OSDN Git Service

f181eb78ddf3fc1f1a7897792ceb43cb3db0b608
[android-x86/external-mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "anv_timestamp.h"
32 #include "util/strtod.h"
33 #include "util/debug.h"
34
35 #include "genxml/gen7_pack.h"
36
37 struct anv_dispatch_table dtable;
38
39 static void
40 compiler_debug_log(void *data, const char *fmt, ...)
41 { }
42
43 static void
44 compiler_perf_log(void *data, const char *fmt, ...)
45 {
46    va_list args;
47    va_start(args, fmt);
48
49    if (unlikely(INTEL_DEBUG & DEBUG_PERF))
50       vfprintf(stderr, fmt, args);
51
52    va_end(args);
53 }
54
55 static VkResult
56 anv_physical_device_init(struct anv_physical_device *device,
57                          struct anv_instance *instance,
58                          const char *path)
59 {
60    VkResult result;
61    int fd;
62
63    fd = open(path, O_RDWR | O_CLOEXEC);
64    if (fd < 0)
65       return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
66                        "failed to open %s: %m", path);
67
68    device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
69    device->instance = instance;
70
71    assert(strlen(path) < ARRAY_SIZE(device->path));
72    strncpy(device->path, path, ARRAY_SIZE(device->path));
73
74    device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
75    if (!device->chipset_id) {
76       result = VK_ERROR_INITIALIZATION_FAILED;
77       goto fail;
78    }
79
80    device->name = brw_get_device_name(device->chipset_id);
81    device->info = brw_get_device_info(device->chipset_id);
82    if (!device->info) {
83       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
84                          "failed to get device info");
85       goto fail;
86    }
87
88    if (device->info->is_haswell) {
89       fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
90    } else if (device->info->gen == 7 && !device->info->is_baytrail) {
91       fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
92    } else if (device->info->gen == 7 && device->info->is_baytrail) {
93       fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
94    } else if (device->info->gen >= 8) {
95       /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
96        * supported as anything */
97    } else {
98       result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
99                          "Vulkan not yet supported on %s", device->name);
100       goto fail;
101    }
102
103    device->cmd_parser_version = -1;
104    if (device->info->gen == 7) {
105       device->cmd_parser_version =
106          anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
107       if (device->cmd_parser_version == -1) {
108          result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
109                             "failed to get command parser version");
110          goto fail;
111       }
112    }
113
114    if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
115       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
116                          "failed to get aperture size: %m");
117       goto fail;
118    }
119
120    if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
121       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
122                          "kernel missing gem wait");
123       goto fail;
124    }
125
126    if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
127       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
128                          "kernel missing execbuf2");
129       goto fail;
130    }
131
132    if (!device->info->has_llc &&
133        anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
134       result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
135                          "kernel missing wc mmap");
136       goto fail;
137    }
138
139    bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
140
141    close(fd);
142
143    brw_process_intel_debug_variable();
144
145    device->compiler = brw_compiler_create(NULL, device->info);
146    if (device->compiler == NULL) {
147       result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
148       goto fail;
149    }
150    device->compiler->shader_debug_log = compiler_debug_log;
151    device->compiler->shader_perf_log = compiler_perf_log;
152
153    result = anv_init_wsi(device);
154    if (result != VK_SUCCESS)
155        goto fail;
156
157    /* XXX: Actually detect bit6 swizzling */
158    isl_device_init(&device->isl_dev, device->info, swizzled);
159
160    return VK_SUCCESS;
161
162 fail:
163    close(fd);
164    return result;
165 }
166
167 static void
168 anv_physical_device_finish(struct anv_physical_device *device)
169 {
170    anv_finish_wsi(device);
171    ralloc_free(device->compiler);
172 }
173
174 static const VkExtensionProperties global_extensions[] = {
175    {
176       .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
177       .specVersion = 25,
178    },
179 #ifdef VK_USE_PLATFORM_XCB_KHR
180    {
181       .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
182       .specVersion = 5,
183    },
184 #endif
185 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
186    {
187       .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
188       .specVersion = 4,
189    },
190 #endif
191 };
192
193 static const VkExtensionProperties device_extensions[] = {
194    {
195       .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
196       .specVersion = 67,
197    },
198 };
199
200 static void *
201 default_alloc_func(void *pUserData, size_t size, size_t align, 
202                    VkSystemAllocationScope allocationScope)
203 {
204    return malloc(size);
205 }
206
207 static void *
208 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
209                      size_t align, VkSystemAllocationScope allocationScope)
210 {
211    return realloc(pOriginal, size);
212 }
213
214 static void
215 default_free_func(void *pUserData, void *pMemory)
216 {
217    free(pMemory);
218 }
219
220 static const VkAllocationCallbacks default_alloc = {
221    .pUserData = NULL,
222    .pfnAllocation = default_alloc_func,
223    .pfnReallocation = default_realloc_func,
224    .pfnFree = default_free_func,
225 };
226
227 VkResult anv_CreateInstance(
228     const VkInstanceCreateInfo*                 pCreateInfo,
229     const VkAllocationCallbacks*                pAllocator,
230     VkInstance*                                 pInstance)
231 {
232    struct anv_instance *instance;
233
234    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
235
236    uint32_t client_version;
237    if (pCreateInfo->pApplicationInfo &&
238        pCreateInfo->pApplicationInfo->apiVersion != 0) {
239       client_version = pCreateInfo->pApplicationInfo->apiVersion;
240    } else {
241       client_version = VK_MAKE_VERSION(1, 0, 0);
242    }
243
244    if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
245        client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
246       return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
247                        "Client requested version %d.%d.%d",
248                        VK_VERSION_MAJOR(client_version),
249                        VK_VERSION_MINOR(client_version),
250                        VK_VERSION_PATCH(client_version));
251    }
252
253    for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
254       bool found = false;
255       for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
256          if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
257                     global_extensions[j].extensionName) == 0) {
258             found = true;
259             break;
260          }
261       }
262       if (!found)
263          return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
264    }
265
266    instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
267                          VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
268    if (!instance)
269       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
270
271    instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
272
273    if (pAllocator)
274       instance->alloc = *pAllocator;
275    else
276       instance->alloc = default_alloc;
277
278    instance->apiVersion = client_version;
279    instance->physicalDeviceCount = -1;
280
281    _mesa_locale_init();
282
283    VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
284
285    *pInstance = anv_instance_to_handle(instance);
286
287    return VK_SUCCESS;
288 }
289
290 void anv_DestroyInstance(
291     VkInstance                                  _instance,
292     const VkAllocationCallbacks*                pAllocator)
293 {
294    ANV_FROM_HANDLE(anv_instance, instance, _instance);
295
296    if (instance->physicalDeviceCount > 0) {
297       /* We support at most one physical device. */
298       assert(instance->physicalDeviceCount == 1);
299       anv_physical_device_finish(&instance->physicalDevice);
300    }
301
302    VG(VALGRIND_DESTROY_MEMPOOL(instance));
303
304    _mesa_locale_fini();
305
306    anv_free(&instance->alloc, instance);
307 }
308
309 VkResult anv_EnumeratePhysicalDevices(
310     VkInstance                                  _instance,
311     uint32_t*                                   pPhysicalDeviceCount,
312     VkPhysicalDevice*                           pPhysicalDevices)
313 {
314    ANV_FROM_HANDLE(anv_instance, instance, _instance);
315    VkResult result;
316
317    if (instance->physicalDeviceCount < 0) {
318       char path[20];
319       for (unsigned i = 0; i < 8; i++) {
320          snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
321          result = anv_physical_device_init(&instance->physicalDevice,
322                                            instance, path);
323          if (result == VK_SUCCESS)
324             break;
325       }
326
327       if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
328          instance->physicalDeviceCount = 0;
329       } else if (result == VK_SUCCESS) {
330          instance->physicalDeviceCount = 1;
331       } else {
332          return result;
333       }
334    }
335
336    /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
337     * otherwise it's an inout parameter.
338     *
339     * The Vulkan spec (git aaed022) says:
340     *
341     *    pPhysicalDeviceCount is a pointer to an unsigned integer variable
342     *    that is initialized with the number of devices the application is
343     *    prepared to receive handles to. pname:pPhysicalDevices is pointer to
344     *    an array of at least this many VkPhysicalDevice handles [...].
345     *
346     *    Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
347     *    overwrites the contents of the variable pointed to by
348     *    pPhysicalDeviceCount with the number of physical devices in in the
349     *    instance; otherwise, vkEnumeratePhysicalDevices overwrites
350     *    pPhysicalDeviceCount with the number of physical handles written to
351     *    pPhysicalDevices.
352     */
353    if (!pPhysicalDevices) {
354       *pPhysicalDeviceCount = instance->physicalDeviceCount;
355    } else if (*pPhysicalDeviceCount >= 1) {
356       pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
357       *pPhysicalDeviceCount = 1;
358    } else {
359       *pPhysicalDeviceCount = 0;
360    }
361
362    return VK_SUCCESS;
363 }
364
365 void anv_GetPhysicalDeviceFeatures(
366     VkPhysicalDevice                            physicalDevice,
367     VkPhysicalDeviceFeatures*                   pFeatures)
368 {
369    ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
370
371    *pFeatures = (VkPhysicalDeviceFeatures) {
372       .robustBufferAccess                       = true,
373       .fullDrawIndexUint32                      = true,
374       .imageCubeArray                           = false,
375       .independentBlend                         = pdevice->info->gen >= 8,
376       .geometryShader                           = true,
377       .tessellationShader                       = false,
378       .sampleRateShading                        = false,
379       .dualSrcBlend                             = true,
380       .logicOp                                  = true,
381       .multiDrawIndirect                        = false,
382       .drawIndirectFirstInstance                = false,
383       .depthClamp                               = true,
384       .depthBiasClamp                           = false,
385       .fillModeNonSolid                         = true,
386       .depthBounds                              = false,
387       .wideLines                                = true,
388       .largePoints                              = true,
389       .alphaToOne                               = true,
390       .multiViewport                            = true,
391       .samplerAnisotropy                        = false, /* FINISHME */
392       .textureCompressionETC2                   = pdevice->info->gen >= 8 ||
393                                                   pdevice->info->is_baytrail,
394       .textureCompressionASTC_LDR               = pdevice->info->gen >= 9, /* FINISHME CHV */
395       .textureCompressionBC                     = true,
396       .occlusionQueryPrecise                    = true,
397       .pipelineStatisticsQuery                  = false,
398       .fragmentStoresAndAtomics                 = true,
399       .shaderTessellationAndGeometryPointSize   = true,
400       .shaderImageGatherExtended                = false,
401       .shaderStorageImageExtendedFormats        = false,
402       .shaderStorageImageMultisample            = false,
403       .shaderUniformBufferArrayDynamicIndexing  = true,
404       .shaderSampledImageArrayDynamicIndexing   = true,
405       .shaderStorageBufferArrayDynamicIndexing  = true,
406       .shaderStorageImageArrayDynamicIndexing   = true,
407       .shaderStorageImageReadWithoutFormat      = false,
408       .shaderStorageImageWriteWithoutFormat     = true,
409       .shaderClipDistance                       = false,
410       .shaderCullDistance                       = false,
411       .shaderFloat64                            = false,
412       .shaderInt64                              = false,
413       .shaderInt16                              = false,
414       .alphaToOne                               = true,
415       .variableMultisampleRate                  = false,
416       .inheritedQueries                         = false,
417    };
418
419    /* We can't do image stores in vec4 shaders */
420    pFeatures->vertexPipelineStoresAndAtomics =
421       pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
422       pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
423 }
424
425 void
426 anv_device_get_cache_uuid(void *uuid)
427 {
428    memset(uuid, 0, VK_UUID_SIZE);
429    snprintf(uuid, VK_UUID_SIZE, "anv-%s", ANV_TIMESTAMP);
430 }
431
432 void anv_GetPhysicalDeviceProperties(
433     VkPhysicalDevice                            physicalDevice,
434     VkPhysicalDeviceProperties*                 pProperties)
435 {
436    ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
437    const struct brw_device_info *devinfo = pdevice->info;
438
439    const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
440
441    /* See assertions made when programming the buffer surface state. */
442    const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
443                                       (1ul << 30) : (1ul << 27);
444
445    VkSampleCountFlags sample_counts =
446       isl_device_get_sample_counts(&pdevice->isl_dev);
447
448    VkPhysicalDeviceLimits limits = {
449       .maxImageDimension1D                      = (1 << 14),
450       .maxImageDimension2D                      = (1 << 14),
451       .maxImageDimension3D                      = (1 << 11),
452       .maxImageDimensionCube                    = (1 << 14),
453       .maxImageArrayLayers                      = (1 << 11),
454       .maxTexelBufferElements                   = 128 * 1024 * 1024,
455       .maxUniformBufferRange                    = (1ul << 27),
456       .maxStorageBufferRange                    = max_raw_buffer_sz,
457       .maxPushConstantsSize                     = MAX_PUSH_CONSTANTS_SIZE,
458       .maxMemoryAllocationCount                 = UINT32_MAX,
459       .maxSamplerAllocationCount                = 64 * 1024,
460       .bufferImageGranularity                   = 64, /* A cache line */
461       .sparseAddressSpaceSize                   = 0,
462       .maxBoundDescriptorSets                   = MAX_SETS,
463       .maxPerStageDescriptorSamplers            = 64,
464       .maxPerStageDescriptorUniformBuffers      = 64,
465       .maxPerStageDescriptorStorageBuffers      = 64,
466       .maxPerStageDescriptorSampledImages       = 64,
467       .maxPerStageDescriptorStorageImages       = 64,
468       .maxPerStageDescriptorInputAttachments    = 64,
469       .maxPerStageResources                     = 128,
470       .maxDescriptorSetSamplers                 = 256,
471       .maxDescriptorSetUniformBuffers           = 256,
472       .maxDescriptorSetUniformBuffersDynamic    = 256,
473       .maxDescriptorSetStorageBuffers           = 256,
474       .maxDescriptorSetStorageBuffersDynamic    = 256,
475       .maxDescriptorSetSampledImages            = 256,
476       .maxDescriptorSetStorageImages            = 256,
477       .maxDescriptorSetInputAttachments         = 256,
478       .maxVertexInputAttributes                 = 32,
479       .maxVertexInputBindings                   = 32,
480       .maxVertexInputAttributeOffset            = 2047,
481       .maxVertexInputBindingStride              = 2048,
482       .maxVertexOutputComponents                = 128,
483       .maxTessellationGenerationLevel           = 0,
484       .maxTessellationPatchSize                 = 0,
485       .maxTessellationControlPerVertexInputComponents = 0,
486       .maxTessellationControlPerVertexOutputComponents = 0,
487       .maxTessellationControlPerPatchOutputComponents = 0,
488       .maxTessellationControlTotalOutputComponents = 0,
489       .maxTessellationEvaluationInputComponents = 0,
490       .maxTessellationEvaluationOutputComponents = 0,
491       .maxGeometryShaderInvocations             = 32,
492       .maxGeometryInputComponents               = 64,
493       .maxGeometryOutputComponents              = 128,
494       .maxGeometryOutputVertices                = 256,
495       .maxGeometryTotalOutputComponents         = 1024,
496       .maxFragmentInputComponents               = 128,
497       .maxFragmentOutputAttachments             = 8,
498       .maxFragmentDualSrcAttachments            = 2,
499       .maxFragmentCombinedOutputResources       = 8,
500       .maxComputeSharedMemorySize               = 32768,
501       .maxComputeWorkGroupCount                 = { 65535, 65535, 65535 },
502       .maxComputeWorkGroupInvocations           = 16 * devinfo->max_cs_threads,
503       .maxComputeWorkGroupSize = {
504          16 * devinfo->max_cs_threads,
505          16 * devinfo->max_cs_threads,
506          16 * devinfo->max_cs_threads,
507       },
508       .subPixelPrecisionBits                    = 4 /* FIXME */,
509       .subTexelPrecisionBits                    = 4 /* FIXME */,
510       .mipmapPrecisionBits                      = 4 /* FIXME */,
511       .maxDrawIndexedIndexValue                 = UINT32_MAX,
512       .maxDrawIndirectCount                     = UINT32_MAX,
513       .maxSamplerLodBias                        = 16,
514       .maxSamplerAnisotropy                     = 16,
515       .maxViewports                             = MAX_VIEWPORTS,
516       .maxViewportDimensions                    = { (1 << 14), (1 << 14) },
517       .viewportBoundsRange                      = { INT16_MIN, INT16_MAX },
518       .viewportSubPixelBits                     = 13, /* We take a float? */
519       .minMemoryMapAlignment                    = 4096, /* A page */
520       .minTexelBufferOffsetAlignment            = 1,
521       .minUniformBufferOffsetAlignment          = 1,
522       .minStorageBufferOffsetAlignment          = 1,
523       .minTexelOffset                           = -8,
524       .maxTexelOffset                           = 7,
525       .minTexelGatherOffset                     = -8,
526       .maxTexelGatherOffset                     = 7,
527       .minInterpolationOffset                   = 0, /* FIXME */
528       .maxInterpolationOffset                   = 0, /* FIXME */
529       .subPixelInterpolationOffsetBits          = 0, /* FIXME */
530       .maxFramebufferWidth                      = (1 << 14),
531       .maxFramebufferHeight                     = (1 << 14),
532       .maxFramebufferLayers                     = (1 << 10),
533       .framebufferColorSampleCounts             = sample_counts,
534       .framebufferDepthSampleCounts             = sample_counts,
535       .framebufferStencilSampleCounts           = sample_counts,
536       .framebufferNoAttachmentsSampleCounts     = sample_counts,
537       .maxColorAttachments                      = MAX_RTS,
538       .sampledImageColorSampleCounts            = sample_counts,
539       .sampledImageIntegerSampleCounts          = VK_SAMPLE_COUNT_1_BIT,
540       .sampledImageDepthSampleCounts            = sample_counts,
541       .sampledImageStencilSampleCounts          = sample_counts,
542       .storageImageSampleCounts                 = VK_SAMPLE_COUNT_1_BIT,
543       .maxSampleMaskWords                       = 1,
544       .timestampComputeAndGraphics              = false,
545       .timestampPeriod                          = time_stamp_base / (1000 * 1000 * 1000),
546       .maxClipDistances                         = 0 /* FIXME */,
547       .maxCullDistances                         = 0 /* FIXME */,
548       .maxCombinedClipAndCullDistances          = 0 /* FIXME */,
549       .discreteQueuePriorities                  = 1,
550       .pointSizeRange                           = { 0.125, 255.875 },
551       .lineWidthRange                           = { 0.0, 7.9921875 },
552       .pointSizeGranularity                     = (1.0 / 8.0),
553       .lineWidthGranularity                     = (1.0 / 128.0),
554       .strictLines                              = false, /* FINISHME */
555       .standardSampleLocations                  = true,
556       .optimalBufferCopyOffsetAlignment         = 128,
557       .optimalBufferCopyRowPitchAlignment       = 128,
558       .nonCoherentAtomSize                      = 64,
559    };
560
561    *pProperties = (VkPhysicalDeviceProperties) {
562       .apiVersion = VK_MAKE_VERSION(1, 0, 5),
563       .driverVersion = 1,
564       .vendorID = 0x8086,
565       .deviceID = pdevice->chipset_id,
566       .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
567       .limits = limits,
568       .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
569    };
570
571    strcpy(pProperties->deviceName, pdevice->name);
572    anv_device_get_cache_uuid(pProperties->pipelineCacheUUID);
573 }
574
575 void anv_GetPhysicalDeviceQueueFamilyProperties(
576     VkPhysicalDevice                            physicalDevice,
577     uint32_t*                                   pCount,
578     VkQueueFamilyProperties*                    pQueueFamilyProperties)
579 {
580    if (pQueueFamilyProperties == NULL) {
581       *pCount = 1;
582       return;
583    }
584
585    assert(*pCount >= 1);
586
587    *pQueueFamilyProperties = (VkQueueFamilyProperties) {
588       .queueFlags = VK_QUEUE_GRAPHICS_BIT |
589                     VK_QUEUE_COMPUTE_BIT |
590                     VK_QUEUE_TRANSFER_BIT,
591       .queueCount = 1,
592       .timestampValidBits = 36, /* XXX: Real value here */
593       .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
594    };
595 }
596
597 void anv_GetPhysicalDeviceMemoryProperties(
598     VkPhysicalDevice                            physicalDevice,
599     VkPhysicalDeviceMemoryProperties*           pMemoryProperties)
600 {
601    ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
602    VkDeviceSize heap_size;
603
604    /* Reserve some wiggle room for the driver by exposing only 75% of the
605     * aperture to the heap.
606     */
607    heap_size = 3 * physical_device->aperture_size / 4;
608
609    if (physical_device->info->has_llc) {
610       /* Big core GPUs share LLC with the CPU and thus one memory type can be
611        * both cached and coherent at the same time.
612        */
613       pMemoryProperties->memoryTypeCount = 1;
614       pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
615          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
616                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
617                           VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
618                           VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
619          .heapIndex = 0,
620       };
621    } else {
622       /* The spec requires that we expose a host-visible, coherent memory
623        * type, but Atom GPUs don't share LLC. Thus we offer two memory types
624        * to give the application a choice between cached, but not coherent and
625        * coherent but uncached (WC though).
626        */
627       pMemoryProperties->memoryTypeCount = 2;
628       pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
629          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
630                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
631                           VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
632          .heapIndex = 0,
633       };
634       pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
635          .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
636                           VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
637                           VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
638          .heapIndex = 0,
639       };
640    }
641
642    pMemoryProperties->memoryHeapCount = 1;
643    pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
644       .size = heap_size,
645       .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
646    };
647 }
648
649 PFN_vkVoidFunction anv_GetInstanceProcAddr(
650     VkInstance                                  instance,
651     const char*                                 pName)
652 {
653    return anv_lookup_entrypoint(pName);
654 }
655
656 /* The loader wants us to expose a second GetInstanceProcAddr function
657  * to work around certain LD_PRELOAD issues seen in apps.
658  */
659 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
660     VkInstance                                  instance,
661     const char*                                 pName);
662
663 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
664     VkInstance                                  instance,
665     const char*                                 pName)
666 {
667    return anv_GetInstanceProcAddr(instance, pName);
668 }
669
670 PFN_vkVoidFunction anv_GetDeviceProcAddr(
671     VkDevice                                    device,
672     const char*                                 pName)
673 {
674    return anv_lookup_entrypoint(pName);
675 }
676
677 static VkResult
678 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
679 {
680    queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
681    queue->device = device;
682    queue->pool = &device->surface_state_pool;
683
684    return VK_SUCCESS;
685 }
686
687 static void
688 anv_queue_finish(struct anv_queue *queue)
689 {
690 }
691
692 static struct anv_state
693 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
694 {
695    struct anv_state state;
696
697    state = anv_state_pool_alloc(pool, size, align);
698    memcpy(state.map, p, size);
699
700    if (!pool->block_pool->device->info.has_llc)
701       anv_state_clflush(state);
702
703    return state;
704 }
705
706 struct gen8_border_color {
707    union {
708       float float32[4];
709       uint32_t uint32[4];
710    };
711    /* Pad out to 64 bytes */
712    uint32_t _pad[12];
713 };
714
715 static void
716 anv_device_init_border_colors(struct anv_device *device)
717 {
718    static const struct gen8_border_color border_colors[] = {
719       [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] =  { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
720       [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] =       { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
721       [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] =       { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
722       [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] =    { .uint32 = { 0, 0, 0, 0 } },
723       [VK_BORDER_COLOR_INT_OPAQUE_BLACK] =         { .uint32 = { 0, 0, 0, 1 } },
724       [VK_BORDER_COLOR_INT_OPAQUE_WHITE] =         { .uint32 = { 1, 1, 1, 1 } },
725    };
726
727    device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
728                                                     sizeof(border_colors), 64,
729                                                     border_colors);
730 }
731
732 VkResult
733 anv_device_submit_simple_batch(struct anv_device *device,
734                                struct anv_batch *batch)
735 {
736    struct drm_i915_gem_execbuffer2 execbuf;
737    struct drm_i915_gem_exec_object2 exec2_objects[1];
738    struct anv_bo bo;
739    VkResult result = VK_SUCCESS;
740    uint32_t size;
741    int64_t timeout;
742    int ret;
743
744    /* Kernel driver requires 8 byte aligned batch length */
745    size = align_u32(batch->next - batch->start, 8);
746    result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
747    if (result != VK_SUCCESS)
748       return result;
749
750    memcpy(bo.map, batch->start, size);
751    if (!device->info.has_llc)
752       anv_clflush_range(bo.map, size);
753
754    exec2_objects[0].handle = bo.gem_handle;
755    exec2_objects[0].relocation_count = 0;
756    exec2_objects[0].relocs_ptr = 0;
757    exec2_objects[0].alignment = 0;
758    exec2_objects[0].offset = bo.offset;
759    exec2_objects[0].flags = 0;
760    exec2_objects[0].rsvd1 = 0;
761    exec2_objects[0].rsvd2 = 0;
762
763    execbuf.buffers_ptr = (uintptr_t) exec2_objects;
764    execbuf.buffer_count = 1;
765    execbuf.batch_start_offset = 0;
766    execbuf.batch_len = size;
767    execbuf.cliprects_ptr = 0;
768    execbuf.num_cliprects = 0;
769    execbuf.DR1 = 0;
770    execbuf.DR4 = 0;
771
772    execbuf.flags =
773       I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
774    execbuf.rsvd1 = device->context_id;
775    execbuf.rsvd2 = 0;
776
777    ret = anv_gem_execbuffer(device, &execbuf);
778    if (ret != 0) {
779       /* We don't know the real error. */
780       result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
781       goto fail;
782    }
783
784    timeout = INT64_MAX;
785    ret = anv_gem_wait(device, bo.gem_handle, &timeout);
786    if (ret != 0) {
787       /* We don't know the real error. */
788       result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
789       goto fail;
790    }
791
792  fail:
793    anv_bo_pool_free(&device->batch_bo_pool, &bo);
794
795    return result;
796 }
797
798 VkResult anv_CreateDevice(
799     VkPhysicalDevice                            physicalDevice,
800     const VkDeviceCreateInfo*                   pCreateInfo,
801     const VkAllocationCallbacks*                pAllocator,
802     VkDevice*                                   pDevice)
803 {
804    ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
805    VkResult result;
806    struct anv_device *device;
807
808    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
809
810    for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
811       bool found = false;
812       for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
813          if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
814                     device_extensions[j].extensionName) == 0) {
815             found = true;
816             break;
817          }
818       }
819       if (!found)
820          return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
821    }
822
823    anv_set_dispatch_devinfo(physical_device->info);
824
825    device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
826                        sizeof(*device), 8,
827                        VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
828    if (!device)
829       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
830
831    device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
832    device->instance = physical_device->instance;
833    device->chipset_id = physical_device->chipset_id;
834
835    if (pAllocator)
836       device->alloc = *pAllocator;
837    else
838       device->alloc = physical_device->instance->alloc;
839
840    /* XXX(chadv): Can we dup() physicalDevice->fd here? */
841    device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
842    if (device->fd == -1) {
843       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
844       goto fail_device;
845    }
846
847    device->context_id = anv_gem_create_context(device);
848    if (device->context_id == -1) {
849       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
850       goto fail_fd;
851    }
852
853    device->info = *physical_device->info;
854    device->isl_dev = physical_device->isl_dev;
855
856    /* On Broadwell and later, we can use batch chaining to more efficiently
857     * implement growing command buffers.  Prior to Haswell, the kernel
858     * command parser gets in the way and we have to fall back to growing
859     * the batch.
860     */
861    device->can_chain_batches = device->info.gen >= 8;
862
863    device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
864       pCreateInfo->pEnabledFeatures->robustBufferAccess;
865
866    pthread_mutex_init(&device->mutex, NULL);
867
868    anv_bo_pool_init(&device->batch_bo_pool, device);
869
870    anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
871
872    anv_state_pool_init(&device->dynamic_state_pool,
873                        &device->dynamic_state_block_pool);
874
875    anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
876    anv_pipeline_cache_init(&device->default_pipeline_cache, device);
877
878    anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
879
880    anv_state_pool_init(&device->surface_state_pool,
881                        &device->surface_state_block_pool);
882
883    anv_bo_init_new(&device->workaround_bo, device, 1024);
884
885    anv_scratch_pool_init(device, &device->scratch_pool);
886
887    anv_queue_init(device, &device->queue);
888
889    switch (device->info.gen) {
890    case 7:
891       if (!device->info.is_haswell)
892          result = gen7_init_device_state(device);
893       else
894          result = gen75_init_device_state(device);
895       break;
896    case 8:
897       result = gen8_init_device_state(device);
898       break;
899    case 9:
900       result = gen9_init_device_state(device);
901       break;
902    default:
903       /* Shouldn't get here as we don't create physical devices for any other
904        * gens. */
905       unreachable("unhandled gen");
906    }
907    if (result != VK_SUCCESS)
908       goto fail_fd;
909
910    result = anv_device_init_meta(device);
911    if (result != VK_SUCCESS)
912       goto fail_fd;
913
914    anv_device_init_border_colors(device);
915
916    *pDevice = anv_device_to_handle(device);
917
918    return VK_SUCCESS;
919
920  fail_fd:
921    close(device->fd);
922  fail_device:
923    anv_free(&device->alloc, device);
924
925    return result;
926 }
927
928 void anv_DestroyDevice(
929     VkDevice                                    _device,
930     const VkAllocationCallbacks*                pAllocator)
931 {
932    ANV_FROM_HANDLE(anv_device, device, _device);
933
934    anv_queue_finish(&device->queue);
935
936    anv_device_finish_meta(device);
937
938 #ifdef HAVE_VALGRIND
939    /* We only need to free these to prevent valgrind errors.  The backing
940     * BO will go away in a couple of lines so we don't actually leak.
941     */
942    anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
943 #endif
944
945    anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
946    anv_gem_close(device, device->workaround_bo.gem_handle);
947
948    anv_bo_pool_finish(&device->batch_bo_pool);
949    anv_state_pool_finish(&device->dynamic_state_pool);
950    anv_block_pool_finish(&device->dynamic_state_block_pool);
951    anv_block_pool_finish(&device->instruction_block_pool);
952    anv_state_pool_finish(&device->surface_state_pool);
953    anv_block_pool_finish(&device->surface_state_block_pool);
954    anv_scratch_pool_finish(device, &device->scratch_pool);
955
956    close(device->fd);
957
958    pthread_mutex_destroy(&device->mutex);
959
960    anv_free(&device->alloc, device);
961 }
962
963 VkResult anv_EnumerateInstanceExtensionProperties(
964     const char*                                 pLayerName,
965     uint32_t*                                   pPropertyCount,
966     VkExtensionProperties*                      pProperties)
967 {
968    if (pProperties == NULL) {
969       *pPropertyCount = ARRAY_SIZE(global_extensions);
970       return VK_SUCCESS;
971    }
972
973    assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
974
975    *pPropertyCount = ARRAY_SIZE(global_extensions);
976    memcpy(pProperties, global_extensions, sizeof(global_extensions));
977
978    return VK_SUCCESS;
979 }
980
981 VkResult anv_EnumerateDeviceExtensionProperties(
982     VkPhysicalDevice                            physicalDevice,
983     const char*                                 pLayerName,
984     uint32_t*                                   pPropertyCount,
985     VkExtensionProperties*                      pProperties)
986 {
987    if (pProperties == NULL) {
988       *pPropertyCount = ARRAY_SIZE(device_extensions);
989       return VK_SUCCESS;
990    }
991
992    assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
993
994    *pPropertyCount = ARRAY_SIZE(device_extensions);
995    memcpy(pProperties, device_extensions, sizeof(device_extensions));
996
997    return VK_SUCCESS;
998 }
999
1000 VkResult anv_EnumerateInstanceLayerProperties(
1001     uint32_t*                                   pPropertyCount,
1002     VkLayerProperties*                          pProperties)
1003 {
1004    if (pProperties == NULL) {
1005       *pPropertyCount = 0;
1006       return VK_SUCCESS;
1007    }
1008
1009    /* None supported at this time */
1010    return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1011 }
1012
1013 VkResult anv_EnumerateDeviceLayerProperties(
1014     VkPhysicalDevice                            physicalDevice,
1015     uint32_t*                                   pPropertyCount,
1016     VkLayerProperties*                          pProperties)
1017 {
1018    if (pProperties == NULL) {
1019       *pPropertyCount = 0;
1020       return VK_SUCCESS;
1021    }
1022
1023    /* None supported at this time */
1024    return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1025 }
1026
1027 void anv_GetDeviceQueue(
1028     VkDevice                                    _device,
1029     uint32_t                                    queueNodeIndex,
1030     uint32_t                                    queueIndex,
1031     VkQueue*                                    pQueue)
1032 {
1033    ANV_FROM_HANDLE(anv_device, device, _device);
1034
1035    assert(queueIndex == 0);
1036
1037    *pQueue = anv_queue_to_handle(&device->queue);
1038 }
1039
1040 VkResult anv_QueueSubmit(
1041     VkQueue                                     _queue,
1042     uint32_t                                    submitCount,
1043     const VkSubmitInfo*                         pSubmits,
1044     VkFence                                     _fence)
1045 {
1046    ANV_FROM_HANDLE(anv_queue, queue, _queue);
1047    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1048    struct anv_device *device = queue->device;
1049    int ret;
1050
1051    for (uint32_t i = 0; i < submitCount; i++) {
1052       for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1053          ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1054                          pSubmits[i].pCommandBuffers[j]);
1055          assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1056
1057          ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
1058          if (ret != 0) {
1059             /* We don't know the real error. */
1060             return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1061                              "execbuf2 failed: %m");
1062          }
1063
1064          for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
1065             cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
1066       }
1067    }
1068
1069    if (fence) {
1070       ret = anv_gem_execbuffer(device, &fence->execbuf);
1071       if (ret != 0) {
1072          /* We don't know the real error. */
1073          return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1074                           "execbuf2 failed: %m");
1075       }
1076    }
1077
1078    return VK_SUCCESS;
1079 }
1080
1081 VkResult anv_QueueWaitIdle(
1082     VkQueue                                     _queue)
1083 {
1084    ANV_FROM_HANDLE(anv_queue, queue, _queue);
1085
1086    return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
1087 }
1088
1089 VkResult anv_DeviceWaitIdle(
1090     VkDevice                                    _device)
1091 {
1092    ANV_FROM_HANDLE(anv_device, device, _device);
1093    struct anv_batch batch;
1094
1095    uint32_t cmds[8];
1096    batch.start = batch.next = cmds;
1097    batch.end = (void *) cmds + sizeof(cmds);
1098
1099    anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1100    anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1101
1102    return anv_device_submit_simple_batch(device, &batch);
1103 }
1104
1105 VkResult
1106 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1107 {
1108    bo->gem_handle = anv_gem_create(device, size);
1109    if (!bo->gem_handle)
1110       return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1111
1112    bo->map = NULL;
1113    bo->index = 0;
1114    bo->offset = 0;
1115    bo->size = size;
1116    bo->is_winsys_bo = false;
1117
1118    return VK_SUCCESS;
1119 }
1120
1121 VkResult anv_AllocateMemory(
1122     VkDevice                                    _device,
1123     const VkMemoryAllocateInfo*                 pAllocateInfo,
1124     const VkAllocationCallbacks*                pAllocator,
1125     VkDeviceMemory*                             pMem)
1126 {
1127    ANV_FROM_HANDLE(anv_device, device, _device);
1128    struct anv_device_memory *mem;
1129    VkResult result;
1130
1131    assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1132
1133    if (pAllocateInfo->allocationSize == 0) {
1134       /* Apparently, this is allowed */
1135       *pMem = VK_NULL_HANDLE;
1136       return VK_SUCCESS;
1137    }
1138
1139    /* We support exactly one memory heap. */
1140    assert(pAllocateInfo->memoryTypeIndex == 0 ||
1141           (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1142
1143    /* FINISHME: Fail if allocation request exceeds heap size. */
1144
1145    mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1146                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1147    if (mem == NULL)
1148       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1149
1150    /* The kernel is going to give us whole pages anyway */
1151    uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1152
1153    result = anv_bo_init_new(&mem->bo, device, alloc_size);
1154    if (result != VK_SUCCESS)
1155       goto fail;
1156
1157    mem->type_index = pAllocateInfo->memoryTypeIndex;
1158
1159    *pMem = anv_device_memory_to_handle(mem);
1160
1161    return VK_SUCCESS;
1162
1163  fail:
1164    anv_free2(&device->alloc, pAllocator, mem);
1165
1166    return result;
1167 }
1168
1169 void anv_FreeMemory(
1170     VkDevice                                    _device,
1171     VkDeviceMemory                              _mem,
1172     const VkAllocationCallbacks*                pAllocator)
1173 {
1174    ANV_FROM_HANDLE(anv_device, device, _device);
1175    ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1176
1177    if (mem == NULL)
1178       return;
1179
1180    if (mem->bo.map)
1181       anv_gem_munmap(mem->bo.map, mem->bo.size);
1182
1183    if (mem->bo.gem_handle != 0)
1184       anv_gem_close(device, mem->bo.gem_handle);
1185
1186    anv_free2(&device->alloc, pAllocator, mem);
1187 }
1188
1189 VkResult anv_MapMemory(
1190     VkDevice                                    _device,
1191     VkDeviceMemory                              _memory,
1192     VkDeviceSize                                offset,
1193     VkDeviceSize                                size,
1194     VkMemoryMapFlags                            flags,
1195     void**                                      ppData)
1196 {
1197    ANV_FROM_HANDLE(anv_device, device, _device);
1198    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1199
1200    if (mem == NULL) {
1201       *ppData = NULL;
1202       return VK_SUCCESS;
1203    }
1204
1205    if (size == VK_WHOLE_SIZE)
1206       size = mem->bo.size - offset;
1207
1208    /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1209     * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1210     * at a time is valid. We could just mmap up front and return an offset
1211     * pointer here, but that may exhaust virtual memory on 32 bit
1212     * userspace. */
1213
1214    uint32_t gem_flags = 0;
1215    if (!device->info.has_llc && mem->type_index == 0)
1216       gem_flags |= I915_MMAP_WC;
1217
1218    /* GEM will fail to map if the offset isn't 4k-aligned.  Round down. */
1219    uint64_t map_offset = offset & ~4095ull;
1220    assert(offset >= map_offset);
1221    uint64_t map_size = (offset + size) - map_offset;
1222
1223    /* Let's map whole pages */
1224    map_size = align_u64(map_size, 4096);
1225
1226    mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
1227                            map_offset, map_size, gem_flags);
1228    mem->map_size = map_size;
1229
1230    *ppData = mem->map + (offset - map_offset);
1231
1232    return VK_SUCCESS;
1233 }
1234
1235 void anv_UnmapMemory(
1236     VkDevice                                    _device,
1237     VkDeviceMemory                              _memory)
1238 {
1239    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1240
1241    if (mem == NULL)
1242       return;
1243
1244    anv_gem_munmap(mem->map, mem->map_size);
1245 }
1246
1247 static void
1248 clflush_mapped_ranges(struct anv_device         *device,
1249                       uint32_t                   count,
1250                       const VkMappedMemoryRange *ranges)
1251 {
1252    for (uint32_t i = 0; i < count; i++) {
1253       ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1254       void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1255       void *end;
1256
1257       if (ranges[i].offset + ranges[i].size > mem->map_size)
1258          end = mem->map + mem->map_size;
1259       else
1260          end = mem->map + ranges[i].offset + ranges[i].size;
1261
1262       while (p < end) {
1263          __builtin_ia32_clflush(p);
1264          p += CACHELINE_SIZE;
1265       }
1266    }
1267 }
1268
1269 VkResult anv_FlushMappedMemoryRanges(
1270     VkDevice                                    _device,
1271     uint32_t                                    memoryRangeCount,
1272     const VkMappedMemoryRange*                  pMemoryRanges)
1273 {
1274    ANV_FROM_HANDLE(anv_device, device, _device);
1275
1276    if (device->info.has_llc)
1277       return VK_SUCCESS;
1278
1279    /* Make sure the writes we're flushing have landed. */
1280    __builtin_ia32_mfence();
1281
1282    clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1283
1284    return VK_SUCCESS;
1285 }
1286
1287 VkResult anv_InvalidateMappedMemoryRanges(
1288     VkDevice                                    _device,
1289     uint32_t                                    memoryRangeCount,
1290     const VkMappedMemoryRange*                  pMemoryRanges)
1291 {
1292    ANV_FROM_HANDLE(anv_device, device, _device);
1293
1294    if (device->info.has_llc)
1295       return VK_SUCCESS;
1296
1297    clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1298
1299    /* Make sure no reads get moved up above the invalidate. */
1300    __builtin_ia32_mfence();
1301
1302    return VK_SUCCESS;
1303 }
1304
1305 void anv_GetBufferMemoryRequirements(
1306     VkDevice                                    device,
1307     VkBuffer                                    _buffer,
1308     VkMemoryRequirements*                       pMemoryRequirements)
1309 {
1310    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1311
1312    /* The Vulkan spec (git aaed022) says:
1313     *
1314     *    memoryTypeBits is a bitfield and contains one bit set for every
1315     *    supported memory type for the resource. The bit `1<<i` is set if and
1316     *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1317     *    structure for the physical device is supported.
1318     *
1319     * We support exactly one memory type.
1320     */
1321    pMemoryRequirements->memoryTypeBits = 1;
1322
1323    pMemoryRequirements->size = buffer->size;
1324    pMemoryRequirements->alignment = 16;
1325 }
1326
1327 void anv_GetImageMemoryRequirements(
1328     VkDevice                                    device,
1329     VkImage                                     _image,
1330     VkMemoryRequirements*                       pMemoryRequirements)
1331 {
1332    ANV_FROM_HANDLE(anv_image, image, _image);
1333
1334    /* The Vulkan spec (git aaed022) says:
1335     *
1336     *    memoryTypeBits is a bitfield and contains one bit set for every
1337     *    supported memory type for the resource. The bit `1<<i` is set if and
1338     *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1339     *    structure for the physical device is supported.
1340     *
1341     * We support exactly one memory type.
1342     */
1343    pMemoryRequirements->memoryTypeBits = 1;
1344
1345    pMemoryRequirements->size = image->size;
1346    pMemoryRequirements->alignment = image->alignment;
1347 }
1348
1349 void anv_GetImageSparseMemoryRequirements(
1350     VkDevice                                    device,
1351     VkImage                                     image,
1352     uint32_t*                                   pSparseMemoryRequirementCount,
1353     VkSparseImageMemoryRequirements*            pSparseMemoryRequirements)
1354 {
1355    stub();
1356 }
1357
1358 void anv_GetDeviceMemoryCommitment(
1359     VkDevice                                    device,
1360     VkDeviceMemory                              memory,
1361     VkDeviceSize*                               pCommittedMemoryInBytes)
1362 {
1363    *pCommittedMemoryInBytes = 0;
1364 }
1365
1366 VkResult anv_BindBufferMemory(
1367     VkDevice                                    device,
1368     VkBuffer                                    _buffer,
1369     VkDeviceMemory                              _memory,
1370     VkDeviceSize                                memoryOffset)
1371 {
1372    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1373    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1374
1375    if (mem) {
1376       buffer->bo = &mem->bo;
1377       buffer->offset = memoryOffset;
1378    } else {
1379       buffer->bo = NULL;
1380       buffer->offset = 0;
1381    }
1382
1383    return VK_SUCCESS;
1384 }
1385
1386 VkResult anv_BindImageMemory(
1387     VkDevice                                    device,
1388     VkImage                                     _image,
1389     VkDeviceMemory                              _memory,
1390     VkDeviceSize                                memoryOffset)
1391 {
1392    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1393    ANV_FROM_HANDLE(anv_image, image, _image);
1394
1395    if (mem) {
1396       image->bo = &mem->bo;
1397       image->offset = memoryOffset;
1398    } else {
1399       image->bo = NULL;
1400       image->offset = 0;
1401    }
1402
1403    return VK_SUCCESS;
1404 }
1405
1406 VkResult anv_QueueBindSparse(
1407     VkQueue                                     queue,
1408     uint32_t                                    bindInfoCount,
1409     const VkBindSparseInfo*                     pBindInfo,
1410     VkFence                                     fence)
1411 {
1412    stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1413 }
1414
1415 VkResult anv_CreateFence(
1416     VkDevice                                    _device,
1417     const VkFenceCreateInfo*                    pCreateInfo,
1418     const VkAllocationCallbacks*                pAllocator,
1419     VkFence*                                    pFence)
1420 {
1421    ANV_FROM_HANDLE(anv_device, device, _device);
1422    struct anv_bo fence_bo;
1423    struct anv_fence *fence;
1424    struct anv_batch batch;
1425    VkResult result;
1426
1427    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1428
1429    result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1430    if (result != VK_SUCCESS)
1431       return result;
1432
1433    /* Fences are small.  Just store the CPU data structure in the BO. */
1434    fence = fence_bo.map;
1435    fence->bo = fence_bo;
1436
1437    /* Place the batch after the CPU data but on its own cache line. */
1438    const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1439    batch.next = batch.start = fence->bo.map + batch_offset;
1440    batch.end = fence->bo.map + fence->bo.size;
1441    anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1442    anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1443
1444    if (!device->info.has_llc) {
1445       assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1446       assert(batch.next - batch.start <= CACHELINE_SIZE);
1447       __builtin_ia32_mfence();
1448       __builtin_ia32_clflush(batch.start);
1449    }
1450
1451    fence->exec2_objects[0].handle = fence->bo.gem_handle;
1452    fence->exec2_objects[0].relocation_count = 0;
1453    fence->exec2_objects[0].relocs_ptr = 0;
1454    fence->exec2_objects[0].alignment = 0;
1455    fence->exec2_objects[0].offset = fence->bo.offset;
1456    fence->exec2_objects[0].flags = 0;
1457    fence->exec2_objects[0].rsvd1 = 0;
1458    fence->exec2_objects[0].rsvd2 = 0;
1459
1460    fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1461    fence->execbuf.buffer_count = 1;
1462    fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1463    fence->execbuf.batch_len = batch.next - batch.start;
1464    fence->execbuf.cliprects_ptr = 0;
1465    fence->execbuf.num_cliprects = 0;
1466    fence->execbuf.DR1 = 0;
1467    fence->execbuf.DR4 = 0;
1468
1469    fence->execbuf.flags =
1470       I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1471    fence->execbuf.rsvd1 = device->context_id;
1472    fence->execbuf.rsvd2 = 0;
1473
1474    fence->ready = false;
1475
1476    *pFence = anv_fence_to_handle(fence);
1477
1478    return VK_SUCCESS;
1479 }
1480
1481 void anv_DestroyFence(
1482     VkDevice                                    _device,
1483     VkFence                                     _fence,
1484     const VkAllocationCallbacks*                pAllocator)
1485 {
1486    ANV_FROM_HANDLE(anv_device, device, _device);
1487    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1488
1489    assert(fence->bo.map == fence);
1490    anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1491 }
1492
1493 VkResult anv_ResetFences(
1494     VkDevice                                    _device,
1495     uint32_t                                    fenceCount,
1496     const VkFence*                              pFences)
1497 {
1498    for (uint32_t i = 0; i < fenceCount; i++) {
1499       ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1500       fence->ready = false;
1501    }
1502
1503    return VK_SUCCESS;
1504 }
1505
1506 VkResult anv_GetFenceStatus(
1507     VkDevice                                    _device,
1508     VkFence                                     _fence)
1509 {
1510    ANV_FROM_HANDLE(anv_device, device, _device);
1511    ANV_FROM_HANDLE(anv_fence, fence, _fence);
1512    int64_t t = 0;
1513    int ret;
1514
1515    if (fence->ready)
1516       return VK_SUCCESS;
1517
1518    ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1519    if (ret == 0) {
1520       fence->ready = true;
1521       return VK_SUCCESS;
1522    }
1523
1524    return VK_NOT_READY;
1525 }
1526
1527 VkResult anv_WaitForFences(
1528     VkDevice                                    _device,
1529     uint32_t                                    fenceCount,
1530     const VkFence*                              pFences,
1531     VkBool32                                    waitAll,
1532     uint64_t                                    timeout)
1533 {
1534    ANV_FROM_HANDLE(anv_device, device, _device);
1535
1536    /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1537     * to block indefinitely timeouts <= 0.  Unfortunately, this was broken
1538     * for a couple of kernel releases.  Since there's no way to know
1539     * whether or not the kernel we're using is one of the broken ones, the
1540     * best we can do is to clamp the timeout to INT64_MAX.  This limits the
1541     * maximum timeout from 584 years to 292 years - likely not a big deal.
1542     */
1543    if (timeout > INT64_MAX)
1544       timeout = INT64_MAX;
1545
1546    int64_t t = timeout;
1547
1548    /* FIXME: handle !waitAll */
1549
1550    for (uint32_t i = 0; i < fenceCount; i++) {
1551       ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1552       int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1553       if (ret == -1 && errno == ETIME) {
1554          return VK_TIMEOUT;
1555       } else if (ret == -1) {
1556          /* We don't know the real error. */
1557          return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1558                           "gem wait failed: %m");
1559       }
1560    }
1561
1562    return VK_SUCCESS;
1563 }
1564
1565 // Queue semaphore functions
1566
1567 VkResult anv_CreateSemaphore(
1568     VkDevice                                    device,
1569     const VkSemaphoreCreateInfo*                pCreateInfo,
1570     const VkAllocationCallbacks*                pAllocator,
1571     VkSemaphore*                                pSemaphore)
1572 {
1573    /* The DRM execbuffer ioctl always execute in-oder, even between different
1574     * rings. As such, there's nothing to do for the user space semaphore.
1575     */
1576
1577    *pSemaphore = (VkSemaphore)1;
1578
1579    return VK_SUCCESS;
1580 }
1581
1582 void anv_DestroySemaphore(
1583     VkDevice                                    device,
1584     VkSemaphore                                 semaphore,
1585     const VkAllocationCallbacks*                pAllocator)
1586 {
1587 }
1588
1589 // Event functions
1590
1591 VkResult anv_CreateEvent(
1592     VkDevice                                    _device,
1593     const VkEventCreateInfo*                    pCreateInfo,
1594     const VkAllocationCallbacks*                pAllocator,
1595     VkEvent*                                    pEvent)
1596 {
1597    ANV_FROM_HANDLE(anv_device, device, _device);
1598    struct anv_state state;
1599    struct anv_event *event;
1600
1601    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1602
1603    state = anv_state_pool_alloc(&device->dynamic_state_pool,
1604                                 sizeof(*event), 8);
1605    event = state.map;
1606    event->state = state;
1607    event->semaphore = VK_EVENT_RESET;
1608
1609    if (!device->info.has_llc) {
1610       /* Make sure the writes we're flushing have landed. */
1611       __builtin_ia32_mfence();
1612       __builtin_ia32_clflush(event);
1613    }
1614
1615    *pEvent = anv_event_to_handle(event);
1616
1617    return VK_SUCCESS;
1618 }
1619
1620 void anv_DestroyEvent(
1621     VkDevice                                    _device,
1622     VkEvent                                     _event,
1623     const VkAllocationCallbacks*                pAllocator)
1624 {
1625    ANV_FROM_HANDLE(anv_device, device, _device);
1626    ANV_FROM_HANDLE(anv_event, event, _event);
1627
1628    anv_state_pool_free(&device->dynamic_state_pool, event->state);
1629 }
1630
1631 VkResult anv_GetEventStatus(
1632     VkDevice                                    _device,
1633     VkEvent                                     _event)
1634 {
1635    ANV_FROM_HANDLE(anv_device, device, _device);
1636    ANV_FROM_HANDLE(anv_event, event, _event);
1637
1638    if (!device->info.has_llc) {
1639       /* Invalidate read cache before reading event written by GPU. */
1640       __builtin_ia32_clflush(event);
1641       __builtin_ia32_mfence();
1642
1643    }
1644
1645    return event->semaphore;
1646 }
1647
1648 VkResult anv_SetEvent(
1649     VkDevice                                    _device,
1650     VkEvent                                     _event)
1651 {
1652    ANV_FROM_HANDLE(anv_device, device, _device);
1653    ANV_FROM_HANDLE(anv_event, event, _event);
1654
1655    event->semaphore = VK_EVENT_SET;
1656
1657    if (!device->info.has_llc) {
1658       /* Make sure the writes we're flushing have landed. */
1659       __builtin_ia32_mfence();
1660       __builtin_ia32_clflush(event);
1661    }
1662
1663    return VK_SUCCESS;
1664 }
1665
1666 VkResult anv_ResetEvent(
1667     VkDevice                                    _device,
1668     VkEvent                                     _event)
1669 {
1670    ANV_FROM_HANDLE(anv_device, device, _device);
1671    ANV_FROM_HANDLE(anv_event, event, _event);
1672
1673    event->semaphore = VK_EVENT_RESET;
1674
1675    if (!device->info.has_llc) {
1676       /* Make sure the writes we're flushing have landed. */
1677       __builtin_ia32_mfence();
1678       __builtin_ia32_clflush(event);
1679    }
1680
1681    return VK_SUCCESS;
1682 }
1683
1684 // Buffer functions
1685
1686 VkResult anv_CreateBuffer(
1687     VkDevice                                    _device,
1688     const VkBufferCreateInfo*                   pCreateInfo,
1689     const VkAllocationCallbacks*                pAllocator,
1690     VkBuffer*                                   pBuffer)
1691 {
1692    ANV_FROM_HANDLE(anv_device, device, _device);
1693    struct anv_buffer *buffer;
1694
1695    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1696
1697    buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1698                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1699    if (buffer == NULL)
1700       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1701
1702    buffer->size = pCreateInfo->size;
1703    buffer->usage = pCreateInfo->usage;
1704    buffer->bo = NULL;
1705    buffer->offset = 0;
1706
1707    *pBuffer = anv_buffer_to_handle(buffer);
1708
1709    return VK_SUCCESS;
1710 }
1711
1712 void anv_DestroyBuffer(
1713     VkDevice                                    _device,
1714     VkBuffer                                    _buffer,
1715     const VkAllocationCallbacks*                pAllocator)
1716 {
1717    ANV_FROM_HANDLE(anv_device, device, _device);
1718    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1719
1720    anv_free2(&device->alloc, pAllocator, buffer);
1721 }
1722
1723 void
1724 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1725                               enum isl_format format,
1726                               uint32_t offset, uint32_t range, uint32_t stride)
1727 {
1728    isl_buffer_fill_state(&device->isl_dev, state.map,
1729                          .address = offset,
1730                          .mocs = device->default_mocs,
1731                          .size = range,
1732                          .format = format,
1733                          .stride = stride);
1734
1735    if (!device->info.has_llc)
1736       anv_state_clflush(state);
1737 }
1738
1739 void anv_DestroySampler(
1740     VkDevice                                    _device,
1741     VkSampler                                   _sampler,
1742     const VkAllocationCallbacks*                pAllocator)
1743 {
1744    ANV_FROM_HANDLE(anv_device, device, _device);
1745    ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1746
1747    anv_free2(&device->alloc, pAllocator, sampler);
1748 }
1749
1750 VkResult anv_CreateFramebuffer(
1751     VkDevice                                    _device,
1752     const VkFramebufferCreateInfo*              pCreateInfo,
1753     const VkAllocationCallbacks*                pAllocator,
1754     VkFramebuffer*                              pFramebuffer)
1755 {
1756    ANV_FROM_HANDLE(anv_device, device, _device);
1757    struct anv_framebuffer *framebuffer;
1758
1759    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1760
1761    size_t size = sizeof(*framebuffer) +
1762                  sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1763    framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
1764                             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1765    if (framebuffer == NULL)
1766       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1767
1768    framebuffer->attachment_count = pCreateInfo->attachmentCount;
1769    for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1770       VkImageView _iview = pCreateInfo->pAttachments[i];
1771       framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1772    }
1773
1774    framebuffer->width = pCreateInfo->width;
1775    framebuffer->height = pCreateInfo->height;
1776    framebuffer->layers = pCreateInfo->layers;
1777
1778    *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1779
1780    return VK_SUCCESS;
1781 }
1782
1783 void anv_DestroyFramebuffer(
1784     VkDevice                                    _device,
1785     VkFramebuffer                               _fb,
1786     const VkAllocationCallbacks*                pAllocator)
1787 {
1788    ANV_FROM_HANDLE(anv_device, device, _device);
1789    ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1790
1791    anv_free2(&device->alloc, pAllocator, fb);
1792 }
1793
1794 void vkCmdDbgMarkerBegin(
1795     VkCommandBuffer                              commandBuffer,
1796     const char*                                 pMarker)
1797    __attribute__ ((visibility ("default")));
1798
1799 void vkCmdDbgMarkerEnd(
1800    VkCommandBuffer                              commandBuffer)
1801    __attribute__ ((visibility ("default")));
1802
1803 void vkCmdDbgMarkerBegin(
1804     VkCommandBuffer                              commandBuffer,
1805     const char*                                 pMarker)
1806 {
1807 }
1808
1809 void vkCmdDbgMarkerEnd(
1810     VkCommandBuffer                              commandBuffer)
1811 {
1812 }