OSDN Git Service

anv: Remove state flush.
[android-x86/external-mesa.git] / src / intel / vulkan / anv_cmd_buffer.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "vk_format_info.h"
33
34 /** \file anv_cmd_buffer.c
35  *
36  * This file contains all of the stuff for emitting commands into a command
37  * buffer.  This includes implementations of most of the vkCmd*
38  * entrypoints.  This file is concerned entirely with state emission and
39  * not with the command buffer data structure itself.  As far as this file
40  * is concerned, most of anv_cmd_buffer is magic.
41  */
42
43 /* TODO: These are taken from GLES.  We should check the Vulkan spec */
44 const struct anv_dynamic_state default_dynamic_state = {
45    .viewport = {
46       .count = 0,
47    },
48    .scissor = {
49       .count = 0,
50    },
51    .line_width = 1.0f,
52    .depth_bias = {
53       .bias = 0.0f,
54       .clamp = 0.0f,
55       .slope = 0.0f,
56    },
57    .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
58    .depth_bounds = {
59       .min = 0.0f,
60       .max = 1.0f,
61    },
62    .stencil_compare_mask = {
63       .front = ~0u,
64       .back = ~0u,
65    },
66    .stencil_write_mask = {
67       .front = ~0u,
68       .back = ~0u,
69    },
70    .stencil_reference = {
71       .front = 0u,
72       .back = 0u,
73    },
74 };
75
76 void
77 anv_dynamic_state_copy(struct anv_dynamic_state *dest,
78                        const struct anv_dynamic_state *src,
79                        uint32_t copy_mask)
80 {
81    if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
82       dest->viewport.count = src->viewport.count;
83       typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
84                    src->viewport.count);
85    }
86
87    if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
88       dest->scissor.count = src->scissor.count;
89       typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
90                    src->scissor.count);
91    }
92
93    if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
94       dest->line_width = src->line_width;
95
96    if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
97       dest->depth_bias = src->depth_bias;
98
99    if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
100       typed_memcpy(dest->blend_constants, src->blend_constants, 4);
101
102    if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
103       dest->depth_bounds = src->depth_bounds;
104
105    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
106       dest->stencil_compare_mask = src->stencil_compare_mask;
107
108    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
109       dest->stencil_write_mask = src->stencil_write_mask;
110
111    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
112       dest->stencil_reference = src->stencil_reference;
113 }
114
115 static void
116 anv_cmd_state_init(struct anv_cmd_buffer *cmd_buffer)
117 {
118    struct anv_cmd_state *state = &cmd_buffer->state;
119
120    memset(state, 0, sizeof(*state));
121
122    state->current_pipeline = UINT32_MAX;
123    state->restart_index = UINT32_MAX;
124    state->gfx.dynamic = default_dynamic_state;
125 }
126
127 static void
128 anv_cmd_pipeline_state_finish(struct anv_cmd_buffer *cmd_buffer,
129                               struct anv_cmd_pipeline_state *pipe_state)
130 {
131    for (uint32_t i = 0; i < ARRAY_SIZE(pipe_state->push_descriptors); i++)
132       vk_free(&cmd_buffer->pool->alloc, pipe_state->push_descriptors[i]);
133 }
134
135 static void
136 anv_cmd_state_finish(struct anv_cmd_buffer *cmd_buffer)
137 {
138    struct anv_cmd_state *state = &cmd_buffer->state;
139
140    anv_cmd_pipeline_state_finish(cmd_buffer, &state->gfx.base);
141    anv_cmd_pipeline_state_finish(cmd_buffer, &state->compute.base);
142
143    for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
144       vk_free(&cmd_buffer->pool->alloc, state->push_constants[i]);
145
146    vk_free(&cmd_buffer->pool->alloc, state->attachments);
147 }
148
149 static void
150 anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer)
151 {
152    anv_cmd_state_finish(cmd_buffer);
153    anv_cmd_state_init(cmd_buffer);
154 }
155
156 /**
157  * This function updates the size of the push constant buffer we need to emit.
158  * This is called in various parts of the driver to ensure that different
159  * pieces of push constant data get emitted as needed. However, it is important
160  * that we never shrink the size of the buffer. For example, a compute shader
161  * dispatch will always call this for the base group id, which has an
162  * offset in the push constant buffer that is smaller than the offset for
163  * storage image data. If the compute shader has storage images, we will call
164  * this again with a larger size during binding table emission. However,
165  * if we dispatch the compute shader again without dirtying our descriptors,
166  * we would still call this function with a smaller size for the base group
167  * id, and not for the images, which would incorrectly shrink the size of the
168  * push constant data we emit with that dispatch, making us drop the image data.
169  */
170 VkResult
171 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
172                                           gl_shader_stage stage, uint32_t size)
173 {
174    struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
175
176    if (*ptr == NULL) {
177       *ptr = vk_alloc(&cmd_buffer->pool->alloc, size, 8,
178                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
179       if (*ptr == NULL) {
180          anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY);
181          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
182       }
183       (*ptr)->size = size;
184    } else if ((*ptr)->size < size) {
185       *ptr = vk_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8,
186                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
187       if (*ptr == NULL) {
188          anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY);
189          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
190       }
191       (*ptr)->size = size;
192    }
193
194    return VK_SUCCESS;
195 }
196
197 static VkResult anv_create_cmd_buffer(
198     struct anv_device *                         device,
199     struct anv_cmd_pool *                       pool,
200     VkCommandBufferLevel                        level,
201     VkCommandBuffer*                            pCommandBuffer)
202 {
203    struct anv_cmd_buffer *cmd_buffer;
204    VkResult result;
205
206    cmd_buffer = vk_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
207                           VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
208    if (cmd_buffer == NULL)
209       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
210
211    cmd_buffer->batch.status = VK_SUCCESS;
212
213    cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
214    cmd_buffer->device = device;
215    cmd_buffer->pool = pool;
216    cmd_buffer->level = level;
217
218    result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
219    if (result != VK_SUCCESS)
220       goto fail;
221
222    anv_state_stream_init(&cmd_buffer->surface_state_stream,
223                          &device->surface_state_pool, 4096);
224    anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
225                          &device->dynamic_state_pool, 16384);
226
227    anv_cmd_state_init(cmd_buffer);
228
229    if (pool) {
230       list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
231    } else {
232       /* Init the pool_link so we can safefly call list_del when we destroy
233        * the command buffer
234        */
235       list_inithead(&cmd_buffer->pool_link);
236    }
237
238    *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
239
240    return VK_SUCCESS;
241
242  fail:
243    vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
244
245    return result;
246 }
247
248 VkResult anv_AllocateCommandBuffers(
249     VkDevice                                    _device,
250     const VkCommandBufferAllocateInfo*          pAllocateInfo,
251     VkCommandBuffer*                            pCommandBuffers)
252 {
253    ANV_FROM_HANDLE(anv_device, device, _device);
254    ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool);
255
256    VkResult result = VK_SUCCESS;
257    uint32_t i;
258
259    for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
260       result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level,
261                                      &pCommandBuffers[i]);
262       if (result != VK_SUCCESS)
263          break;
264    }
265
266    if (result != VK_SUCCESS) {
267       anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
268                              i, pCommandBuffers);
269       for (i = 0; i < pAllocateInfo->commandBufferCount; i++)
270          pCommandBuffers[i] = VK_NULL_HANDLE;
271    }
272
273    return result;
274 }
275
276 static void
277 anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer)
278 {
279    list_del(&cmd_buffer->pool_link);
280
281    anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
282
283    anv_state_stream_finish(&cmd_buffer->surface_state_stream);
284    anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
285
286    anv_cmd_state_finish(cmd_buffer);
287
288    vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
289 }
290
291 void anv_FreeCommandBuffers(
292     VkDevice                                    device,
293     VkCommandPool                               commandPool,
294     uint32_t                                    commandBufferCount,
295     const VkCommandBuffer*                      pCommandBuffers)
296 {
297    for (uint32_t i = 0; i < commandBufferCount; i++) {
298       ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
299
300       if (!cmd_buffer)
301          continue;
302
303       anv_cmd_buffer_destroy(cmd_buffer);
304    }
305 }
306
307 VkResult
308 anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer)
309 {
310    cmd_buffer->usage_flags = 0;
311    anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
312    anv_cmd_state_reset(cmd_buffer);
313
314    anv_state_stream_finish(&cmd_buffer->surface_state_stream);
315    anv_state_stream_init(&cmd_buffer->surface_state_stream,
316                          &cmd_buffer->device->surface_state_pool, 4096);
317
318    anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
319    anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
320                          &cmd_buffer->device->dynamic_state_pool, 16384);
321    return VK_SUCCESS;
322 }
323
324 VkResult anv_ResetCommandBuffer(
325     VkCommandBuffer                             commandBuffer,
326     VkCommandBufferResetFlags                   flags)
327 {
328    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
329    return anv_cmd_buffer_reset(cmd_buffer);
330 }
331
332 #define anv_genX_call(devinfo, func, ...)          \
333    switch ((devinfo)->gen) {                       \
334    case 7:                                         \
335       if ((devinfo)->is_haswell) {                 \
336          gen75_##func(__VA_ARGS__);                \
337       } else {                                     \
338          gen7_##func(__VA_ARGS__);                 \
339       }                                            \
340       break;                                       \
341    case 8:                                         \
342       gen8_##func(__VA_ARGS__);                    \
343       break;                                       \
344    case 9:                                         \
345       gen9_##func(__VA_ARGS__);                    \
346       break;                                       \
347    case 10:                                        \
348       gen10_##func(__VA_ARGS__);                   \
349       break;                                       \
350    case 11:                                        \
351       gen11_##func(__VA_ARGS__);                   \
352       break;                                       \
353    default:                                        \
354       assert(!"Unknown hardware generation");      \
355    }
356
357 void
358 anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
359 {
360    anv_genX_call(&cmd_buffer->device->info,
361                  cmd_buffer_emit_state_base_address,
362                  cmd_buffer);
363 }
364
365 void
366 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
367                                   const struct anv_image *image,
368                                   VkImageAspectFlagBits aspect,
369                                   enum isl_aux_usage aux_usage,
370                                   uint32_t level,
371                                   uint32_t base_layer,
372                                   uint32_t layer_count)
373 {
374    anv_genX_call(&cmd_buffer->device->info,
375                  cmd_buffer_mark_image_written,
376                  cmd_buffer, image, aspect, aux_usage,
377                  level, base_layer, layer_count);
378 }
379
380 void anv_CmdBindPipeline(
381     VkCommandBuffer                             commandBuffer,
382     VkPipelineBindPoint                         pipelineBindPoint,
383     VkPipeline                                  _pipeline)
384 {
385    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
386    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
387
388    switch (pipelineBindPoint) {
389    case VK_PIPELINE_BIND_POINT_COMPUTE:
390       cmd_buffer->state.compute.base.pipeline = pipeline;
391       cmd_buffer->state.compute.pipeline_dirty = true;
392       cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
393       cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
394       break;
395
396    case VK_PIPELINE_BIND_POINT_GRAPHICS:
397       cmd_buffer->state.gfx.base.pipeline = pipeline;
398       cmd_buffer->state.gfx.vb_dirty |= pipeline->vb_used;
399       cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
400       cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
401       cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
402
403       /* Apply the dynamic state from the pipeline */
404       cmd_buffer->state.gfx.dirty |= pipeline->dynamic_state_mask;
405       anv_dynamic_state_copy(&cmd_buffer->state.gfx.dynamic,
406                              &pipeline->dynamic_state,
407                              pipeline->dynamic_state_mask);
408       break;
409
410    default:
411       assert(!"invalid bind point");
412       break;
413    }
414 }
415
416 void anv_CmdSetViewport(
417     VkCommandBuffer                             commandBuffer,
418     uint32_t                                    firstViewport,
419     uint32_t                                    viewportCount,
420     const VkViewport*                           pViewports)
421 {
422    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
423
424    const uint32_t total_count = firstViewport + viewportCount;
425    if (cmd_buffer->state.gfx.dynamic.viewport.count < total_count)
426       cmd_buffer->state.gfx.dynamic.viewport.count = total_count;
427
428    memcpy(cmd_buffer->state.gfx.dynamic.viewport.viewports + firstViewport,
429           pViewports, viewportCount * sizeof(*pViewports));
430
431    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
432 }
433
434 void anv_CmdSetScissor(
435     VkCommandBuffer                             commandBuffer,
436     uint32_t                                    firstScissor,
437     uint32_t                                    scissorCount,
438     const VkRect2D*                             pScissors)
439 {
440    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
441
442    const uint32_t total_count = firstScissor + scissorCount;
443    if (cmd_buffer->state.gfx.dynamic.scissor.count < total_count)
444       cmd_buffer->state.gfx.dynamic.scissor.count = total_count;
445
446    memcpy(cmd_buffer->state.gfx.dynamic.scissor.scissors + firstScissor,
447           pScissors, scissorCount * sizeof(*pScissors));
448
449    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
450 }
451
452 void anv_CmdSetLineWidth(
453     VkCommandBuffer                             commandBuffer,
454     float                                       lineWidth)
455 {
456    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
457
458    cmd_buffer->state.gfx.dynamic.line_width = lineWidth;
459    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
460 }
461
462 void anv_CmdSetDepthBias(
463     VkCommandBuffer                             commandBuffer,
464     float                                       depthBiasConstantFactor,
465     float                                       depthBiasClamp,
466     float                                       depthBiasSlopeFactor)
467 {
468    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
469
470    cmd_buffer->state.gfx.dynamic.depth_bias.bias = depthBiasConstantFactor;
471    cmd_buffer->state.gfx.dynamic.depth_bias.clamp = depthBiasClamp;
472    cmd_buffer->state.gfx.dynamic.depth_bias.slope = depthBiasSlopeFactor;
473
474    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
475 }
476
477 void anv_CmdSetBlendConstants(
478     VkCommandBuffer                             commandBuffer,
479     const float                                 blendConstants[4])
480 {
481    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
482
483    memcpy(cmd_buffer->state.gfx.dynamic.blend_constants,
484           blendConstants, sizeof(float) * 4);
485
486    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
487 }
488
489 void anv_CmdSetDepthBounds(
490     VkCommandBuffer                             commandBuffer,
491     float                                       minDepthBounds,
492     float                                       maxDepthBounds)
493 {
494    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
495
496    cmd_buffer->state.gfx.dynamic.depth_bounds.min = minDepthBounds;
497    cmd_buffer->state.gfx.dynamic.depth_bounds.max = maxDepthBounds;
498
499    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
500 }
501
502 void anv_CmdSetStencilCompareMask(
503     VkCommandBuffer                             commandBuffer,
504     VkStencilFaceFlags                          faceMask,
505     uint32_t                                    compareMask)
506 {
507    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
508
509    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
510       cmd_buffer->state.gfx.dynamic.stencil_compare_mask.front = compareMask;
511    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
512       cmd_buffer->state.gfx.dynamic.stencil_compare_mask.back = compareMask;
513
514    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
515 }
516
517 void anv_CmdSetStencilWriteMask(
518     VkCommandBuffer                             commandBuffer,
519     VkStencilFaceFlags                          faceMask,
520     uint32_t                                    writeMask)
521 {
522    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
523
524    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
525       cmd_buffer->state.gfx.dynamic.stencil_write_mask.front = writeMask;
526    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
527       cmd_buffer->state.gfx.dynamic.stencil_write_mask.back = writeMask;
528
529    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
530 }
531
532 void anv_CmdSetStencilReference(
533     VkCommandBuffer                             commandBuffer,
534     VkStencilFaceFlags                          faceMask,
535     uint32_t                                    reference)
536 {
537    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
538
539    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
540       cmd_buffer->state.gfx.dynamic.stencil_reference.front = reference;
541    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
542       cmd_buffer->state.gfx.dynamic.stencil_reference.back = reference;
543
544    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
545 }
546
547 static void
548 anv_cmd_buffer_bind_descriptor_set(struct anv_cmd_buffer *cmd_buffer,
549                                    VkPipelineBindPoint bind_point,
550                                    struct anv_pipeline_layout *layout,
551                                    uint32_t set_index,
552                                    struct anv_descriptor_set *set,
553                                    uint32_t *dynamic_offset_count,
554                                    const uint32_t **dynamic_offsets)
555 {
556    struct anv_descriptor_set_layout *set_layout =
557       layout->set[set_index].layout;
558
559    struct anv_cmd_pipeline_state *pipe_state;
560    if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
561       pipe_state = &cmd_buffer->state.compute.base;
562    } else {
563       assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS);
564       pipe_state = &cmd_buffer->state.gfx.base;
565    }
566    pipe_state->descriptors[set_index] = set;
567
568    if (dynamic_offsets) {
569       if (set_layout->dynamic_offset_count > 0) {
570          uint32_t dynamic_offset_start =
571             layout->set[set_index].dynamic_offset_start;
572
573          /* Assert that everything is in range */
574          assert(set_layout->dynamic_offset_count <= *dynamic_offset_count);
575          assert(dynamic_offset_start + set_layout->dynamic_offset_count <=
576                 ARRAY_SIZE(pipe_state->dynamic_offsets));
577
578          typed_memcpy(&pipe_state->dynamic_offsets[dynamic_offset_start],
579                       *dynamic_offsets, set_layout->dynamic_offset_count);
580
581          *dynamic_offsets += set_layout->dynamic_offset_count;
582          *dynamic_offset_count -= set_layout->dynamic_offset_count;
583       }
584    }
585
586    if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
587       cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
588    } else {
589       assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS);
590       cmd_buffer->state.descriptors_dirty |=
591          set_layout->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
592    }
593
594    /* Pipeline layout objects are required to live at least while any command
595     * buffers that use them are in recording state. We need to grab a reference
596     * to the pipeline layout being bound here so we can compute correct dynamic
597     * offsets for VK_DESCRIPTOR_TYPE_*_DYNAMIC in dynamic_offset_for_binding()
598     * when we record draw commands that come after this.
599     */
600    pipe_state->layout = layout;
601 }
602
603 void anv_CmdBindDescriptorSets(
604     VkCommandBuffer                             commandBuffer,
605     VkPipelineBindPoint                         pipelineBindPoint,
606     VkPipelineLayout                            _layout,
607     uint32_t                                    firstSet,
608     uint32_t                                    descriptorSetCount,
609     const VkDescriptorSet*                      pDescriptorSets,
610     uint32_t                                    dynamicOffsetCount,
611     const uint32_t*                             pDynamicOffsets)
612 {
613    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
614    ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
615
616    assert(firstSet + descriptorSetCount <= MAX_SETS);
617
618    for (uint32_t i = 0; i < descriptorSetCount; i++) {
619       ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
620       anv_cmd_buffer_bind_descriptor_set(cmd_buffer, pipelineBindPoint,
621                                          layout, firstSet + i, set,
622                                          &dynamicOffsetCount,
623                                          &pDynamicOffsets);
624    }
625 }
626
627 void anv_CmdBindVertexBuffers(
628     VkCommandBuffer                             commandBuffer,
629     uint32_t                                    firstBinding,
630     uint32_t                                    bindingCount,
631     const VkBuffer*                             pBuffers,
632     const VkDeviceSize*                         pOffsets)
633 {
634    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
635    struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
636
637    /* We have to defer setting up vertex buffer since we need the buffer
638     * stride from the pipeline. */
639
640    assert(firstBinding + bindingCount <= MAX_VBS);
641    for (uint32_t i = 0; i < bindingCount; i++) {
642       vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
643       vb[firstBinding + i].offset = pOffsets[i];
644       cmd_buffer->state.gfx.vb_dirty |= 1 << (firstBinding + i);
645    }
646 }
647
648 enum isl_format
649 anv_isl_format_for_descriptor_type(VkDescriptorType type)
650 {
651    switch (type) {
652    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
653    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
654       return ISL_FORMAT_R32G32B32A32_FLOAT;
655
656    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
657    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
658       return ISL_FORMAT_RAW;
659
660    default:
661       unreachable("Invalid descriptor type");
662    }
663 }
664
665 struct anv_state
666 anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
667                             const void *data, uint32_t size, uint32_t alignment)
668 {
669    struct anv_state state;
670
671    state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment);
672    memcpy(state.map, data, size);
673
674    VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size));
675
676    return state;
677 }
678
679 struct anv_state
680 anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
681                              uint32_t *a, uint32_t *b,
682                              uint32_t dwords, uint32_t alignment)
683 {
684    struct anv_state state;
685    uint32_t *p;
686
687    state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
688                                               dwords * 4, alignment);
689    p = state.map;
690    for (uint32_t i = 0; i < dwords; i++)
691       p[i] = a[i] | b[i];
692
693    VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
694
695    return state;
696 }
697
698 static uint32_t
699 anv_push_constant_value(struct anv_push_constants *data, uint32_t param)
700 {
701    if (BRW_PARAM_IS_BUILTIN(param)) {
702       switch (param) {
703       case BRW_PARAM_BUILTIN_ZERO:
704          return 0;
705       case BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X:
706          return data->base_work_group_id[0];
707       case BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y:
708          return data->base_work_group_id[1];
709       case BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z:
710          return data->base_work_group_id[2];
711       default:
712          unreachable("Invalid param builtin");
713       }
714    } else {
715       uint32_t offset = ANV_PARAM_PUSH_OFFSET(param);
716       assert(offset % sizeof(uint32_t) == 0);
717       if (offset < data->size)
718          return *(uint32_t *)((uint8_t *)data + offset);
719       else
720          return 0;
721    }
722 }
723
724 struct anv_state
725 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
726                               gl_shader_stage stage)
727 {
728    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
729
730    /* If we don't have this stage, bail. */
731    if (!anv_pipeline_has_stage(pipeline, stage))
732       return (struct anv_state) { .offset = 0 };
733
734    struct anv_push_constants *data =
735       cmd_buffer->state.push_constants[stage];
736    const struct brw_stage_prog_data *prog_data =
737       pipeline->shaders[stage]->prog_data;
738
739    /* If we don't actually have any push constants, bail. */
740    if (data == NULL || prog_data == NULL || prog_data->nr_params == 0)
741       return (struct anv_state) { .offset = 0 };
742
743    struct anv_state state =
744       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
745                                          prog_data->nr_params * sizeof(float),
746                                          32 /* bottom 5 bits MBZ */);
747
748    /* Walk through the param array and fill the buffer with data */
749    uint32_t *u32_map = state.map;
750    for (unsigned i = 0; i < prog_data->nr_params; i++)
751       u32_map[i] = anv_push_constant_value(data, prog_data->param[i]);
752
753    return state;
754 }
755
756 struct anv_state
757 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer)
758 {
759    struct anv_push_constants *data =
760       cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
761    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
762    const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
763    const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
764
765    /* If we don't actually have any push constants, bail. */
766    if (cs_prog_data->push.total.size == 0)
767       return (struct anv_state) { .offset = 0 };
768
769    const unsigned push_constant_alignment =
770       cmd_buffer->device->info.gen < 8 ? 32 : 64;
771    const unsigned aligned_total_push_constants_size =
772       ALIGN(cs_prog_data->push.total.size, push_constant_alignment);
773    struct anv_state state =
774       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
775                                          aligned_total_push_constants_size,
776                                          push_constant_alignment);
777
778    /* Walk through the param array and fill the buffer with data */
779    uint32_t *u32_map = state.map;
780
781    if (cs_prog_data->push.cross_thread.size > 0) {
782       for (unsigned i = 0;
783            i < cs_prog_data->push.cross_thread.dwords;
784            i++) {
785          assert(prog_data->param[i] != BRW_PARAM_BUILTIN_SUBGROUP_ID);
786          u32_map[i] = anv_push_constant_value(data, prog_data->param[i]);
787       }
788    }
789
790    if (cs_prog_data->push.per_thread.size > 0) {
791       for (unsigned t = 0; t < cs_prog_data->threads; t++) {
792          unsigned dst =
793             8 * (cs_prog_data->push.per_thread.regs * t +
794                  cs_prog_data->push.cross_thread.regs);
795          unsigned src = cs_prog_data->push.cross_thread.dwords;
796          for ( ; src < prog_data->nr_params; src++, dst++) {
797             if (prog_data->param[src] == BRW_PARAM_BUILTIN_SUBGROUP_ID) {
798                u32_map[dst] = t;
799             } else {
800                u32_map[dst] =
801                   anv_push_constant_value(data, prog_data->param[src]);
802             }
803          }
804       }
805    }
806
807    return state;
808 }
809
810 void anv_CmdPushConstants(
811     VkCommandBuffer                             commandBuffer,
812     VkPipelineLayout                            layout,
813     VkShaderStageFlags                          stageFlags,
814     uint32_t                                    offset,
815     uint32_t                                    size,
816     const void*                                 pValues)
817 {
818    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
819
820    anv_foreach_stage(stage, stageFlags) {
821       VkResult result =
822          anv_cmd_buffer_ensure_push_constant_field(cmd_buffer,
823                                                    stage, client_data);
824       if (result != VK_SUCCESS)
825          return;
826
827       memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
828              pValues, size);
829    }
830
831    cmd_buffer->state.push_constants_dirty |= stageFlags;
832 }
833
834 VkResult anv_CreateCommandPool(
835     VkDevice                                    _device,
836     const VkCommandPoolCreateInfo*              pCreateInfo,
837     const VkAllocationCallbacks*                pAllocator,
838     VkCommandPool*                              pCmdPool)
839 {
840    ANV_FROM_HANDLE(anv_device, device, _device);
841    struct anv_cmd_pool *pool;
842
843    pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
844                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
845    if (pool == NULL)
846       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
847
848    if (pAllocator)
849       pool->alloc = *pAllocator;
850    else
851       pool->alloc = device->alloc;
852
853    list_inithead(&pool->cmd_buffers);
854
855    *pCmdPool = anv_cmd_pool_to_handle(pool);
856
857    return VK_SUCCESS;
858 }
859
860 void anv_DestroyCommandPool(
861     VkDevice                                    _device,
862     VkCommandPool                               commandPool,
863     const VkAllocationCallbacks*                pAllocator)
864 {
865    ANV_FROM_HANDLE(anv_device, device, _device);
866    ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
867
868    if (!pool)
869       return;
870
871    list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
872                             &pool->cmd_buffers, pool_link) {
873       anv_cmd_buffer_destroy(cmd_buffer);
874    }
875
876    vk_free2(&device->alloc, pAllocator, pool);
877 }
878
879 VkResult anv_ResetCommandPool(
880     VkDevice                                    device,
881     VkCommandPool                               commandPool,
882     VkCommandPoolResetFlags                     flags)
883 {
884    ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
885
886    list_for_each_entry(struct anv_cmd_buffer, cmd_buffer,
887                        &pool->cmd_buffers, pool_link) {
888       anv_cmd_buffer_reset(cmd_buffer);
889    }
890
891    return VK_SUCCESS;
892 }
893
894 void anv_TrimCommandPool(
895     VkDevice                                    device,
896     VkCommandPool                               commandPool,
897     VkCommandPoolTrimFlags                      flags)
898 {
899    /* Nothing for us to do here.  Our pools stay pretty tidy. */
900 }
901
902 /**
903  * Return NULL if the current subpass has no depthstencil attachment.
904  */
905 const struct anv_image_view *
906 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
907 {
908    const struct anv_subpass *subpass = cmd_buffer->state.subpass;
909    const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
910
911    if (subpass->depth_stencil_attachment == NULL)
912       return NULL;
913
914    const struct anv_image_view *iview =
915       fb->attachments[subpass->depth_stencil_attachment->attachment];
916
917    assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT |
918                                 VK_IMAGE_ASPECT_STENCIL_BIT));
919
920    return iview;
921 }
922
923 static struct anv_push_descriptor_set *
924 anv_cmd_buffer_get_push_descriptor_set(struct anv_cmd_buffer *cmd_buffer,
925                                        VkPipelineBindPoint bind_point,
926                                        uint32_t set)
927 {
928    struct anv_cmd_pipeline_state *pipe_state;
929    if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
930       pipe_state = &cmd_buffer->state.compute.base;
931    } else {
932       assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS);
933       pipe_state = &cmd_buffer->state.gfx.base;
934    }
935
936    struct anv_push_descriptor_set **push_set =
937       &pipe_state->push_descriptors[set];
938
939    if (*push_set == NULL) {
940       *push_set = vk_alloc(&cmd_buffer->pool->alloc,
941                            sizeof(struct anv_push_descriptor_set), 8,
942                            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
943       if (*push_set == NULL) {
944          anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY);
945          return NULL;
946       }
947    }
948
949    return *push_set;
950 }
951
952 void anv_CmdPushDescriptorSetKHR(
953     VkCommandBuffer commandBuffer,
954     VkPipelineBindPoint pipelineBindPoint,
955     VkPipelineLayout _layout,
956     uint32_t _set,
957     uint32_t descriptorWriteCount,
958     const VkWriteDescriptorSet* pDescriptorWrites)
959 {
960    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
961    ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
962
963    assert(_set < MAX_SETS);
964
965    struct anv_descriptor_set_layout *set_layout = layout->set[_set].layout;
966
967    struct anv_push_descriptor_set *push_set =
968       anv_cmd_buffer_get_push_descriptor_set(cmd_buffer,
969                                              pipelineBindPoint, _set);
970    if (!push_set)
971       return;
972
973    struct anv_descriptor_set *set = &push_set->set;
974
975    set->layout = set_layout;
976    set->size = anv_descriptor_set_layout_size(set_layout);
977    set->buffer_count = set_layout->buffer_count;
978    set->buffer_views = push_set->buffer_views;
979
980    /* Go through the user supplied descriptors. */
981    for (uint32_t i = 0; i < descriptorWriteCount; i++) {
982       const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
983
984       switch (write->descriptorType) {
985       case VK_DESCRIPTOR_TYPE_SAMPLER:
986       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
987       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
988       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
989       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
990          for (uint32_t j = 0; j < write->descriptorCount; j++) {
991             anv_descriptor_set_write_image_view(set, &cmd_buffer->device->info,
992                                                 write->pImageInfo + j,
993                                                 write->descriptorType,
994                                                 write->dstBinding,
995                                                 write->dstArrayElement + j);
996          }
997          break;
998
999       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1000       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1001          for (uint32_t j = 0; j < write->descriptorCount; j++) {
1002             ANV_FROM_HANDLE(anv_buffer_view, bview,
1003                             write->pTexelBufferView[j]);
1004
1005             anv_descriptor_set_write_buffer_view(set,
1006                                                  write->descriptorType,
1007                                                  bview,
1008                                                  write->dstBinding,
1009                                                  write->dstArrayElement + j);
1010          }
1011          break;
1012
1013       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1014       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1015       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1016       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1017          for (uint32_t j = 0; j < write->descriptorCount; j++) {
1018             assert(write->pBufferInfo[j].buffer);
1019             ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
1020             assert(buffer);
1021
1022             anv_descriptor_set_write_buffer(set,
1023                                             cmd_buffer->device,
1024                                             &cmd_buffer->surface_state_stream,
1025                                             write->descriptorType,
1026                                             buffer,
1027                                             write->dstBinding,
1028                                             write->dstArrayElement + j,
1029                                             write->pBufferInfo[j].offset,
1030                                             write->pBufferInfo[j].range);
1031          }
1032          break;
1033
1034       default:
1035          break;
1036       }
1037    }
1038
1039    anv_cmd_buffer_bind_descriptor_set(cmd_buffer, pipelineBindPoint,
1040                                       layout, _set, set, NULL, NULL);
1041 }
1042
1043 void anv_CmdPushDescriptorSetWithTemplateKHR(
1044     VkCommandBuffer                             commandBuffer,
1045     VkDescriptorUpdateTemplate                  descriptorUpdateTemplate,
1046     VkPipelineLayout                            _layout,
1047     uint32_t                                    _set,
1048     const void*                                 pData)
1049 {
1050    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1051    ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1052                    descriptorUpdateTemplate);
1053    ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
1054
1055    assert(_set < MAX_PUSH_DESCRIPTORS);
1056
1057    struct anv_descriptor_set_layout *set_layout = layout->set[_set].layout;
1058
1059    struct anv_push_descriptor_set *push_set =
1060       anv_cmd_buffer_get_push_descriptor_set(cmd_buffer,
1061                                              template->bind_point, _set);
1062    if (!push_set)
1063       return;
1064
1065    struct anv_descriptor_set *set = &push_set->set;
1066
1067    set->layout = set_layout;
1068    set->size = anv_descriptor_set_layout_size(set_layout);
1069    set->buffer_count = set_layout->buffer_count;
1070    set->buffer_views = push_set->buffer_views;
1071
1072    anv_descriptor_set_write_template(set,
1073                                      cmd_buffer->device,
1074                                      &cmd_buffer->surface_state_stream,
1075                                      template,
1076                                      pData);
1077
1078    anv_cmd_buffer_bind_descriptor_set(cmd_buffer, template->bind_point,
1079                                       layout, _set, set, NULL, NULL);
1080 }
1081
1082 void anv_CmdSetDeviceMask(
1083     VkCommandBuffer                             commandBuffer,
1084     uint32_t                                    deviceMask)
1085 {
1086    /* No-op */
1087 }