OSDN Git Service

Merge remote-tracking branch 'mesa/12.0' into marshmallow-x86
[android-x86/external-mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "anv_timestamp.h"
32 #include "util/strtod.h"
33 #include "util/debug.h"
34
35 #include "genxml/gen7_pack.h"
36
37 struct anv_dispatch_table dtable;
38
39 static void
40 compiler_debug_log(void *data, const char *fmt, ...)
41 { }
42
43 static void
44 compiler_perf_log(void *data, const char *fmt, ...)
45 {
46    va_list args;
47    va_start(args, fmt);
48
49    if (unlikely(INTEL_DEBUG & DEBUG_PERF))
50       vfprintf(stderr, fmt, args);
51
52    va_end(args);
53 }
54
55 static VkResult
56 anv_physical_device_init(struct anv_physical_device *device,
57                          struct anv_instance *instance,
58                          const char *path)
59 {
60    VkResult result;
61    int fd;
62
63    fd = open(path, O_RDWR | O_CLOEXEC);
64    if (fd < 0)
65       return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
66                        "failed to open %s: %m", path);
67
68    device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
69    device->instance = instance;
70
71    assert(strlen(path) < ARRAY_SIZE(device->path));
72    strncpy(device->path, path, ARRAY_SIZE(device->path));
73
74    device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
75    if (!device->chipset_id) {
76       result = VK_ERROR_INITIALIZATION_FAILED;
77       goto fail;
78    }
79
80    device->name = brw_get_device_name(device->chipset_id);
81    device->info = brw_get_device_info(device->chipset_id);
82    if (!device->info) {
83       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
84                          "failed to get device info");
85       goto fail;
86    }
87
88    if (device->info->is_haswell) {
89       fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
90    } else if (device->info->gen == 7 && !device->info->is_baytrail) {
91       fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
92    } else if (device->info->gen == 7 && device->info->is_baytrail) {
93       fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
94    } else if (device->info->gen >= 8) {
95       /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
96        * supported as anything */
97    } else {
98       result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
99                          "Vulkan not yet supported on %s", device->name);
100       goto fail;
101    }
102
103    device->cmd_parser_version = -1;
104    if (device->info->gen == 7) {
105       device->cmd_parser_version =
106          anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
107       if (device->cmd_parser_version == -1) {
108          result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
109                             "failed to get command parser version");
110          goto fail;
111       }
112    }
113
114    if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
115       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
116                          "failed to get aperture size: %m");
117       goto fail;
118    }
119
120    if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
121       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
122                          "kernel missing gem wait");
123       goto fail;
124    }
125
126    if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
127       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
128                          "kernel missing execbuf2");
129       goto fail;
130    }
131
132    if (!device->info->has_llc &&
133        anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
134       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
135                          "kernel missing wc mmap");
136       goto fail;
137    }
138
139    bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
140
141    close(fd);
142
143    brw_process_intel_debug_variable();
144
145    device->compiler = brw_compiler_create(NULL, device->info);
146    if (device->compiler == NULL) {
147       result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
148       goto fail;
149    }
150    device->compiler->shader_debug_log = compiler_debug_log;
151    device->compiler->shader_perf_log = compiler_perf_log;
152
153    result = anv_init_wsi(device);
154    if (result != VK_SUCCESS)
155        goto fail;
156
157    /* XXX: Actually detect bit6 swizzling */
158    isl_device_init(&device->isl_dev, device->info, swizzled);
159
160    return VK_SUCCESS;
161
162 fail:
163    close(fd);
164    return result;
165 }
166
167 static void
168 anv_physical_device_finish(struct anv_physical_device *device)
169 {
170    anv_finish_wsi(device);
171    ralloc_free(device->compiler);
172 }
173
174 static const VkExtensionProperties global_extensions[] = {
175    {
176       .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
177       .specVersion = 25,
178    },
179 #ifdef VK_USE_PLATFORM_XCB_KHR
180    {
181       .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
182       .specVersion = 5,
183    },
184 #endif
185 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
186    {
187       .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
188       .specVersion = 4,
189    },
190 #endif
191 };
192
193 static const VkExtensionProperties device_extensions[] = {
194    {
195       .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
196       .specVersion = 67,
197    },
198 };
199
200 static void *
201 default_alloc_func(void *pUserData, size_t size, size_t align, 
202                    VkSystemAllocationScope allocationScope)
203 {
204    return malloc(size);
205 }
206
207 static void *
208 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
209                      size_t align, VkSystemAllocationScope allocationScope)
210 {
211    return realloc(pOriginal, size);
212 }
213
214 static void
215 default_free_func(void *pUserData, void *pMemory)
216 {
217    free(pMemory);
218 }
219
220 static const VkAllocationCallbacks default_alloc = {
221    .pUserData = NULL,
222    .pfnAllocation = default_alloc_func,
223    .pfnReallocation = default_realloc_func,
224    .pfnFree = default_free_func,
225 };
226
227 VkResult anv_CreateInstance(
228     const VkInstanceCreateInfo*                 pCreateInfo,
229     const VkAllocationCallbacks*                pAllocator,
230     VkInstance*                                 pInstance)
231 {
232    struct anv_instance *instance;
233
234    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
235
236    uint32_t client_version;
237    if (pCreateInfo->pApplicationInfo &&
238        pCreateInfo->pApplicationInfo->apiVersion != 0) {
239       client_version = pCreateInfo->pApplicationInfo->apiVersion;
240    } else {
241       client_version = VK_MAKE_VERSION(1, 0, 0);
242    }
243
244    if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
245        client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
246       return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
247                        "Client requested version %d.%d.%d",
248                        VK_VERSION_MAJOR(client_version),
249                        VK_VERSION_MINOR(client_version),
250                        VK_VERSION_PATCH(client_version));
251    }
252
253    for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
254       bool found = false;
255       for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
256          if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
257                     global_extensions[j].extensionName) == 0) {
258             found = true;
259             break;
260          }
261       }
262       if (!found)
263          return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
264    }
265
266    instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
267                          VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
268    if (!instance)
269       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
270
271    instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
272
273    if (pAllocator)
274       instance->alloc = *pAllocator;
275    else
276       instance->alloc = default_alloc;
277
278    instance->apiVersion = client_version;
279    instance->physicalDeviceCount = -1;
280
281    _mesa_locale_init();
282
283    VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
284
285    *pInstance = anv_instance_to_handle(instance);
286
287    return VK_SUCCESS;
288 }
289
290 void anv_DestroyInstance(
291     VkInstance                                  _instance,
292     const VkAllocationCallbacks*                pAllocator)
293 {
294    ANV_FROM_HANDLE(anv_instance, instance, _instance);
295
296    if (instance->physicalDeviceCount > 0) {
297       /* We support at most one physical device. */
298       assert(instance->physicalDeviceCount == 1);
299       anv_physical_device_finish(&instance->physicalDevice);
300    }
301
302    VG(VALGRIND_DESTROY_MEMPOOL(instance));
303
304    _mesa_locale_fini();
305
306    anv_free(&instance->alloc, instance);
307 }
308
309 VkResult anv_EnumeratePhysicalDevices(
310     VkInstance                                  _instance,
311     uint32_t*                                   pPhysicalDeviceCount,
312     VkPhysicalDevice*                           pPhysicalDevices)
313 {
314    ANV_FROM_HANDLE(anv_instance, instance, _instance);
315    VkResult result;
316
317    if (instance->physicalDeviceCount < 0) {
318       char path[20];
319       for (unsigned i = 0; i < 8; i++) {
320          snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
321          result = anv_physical_device_init(&instance->physicalDevice,
322                                            instance, path);
323          if (result == VK_SUCCESS)
324             break;
325       }
326
327       if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
328          instance->physicalDeviceCount = 0;
329       } else if (result == VK_SUCCESS) {
330          instance->physicalDeviceCount = 1;
331       } else {
332          return result;
333       }
334    }
335
336    /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
337     * otherwise it's an inout parameter.
338     *
339     * The Vulkan spec (git aaed022) says:
340     *
341     *    pPhysicalDeviceCount is a pointer to an unsigned integer variable
342     *    that is initialized with the number of devices the application is
343     *    prepared to receive handles to. pname:pPhysicalDevices is pointer to
344     *    an array of at least this many VkPhysicalDevice handles [...].
345     *
346     *    Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
347     *    overwrites the contents of the variable pointed to by
348     *    pPhysicalDeviceCount with the number of physical devices in in the
349     *    instance; otherwise, vkEnumeratePhysicalDevices overwrites
350     *    pPhysicalDeviceCount with the number of physical handles written to
351     *    pPhysicalDevices.
352     */
353    if (!pPhysicalDevices) {
354       *pPhysicalDeviceCount = instance->physicalDeviceCount;
355    } else if (*pPhysicalDeviceCount >= 1) {
356       pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
357       *pPhysicalDeviceCount = 1;
358    } else {
359       *pPhysicalDeviceCount = 0;
360    }
361
362    return VK_SUCCESS;
363 }
364
365 void anv_GetPhysicalDeviceFeatures(
366     VkPhysicalDevice                            physicalDevice,
367     VkPhysicalDeviceFeatures*                   pFeatures)
368 {
369    ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
370
371    *pFeatures = (VkPhysicalDeviceFeatures) {
372       .robustBufferAccess                       = true,
373       .fullDrawIndexUint32                      = true,
374       .imageCubeArray                           = false,
375       .independentBlend                         = true,
376       .geometryShader                           = true,
377       .tessellationShader                       = false,
378       .sampleRateShading                        = false,
379       .dualSrcBlend                             = true,
380       .logicOp                                  = true,
381       .multiDrawIndirect                        = false,
382       .drawIndirectFirstInstance                = false,
383       .depthClamp                               = true,
384       .depthBiasClamp                           = false,
385       .fillModeNonSolid                         = true,
386       .depthBounds                              = false,
387       .wideLines                                = true,
388       .largePoints                              = true,
389       .alphaToOne                               = true,
390       .multiViewport                            = true,
391       .samplerAnisotropy                        = false, /* FINISHME */
392       .textureCompressionETC2                   = pdevice->info->gen >= 8 ||
393                                                   pdevice->info->is_baytrail,
394       .textureCompressionASTC_LDR               = pdevice->info->gen >= 9, /* FINISHME CHV */
395       .textureCompressionBC                     = true,
396       .occlusionQueryPrecise                    = true,
397       .pipelineStatisticsQuery                  = false,
398       .fragmentStoresAndAtomics                 = true,
399       .shaderTessellationAndGeometryPointSize   = true,
400       .shaderImageGatherExtended                = false,
401       .shaderStorageImageExtendedFormats        = false,
402       .shaderStorageImageMultisample            = false,
403       .shaderUniformBufferArrayDynamicIndexing  = true,
404       .shaderSampledImageArrayDynamicIndexing   = true,
405       .shaderStorageBufferArrayDynamicIndexing  = true,
406       .shaderStorageImageArrayDynamicIndexing   = true,
407       .shaderStorageImageReadWithoutFormat      = false,
408       .shaderStorageImageWriteWithoutFormat     = true,
409       .shaderClipDistance                       = false,
410       .shaderCullDistance                       = false,
411       .shaderFloat64                            = false,
412       .shaderInt64                              = false,
413       .shaderInt16                              = false,
414       .alphaToOne                               = true,
415       .variableMultisampleRate                  = false,
416       .inheritedQueries                         = false,
417    };
418
419    /* We can't do image stores in vec4 shaders */
420    pFeatures->vertexPipelineStoresAndAtomics =
421       pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
422       pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
423 }
424
425 void
426 anv_device_get_cache_uuid(void *uuid)
427 {
428    memset(uuid, 0, VK_UUID_SIZE);
429    snprintf(uuid, VK_UUID_SIZE, "anv-%s", ANV_TIMESTAMP);
430 }
431
432 void anv_GetPhysicalDeviceProperties(
433     VkPhysicalDevice                            physicalDevice,
434     VkPhysicalDeviceProperties*                 pProperties)
435 {
436    ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
437    const struct brw_device_info *devinfo = pdevice->info;
438
439    const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
440
441    /* See assertions made when programming the buffer surface state. */
442    const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
443                                       (1ul << 30) : (1ul << 27);
444
445    VkSampleCountFlags sample_counts =
446       isl_device_get_sample_counts(&pdevice->isl_dev);
447
448    VkPhysicalDeviceLimits limits = {
449       .maxImageDimension1D                      = (1 << 14),
450       .maxImageDimension2D                      = (1 << 14),
451       .maxImageDimension3D                      = (1 << 11),
452       .maxImageDimensionCube                    = (1 << 14),
453       .maxImageArrayLayers                      = (1 << 11),
454       .maxTexelBufferElements                   = 128 * 1024 * 1024,
455       .maxUniformBufferRange                    = (1ul << 27),
456       .maxStorageBufferRange                    = max_raw_buffer_sz,
457       .maxPushConstantsSize                     = MAX_PUSH_CONSTANTS_SIZE,
458       .maxMemoryAllocationCount                 = UINT32_MAX,
459       .maxSamplerAllocationCount                = 64 * 1024,
460       .bufferImageGranularity                   = 64, /* A cache line */
461       .sparseAddressSpaceSize                   = 0,
462       .maxBoundDescriptorSets                   = MAX_SETS,
463       .maxPerStageDescriptorSamplers            = 64,
464       .maxPerStageDescriptorUniformBuffers      = 64,
465       .maxPerStageDescriptorStorageBuffers      = 64,
466       .maxPerStageDescriptorSampledImages       = 64,
467       .maxPerStageDescriptorStorageImages       = 64,
468       .maxPerStageDescriptorInputAttachments    = 64,
469       .maxPerStageResources                     = 128,
470       .maxDescriptorSetSamplers                 = 256,
471       .maxDescriptorSetUniformBuffers           = 256,
472       .maxDescriptorSetUniformBuffersDynamic    = 256,
473       .maxDescriptorSetStorageBuffers           = 256,
474       .maxDescriptorSetStorageBuffersDynamic    = 256,
475       .maxDescriptorSetSampledImages            = 256,
476       .maxDescriptorSetStorageImages            = 256,
477       .maxDescriptorSetInputAttachments         = 256,
478       .maxVertexInputAttributes                 = 32,
479       .maxVertexInputBindings                   = 32,
480       .maxVertexInputAttributeOffset            = 2047,
481       .maxVertexInputBindingStride              = 2048,
482       .maxVertexOutputComponents                = 128,
483       .maxTessellationGenerationLevel           = 0,
484       .maxTessellationPatchSize                 = 0,
485       .maxTessellationControlPerVertexInputComponents = 0,
486       .maxTessellationControlPerVertexOutputComponents = 0,
487       .maxTessellationControlPerPatchOutputComponents = 0,
488       .maxTessellationControlTotalOutputComponents = 0,
489       .maxTessellationEvaluationInputComponents = 0,
490       .maxTessellationEvaluationOutputComponents = 0,
491       .maxGeometryShaderInvocations             = 32,
492       .maxGeometryInputComponents               = 64,
493       .maxGeometryOutputComponents              = 128,
494       .maxGeometryOutputVertices                = 256,
495       .maxGeometryTotalOutputComponents         = 1024,
496       .maxFragmentInputComponents               = 128,
497       .maxFragmentOutputAttachments             = 8,
498       .maxFragmentDualSrcAttachments            = 2,
499       .maxFragmentCombinedOutputResources       = 8,
500       .maxComputeSharedMemorySize               = 32768,
501       .maxComputeWorkGroupCount                 = { 65535, 65535, 65535 },
502       .maxComputeWorkGroupInvocations           = 16 * devinfo->max_cs_threads,
503       .maxComputeWorkGroupSize = {
504          16 * devinfo->max_cs_threads,
505          16 * devinfo->max_cs_threads,
506          16 * devinfo->max_cs_threads,
507       },
508       .subPixelPrecisionBits                    = 4 /* FIXME */,
509       .subTexelPrecisionBits                    = 4 /* FIXME */,
510       .mipmapPrecisionBits                      = 4 /* FIXME */,
511       .maxDrawIndexedIndexValue                 = UINT32_MAX,
512       .maxDrawIndirectCount                     = UINT32_MAX,
513       .maxSamplerLodBias                        = 16,
514       .maxSamplerAnisotropy                     = 16,
515       .maxViewports                             = MAX_VIEWPORTS,
516       .maxViewportDimensions                    = { (1 << 14), (1 << 14) },
517       .viewportBoundsRange                      = { INT16_MIN, INT16_MAX },
518       .viewportSubPixelBits                     = 13, /* We take a float? */
519       .minMemoryMapAlignment                    = 4096, /* A page */
520       .minTexelBufferOffsetAlignment            = 1,
521       .minUniformBufferOffsetAlignment          = 1,
522       .minStorageBufferOffsetAlignment          = 1,
523       .minTexelOffset                           = -8,
524       .maxTexelOffset                           = 7,
525       .minTexelGatherOffset                     = -8,
526       .maxTexelGatherOffset                     = 7,
527       .minInterpolationOffset                   = 0, /* FIXME */
528       .maxInterpolationOffset                   = 0, /* FIXME */
529       .subPixelInterpolationOffsetBits          = 0, /* FIXME */
530       .maxFramebufferWidth                      = (1 << 14),
531       .maxFramebufferHeight                     = (1 << 14),
532       .maxFramebufferLayers                     = (1 << 10),
533       .framebufferColorSampleCounts             = sample_counts,
534       .framebufferDepthSampleCounts             = sample_counts,
535       .framebufferStencilSampleCounts           = sample_counts,
536       .framebufferNoAttachmentsSampleCounts     = sample_counts,
537       .maxColorAttachments                      = MAX_RTS,
538       .sampledImageColorSampleCounts            = sample_counts,
539       .sampledImageIntegerSampleCounts          = VK_SAMPLE_COUNT_1_BIT,
540       .sampledImageDepthSampleCounts            = sample_counts,
541       .sampledImageStencilSampleCounts          = sample_counts,
542       .storageImageSampleCounts                 = VK_SAMPLE_COUNT_1_BIT,
543       .maxSampleMaskWords                       = 1,
544       .timestampComputeAndGraphics              = false,
545       .timestampPeriod                          = time_stamp_base / (1000 * 1000 * 1000),
546       .maxClipDistances                         = 0 /* FIXME */,
547       .maxCullDistances                         = 0 /* FIXME */,
548       .maxCombinedClipAndCullDistances          = 0 /* FIXME */,
549       .discreteQueuePriorities                  = 1,
550       .pointSizeRange                           = { 0.125, 255.875 },
551       .lineWidthRange                           = { 0.0, 7.9921875 },
552       .pointSizeGranularity                     = (1.0 / 8.0),
553       .lineWidthGranularity                     = (1.0 / 128.0),
554       .strictLines                              = false, /* FINISHME */
555       .standardSampleLocations                  = true,
556       .optimalBufferCopyOffsetAlignment         = 128,
557       .optimalBufferCopyRowPitchAlignment       = 128,
558       .nonCoherentAtomSize                      = 64,
559    };
560
561    *pProperties = (VkPhysicalDeviceProperties) {
562       .apiVersion = VK_MAKE_VERSION(1, 0, 5),
563       .driverVersion = 1,
564       .vendorID = 0x8086,
565       .deviceID = pdevice->chipset_id,
566       .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
567       .limits = limits,
568       .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
569    };
570
571    strcpy(pProperties->deviceName, pdevice->name);
572    anv_device_get_cache_uuid(pProperties->pipelineCacheUUID);
573 }
574
575 void anv_GetPhysicalDeviceQueueFamilyProperties(
576     VkPhysicalDevice                            physicalDevice,
577     uint32_t*                                   pCount,
578     VkQueueFamilyProperties*                    pQueueFamilyProperties)
579 {
580    if (pQueueFamilyProperties == NULL) {
581       *pCount = 1;
582       return;
583    }
584
585    assert(*pCount >= 1);
586
587    *pQueueFamilyProperties = (VkQueueFamilyProperties) {
588       .queueFlags = VK_QUEUE_GRAPHICS_BIT |
589                     VK_QUEUE_COMPUTE_BIT |
590                     VK_QUEUE_TRANSFER_BIT,
591       .queueCount = 1,
592       .timestampValidBits = 36, /* XXX: Real value here */
593       .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
594    };
595 }
596
597 void anv_GetPhysicalDeviceMemoryProperties(
598     VkPhysicalDevice                            physicalDevice,
599     VkPhysicalDeviceMemoryProperties*           pMemoryProperties)
600 {
601    ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
602    VkDeviceSize heap_size;
603
604    /* Reserve some wiggle room for the driver by exposing only 75% of the
605     * aperture to the heap.
606     */
607    heap_size = 3 * physical_device->aperture_size / 4;
608
609    if (physical_device->info->has_llc) {
610       /* Big core GPUs share LLC with the CPU and thus one memory type can be
611        * both cached and coherent at the same time.
612        */
613       pMemoryProperties->memoryTypeCount = 1;
614       pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
615          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
616                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
617                           VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
618                           VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
619          .heapIndex = 0,
620       };
621    } else {
622       /* The spec requires that we expose a host-visible, coherent memory
623        * type, but Atom GPUs don't share LLC. Thus we offer two memory types
624        * to give the application a choice between cached, but not coherent and
625        * coherent but uncached (WC though).
626        */
627       pMemoryProperties->memoryTypeCount = 2;
628       pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
629          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
630                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
631                           VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
632          .heapIndex = 0,
633       };
634       pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
635          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
636                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
637                           VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
638          .heapIndex = 0,
639       };
640    }
641
642    pMemoryProperties->memoryHeapCount = 1;
643    pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
644       .size = heap_size,
645       .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
646    };
647 }
648
649 PFN_vkVoidFunction anv_GetInstanceProcAddr(
650     VkInstance                                  instance,
651     const char*                                 pName)
652 {
653    return anv_lookup_entrypoint(pName);
654 }
655
656 /* With version 1+ of the loader interface the ICD should expose
657  * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
658  */
659 PUBLIC
660 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
661     VkInstance                                  instance,
662     const char*                                 pName);
663
664 PUBLIC
665 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
666     VkInstance                                  instance,
667     const char*                                 pName)
668 {
669    return anv_GetInstanceProcAddr(instance, pName);
670 }
671
672 PFN_vkVoidFunction anv_GetDeviceProcAddr(
673     VkDevice                                    device,
674     const char*                                 pName)
675 {
676    return anv_lookup_entrypoint(pName);
677 }
678
679 static VkResult
680 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
681 {
682    queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
683    queue->device = device;
684    queue->pool = &device->surface_state_pool;
685
686    return VK_SUCCESS;
687 }
688
689 static void
690 anv_queue_finish(struct anv_queue *queue)
691 {
692 }
693
694 static struct anv_state
695 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
696 {
697    struct anv_state state;
698
699    state = anv_state_pool_alloc(pool, size, align);
700    memcpy(state.map, p, size);
701
702    if (!pool->block_pool->device->info.has_llc)
703       anv_state_clflush(state);
704
705    return state;
706 }
707
708 struct gen8_border_color {
709    union {
710       float float32[4];
711       uint32_t uint32[4];
712    };
713    /* Pad out to 64 bytes */
714    uint32_t _pad[12];
715 };
716
717 static void
718 anv_device_init_border_colors(struct anv_device *device)
719 {
720    static const struct gen8_border_color border_colors[] = {
721       [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] =  { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
722       [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] =       { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
723       [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] =       { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
724       [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] =    { .uint32 = { 0, 0, 0, 0 } },
725       [VK_BORDER_COLOR_INT_OPAQUE_BLACK] =         { .uint32 = { 0, 0, 0, 1 } },
726       [VK_BORDER_COLOR_INT_OPAQUE_WHITE] =         { .uint32 = { 1, 1, 1, 1 } },
727    };
728
729    device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
730                                                     sizeof(border_colors), 64,
731                                                     border_colors);
732 }
733
734 VkResult
735 anv_device_submit_simple_batch(struct anv_device *device,
736                                struct anv_batch *batch)
737 {
738    struct drm_i915_gem_execbuffer2 execbuf;
739    struct drm_i915_gem_exec_object2 exec2_objects[1];
740    struct anv_bo bo;
741    VkResult result = VK_SUCCESS;
742    uint32_t size;
743    int64_t timeout;
744    int ret;
745
746    /* Kernel driver requires 8 byte aligned batch length */
747    size = align_u32(batch->next - batch->start, 8);
748    result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
749    if (result != VK_SUCCESS)
750       return result;
751
752    memcpy(bo.map, batch->start, size);
753    if (!device->info.has_llc)
754       anv_clflush_range(bo.map, size);
755
756    exec2_objects[0].handle = bo.gem_handle;
757    exec2_objects[0].relocation_count = 0;
758    exec2_objects[0].relocs_ptr = 0;
759    exec2_objects[0].alignment = 0;
760    exec2_objects[0].offset = bo.offset;
761    exec2_objects[0].flags = 0;
762    exec2_objects[0].rsvd1 = 0;
763    exec2_objects[0].rsvd2 = 0;
764
765    execbuf.buffers_ptr = (uintptr_t) exec2_objects;
766    execbuf.buffer_count = 1;
767    execbuf.batch_start_offset = 0;
768    execbuf.batch_len = size;
769    execbuf.cliprects_ptr = 0;
770    execbuf.num_cliprects = 0;
771    execbuf.DR1 = 0;
772    execbuf.DR4 = 0;
773
774    execbuf.flags =
775       I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
776    execbuf.rsvd1 = device->context_id;
777    execbuf.rsvd2 = 0;
778
779    ret = anv_gem_execbuffer(device, &execbuf);
780    if (ret != 0) {
781       /* We don't know the real error. */
782       result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
783       goto fail;
784    }
785
786    timeout = INT64_MAX;
787    ret = anv_gem_wait(device, bo.gem_handle, &timeout);
788    if (ret != 0) {
789       /* We don't know the real error. */
790       result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
791       goto fail;
792    }
793
794  fail:
795    anv_bo_pool_free(&device->batch_bo_pool, &bo);
796
797    return result;
798 }
799
800 VkResult anv_CreateDevice(
801     VkPhysicalDevice                            physicalDevice,
802     const VkDeviceCreateInfo*                   pCreateInfo,
803     const VkAllocationCallbacks*                pAllocator,
804     VkDevice*                                   pDevice)
805 {
806    ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
807    VkResult result;
808    struct anv_device *device;
809
810    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
811
812    for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
813       bool found = false;
814       for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
815          if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
816                     device_extensions[j].extensionName) == 0) {
817             found = true;
818             break;
819          }
820       }
821       if (!found)
822          return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
823    }
824
825    anv_set_dispatch_devinfo(physical_device->info);
826
827    device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
828                        sizeof(*device), 8,
829                        VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
830    if (!device)
831       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
832
833    device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
834    device->instance = physical_device->instance;
835    device->chipset_id = physical_device->chipset_id;
836
837    if (pAllocator)
838       device->alloc = *pAllocator;
839    else
840       device->alloc = physical_device->instance->alloc;
841
842    /* XXX(chadv): Can we dup() physicalDevice->fd here? */
843    device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
844    if (device->fd == -1) {
845       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
846       goto fail_device;
847    }
848
849    device->context_id = anv_gem_create_context(device);
850    if (device->context_id == -1) {
851       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
852       goto fail_fd;
853    }
854
855    device->info = *physical_device->info;
856    device->isl_dev = physical_device->isl_dev;
857
858    /* On Broadwell and later, we can use batch chaining to more efficiently
859     * implement growing command buffers.  Prior to Haswell, the kernel
860     * command parser gets in the way and we have to fall back to growing
861     * the batch.
862     */
863    device->can_chain_batches = device->info.gen >= 8;
864
865    device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
866       pCreateInfo->pEnabledFeatures->robustBufferAccess;
867
868    pthread_mutex_init(&device->mutex, NULL);
869
870    anv_bo_pool_init(&device->batch_bo_pool, device);
871
872    anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
873
874    anv_state_pool_init(&device->dynamic_state_pool,
875                        &device->dynamic_state_block_pool);
876
877    anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
878    anv_state_pool_init(&device->instruction_state_pool,
879                        &device->instruction_block_pool);
880
881    anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
882
883    anv_state_pool_init(&device->surface_state_pool,
884                        &device->surface_state_block_pool);
885
886    anv_bo_init_new(&device->workaround_bo, device, 1024);
887
888    anv_scratch_pool_init(device, &device->scratch_pool);
889
890    anv_queue_init(device, &device->queue);
891
892    switch (device->info.gen) {
893    case 7:
894       if (!device->info.is_haswell)
895          result = gen7_init_device_state(device);
896       else
897          result = gen75_init_device_state(device);
898       break;
899    case 8:
900       result = gen8_init_device_state(device);
901       break;
902    case 9:
903       result = gen9_init_device_state(device);
904       break;
905    default:
906       /* Shouldn't get here as we don't create physical devices for any other
907        * gens. */
908       unreachable("unhandled gen");
909    }
910    if (result != VK_SUCCESS)
911       goto fail_fd;
912
913    result = anv_device_init_meta(device);
914    if (result != VK_SUCCESS)
915       goto fail_fd;
916
917    anv_device_init_border_colors(device);
918
919    *pDevice = anv_device_to_handle(device);
920
921    return VK_SUCCESS;
922
923  fail_fd:
924    close(device->fd);
925  fail_device:
926    anv_free(&device->alloc, device);
927
928    return result;
929 }
930
931 void anv_DestroyDevice(
932     VkDevice                                    _device,
933     const VkAllocationCallbacks*                pAllocator)
934 {
935    ANV_FROM_HANDLE(anv_device, device, _device);
936
937    anv_queue_finish(&device->queue);
938
939    anv_device_finish_meta(device);
940
941 #ifdef HAVE_VALGRIND
942    /* We only need to free these to prevent valgrind errors.  The backing
943     * BO will go away in a couple of lines so we don't actually leak.
944     */
945    anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
946 #endif
947
948    anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
949    anv_gem_close(device, device->workaround_bo.gem_handle);
950
951    anv_bo_pool_finish(&device->batch_bo_pool);
952    anv_state_pool_finish(&device->dynamic_state_pool);
953    anv_block_pool_finish(&device->dynamic_state_block_pool);
954    anv_state_pool_finish(&device->instruction_state_pool);
955    anv_block_pool_finish(&device->instruction_block_pool);
956    anv_state_pool_finish(&device->surface_state_pool);
957    anv_block_pool_finish(&device->surface_state_block_pool);
958    anv_scratch_pool_finish(device, &device->scratch_pool);
959
960    close(device->fd);
961
962    pthread_mutex_destroy(&device->mutex);
963
964    anv_free(&device->alloc, device);
965 }
966
967 VkResult anv_EnumerateInstanceExtensionProperties(
968     const char*                                 pLayerName,
969     uint32_t*                                   pPropertyCount,
970     VkExtensionProperties*                      pProperties)
971 {
972    if (pProperties == NULL) {
973       *pPropertyCount = ARRAY_SIZE(global_extensions);
974       return VK_SUCCESS;
975    }
976
977    assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
978
979    *pPropertyCount = ARRAY_SIZE(global_extensions);
980    memcpy(pProperties, global_extensions, sizeof(global_extensions));
981
982    return VK_SUCCESS;
983 }
984
985 VkResult anv_EnumerateDeviceExtensionProperties(
986     VkPhysicalDevice                            physicalDevice,
987     const char*                                 pLayerName,
988     uint32_t*                                   pPropertyCount,
989     VkExtensionProperties*                      pProperties)
990 {
991    if (pProperties == NULL) {
992       *pPropertyCount = ARRAY_SIZE(device_extensions);
993       return VK_SUCCESS;
994    }
995
996    assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
997
998    *pPropertyCount = ARRAY_SIZE(device_extensions);
999    memcpy(pProperties, device_extensions, sizeof(device_extensions));
1000
1001    return VK_SUCCESS;
1002 }
1003
1004 VkResult anv_EnumerateInstanceLayerProperties(
1005     uint32_t*                                   pPropertyCount,
1006     VkLayerProperties*                          pProperties)
1007 {
1008    if (pProperties == NULL) {
1009       *pPropertyCount = 0;
1010       return VK_SUCCESS;
1011    }
1012
1013    /* None supported at this time */
1014    return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1015 }
1016
1017 VkResult anv_EnumerateDeviceLayerProperties(
1018     VkPhysicalDevice                            physicalDevice,
1019     uint32_t*                                   pPropertyCount,
1020     VkLayerProperties*                          pProperties)
1021 {
1022    if (pProperties == NULL) {
1023       *pPropertyCount = 0;
1024       return VK_SUCCESS;
1025    }
1026
1027    /* None supported at this time */
1028    return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1029 }
1030
1031 void anv_GetDeviceQueue(
1032     VkDevice                                    _device,
1033     uint32_t                                    queueNodeIndex,
1034     uint32_t                                    queueIndex,
1035     VkQueue*                                    pQueue)
1036 {
1037    ANV_FROM_HANDLE(anv_device, device, _device);
1038
1039    assert(queueIndex == 0);
1040
1041    *pQueue = anv_queue_to_handle(&device->queue);
1042 }
1043
1044 VkResult anv_QueueSubmit(
1045     VkQueue                                     _queue,
1046     uint32_t                                    submitCount,
1047     const VkSubmitInfo*                         pSubmits,
1048     VkFence                                     _fence)
1049 {
1050    ANV_FROM_HANDLE(anv_queue, queue, _queue);
1051    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1052    struct anv_device *device = queue->device;
1053    int ret;
1054
1055    for (uint32_t i = 0; i < submitCount; i++) {
1056       for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1057          ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1058                          pSubmits[i].pCommandBuffers[j]);
1059          assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1060
1061          ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
1062          if (ret != 0) {
1063             /* We don't know the real error. */
1064             return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1065                              "execbuf2 failed: %m");
1066          }
1067
1068          for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
1069             cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
1070       }
1071    }
1072
1073    if (fence) {
1074       ret = anv_gem_execbuffer(device, &fence->execbuf);
1075       if (ret != 0) {
1076          /* We don't know the real error. */
1077          return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1078                           "execbuf2 failed: %m");
1079       }
1080    }
1081
1082    return VK_SUCCESS;
1083 }
1084
1085 VkResult anv_QueueWaitIdle(
1086     VkQueue                                     _queue)
1087 {
1088    ANV_FROM_HANDLE(anv_queue, queue, _queue);
1089
1090    return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
1091 }
1092
1093 VkResult anv_DeviceWaitIdle(
1094     VkDevice                                    _device)
1095 {
1096    ANV_FROM_HANDLE(anv_device, device, _device);
1097    struct anv_batch batch;
1098
1099    uint32_t cmds[8];
1100    batch.start = batch.next = cmds;
1101    batch.end = (void *) cmds + sizeof(cmds);
1102
1103    anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1104    anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1105
1106    return anv_device_submit_simple_batch(device, &batch);
1107 }
1108
1109 VkResult
1110 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1111 {
1112    bo->gem_handle = anv_gem_create(device, size);
1113    if (!bo->gem_handle)
1114       return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1115
1116    bo->map = NULL;
1117    bo->index = 0;
1118    bo->offset = 0;
1119    bo->size = size;
1120    bo->is_winsys_bo = false;
1121
1122    return VK_SUCCESS;
1123 }
1124
1125 VkResult anv_AllocateMemory(
1126     VkDevice                                    _device,
1127     const VkMemoryAllocateInfo*                 pAllocateInfo,
1128     const VkAllocationCallbacks*                pAllocator,
1129     VkDeviceMemory*                             pMem)
1130 {
1131    ANV_FROM_HANDLE(anv_device, device, _device);
1132    struct anv_device_memory *mem;
1133    VkResult result;
1134
1135    assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1136
1137    if (pAllocateInfo->allocationSize == 0) {
1138       /* Apparently, this is allowed */
1139       *pMem = VK_NULL_HANDLE;
1140       return VK_SUCCESS;
1141    }
1142
1143    /* We support exactly one memory heap. */
1144    assert(pAllocateInfo->memoryTypeIndex == 0 ||
1145           (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1146
1147    /* FINISHME: Fail if allocation request exceeds heap size. */
1148
1149    mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1150                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1151    if (mem == NULL)
1152       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1153
1154    /* The kernel is going to give us whole pages anyway */
1155    uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1156
1157    result = anv_bo_init_new(&mem->bo, device, alloc_size);
1158    if (result != VK_SUCCESS)
1159       goto fail;
1160
1161    mem->type_index = pAllocateInfo->memoryTypeIndex;
1162
1163    *pMem = anv_device_memory_to_handle(mem);
1164
1165    return VK_SUCCESS;
1166
1167  fail:
1168    anv_free2(&device->alloc, pAllocator, mem);
1169
1170    return result;
1171 }
1172
1173 void anv_FreeMemory(
1174     VkDevice                                    _device,
1175     VkDeviceMemory                              _mem,
1176     const VkAllocationCallbacks*                pAllocator)
1177 {
1178    ANV_FROM_HANDLE(anv_device, device, _device);
1179    ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1180
1181    if (mem == NULL)
1182       return;
1183
1184    if (mem->bo.map)
1185       anv_gem_munmap(mem->bo.map, mem->bo.size);
1186
1187    if (mem->bo.gem_handle != 0)
1188       anv_gem_close(device, mem->bo.gem_handle);
1189
1190    anv_free2(&device->alloc, pAllocator, mem);
1191 }
1192
1193 VkResult anv_MapMemory(
1194     VkDevice                                    _device,
1195     VkDeviceMemory                              _memory,
1196     VkDeviceSize                                offset,
1197     VkDeviceSize                                size,
1198     VkMemoryMapFlags                            flags,
1199     void**                                      ppData)
1200 {
1201    ANV_FROM_HANDLE(anv_device, device, _device);
1202    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1203
1204    if (mem == NULL) {
1205       *ppData = NULL;
1206       return VK_SUCCESS;
1207    }
1208
1209    if (size == VK_WHOLE_SIZE)
1210       size = mem->bo.size - offset;
1211
1212    /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1213     * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1214     * at a time is valid. We could just mmap up front and return an offset
1215     * pointer here, but that may exhaust virtual memory on 32 bit
1216     * userspace. */
1217
1218    uint32_t gem_flags = 0;
1219    if (!device->info.has_llc && mem->type_index == 0)
1220       gem_flags |= I915_MMAP_WC;
1221
1222    /* GEM will fail to map if the offset isn't 4k-aligned.  Round down. */
1223    uint64_t map_offset = offset & ~4095ull;
1224    assert(offset >= map_offset);
1225    uint64_t map_size = (offset + size) - map_offset;
1226
1227    /* Let's map whole pages */
1228    map_size = align_u64(map_size, 4096);
1229
1230    mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
1231                            map_offset, map_size, gem_flags);
1232    mem->map_size = map_size;
1233
1234    *ppData = mem->map + (offset - map_offset);
1235
1236    return VK_SUCCESS;
1237 }
1238
1239 void anv_UnmapMemory(
1240     VkDevice                                    _device,
1241     VkDeviceMemory                              _memory)
1242 {
1243    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1244
1245    if (mem == NULL)
1246       return;
1247
1248    anv_gem_munmap(mem->map, mem->map_size);
1249 }
1250
1251 static void
1252 clflush_mapped_ranges(struct anv_device         *device,
1253                       uint32_t                   count,
1254                       const VkMappedMemoryRange *ranges)
1255 {
1256    for (uint32_t i = 0; i < count; i++) {
1257       ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1258       void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1259       void *end;
1260
1261       if (ranges[i].offset + ranges[i].size > mem->map_size)
1262          end = mem->map + mem->map_size;
1263       else
1264          end = mem->map + ranges[i].offset + ranges[i].size;
1265
1266       while (p < end) {
1267          __builtin_ia32_clflush(p);
1268          p += CACHELINE_SIZE;
1269       }
1270    }
1271 }
1272
1273 VkResult anv_FlushMappedMemoryRanges(
1274     VkDevice                                    _device,
1275     uint32_t                                    memoryRangeCount,
1276     const VkMappedMemoryRange*                  pMemoryRanges)
1277 {
1278    ANV_FROM_HANDLE(anv_device, device, _device);
1279
1280    if (device->info.has_llc)
1281       return VK_SUCCESS;
1282
1283    /* Make sure the writes we're flushing have landed. */
1284    __builtin_ia32_mfence();
1285
1286    clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1287
1288    return VK_SUCCESS;
1289 }
1290
1291 VkResult anv_InvalidateMappedMemoryRanges(
1292     VkDevice                                    _device,
1293     uint32_t                                    memoryRangeCount,
1294     const VkMappedMemoryRange*                  pMemoryRanges)
1295 {
1296    ANV_FROM_HANDLE(anv_device, device, _device);
1297
1298    if (device->info.has_llc)
1299       return VK_SUCCESS;
1300
1301    clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1302
1303    /* Make sure no reads get moved up above the invalidate. */
1304    __builtin_ia32_mfence();
1305
1306    return VK_SUCCESS;
1307 }
1308
1309 void anv_GetBufferMemoryRequirements(
1310     VkDevice                                    device,
1311     VkBuffer                                    _buffer,
1312     VkMemoryRequirements*                       pMemoryRequirements)
1313 {
1314    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1315
1316    /* The Vulkan spec (git aaed022) says:
1317     *
1318     *    memoryTypeBits is a bitfield and contains one bit set for every
1319     *    supported memory type for the resource. The bit `1<<i` is set if and
1320     *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1321     *    structure for the physical device is supported.
1322     *
1323     * We support exactly one memory type.
1324     */
1325    pMemoryRequirements->memoryTypeBits = 1;
1326
1327    pMemoryRequirements->size = buffer->size;
1328    pMemoryRequirements->alignment = 16;
1329 }
1330
1331 void anv_GetImageMemoryRequirements(
1332     VkDevice                                    device,
1333     VkImage                                     _image,
1334     VkMemoryRequirements*                       pMemoryRequirements)
1335 {
1336    ANV_FROM_HANDLE(anv_image, image, _image);
1337
1338    /* The Vulkan spec (git aaed022) says:
1339     *
1340     *    memoryTypeBits is a bitfield and contains one bit set for every
1341     *    supported memory type for the resource. The bit `1<<i` is set if and
1342     *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1343     *    structure for the physical device is supported.
1344     *
1345     * We support exactly one memory type.
1346     */
1347    pMemoryRequirements->memoryTypeBits = 1;
1348
1349    pMemoryRequirements->size = image->size;
1350    pMemoryRequirements->alignment = image->alignment;
1351 }
1352
1353 void anv_GetImageSparseMemoryRequirements(
1354     VkDevice                                    device,
1355     VkImage                                     image,
1356     uint32_t*                                   pSparseMemoryRequirementCount,
1357     VkSparseImageMemoryRequirements*            pSparseMemoryRequirements)
1358 {
1359    stub();
1360 }
1361
1362 void anv_GetDeviceMemoryCommitment(
1363     VkDevice                                    device,
1364     VkDeviceMemory                              memory,
1365     VkDeviceSize*                               pCommittedMemoryInBytes)
1366 {
1367    *pCommittedMemoryInBytes = 0;
1368 }
1369
1370 VkResult anv_BindBufferMemory(
1371     VkDevice                                    device,
1372     VkBuffer                                    _buffer,
1373     VkDeviceMemory                              _memory,
1374     VkDeviceSize                                memoryOffset)
1375 {
1376    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1377    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1378
1379    if (mem) {
1380       buffer->bo = &mem->bo;
1381       buffer->offset = memoryOffset;
1382    } else {
1383       buffer->bo = NULL;
1384       buffer->offset = 0;
1385    }
1386
1387    return VK_SUCCESS;
1388 }
1389
1390 VkResult anv_BindImageMemory(
1391     VkDevice                                    device,
1392     VkImage                                     _image,
1393     VkDeviceMemory                              _memory,
1394     VkDeviceSize                                memoryOffset)
1395 {
1396    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1397    ANV_FROM_HANDLE(anv_image, image, _image);
1398
1399    if (mem) {
1400       image->bo = &mem->bo;
1401       image->offset = memoryOffset;
1402    } else {
1403       image->bo = NULL;
1404       image->offset = 0;
1405    }
1406
1407    return VK_SUCCESS;
1408 }
1409
1410 VkResult anv_QueueBindSparse(
1411     VkQueue                                     queue,
1412     uint32_t                                    bindInfoCount,
1413     const VkBindSparseInfo*                     pBindInfo,
1414     VkFence                                     fence)
1415 {
1416    stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1417 }
1418
1419 VkResult anv_CreateFence(
1420     VkDevice                                    _device,
1421     const VkFenceCreateInfo*                    pCreateInfo,
1422     const VkAllocationCallbacks*                pAllocator,
1423     VkFence*                                    pFence)
1424 {
1425    ANV_FROM_HANDLE(anv_device, device, _device);
1426    struct anv_bo fence_bo;
1427    struct anv_fence *fence;
1428    struct anv_batch batch;
1429    VkResult result;
1430
1431    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1432
1433    result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1434    if (result != VK_SUCCESS)
1435       return result;
1436
1437    /* Fences are small.  Just store the CPU data structure in the BO. */
1438    fence = fence_bo.map;
1439    fence->bo = fence_bo;
1440
1441    /* Place the batch after the CPU data but on its own cache line. */
1442    const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1443    batch.next = batch.start = fence->bo.map + batch_offset;
1444    batch.end = fence->bo.map + fence->bo.size;
1445    anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1446    anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1447
1448    if (!device->info.has_llc) {
1449       assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1450       assert(batch.next - batch.start <= CACHELINE_SIZE);
1451       __builtin_ia32_mfence();
1452       __builtin_ia32_clflush(batch.start);
1453    }
1454
1455    fence->exec2_objects[0].handle = fence->bo.gem_handle;
1456    fence->exec2_objects[0].relocation_count = 0;
1457    fence->exec2_objects[0].relocs_ptr = 0;
1458    fence->exec2_objects[0].alignment = 0;
1459    fence->exec2_objects[0].offset = fence->bo.offset;
1460    fence->exec2_objects[0].flags = 0;
1461    fence->exec2_objects[0].rsvd1 = 0;
1462    fence->exec2_objects[0].rsvd2 = 0;
1463
1464    fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1465    fence->execbuf.buffer_count = 1;
1466    fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1467    fence->execbuf.batch_len = batch.next - batch.start;
1468    fence->execbuf.cliprects_ptr = 0;
1469    fence->execbuf.num_cliprects = 0;
1470    fence->execbuf.DR1 = 0;
1471    fence->execbuf.DR4 = 0;
1472
1473    fence->execbuf.flags =
1474       I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1475    fence->execbuf.rsvd1 = device->context_id;
1476    fence->execbuf.rsvd2 = 0;
1477
1478    fence->ready = false;
1479
1480    *pFence = anv_fence_to_handle(fence);
1481
1482    return VK_SUCCESS;
1483 }
1484
1485 void anv_DestroyFence(
1486     VkDevice                                    _device,
1487     VkFence                                     _fence,
1488     const VkAllocationCallbacks*                pAllocator)
1489 {
1490    ANV_FROM_HANDLE(anv_device, device, _device);
1491    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1492
1493    assert(fence->bo.map == fence);
1494    anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1495 }
1496
1497 VkResult anv_ResetFences(
1498     VkDevice                                    _device,
1499     uint32_t                                    fenceCount,
1500     const VkFence*                              pFences)
1501 {
1502    for (uint32_t i = 0; i < fenceCount; i++) {
1503       ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1504       fence->ready = false;
1505    }
1506
1507    return VK_SUCCESS;
1508 }
1509
1510 VkResult anv_GetFenceStatus(
1511     VkDevice                                    _device,
1512     VkFence                                     _fence)
1513 {
1514    ANV_FROM_HANDLE(anv_device, device, _device);
1515    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1516    int64_t t = 0;
1517    int ret;
1518
1519    if (fence->ready)
1520       return VK_SUCCESS;
1521
1522    ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1523    if (ret == 0) {
1524       fence->ready = true;
1525       return VK_SUCCESS;
1526    }
1527
1528    return VK_NOT_READY;
1529 }
1530
1531 VkResult anv_WaitForFences(
1532     VkDevice                                    _device,
1533     uint32_t                                    fenceCount,
1534     const VkFence*                              pFences,
1535     VkBool32                                    waitAll,
1536     uint64_t                                    timeout)
1537 {
1538    ANV_FROM_HANDLE(anv_device, device, _device);
1539
1540    /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1541     * to block indefinitely timeouts <= 0.  Unfortunately, this was broken
1542     * for a couple of kernel releases.  Since there's no way to know
1543     * whether or not the kernel we're using is one of the broken ones, the
1544     * best we can do is to clamp the timeout to INT64_MAX.  This limits the
1545     * maximum timeout from 584 years to 292 years - likely not a big deal.
1546     */
1547    if (timeout > INT64_MAX)
1548       timeout = INT64_MAX;
1549
1550    int64_t t = timeout;
1551
1552    /* FIXME: handle !waitAll */
1553
1554    for (uint32_t i = 0; i < fenceCount; i++) {
1555       ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1556       int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1557       if (ret == -1 && errno == ETIME) {
1558          return VK_TIMEOUT;
1559       } else if (ret == -1) {
1560          /* We don't know the real error. */
1561          return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1562                           "gem wait failed: %m");
1563       }
1564    }
1565
1566    return VK_SUCCESS;
1567 }
1568
1569 // Queue semaphore functions
1570
1571 VkResult anv_CreateSemaphore(
1572     VkDevice                                    device,
1573     const VkSemaphoreCreateInfo*                pCreateInfo,
1574     const VkAllocationCallbacks*                pAllocator,
1575     VkSemaphore*                                pSemaphore)
1576 {
1577    /* The DRM execbuffer ioctl always execute in-oder, even between different
1578     * rings. As such, there's nothing to do for the user space semaphore.
1579     */
1580
1581    *pSemaphore = (VkSemaphore)1;
1582
1583    return VK_SUCCESS;
1584 }
1585
1586 void anv_DestroySemaphore(
1587     VkDevice                                    device,
1588     VkSemaphore                                 semaphore,
1589     const VkAllocationCallbacks*                pAllocator)
1590 {
1591 }
1592
1593 // Event functions
1594
1595 VkResult anv_CreateEvent(
1596     VkDevice                                    _device,
1597     const VkEventCreateInfo*                    pCreateInfo,
1598     const VkAllocationCallbacks*                pAllocator,
1599     VkEvent*                                    pEvent)
1600 {
1601    ANV_FROM_HANDLE(anv_device, device, _device);
1602    struct anv_state state;
1603    struct anv_event *event;
1604
1605    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1606
1607    state = anv_state_pool_alloc(&device->dynamic_state_pool,
1608                                 sizeof(*event), 8);
1609    event = state.map;
1610    event->state = state;
1611    event->semaphore = VK_EVENT_RESET;
1612
1613    if (!device->info.has_llc) {
1614       /* Make sure the writes we're flushing have landed. */
1615       __builtin_ia32_mfence();
1616       __builtin_ia32_clflush(event);
1617    }
1618
1619    *pEvent = anv_event_to_handle(event);
1620
1621    return VK_SUCCESS;
1622 }
1623
1624 void anv_DestroyEvent(
1625     VkDevice                                    _device,
1626     VkEvent                                     _event,
1627     const VkAllocationCallbacks*                pAllocator)
1628 {
1629    ANV_FROM_HANDLE(anv_device, device, _device);
1630    ANV_FROM_HANDLE(anv_event, event, _event);
1631
1632    anv_state_pool_free(&device->dynamic_state_pool, event->state);
1633 }
1634
1635 VkResult anv_GetEventStatus(
1636     VkDevice                                    _device,
1637     VkEvent                                     _event)
1638 {
1639    ANV_FROM_HANDLE(anv_device, device, _device);
1640    ANV_FROM_HANDLE(anv_event, event, _event);
1641
1642    if (!device->info.has_llc) {
1643       /* Invalidate read cache before reading event written by GPU. */
1644       __builtin_ia32_clflush(event);
1645       __builtin_ia32_mfence();
1646
1647    }
1648
1649    return event->semaphore;
1650 }
1651
1652 VkResult anv_SetEvent(
1653     VkDevice                                    _device,
1654     VkEvent                                     _event)
1655 {
1656    ANV_FROM_HANDLE(anv_device, device, _device);
1657    ANV_FROM_HANDLE(anv_event, event, _event);
1658
1659    event->semaphore = VK_EVENT_SET;
1660
1661    if (!device->info.has_llc) {
1662       /* Make sure the writes we're flushing have landed. */
1663       __builtin_ia32_mfence();
1664       __builtin_ia32_clflush(event);
1665    }
1666
1667    return VK_SUCCESS;
1668 }
1669
1670 VkResult anv_ResetEvent(
1671     VkDevice                                    _device,
1672     VkEvent                                     _event)
1673 {
1674    ANV_FROM_HANDLE(anv_device, device, _device);
1675    ANV_FROM_HANDLE(anv_event, event, _event);
1676
1677    event->semaphore = VK_EVENT_RESET;
1678
1679    if (!device->info.has_llc) {
1680       /* Make sure the writes we're flushing have landed. */
1681       __builtin_ia32_mfence();
1682       __builtin_ia32_clflush(event);
1683    }
1684
1685    return VK_SUCCESS;
1686 }
1687
1688 // Buffer functions
1689
1690 VkResult anv_CreateBuffer(
1691     VkDevice                                    _device,
1692     const VkBufferCreateInfo*                   pCreateInfo,
1693     const VkAllocationCallbacks*                pAllocator,
1694     VkBuffer*                                   pBuffer)
1695 {
1696    ANV_FROM_HANDLE(anv_device, device, _device);
1697    struct anv_buffer *buffer;
1698
1699    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1700
1701    buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1702                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1703    if (buffer == NULL)
1704       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1705
1706    buffer->size = pCreateInfo->size;
1707    buffer->usage = pCreateInfo->usage;
1708    buffer->bo = NULL;
1709    buffer->offset = 0;
1710
1711    *pBuffer = anv_buffer_to_handle(buffer);
1712
1713    return VK_SUCCESS;
1714 }
1715
1716 void anv_DestroyBuffer(
1717     VkDevice                                    _device,
1718     VkBuffer                                    _buffer,
1719     const VkAllocationCallbacks*                pAllocator)
1720 {
1721    ANV_FROM_HANDLE(anv_device, device, _device);
1722    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1723
1724    anv_free2(&device->alloc, pAllocator, buffer);
1725 }
1726
1727 void
1728 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1729                               enum isl_format format,
1730                               uint32_t offset, uint32_t range, uint32_t stride)
1731 {
1732    isl_buffer_fill_state(&device->isl_dev, state.map,
1733                          .address = offset,
1734                          .mocs = device->default_mocs,
1735                          .size = range,
1736                          .format = format,
1737                          .stride = stride);
1738
1739    if (!device->info.has_llc)
1740       anv_state_clflush(state);
1741 }
1742
1743 void anv_DestroySampler(
1744     VkDevice                                    _device,
1745     VkSampler                                   _sampler,
1746     const VkAllocationCallbacks*                pAllocator)
1747 {
1748    ANV_FROM_HANDLE(anv_device, device, _device);
1749    ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1750
1751    anv_free2(&device->alloc, pAllocator, sampler);
1752 }
1753
1754 VkResult anv_CreateFramebuffer(
1755     VkDevice                                    _device,
1756     const VkFramebufferCreateInfo*              pCreateInfo,
1757     const VkAllocationCallbacks*                pAllocator,
1758     VkFramebuffer*                              pFramebuffer)
1759 {
1760    ANV_FROM_HANDLE(anv_device, device, _device);
1761    struct anv_framebuffer *framebuffer;
1762
1763    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1764
1765    size_t size = sizeof(*framebuffer) +
1766                  sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1767    framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
1768                             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1769    if (framebuffer == NULL)
1770       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1771
1772    framebuffer->attachment_count = pCreateInfo->attachmentCount;
1773    for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1774       VkImageView _iview = pCreateInfo->pAttachments[i];
1775       framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1776    }
1777
1778    framebuffer->width = pCreateInfo->width;
1779    framebuffer->height = pCreateInfo->height;
1780    framebuffer->layers = pCreateInfo->layers;
1781
1782    *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1783
1784    return VK_SUCCESS;
1785 }
1786
1787 void anv_DestroyFramebuffer(
1788     VkDevice                                    _device,
1789     VkFramebuffer                               _fb,
1790     const VkAllocationCallbacks*                pAllocator)
1791 {
1792    ANV_FROM_HANDLE(anv_device, device, _device);
1793    ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1794
1795    anv_free2(&device->alloc, pAllocator, fb);
1796 }