OSDN Git Service

anv/meta: Prefix anv_ to meta_emit_blit()
[android-x86/external-mesa.git] / src / intel / vulkan / anv_meta_blit.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include "anv_meta.h"
25 #include "nir/nir_builder.h"
26
27 struct blit_region {
28    VkOffset3D src_offset;
29    VkExtent3D src_extent;
30    VkOffset3D dest_offset;
31    VkExtent3D dest_extent;
32 };
33
34 static nir_shader *
35 build_nir_vertex_shader(void)
36 {
37    const struct glsl_type *vec4 = glsl_vec4_type();
38    nir_builder b;
39
40    nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
41    b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
42
43    nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
44                                               vec4, "a_pos");
45    pos_in->data.location = VERT_ATTRIB_GENERIC0;
46    nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
47                                                vec4, "gl_Position");
48    pos_out->data.location = VARYING_SLOT_POS;
49    nir_copy_var(&b, pos_out, pos_in);
50
51    nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
52                                                   vec4, "a_tex_pos");
53    tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
54    nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
55                                                    vec4, "v_tex_pos");
56    tex_pos_out->data.location = VARYING_SLOT_VAR0;
57    tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH;
58    nir_copy_var(&b, tex_pos_out, tex_pos_in);
59
60    return b.shader;
61 }
62
63 static nir_shader *
64 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
65 {
66    const struct glsl_type *vec4 = glsl_vec4_type();
67    nir_builder b;
68
69    nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
70    b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs");
71
72    nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
73                                                   vec4, "v_tex_pos");
74    tex_pos_in->data.location = VARYING_SLOT_VAR0;
75
76    /* Swizzle the array index which comes in as Z coordinate into the right
77     * position.
78     */
79    unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 };
80    nir_ssa_def *const tex_pos =
81       nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz,
82                   (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false);
83
84    const struct glsl_type *sampler_type =
85       glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D,
86                         glsl_get_base_type(vec4));
87    nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
88                                                sampler_type, "s_tex");
89    sampler->data.descriptor_set = 0;
90    sampler->data.binding = 0;
91
92    nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
93    tex->sampler_dim = tex_dim;
94    tex->op = nir_texop_tex;
95    tex->src[0].src_type = nir_tex_src_coord;
96    tex->src[0].src = nir_src_for_ssa(tex_pos);
97    tex->dest_type = nir_type_float; /* TODO */
98    tex->is_array = glsl_sampler_type_is_array(sampler_type);
99    tex->coord_components = tex_pos->num_components;
100    tex->texture = nir_deref_var_create(tex, sampler);
101    tex->sampler = nir_deref_var_create(tex, sampler);
102
103    nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
104    nir_builder_instr_insert(&b, &tex->instr);
105
106    nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
107                                                  vec4, "f_color");
108    color_out->data.location = FRAG_RESULT_DATA0;
109    nir_store_var(&b, color_out, &tex->dest.ssa, 4);
110
111    return b.shader;
112 }
113
114 static void
115 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
116                   struct anv_meta_saved_state *saved_state)
117 {
118    anv_meta_save(saved_state, cmd_buffer,
119                  (1 << VK_DYNAMIC_STATE_VIEWPORT));
120 }
121
122 void
123 anv_meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
124                struct anv_image *src_image,
125                struct anv_image_view *src_iview,
126                VkOffset3D src_offset,
127                VkExtent3D src_extent,
128                struct anv_image *dest_image,
129                struct anv_image_view *dest_iview,
130                VkOffset3D dest_offset,
131                VkExtent3D dest_extent,
132                VkFilter blit_filter)
133 {
134    struct anv_device *device = cmd_buffer->device;
135
136    struct blit_vb_data {
137       float pos[2];
138       float tex_coord[3];
139    } *vb_data;
140
141    assert(src_image->samples == dest_image->samples);
142
143    unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
144
145    struct anv_state vb_state =
146       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
147    memset(vb_state.map, 0, sizeof(struct anv_vue_header));
148    vb_data = vb_state.map + sizeof(struct anv_vue_header);
149
150    vb_data[0] = (struct blit_vb_data) {
151       .pos = {
152          dest_offset.x + dest_extent.width,
153          dest_offset.y + dest_extent.height,
154       },
155       .tex_coord = {
156          (float)(src_offset.x + src_extent.width)
157             / (float)src_iview->extent.width,
158          (float)(src_offset.y + src_extent.height)
159             / (float)src_iview->extent.height,
160          (float)src_offset.z / (float)src_iview->extent.depth,
161       },
162    };
163
164    vb_data[1] = (struct blit_vb_data) {
165       .pos = {
166          dest_offset.x,
167          dest_offset.y + dest_extent.height,
168       },
169       .tex_coord = {
170          (float)src_offset.x / (float)src_iview->extent.width,
171          (float)(src_offset.y + src_extent.height) /
172             (float)src_iview->extent.height,
173          (float)src_offset.z / (float)src_iview->extent.depth,
174       },
175    };
176
177    vb_data[2] = (struct blit_vb_data) {
178       .pos = {
179          dest_offset.x,
180          dest_offset.y,
181       },
182       .tex_coord = {
183          (float)src_offset.x / (float)src_iview->extent.width,
184          (float)src_offset.y / (float)src_iview->extent.height,
185          (float)src_offset.z / (float)src_iview->extent.depth,
186       },
187    };
188
189    anv_state_clflush(vb_state);
190
191    struct anv_buffer vertex_buffer = {
192       .device = device,
193       .size = vb_size,
194       .bo = &device->dynamic_state_block_pool.bo,
195       .offset = vb_state.offset,
196    };
197
198    anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
199       (VkBuffer[]) {
200          anv_buffer_to_handle(&vertex_buffer),
201          anv_buffer_to_handle(&vertex_buffer)
202       },
203       (VkDeviceSize[]) {
204          0,
205          sizeof(struct anv_vue_header),
206       });
207
208    VkSampler sampler;
209    ANV_CALL(CreateSampler)(anv_device_to_handle(device),
210       &(VkSamplerCreateInfo) {
211          .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
212          .magFilter = blit_filter,
213          .minFilter = blit_filter,
214       }, &cmd_buffer->pool->alloc, &sampler);
215
216    VkDescriptorPool desc_pool;
217    anv_CreateDescriptorPool(anv_device_to_handle(device),
218       &(const VkDescriptorPoolCreateInfo) {
219          .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
220          .pNext = NULL,
221          .flags = 0,
222          .maxSets = 1,
223          .poolSizeCount = 1,
224          .pPoolSizes = (VkDescriptorPoolSize[]) {
225             {
226                .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
227                .descriptorCount = 1
228             },
229          }
230       }, &cmd_buffer->pool->alloc, &desc_pool);
231
232    VkDescriptorSet set;
233    anv_AllocateDescriptorSets(anv_device_to_handle(device),
234       &(VkDescriptorSetAllocateInfo) {
235          .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
236          .descriptorPool = desc_pool,
237          .descriptorSetCount = 1,
238          .pSetLayouts = &device->meta_state.blit.ds_layout
239       }, &set);
240
241    anv_UpdateDescriptorSets(anv_device_to_handle(device),
242       1, /* writeCount */
243       (VkWriteDescriptorSet[]) {
244          {
245             .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
246             .dstSet = set,
247             .dstBinding = 0,
248             .dstArrayElement = 0,
249             .descriptorCount = 1,
250             .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
251             .pImageInfo = (VkDescriptorImageInfo[]) {
252                {
253                   .sampler = sampler,
254                   .imageView = anv_image_view_to_handle(src_iview),
255                   .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
256                },
257             }
258          }
259       }, 0, NULL);
260
261    VkFramebuffer fb;
262    anv_CreateFramebuffer(anv_device_to_handle(device),
263       &(VkFramebufferCreateInfo) {
264          .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
265          .attachmentCount = 1,
266          .pAttachments = (VkImageView[]) {
267             anv_image_view_to_handle(dest_iview),
268          },
269          .width = dest_iview->extent.width,
270          .height = dest_iview->extent.height,
271          .layers = 1
272       }, &cmd_buffer->pool->alloc, &fb);
273
274    ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
275       &(VkRenderPassBeginInfo) {
276          .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
277          .renderPass = device->meta_state.blit.render_pass,
278          .framebuffer = fb,
279          .renderArea = {
280             .offset = { dest_offset.x, dest_offset.y },
281             .extent = { dest_extent.width, dest_extent.height },
282          },
283          .clearValueCount = 0,
284          .pClearValues = NULL,
285       }, VK_SUBPASS_CONTENTS_INLINE);
286
287    VkPipeline pipeline;
288
289    switch (src_image->type) {
290    case VK_IMAGE_TYPE_1D:
291       pipeline = device->meta_state.blit.pipeline_1d_src;
292       break;
293    case VK_IMAGE_TYPE_2D:
294       pipeline = device->meta_state.blit.pipeline_2d_src;
295       break;
296    case VK_IMAGE_TYPE_3D:
297       pipeline = device->meta_state.blit.pipeline_3d_src;
298       break;
299    default:
300       unreachable(!"bad VkImageType");
301    }
302
303    if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
304       anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
305                           VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
306    }
307
308    anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
309                       &(VkViewport) {
310                         .x = 0.0f,
311                         .y = 0.0f,
312                         .width = dest_iview->extent.width,
313                         .height = dest_iview->extent.height,
314                         .minDepth = 0.0f,
315                         .maxDepth = 1.0f,
316                       });
317
318    anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
319                              VK_PIPELINE_BIND_POINT_GRAPHICS,
320                              device->meta_state.blit.pipeline_layout, 0, 1,
321                              &set, 0, NULL);
322
323    ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
324
325    ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
326
327    /* At the point where we emit the draw call, all data from the
328     * descriptor sets, etc. has been used.  We are free to delete it.
329     */
330    anv_DestroyDescriptorPool(anv_device_to_handle(device),
331                              desc_pool, &cmd_buffer->pool->alloc);
332    anv_DestroySampler(anv_device_to_handle(device), sampler,
333                       &cmd_buffer->pool->alloc);
334    anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
335                           &cmd_buffer->pool->alloc);
336 }
337
338 static void
339 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
340                  const struct anv_meta_saved_state *saved_state)
341 {
342    anv_meta_restore(saved_state, cmd_buffer);
343 }
344
345 void anv_CmdBlitImage(
346     VkCommandBuffer                             commandBuffer,
347     VkImage                                     srcImage,
348     VkImageLayout                               srcImageLayout,
349     VkImage                                     destImage,
350     VkImageLayout                               destImageLayout,
351     uint32_t                                    regionCount,
352     const VkImageBlit*                          pRegions,
353     VkFilter                                    filter)
354
355 {
356    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
357    ANV_FROM_HANDLE(anv_image, src_image, srcImage);
358    ANV_FROM_HANDLE(anv_image, dest_image, destImage);
359    struct anv_meta_saved_state saved_state;
360
361    /* From the Vulkan 1.0 spec:
362     *
363     *    vkCmdBlitImage must not be used for multisampled source or
364     *    destination images. Use vkCmdResolveImage for this purpose.
365     */
366    assert(src_image->samples == 1);
367    assert(dest_image->samples == 1);
368
369    anv_finishme("respect VkFilter");
370
371    meta_prepare_blit(cmd_buffer, &saved_state);
372
373    for (unsigned r = 0; r < regionCount; r++) {
374       struct anv_image_view src_iview;
375       anv_image_view_init(&src_iview, cmd_buffer->device,
376          &(VkImageViewCreateInfo) {
377             .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
378             .image = srcImage,
379             .viewType = anv_meta_get_view_type(src_image),
380             .format = src_image->vk_format,
381             .subresourceRange = {
382                .aspectMask = pRegions[r].srcSubresource.aspectMask,
383                .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
384                .levelCount = 1,
385                .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
386                .layerCount = 1
387             },
388          },
389          cmd_buffer, 0, VK_IMAGE_USAGE_SAMPLED_BIT);
390
391       const VkOffset3D dest_offset = {
392          .x = pRegions[r].dstOffsets[0].x,
393          .y = pRegions[r].dstOffsets[0].y,
394          .z = 0,
395       };
396
397       if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x ||
398           pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y ||
399           pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x ||
400           pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y)
401          anv_finishme("FINISHME: Allow flipping in blits");
402
403       const VkExtent3D dest_extent = {
404          .width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x,
405          .height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y,
406       };
407
408       const VkExtent3D src_extent = {
409          .width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x,
410          .height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y,
411       };
412
413       const uint32_t dest_array_slice =
414          anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource,
415                                   &pRegions[r].dstOffsets[0]);
416
417       if (pRegions[r].srcSubresource.layerCount > 1)
418          anv_finishme("FINISHME: copy multiple array layers");
419
420       if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z ||
421           pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z)
422          anv_finishme("FINISHME: copy multiple depth layers");
423
424       struct anv_image_view dest_iview;
425       anv_image_view_init(&dest_iview, cmd_buffer->device,
426          &(VkImageViewCreateInfo) {
427             .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
428             .image = destImage,
429             .viewType = anv_meta_get_view_type(dest_image),
430             .format = dest_image->vk_format,
431             .subresourceRange = {
432                .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
433                .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
434                .levelCount = 1,
435                .baseArrayLayer = dest_array_slice,
436                .layerCount = 1
437             },
438          },
439          cmd_buffer, 0, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
440
441       anv_meta_emit_blit(cmd_buffer,
442                      src_image, &src_iview,
443                      pRegions[r].srcOffsets[0], src_extent,
444                      dest_image, &dest_iview,
445                      dest_offset, dest_extent,
446                      filter);
447    }
448
449    meta_finish_blit(cmd_buffer, &saved_state);
450 }
451
452 void
453 anv_device_finish_meta_blit_state(struct anv_device *device)
454 {
455    anv_DestroyRenderPass(anv_device_to_handle(device),
456                          device->meta_state.blit.render_pass,
457                          &device->meta_state.alloc);
458    anv_DestroyPipeline(anv_device_to_handle(device),
459                        device->meta_state.blit.pipeline_1d_src,
460                        &device->meta_state.alloc);
461    anv_DestroyPipeline(anv_device_to_handle(device),
462                        device->meta_state.blit.pipeline_2d_src,
463                        &device->meta_state.alloc);
464    anv_DestroyPipeline(anv_device_to_handle(device),
465                        device->meta_state.blit.pipeline_3d_src,
466                        &device->meta_state.alloc);
467    anv_DestroyPipelineLayout(anv_device_to_handle(device),
468                              device->meta_state.blit.pipeline_layout,
469                              &device->meta_state.alloc);
470    anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
471                                   device->meta_state.blit.ds_layout,
472                                   &device->meta_state.alloc);
473 }
474
475 VkResult
476 anv_device_init_meta_blit_state(struct anv_device *device)
477 {
478    VkResult result;
479
480    result = anv_CreateRenderPass(anv_device_to_handle(device),
481       &(VkRenderPassCreateInfo) {
482          .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
483          .attachmentCount = 1,
484          .pAttachments = &(VkAttachmentDescription) {
485             .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
486             .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
487             .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
488             .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
489             .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
490          },
491          .subpassCount = 1,
492          .pSubpasses = &(VkSubpassDescription) {
493             .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
494             .inputAttachmentCount = 0,
495             .colorAttachmentCount = 1,
496             .pColorAttachments = &(VkAttachmentReference) {
497                .attachment = 0,
498                .layout = VK_IMAGE_LAYOUT_GENERAL,
499             },
500             .pResolveAttachments = NULL,
501             .pDepthStencilAttachment = &(VkAttachmentReference) {
502                .attachment = VK_ATTACHMENT_UNUSED,
503                .layout = VK_IMAGE_LAYOUT_GENERAL,
504             },
505             .preserveAttachmentCount = 1,
506             .pPreserveAttachments = (uint32_t[]) { 0 },
507          },
508          .dependencyCount = 0,
509       }, &device->meta_state.alloc, &device->meta_state.blit.render_pass);
510    if (result != VK_SUCCESS)
511       goto fail;
512
513    /* We don't use a vertex shader for blitting, but instead build and pass
514     * the VUEs directly to the rasterization backend.  However, we do need
515     * to provide GLSL source for the vertex shader so that the compiler
516     * does not dead-code our inputs.
517     */
518    struct anv_shader_module vs = {
519       .nir = build_nir_vertex_shader(),
520    };
521
522    struct anv_shader_module fs_1d = {
523       .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
524    };
525
526    struct anv_shader_module fs_2d = {
527       .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
528    };
529
530    struct anv_shader_module fs_3d = {
531       .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
532    };
533
534    VkPipelineVertexInputStateCreateInfo vi_create_info = {
535       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
536       .vertexBindingDescriptionCount = 2,
537       .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
538          {
539             .binding = 0,
540             .stride = 0,
541             .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
542          },
543          {
544             .binding = 1,
545             .stride = 5 * sizeof(float),
546             .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
547          },
548       },
549       .vertexAttributeDescriptionCount = 3,
550       .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
551          {
552             /* VUE Header */
553             .location = 0,
554             .binding = 0,
555             .format = VK_FORMAT_R32G32B32A32_UINT,
556             .offset = 0
557          },
558          {
559             /* Position */
560             .location = 1,
561             .binding = 1,
562             .format = VK_FORMAT_R32G32_SFLOAT,
563             .offset = 0
564          },
565          {
566             /* Texture Coordinate */
567             .location = 2,
568             .binding = 1,
569             .format = VK_FORMAT_R32G32B32_SFLOAT,
570             .offset = 8
571          }
572       }
573    };
574
575    VkDescriptorSetLayoutCreateInfo ds_layout_info = {
576       .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
577       .bindingCount = 1,
578       .pBindings = (VkDescriptorSetLayoutBinding[]) {
579          {
580             .binding = 0,
581             .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
582             .descriptorCount = 1,
583             .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
584             .pImmutableSamplers = NULL
585          },
586       }
587    };
588    result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
589                                           &ds_layout_info,
590                                           &device->meta_state.alloc,
591                                           &device->meta_state.blit.ds_layout);
592    if (result != VK_SUCCESS)
593       goto fail_render_pass;
594
595    result = anv_CreatePipelineLayout(anv_device_to_handle(device),
596       &(VkPipelineLayoutCreateInfo) {
597          .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
598          .setLayoutCount = 1,
599          .pSetLayouts = &device->meta_state.blit.ds_layout,
600       },
601       &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout);
602    if (result != VK_SUCCESS)
603       goto fail_descriptor_set_layout;
604
605    VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
606       {
607          .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
608          .stage = VK_SHADER_STAGE_VERTEX_BIT,
609          .module = anv_shader_module_to_handle(&vs),
610          .pName = "main",
611          .pSpecializationInfo = NULL
612       }, {
613          .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
614          .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
615          .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
616          .pName = "main",
617          .pSpecializationInfo = NULL
618       },
619    };
620
621    const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
622       .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
623       .stageCount = ARRAY_SIZE(pipeline_shader_stages),
624       .pStages = pipeline_shader_stages,
625       .pVertexInputState = &vi_create_info,
626       .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
627          .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
628          .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
629          .primitiveRestartEnable = false,
630       },
631       .pViewportState = &(VkPipelineViewportStateCreateInfo) {
632          .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
633          .viewportCount = 1,
634          .scissorCount = 1,
635       },
636       .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
637          .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
638          .rasterizerDiscardEnable = false,
639          .polygonMode = VK_POLYGON_MODE_FILL,
640          .cullMode = VK_CULL_MODE_NONE,
641          .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
642       },
643       .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
644          .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
645          .rasterizationSamples = 1,
646          .sampleShadingEnable = false,
647          .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
648       },
649       .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
650          .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
651          .attachmentCount = 1,
652          .pAttachments = (VkPipelineColorBlendAttachmentState []) {
653             { .colorWriteMask =
654                  VK_COLOR_COMPONENT_A_BIT |
655                  VK_COLOR_COMPONENT_R_BIT |
656                  VK_COLOR_COMPONENT_G_BIT |
657                  VK_COLOR_COMPONENT_B_BIT },
658          }
659       },
660       .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
661          .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
662          .dynamicStateCount = 9,
663          .pDynamicStates = (VkDynamicState[]) {
664             VK_DYNAMIC_STATE_VIEWPORT,
665             VK_DYNAMIC_STATE_SCISSOR,
666             VK_DYNAMIC_STATE_LINE_WIDTH,
667             VK_DYNAMIC_STATE_DEPTH_BIAS,
668             VK_DYNAMIC_STATE_BLEND_CONSTANTS,
669             VK_DYNAMIC_STATE_DEPTH_BOUNDS,
670             VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
671             VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
672             VK_DYNAMIC_STATE_STENCIL_REFERENCE,
673          },
674       },
675       .flags = 0,
676       .layout = device->meta_state.blit.pipeline_layout,
677       .renderPass = device->meta_state.blit.render_pass,
678       .subpass = 0,
679    };
680
681    const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
682       .color_attachment_count = -1,
683       .use_repclear = false,
684       .disable_viewport = true,
685       .disable_scissor = true,
686       .disable_vs = true,
687       .use_rectlist = true
688    };
689
690    pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
691    result = anv_graphics_pipeline_create(anv_device_to_handle(device),
692       VK_NULL_HANDLE,
693       &vk_pipeline_info, &anv_pipeline_info,
694       &device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src);
695    if (result != VK_SUCCESS)
696       goto fail_pipeline_layout;
697
698    pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
699    result = anv_graphics_pipeline_create(anv_device_to_handle(device),
700       VK_NULL_HANDLE,
701       &vk_pipeline_info, &anv_pipeline_info,
702       &device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src);
703    if (result != VK_SUCCESS)
704       goto fail_pipeline_1d;
705
706    pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
707    result = anv_graphics_pipeline_create(anv_device_to_handle(device),
708       VK_NULL_HANDLE,
709       &vk_pipeline_info, &anv_pipeline_info,
710       &device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src);
711    if (result != VK_SUCCESS)
712       goto fail_pipeline_2d;
713
714    ralloc_free(vs.nir);
715    ralloc_free(fs_1d.nir);
716    ralloc_free(fs_2d.nir);
717    ralloc_free(fs_3d.nir);
718
719    return VK_SUCCESS;
720
721  fail_pipeline_2d:
722    anv_DestroyPipeline(anv_device_to_handle(device),
723                        device->meta_state.blit.pipeline_2d_src,
724                        &device->meta_state.alloc);
725
726  fail_pipeline_1d:
727    anv_DestroyPipeline(anv_device_to_handle(device),
728                        device->meta_state.blit.pipeline_1d_src,
729                        &device->meta_state.alloc);
730
731  fail_pipeline_layout:
732    anv_DestroyPipelineLayout(anv_device_to_handle(device),
733                              device->meta_state.blit.pipeline_layout,
734                              &device->meta_state.alloc);
735  fail_descriptor_set_layout:
736    anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
737                                   device->meta_state.blit.ds_layout,
738                                   &device->meta_state.alloc);
739  fail_render_pass:
740    anv_DestroyRenderPass(anv_device_to_handle(device),
741                          device->meta_state.blit.render_pass,
742                          &device->meta_state.alloc);
743
744    ralloc_free(vs.nir);
745    ralloc_free(fs_1d.nir);
746    ralloc_free(fs_2d.nir);
747    ralloc_free(fs_3d.nir);
748  fail:
749    return result;
750 }