357         emit_scaled_viewport_write(c, rcp_w);
1358         emit_zs_write(c, rcp_w);
1359         emit_rcp_wc_write(c, rcp_w);
1360         if (c->vs_key->per_vertex_point_size)
1361                 emit_point_size_write(c);
1362 }
1363
1364 static void
1365 vc4_optimize_nir(struct nir_shader *s)
1366 {
1367         bool progress;
1368
1369         do {
1370                 progress = false;
1371
1372                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1373                 NIR_PASS_V(s, nir_lower_alu_to_scalar);
1374
1375                 NIR_PASS(progress, s, nir_copy_prop);
1376                 NIR_PASS(progress, s, nir_opt_dce);
1377                 NIR_PASS(progress, s, nir_opt_cse);
1378                 NIR_PASS(progress, s, nir_opt_peephole_select);
1379                 NIR_PASS(progress, s, nir_opt_algebraic);
1380                 NIR_PASS(progress, s, nir_opt_constant_folding);
1381                 NIR_PASS(progress, s, nir_opt_undef);
1382         } while (progress);
1383 }
1384
1385 static int
1386 driver_location_compare(const void *in_a, const void *in_b)
1387 {
1388         const nir_variable *const *a = in_a;
1389         const nir_variable *const *b = in_b;
1390
1391         return (*a)->data.driver_location - (*b)->data.driver_location;
1392 }
1393
1394 static void
1395 ntq_setup_inputs(struct vc4_compile *c)
1396 {
1397         unsigned num_entries = 0;
1398         nir_foreach_variable(var, &c->s->inputs)
1399                 num_entries++;
1400
1401         nir_variable *vars[num_entries];
1402
1403         unsigned i = 0;
1404         nir_foreach_variable(var, &c->s->inputs)
1405                 vars[i++] = var;
1406
1407         /* Sort the variables so that we emit the input setup in
1408          * driver_location order.  This is required for VPM reads, whose data
1409          * is fetched into the VPM in driver_location (TGSI register index)
1410          * order.
1411          */
1412         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1413
1414         for (unsigned i = 0; i < num_entries; i++) {
1415                 nir_variable *var = vars[i];
1416                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1417                 unsigned loc = var->data.driver_location;
1418
1419                 assert(array_len == 1);
1420                 (void)array_len;
1421                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1422                                   (loc + 1) * 4);
1423
1424                 if (c->stage == QSTAGE_FRAG) {
1425                         if (var->data.location == VARYING_SLOT_POS) {
1426                                 emit_fragcoord_input(c, loc);
1427                         } else if (var->data.location == VARYING_SLOT_FACE) {
1428                                 c->inputs[loc * 4 + 0] = qir_FRAG_REV_FLAG(c);
1429                         } else if (var->data.location >= VARYING_SLOT_VAR0 &&
1430                                    (c->fs_key->point_sprite_mask &
1431                                     (1 << (var->data.location -
1432                                            VARYING_SLOT_VAR0)))) {
1433                                 c->inputs[loc * 4 + 0] = c->point_x;
1434                                 c->inputs[loc * 4 + 1] = c->point_y;
1435                         } else {
1436                                 emit_fragment_input(c, loc, var->data.location);
1437                         }
1438                 } else {
1439                         emit_vertex_input(c, loc);
1440                 }
1441         }
1442 }
1443
1444 static void
1445 ntq_setup_outputs(struct vc4_compile *c)
1446 {
1447         nir_foreach_variable(var, &c->s->outputs) {
1448                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1449                 unsigned loc = var->data.driver_location * 4;
1450
1451                 assert(array_len == 1);
1452                 (void)array_len;
1453
1454                 for (int i = 0; i < 4; i++)
1455                         add_output(c, loc + i, var->data.location, i);
1456
1457                 if (c->stage == QSTAGE_FRAG) {
1458                         switch (var->data.location) {
1459                         case FRAG_RESULT_COLOR:
1460                         case FRAG_RESULT_DATA0:
1461                                 c->output_color_index = loc;
1462                                 break;
1463                         case FRAG_RESULT_DEPTH:
1464                                 c->output_position_index = loc;
1465                                 break;
1466                         case FRAG_RESULT_SAMPLE_MASK:
1467                                 c->output_sample_mask_index = loc;
1468                                 break;
1469                         }
1470                 } else {
1471                         switch (var->data.location) {
1472                         case VARYING_SLOT_POS:
1473                                 c->output_position_index = loc;
1474                                 break;
1475                         case VARYING_SLOT_PSIZ:
1476                                 c->output_point_size_index = loc;
1477                                 break;
1478                         }
1479                 }
1480         }
1481 }
1482
1483 static void
1484 ntq_setup_uniforms(struct vc4_compile *c)
1485 {
1486         nir_foreach_variable(var, &c->s->uniforms) {
1487                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1488                 unsigned array_elem_size = 4 * sizeof(float);
1489
1490                 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1491                                       array_len * array_elem_size);
1492
1493         }
1494 }
1495
1496 /**
1497  * Sets up the mapping from nir_register to struct qreg *.
1498  *
1499  * Each nir_register gets a struct qreg per 32-bit component being stored.
1500  */
1501 static void
1502 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1503 {
1504         foreach_list_typed(nir_register, nir_reg, node, list) {
1505                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1506                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1507                                                   array_len *
1508                                                   nir_reg->num_components);
1509
1510                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1511
1512                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1513                         qregs[i] = qir_uniform_ui(c, 0);
1514         }
1515 }
1516
1517 static void
1518 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1519 {
1520         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1521         for (int i = 0; i < instr->def.num_components; i++)
1522                 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]);
1523
1524         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1525 }
1526
1527 static void
1528 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1529 {
1530         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1531
1532         /* QIR needs there to be *some* value, so pick 0 (same as for
1533          * ntq_setup_registers().
1534          */
1535         for (int i = 0; i < instr->def.num_components; i++)
1536                 qregs[i] = qir_uniform_ui(c, 0);
1537 }
1538
1539 static void
1540 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1541 {
1542         const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1543         nir_const_value *const_offset;
1544         unsigned offset;
1545         struct qreg *dest = NULL;
1546
1547         if (info->has_dest) {
1548                 dest = ntq_get_dest(c, &instr->dest);
1549         }
1550
1551         switch (instr->intrinsic) {
1552         case nir_intrinsic_load_uniform:
1553                 assert(instr->num_components == 1);
1554                 const_offset = nir_src_as_const_value(instr->src[0]);
1555                 if (const_offset) {
1556                         offset = instr->const_index[0] + const_offset->u32[0];
1557                         assert(offset % 4 == 0);
1558                         /* We need dwords */
1559                         offset = offset / 4;
1560                         if (offset < VC4_NIR_STATE_UNIFORM_OFFSET) {
1561                                 *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1562                                                     offset);
1563                         } else {
1564                                 *dest = qir_uniform(c, offset -
1565                                                     VC4_NIR_STATE_UNIFORM_OFFSET,
1566                                                     0);
1567                         }
1568                 } else {
1569                         *dest = indirect_uniform_load(c, instr);
1570                 }
1571                 break;
1572
1573         case nir_intrinsic_load_user_clip_plane:
1574                 for (int i = 0; i < instr->num_components; i++) {
1575                         dest[i] = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1576                                               instr->const_index[0] * 4 + i);
1577                 }
1578                 break;
1579
1580         case nir_intrinsic_load_sample_mask_in:
1581                 *dest = qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0);
1582                 break;
1583
1584         case nir_intrinsic_load_input:
1585                 assert(instr->num_components == 1);
1586                 const_offset = nir_src_as_const_value(instr->src[0]);
1587                 assert(const_offset && "vc4 doesn't support indirect inputs");
1588                 if (instr->const_index[0] >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1589                         assert(const_offset->u32[0] == 0);
1590                         /* Reads of the per-sample color need to be done in
1591                          * order.
1592                          */
1593                         int sample_index = (instr->const_index[0] -
1594                                            VC4_NIR_TLB_COLOR_READ_INPUT);
1595                         for (int i = 0; i <= sample_index; i++) {
1596                                 if (c->color_reads[i].file == QFILE_NULL) {
1597                                         c->color_reads[i] =
1598                                                 qir_TLB_COLOR_READ(c);
1599                                 }
1600                         }
1601                         *dest = c->color_reads[sample_index];
1602                 } else {
1603                         offset = instr->const_index[0] + const_offset->u32[0];
1604                         *dest = c->inputs[offset];
1605                 }
1606                 break;
1607
1608         case nir_intrinsic_store_output:
1609                 const_offset = nir_src_as_const_value(instr->src[1]);
1610                 assert(const_offset && "vc4 doesn't support indirect outputs");
1611                 offset = instr->const_index[0] + const_offset->u32[0];
1612
1613                 /* MSAA color outputs are the only case where we have an
1614                  * output that's not lowered to being a store of a single 32
1615                  * bit value.
1616                  */
1617                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1618                         assert(offset == c->output_color_index);
1619                         for (int i = 0; i < 4; i++) {
1620                                 c->sample_colors[i] =
1621                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1622                                                                i));
1623                         }
1624                 } else {
1625                         assert(instr->num_components == 1);
1626                         c->outputs[offset] =
1627                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1628                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1629                 }
1630                 break;
1631
1632         case nir_intrinsic_discard:
1633                 c->discard = qir_uniform_ui(c, ~0);
1634                 break;
1635
1636         case nir_intrinsic_discard_if:
1637                 if (c->discard.file == QFILE_NULL)
1638                         c->discard = qir_uniform_ui(c, 0);
1639                 c->discard = qir_OR(c, c->discard,
1640                                     ntq_get_src(c, instr->src[0], 0));
1641                 break;
1642
1643         default:
1644                 fprintf(stderr, "Unknown intrinsic: ");
1645                 nir_print_instr(&instr->instr, stderr);
1646                 fprintf(stderr, "\n");
1647                 break;
1648         }
1649 }
1650
1651 static void
1652 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1653 {
1654         fprintf(stderr, "general IF statements not handled.\n");
1655 }
1656
1657 static void
1658 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1659 {
1660         switch (instr->type) {
1661         case nir_instr_type_alu:
1662                 ntq_emit_alu(c, nir_instr_as_alu(instr));
1663                 break;
1664
1665         case nir_instr_type_intrinsic:
1666                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1667                 break;
1668
1669         case nir_instr_type_load_const:
1670                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1671                 break;
1672
1673         case nir_instr_type_ssa_undef:
1674                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1675                 break;
1676
1677         case nir_instr_type_tex:
1678                 ntq_emit_tex(c, nir_instr_as_tex(instr));
1679                 break;
1680
1681         default:
1682                 fprintf(stderr, "Unknown NIR instr type: ");
1683                 nir_print_instr(instr, stderr);
1684                 fprintf(stderr, "\n");
1685                 abort();
1686         }
1687 }
1688
1689 static void
1690 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1691 {
1692         nir_foreach_instr(block, instr) {
1693                 ntq_emit_instr(c, instr);
1694         }
1695 }
1696
1697 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
1698
1699 static void
1700 ntq_emit_loop(struct vc4_compile *c, nir_loop *nloop)
1701 {
1702         fprintf(stderr, "LOOPS not fully handled. Rendering errors likely.\n");
1703         ntq_emit_cf_list(c, &nloop->body);
1704 }
1705
1706 static void
1707 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
1708 {
1709         fprintf(stderr, "FUNCTIONS not handled.\n");
1710         abort();
1711 }
1712
1713 static void
1714 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1715 {
1716         foreach_list_typed(nir_cf_node, node, node, list) {
1717                 switch (node->type) {
1718                 case nir_cf_node_block:
1719                         ntq_emit_block(c, nir_cf_node_as_block(node));
1720                         break;
1721
1722                 case nir_cf_node_if:
1723                         ntq_emit_if(c, nir_cf_node_as_if(node));
1724                         break;
1725
1726                 case nir_cf_node_loop:
1727                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
1728                         break;
1729
1730                 case nir_cf_node_function:
1731                         ntq_emit_function(c, nir_cf_node_as_function(node));
1732                         break;
1733
1734                 default:
1735                         fprintf(stderr, "Unknown NIR node type\n");
1736                         abort();
1737                 }
1738         }
1739 }
1740
1741 static void
1742 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1743 {
1744         ntq_setup_registers(c, &impl->registers);
1745         ntq_emit_cf_list(c, &impl->body);
1746 }
1747
1748 static void
1749 nir_to_qir(struct vc4_compile *c)
1750 {
1751         ntq_setup_inputs(c);
1752         ntq_setup_outputs(c);
1753         ntq_setup_uniforms(c);
1754         ntq_setup_registers(c, &c->s->registers);
1755
1756         /* Find the main function and emit the body. */
1757         nir_foreach_function(c->s, function) {
1758                 assert(strcmp(function->name, "main") == 0);
1759                 assert(function->impl);
1760                 ntq_emit_impl(c, function->impl);
1761         }
1762 }
1763
1764 static const nir_shader_compiler_options nir_options = {
1765         .lower_extract_byte = true,
1766         .lower_extract_word = true,
1767         .lower_ffma = true,
1768         .lower_flrp = true,
1769         .lower_fpow = true,
1770         .lower_fsat = true,
1771         .lower_fsqrt = true,
1772         .lower_negate = true,
1773 };
1774
1775 static bool
1776 count_nir_instrs_in_block(nir_block *block, void *state)
1777 {
1778         int *count = (int *) state;
1779         nir_foreach_instr(block, instr) {
1780                 *count = *count + 1;
1781         }
1782         return true;
1783 }
1784
1785 static int
1786 count_nir_instrs(nir_shader *nir)
1787 {
1788         int count = 0;
1789         nir_foreach_function(nir, function) {
1790                 if (!function->impl)
1791                         continue;
1792                 nir_foreach_block(function->impl, count_nir_instrs_in_block, &count);
1793         }
1794         return count;
1795 }
1796
1797 static struct vc4_compile *
1798 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1799                        struct vc4_key *key)
1800 {
1801         struct vc4_compile *c = qir_compile_init();
1802
1803         c->stage = stage;
1804         c->shader_state = &key->shader_state->base;
1805         c->program_id = key->shader_state->program_id;
1806         c->variant_id = key->shader_state->compiled_variant_count++;
1807
1808         c->key = key;
1809         switch (stage) {
1810         case QSTAGE_FRAG:
1811                 c->fs_key = (struct vc4_fs_key *)key;
1812                 if (c->fs_key->is_points) {
1813                         c->point_x = emit_fragment_varying(c, ~0, 0);
1814                         c->point_y = emit_fragment_varying(c, ~0, 0);
1815                 } else if (c->fs_key->is_lines) {
1816                         c->line_x = emit_fragment_varying(c, ~0, 0);
1817                 }
1818                 break;
1819         case QSTAGE_VERT:
1820                 c->vs_key = (struct vc4_vs_key *)key;
1821                 break;
1822         case QSTAGE_COORD:
1823                 c->vs_key = (struct vc4_vs_key *)key;
1824                 break;
1825         }
1826
1827         const struct tgsi_token *tokens = key->shader_state->base.tokens;
1828
1829         if (vc4_debug & VC4_DEBUG_TGSI) {
1830                 fprintf(stderr, "%s prog %d/%d TGSI:\n",
1831                         qir_get_stage_name(c->stage),
1832                         c->program_id, c->variant_id);
1833                 tgsi_dump(tokens, 0);
1834         }
1835
1836         c->s = tgsi_to_nir(tokens, &nir_options);
1837         NIR_PASS_V(c->s, nir_opt_global_to_local);
1838         NIR_PASS_V(c->s, nir_convert_to_ssa);
1839
1840         if (stage == QSTAGE_FRAG)
1841                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
1842
1843         struct nir_lower_tex_options tex_options = {
1844                 /* We would need to implement txs, but we don't want the
1845                  * int/float conversions
1846                  */
1847                 .lower_rect = false,
1848
1849                 /* We want to use this, but we don't want to newton-raphson
1850                  * its rcp.
1851                  */
1852                 .lower_txp = false,
1853
1854                 /* Apply swizzles to all samplers. */
1855                 .swizzle_result = ~0,
1856         };
1857
1858         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
1859          * The format swizzling applies before sRGB decode, and
1860          * ARB_texture_swizzle is the last thing before returning the sample.
1861          */
1862         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
1863                 enum pipe_format format = c->key->tex[i].format;
1864
1865                 if (!format)
1866                         continue;
1867
1868                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
1869
1870                 for (int j = 0; j < 4; j++) {
1871                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
1872
1873                         if (arb_swiz <= 3) {
1874                                 tex_options.swizzles[i][j] =
1875                                         format_swizzle[arb_swiz];
1876                         } else {
1877                                 tex_options.swizzles[i][j] = arb_swiz;
1878                         }
1879
1880                         /* If ARB_texture_swizzle is reading from the R, G, or
1881                          * B channels of an sRGB texture, then we need to
1882                          * apply sRGB decode to this channel at sample time.
1883                          */
1884                         if (arb_swiz < 3 && util_format_is_srgb(format)) {
1885                                 c->tex_srgb_decode[i] |= (1 << j);
1886                         }
1887
1888                 }
1889         }
1890
1891         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
1892
1893         if (c->fs_key && c->fs_key->light_twoside)
1894                 NIR_PASS_V(c->s, nir_lower_two_sided_color);
1895
1896         if (stage == QSTAGE_FRAG)
1897                 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
1898         else
1899                 NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables);
1900
1901         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
1902         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
1903         NIR_PASS_V(c->s, nir_lower_idiv);
1904         NIR_PASS_V(c->s, nir_lower_load_const_to_scalar);
1905
1906         vc4_optimize_nir(c->s);
1907
1908         NIR_PASS_V(c->s, nir_remove_dead_variables);
1909         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
1910
1911         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1912                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1913                         qir_get_stage_name(c->stage),
1914                         c->program_id, c->variant_id,
1915                         count_nir_instrs(c->s));
1916         }
1917
1918         if (vc4_debug & VC4_DEBUG_NIR) {
1919                 fprintf(stderr, "%s prog %d/%d NIR:\n",
1920                         qir_get_stage_name(c->stage),
1921                         c->program_id, c->variant_id);
1922                 nir_print_shader(c->s, stderr);
1923         }
1924
1925         nir_to_qir(c);
1926
1927         switch (stage) {
1928         case QSTAGE_FRAG:
1929                 emit_frag_end(c);
1930                 break;
1931         case QSTAGE_VERT:
1932                 emit_vert_end(c,
1933                               vc4->prog.fs->input_slots,
1934                               vc4->prog.fs->num_inputs);
1935                 break;
1936         case QSTAGE_COORD:
1937                 emit_coord_end(c);
1938                 break;
1939         }
1940
1941         if (vc4_debug & VC4_DEBUG_QIR) {
1942                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1943                         qir_get_stage_name(c->stage),
1944                         c->program_id, c->variant_id);
1945                 qir_dump(c);
1946         }
1947
1948         qir_optimize(c);
1949         qir_lower_uniforms(c);
1950
1951         qir_schedule_instructions(c);
1952
1953         if (vc4_debug & VC4_DEBUG_QIR) {
1954                 fprintf(stderr, "%s prog %d/%d QIR:\n",
1955                         qir_get_stage_name(c->stage),
1956                         c->program_id, c->variant_id);
1957                 qir_dump(c);
1958         }
1959
1960         qir_reorder_uniforms(c);
1961         vc4_generate_code(vc4, c);
1962
1963         if (vc4_debug & VC4_DEBUG_SHADERDB) {
1964                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1965                         qir_get_stage_name(c->stage),
1966                         c->program_id, c->variant_id,
1967                         c->qpu_inst_count);
1968                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1969                         qir_get_stage_name(c->stage),
1970                         c->program_id, c->variant_id,
1971                         c->num_uniforms);
1972         }
1973
1974         ralloc_free(c->s);
1975
1976         return c;
1977 }
1978
1979 static void *
1980 vc4_shader_state_create(struct pipe_context *pctx,
1981                         const struct pipe_shader_state *cso)
1982 {
1983         struct vc4_context *vc4 = vc4_context(pctx);
1984         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1985         if (!so)
1986                 return NULL;
1987
1988         so->base.tokens = tgsi_dup_tokens(cso->tokens);
1989         so->program_id = vc4->next_uncompiled_program_id++;
1990
1991         return so;
1992 }
1993
1994 static void
1995 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1996                              struct vc4_compile *c)
1997 {
1998         int count = c->num_uniforms;
1999         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2000
2001         uinfo->count = count;
2002         uinfo->data = ralloc_array(shader, uint32_t, count);
2003         memcpy(uinfo->data, c->uniform_data,
2004                count * sizeof(*uinfo->data));
2005         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2006         memcpy(uinfo->contents, c->uniform_contents,
2007                count * sizeof(*uinfo->contents));
2008         uinfo->num_texture_samples = c->num_texture_samples;
2009
2010         vc4_set_shader_uniform_dirty_flags(shader);
2011 }
2012
2013 static struct vc4_compiled_shader *
2014 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2015                         struct vc4_key *key)
2016 {
2017         struct hash_table *ht;
2018         uint32_t key_size;
2019         if (stage == QSTAGE_FRAG) {
2020                 ht = vc4->fs_cache;
2021                 key_size = sizeof(struct vc4_fs_key);
2022         } else {
2023                 ht = vc4->vs_cache;
2024                 key_size = sizeof(struct vc4_vs_key);
2025         }
2026
2027         struct vc4_compiled_shader *shader;
2028         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2029         if (entry)
2030                 return entry->data;
2031
2032         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
2033         shader = rzalloc(NULL, struct vc4_compiled_shader);
2034
2035         shader->program_id = vc4->next_compiled_program_id++;
2036         if (stage == QSTAGE_FRAG) {
2037                 bool input_live[c->num_input_slots];
2038
2039                 memset(input_live, 0, sizeof(input_live));
2040                 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
2041                         for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2042                                 if (inst->src[i].file == QFILE_VARY)
2043                                         input_live[inst->src[i].index] = true;
2044                         }
2045                 }
2046
2047                 shader->input_slots = ralloc_array(shader,
2048                                                    struct vc4_varying_slot,
2049                                                    c->num_input_slots);
2050
2051                 for (int i = 0; i < c->num_input_slots; i++) {
2052                         struct vc4_varying_slot *slot = &c->input_slots[i];
2053
2054                         if (!input_live[i])
2055                                 continue;
2056
2057                         /* Skip non-VS-output inputs. */
2058                         if (slot->slot == (uint8_t)~0)
2059                                 continue;
2060
2061                         if (slot->slot == VARYING_SLOT_COL0 ||
2062                             slot->slot == VARYING_SLOT_COL1 ||
2063                             slot->slot == VARYING_SLOT_BFC0 ||
2064                             slot->slot == VARYING_SLOT_BFC1) {
2065                                 shader->color_inputs |= (1 << shader->num_inputs);
2066                         }
2067
2068                         shader->input_slots[shader->num_inputs] = *slot;
2069                         shader->num_inputs++;
2070                 }
2071         } else {
2072                 shader->num_inputs = c->num_inputs;
2073
2074                 shader->vattr_offsets[0] = 0;
2075                 for (int i = 0; i < 8; i++) {
2076                         shader->vattr_offsets[i + 1] =
2077                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2078
2079                         if (c->vattr_sizes[i])
2080                                 shader->vattrs_live |= (1 << i);
2081                 }
2082         }
2083
2084         copy_uniform_state_to_shader(shader, c);
2085         shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2086                                          c->qpu_inst_count * sizeof(uint64_t));
2087
2088         /* Copy the compiler UBO range state to the compiled shader, dropping
2089          * out arrays that were never referenced by an indirect load.
2090          *
2091          * (Note that QIR dead code elimination of an array access still
2092          * leaves that array alive, though)
2093          */
2094         if (c->num_ubo_ranges) {
2095                 shader->num_ubo_ranges = c->num_ubo_ranges;
2096                 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2097                                                   c->num_ubo_ranges);
2098                 uint32_t j = 0;
2099                 for (int i = 0; i < c->num_uniform_ranges; i++) {
2100                         struct vc4_compiler_ubo_range *range =
2101                                 &c->ubo_ranges[i];
2102                         if (!range->used)
2103                                 continue;
2104
2105                         shader->ubo_ranges[j].dst_offset = range->dst_offset;
2106                         shader->ubo_ranges[j].src_offset = range->src_offset;
2107                         shader->ubo_ranges[j].size = range->size;
2108                         shader->ubo_size += c->ubo_ranges[i].size;
2109                         j++;
2110                 }
2111         }
2112         if (shader->ubo_size) {
2113                 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2114                         fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2115                                 qir_get_stage_name(c->stage),
2116                                 c->program_id, c->variant_id,
2117                                 shader->ubo_size / 4);
2118                 }
2119         }
2120
2121         qir_compile_destroy(c);
2122
2123         struct vc4_key *dup_key;
2124         dup_key = ralloc_size(shader, key_size);
2125         memcpy(dup_key, key, key_size);
2126         _mesa_hash_table_insert(ht, dup_key, shader);
2127
2128         return shader;
2129 }
2130
2131 static void
2132 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2133                      struct vc4_texture_stateobj *texstate)
2134 {
2135         for (int i = 0; i < texstate->num_textures; i++) {
2136                 struct pipe_sampler_view *sampler = texstate->textures[i];
2137                 struct pipe_sampler_state *sampler_state =
2138                         texstate->samplers[i];
2139
2140                 if (!sampler)
2141                         continue;
2142
2143                 key->tex[i].format = sampler->format;
2144                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2145                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2146                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2147                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2148
2149                 if (sampler->texture->nr_samples > 1) {
2150                         key->tex[i].msaa_width = sampler->texture->width0;
2151                         key->tex[i].msaa_height = sampler->texture->height0;
2152                 } else if (sampler){
2153                         key->tex[i].compare_mode = sampler_state->compare_mode;
2154                         key->tex[i].compare_func = sampler_state->compare_func;
2155                         key->tex[i].wrap_s = sampler_state->wrap_s;
2156                         key->tex[i].wrap_t = sampler_state->wrap_t;
2157                 }
2158         }
2159
2160         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2161 }
2162
2163 static void
2164 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2165 {
2166         struct vc4_fs_key local_key;
2167         struct vc4_fs_key *key = &local_key;
2168
2169         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2170                             VC4_DIRTY_BLEND |
2171                             VC4_DIRTY_FRAMEBUFFER |
2172                             VC4_DIRTY_ZSA |
2173                             VC4_DIRTY_RASTERIZER |
2174                             VC4_DIRTY_FRAGTEX |
2175                             VC4_DIRTY_TEXSTATE |
2176                             VC4_DIRTY_UNCOMPILED_FS))) {
2177                 return;
2178         }
2179
2180         memset(key, 0, sizeof(*key));
2181         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2182         key->base.shader_state = vc4->prog.bind_fs;
2183         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2184         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2185                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2186         key->blend = vc4->blend->rt[0];
2187         if (vc4->blend->logicop_enable) {
2188                 key->logicop_func = vc4->blend->logicop_func;
2189         } else {
2190                 key->logicop_func = PIPE_LOGICOP_COPY;
2191         }
2192         key->msaa = vc4->rasterizer->base.multisample;
2193         key->sample_coverage = (vc4->rasterizer->base.multisample &&
2194                                 vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2195         key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2196         key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2197         if (vc4->framebuffer.cbufs[0])
2198                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2199
2200         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2201         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2202         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2203         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2204                               key->stencil_enabled);
2205         if (vc4->zsa->base.alpha.enabled) {
2206                 key->alpha_test = true;
2207                 key->alpha_test_func = vc4->zsa->base.alpha.func;
2208         }
2209
2210         if (key->is_points) {
2211                 key->point_sprite_mask =
2212                         vc4->rasterizer->base.sprite_coord_enable;
2213                 key->point_coord_upper_left =
2214                         (vc4->rasterizer->base.sprite_coord_mode ==
2215                          PIPE_SPRITE_COORD_UPPER_LEFT);
2216         }
2217
2218         key->light_twoside = vc4->rasterizer->base.light_twoside;
2219
2220         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2221         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2222         if (vc4->prog.fs == old_fs)
2223                 return;
2224
2225         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2226         if (vc4->rasterizer->base.flatshade &&
2227             old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2228                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2229         }
2230 }
2231
2232 static void
2233 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2234 {
2235         struct vc4_vs_key local_key;
2236         struct vc4_vs_key *key = &local_key;
2237
2238         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2239                             VC4_DIRTY_RASTERIZER |
2240                             VC4_DIRTY_VERTTEX |
2241                             VC4_DIRTY_TEXSTATE |
2242                             VC4_DIRTY_VTXSTATE |
2243                             VC4_DIRTY_UNCOMPILED_VS |
2244                             VC4_DIRTY_COMPILED_FS))) {
2245                 return;
2246         }
2247
2248         memset(key, 0, sizeof(*key));
2249         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2250         key->base.shader_state = vc4->prog.bind_vs;
2251         key->compiled_fs_id = vc4->prog.fs->program_id;
2252
2253         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2254                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2255
2256         key->per_vertex_point_size =
2257                 (prim_mode == PIPE_PRIM_POINTS &&
2258                  vc4->rasterizer->base.point_size_per_vertex);
2259
2260         struct vc4_compiled_shader *vs =
2261                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2262         if (vs != vc4->prog.vs) {
2263                 vc4->prog.vs = vs;
2264                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2265         }
2266
2267         key->is_coord = true;
2268         struct vc4_compiled_shader *cs =
2269                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2270         if (cs != vc4->prog.cs) {
2271                 vc4->prog.cs = cs;
2272                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2273         }
2274 }
2275
2276 void
2277 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2278 {
2279         vc4_update_compiled_fs(vc4, prim_mode);
2280         vc4_update_compiled_vs(vc4, prim_mode);
2281 }
2282
2283 static uint32_t
2284 fs_cache_hash(const void *key)
2285 {
2286         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2287 }
2288
2289 static uint32_t
2290 vs_cache_hash(const void *key)
2291 {
2292         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2293 }
2294
2295 static bool
2296 fs_cache_compare(const void *key1, const void *key2)
2297 {
2298         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2299 }
2300
2301 static bool
2302 vs_cache_compare(const void *key1, const void *key2)
2303 {
2304         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2305 }
2306
2307 static void
2308 delete_from_cache_if_matches(struct hash_table *ht,
2309                              struct hash_entry *entry,
2310                              struct vc4_uncompiled_shader *so)
2311 {
2312         const struct vc4_key *key = entry->key;
2313
2314         if (key->shader_state == so) {
2315                 struct vc4_compiled_shader *shader = entry->data;
2316                 _mesa_hash_table_remove(ht, entry);
2317                 vc4_bo_unreference(&shader->bo);
2318                 ralloc_free(shader);
2319         }
2320 }
2321
2322 static void
2323 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2324 {
2325         struct vc4_context *vc4 = vc4_context(pctx);
2326         struct vc4_uncompiled_shader *so = hwcso;
2327
2328         struct hash_entry *entry;
2329         hash_table_foreach(vc4->fs_cache, entry)
2330                 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2331         hash_table_foreach(vc4->vs_cache, entry)
2332                 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2333
2334         free((void *)so->base.tokens);
2335         free(so);
2336 }
2337
2338 static void
2339 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2340 {
2341         struct vc4_context *vc4 = vc4_context(pctx);
2342         vc4->prog.bind_fs = hwcso;
2343         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2344 }
2345
2346 static void
2347 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2348 {
2349         struct vc4_context *vc4 = vc4_context(pctx);
2350         vc4->prog.bind_vs = hwcso;
2351         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2352 }
2353
2354 void
2355 vc4_program_init(struct pipe_context *pctx)
2356 {
2357         struct vc4_context *vc4 = vc4_context(pctx);
2358
2359         pctx->create_vs_state = vc4_shader_state_create;
2360         pctx->delete_vs_state = vc4_shader_state_delete;
2361
2362         pctx->create_fs_state = vc4_shader_state_create;
2363         pctx->delete_fs_state = vc4_shader_state_delete;
2364
2365         pctx->bind_fs_state = vc4_fp_state_bind;
2366         pctx->bind_vs_state = vc4_vp_state_bind;
2367
2368         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2369                                                 fs_cache_compare);
2370         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2371                                                 vs_cache_compare);
2372 }
2373
2374 void
2375 vc4_program_fini(struct pipe_context *pctx)
2376 {
2377         struct vc4_context *vc4 = vc4_context(pctx);
2378
2379         struct hash_entry *entry;
2380         hash_table_foreach(vc4->fs_cache, entry) {
2381                 struct vc4_compiled_shader *shader = entry->data;
2382                 vc4_bo_unreference(&shader->bo);
2383                 ralloc_free(shader);
2384                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2385         }
2386
2387         hash_table_foreach(vc4->vs_cache, entry) {
2388                 struct vc4_compiled_shader *shader = entry->data;
2389                 vc4_bo_unreference(&shader->bo);
2390                 ralloc_free(shader);
2391                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2392         }
2393 }