OSDN Git Service

Merge remote-tracking branch 'origin/master' into vulkan
[android-x86/external-mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "anv_private.h"
32 #include "brw_nir.h"
33 #include "anv_nir.h"
34 #include "nir/spirv/nir_spirv.h"
35
36 /* Needed for SWIZZLE macros */
37 #include "program/prog_instruction.h"
38
39 // Shader functions
40
41 VkResult anv_CreateShaderModule(
42     VkDevice                                    _device,
43     const VkShaderModuleCreateInfo*             pCreateInfo,
44     const VkAllocationCallbacks*                pAllocator,
45     VkShaderModule*                             pShaderModule)
46 {
47    ANV_FROM_HANDLE(anv_device, device, _device);
48    struct anv_shader_module *module;
49
50    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
51    assert(pCreateInfo->flags == 0);
52
53    module = anv_alloc2(&device->alloc, pAllocator,
54                        sizeof(*module) + pCreateInfo->codeSize, 8,
55                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
56    if (module == NULL)
57       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
58
59    module->nir = NULL;
60    module->size = pCreateInfo->codeSize;
61    memcpy(module->data, pCreateInfo->pCode, module->size);
62
63    _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65    *pShaderModule = anv_shader_module_to_handle(module);
66
67    return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71     VkDevice                                    _device,
72     VkShaderModule                              _module,
73     const VkAllocationCallbacks*                pAllocator)
74 {
75    ANV_FROM_HANDLE(anv_device, device, _device);
76    ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78    anv_free2(&device->alloc, pAllocator, module);
79 }
80
81 #define SPIR_V_MAGIC_NUMBER 0x07230203
82
83 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
84  * we can't do that yet because we don't have the ability to copy nir.
85  */
86 static nir_shader *
87 anv_shader_compile_to_nir(struct anv_device *device,
88                           struct anv_shader_module *module,
89                           const char *entrypoint_name,
90                           gl_shader_stage stage,
91                           const VkSpecializationInfo *spec_info)
92 {
93    if (strcmp(entrypoint_name, "main") != 0) {
94       anv_finishme("Multiple shaders per module not really supported");
95    }
96
97    const struct brw_compiler *compiler =
98       device->instance->physicalDevice.compiler;
99    const nir_shader_compiler_options *nir_options =
100       compiler->glsl_compiler_options[stage].NirOptions;
101
102    nir_shader *nir;
103    nir_function *entry_point;
104    if (module->nir) {
105       /* Some things such as our meta clear/blit code will give us a NIR
106        * shader directly.  In that case, we just ignore the SPIR-V entirely
107        * and just use the NIR shader */
108       nir = module->nir;
109       nir->options = nir_options;
110       nir_validate_shader(nir);
111
112       assert(exec_list_length(&nir->functions) == 1);
113       struct exec_node *node = exec_list_get_head(&nir->functions);
114       entry_point = exec_node_data(nir_function, node, node);
115    } else {
116       uint32_t *spirv = (uint32_t *) module->data;
117       assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
118       assert(module->size % 4 == 0);
119
120       uint32_t num_spec_entries = 0;
121       struct nir_spirv_specialization *spec_entries = NULL;
122       if (spec_info && spec_info->mapEntryCount > 0) {
123          num_spec_entries = spec_info->mapEntryCount;
124          spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
125          for (uint32_t i = 0; i < num_spec_entries; i++) {
126             const uint32_t *data =
127                spec_info->pData + spec_info->pMapEntries[i].offset;
128             assert((const void *)(data + 1) <=
129                    spec_info->pData + spec_info->dataSize);
130
131             spec_entries[i].id = spec_info->pMapEntries[i].constantID;
132             spec_entries[i].data = *data;
133          }
134       }
135
136       entry_point = spirv_to_nir(spirv, module->size / 4,
137                                  spec_entries, num_spec_entries,
138                                  stage, entrypoint_name, nir_options);
139       nir = entry_point->shader;
140       assert(nir->stage == stage);
141       nir_validate_shader(nir);
142
143       free(spec_entries);
144
145       nir_lower_returns(nir);
146       nir_validate_shader(nir);
147
148       nir_inline_functions(nir);
149       nir_validate_shader(nir);
150
151       /* Pick off the single entrypoint that we want */
152       foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
153          if (func != entry_point)
154             exec_node_remove(&func->node);
155       }
156       assert(exec_list_length(&nir->functions) == 1);
157       entry_point->name = ralloc_strdup(entry_point, "main");
158
159       nir_remove_dead_variables(nir, nir_var_shader_in);
160       nir_remove_dead_variables(nir, nir_var_shader_out);
161       nir_remove_dead_variables(nir, nir_var_system_value);
162       nir_validate_shader(nir);
163
164       nir_lower_outputs_to_temporaries(entry_point->shader, entry_point);
165
166       nir_lower_system_values(nir);
167       nir_validate_shader(nir);
168    }
169
170    /* Vulkan uses the separate-shader linking model */
171    nir->info.separate_shader = true;
172
173    nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
174
175    nir_shader_gather_info(nir, entry_point->impl);
176
177    uint32_t indirect_mask = 0;
178    if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
179       indirect_mask |= (1 << nir_var_shader_in);
180    if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
181       indirect_mask |= 1 << nir_var_local;
182
183    nir_lower_indirect_derefs(nir, indirect_mask);
184
185    return nir;
186 }
187
188 void anv_DestroyPipeline(
189     VkDevice                                    _device,
190     VkPipeline                                  _pipeline,
191     const VkAllocationCallbacks*                pAllocator)
192 {
193    ANV_FROM_HANDLE(anv_device, device, _device);
194    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
195
196    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
197       free(pipeline->bindings[s].surface_to_descriptor);
198       free(pipeline->bindings[s].sampler_to_descriptor);
199    }
200
201    anv_reloc_list_finish(&pipeline->batch_relocs,
202                          pAllocator ? pAllocator : &device->alloc);
203    if (pipeline->blend_state.map)
204       anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
205    anv_free2(&device->alloc, pAllocator, pipeline);
206 }
207
208 static const uint32_t vk_to_gen_primitive_type[] = {
209    [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
210    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
211    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
212    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
213    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
214    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
215    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
216    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
217    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
218    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
219 /*   [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST]                = _3DPRIM_PATCHLIST_1 */
220 };
221
222 static void
223 populate_sampler_prog_key(const struct brw_device_info *devinfo,
224                           struct brw_sampler_prog_key_data *key)
225 {
226    /* XXX: Handle texture swizzle on HSW- */
227    for (int i = 0; i < MAX_SAMPLERS; i++) {
228       /* Assume color sampler, no swizzling. (Works for BDW+) */
229       key->swizzles[i] = SWIZZLE_XYZW;
230    }
231 }
232
233 static void
234 populate_vs_prog_key(const struct brw_device_info *devinfo,
235                      struct brw_vs_prog_key *key)
236 {
237    memset(key, 0, sizeof(*key));
238
239    populate_sampler_prog_key(devinfo, &key->tex);
240
241    /* XXX: Handle vertex input work-arounds */
242
243    /* XXX: Handle sampler_prog_key */
244 }
245
246 static void
247 populate_gs_prog_key(const struct brw_device_info *devinfo,
248                      struct brw_gs_prog_key *key)
249 {
250    memset(key, 0, sizeof(*key));
251
252    populate_sampler_prog_key(devinfo, &key->tex);
253 }
254
255 static void
256 populate_wm_prog_key(const struct brw_device_info *devinfo,
257                      const VkGraphicsPipelineCreateInfo *info,
258                      const struct anv_graphics_pipeline_create_info *extra,
259                      struct brw_wm_prog_key *key)
260 {
261    ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
262
263    memset(key, 0, sizeof(*key));
264
265    populate_sampler_prog_key(devinfo, &key->tex);
266
267    /* TODO: Fill out key->input_slots_valid */
268
269    /* Vulkan doesn't specify a default */
270    key->high_quality_derivatives = false;
271
272    /* XXX Vulkan doesn't appear to specify */
273    key->clamp_fragment_color = false;
274
275    /* Vulkan always specifies upper-left coordinates */
276    key->drawable_height = 0;
277    key->render_to_fbo = false;
278
279    if (extra && extra->color_attachment_count >= 0) {
280       key->nr_color_regions = extra->color_attachment_count;
281    } else {
282       key->nr_color_regions =
283          render_pass->subpasses[info->subpass].color_count;
284    }
285
286    key->replicate_alpha = key->nr_color_regions > 1 &&
287                           info->pMultisampleState &&
288                           info->pMultisampleState->alphaToCoverageEnable;
289
290    if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
291       /* We should probably pull this out of the shader, but it's fairly
292        * harmless to compute it and then let dead-code take care of it.
293        */
294       key->persample_shading = info->pMultisampleState->sampleShadingEnable;
295       if (key->persample_shading)
296          key->persample_2x = info->pMultisampleState->rasterizationSamples == 2;
297
298       key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
299       key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
300    }
301 }
302
303 static void
304 populate_cs_prog_key(const struct brw_device_info *devinfo,
305                      struct brw_cs_prog_key *key)
306 {
307    memset(key, 0, sizeof(*key));
308
309    populate_sampler_prog_key(devinfo, &key->tex);
310 }
311
312 static nir_shader *
313 anv_pipeline_compile(struct anv_pipeline *pipeline,
314                      struct anv_shader_module *module,
315                      const char *entrypoint,
316                      gl_shader_stage stage,
317                      const VkSpecializationInfo *spec_info,
318                      struct brw_stage_prog_data *prog_data)
319 {
320    const struct brw_compiler *compiler =
321       pipeline->device->instance->physicalDevice.compiler;
322
323    nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
324                                                module, entrypoint, stage,
325                                                spec_info);
326    if (nir == NULL)
327       return NULL;
328
329    anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]);
330
331    /* Figure out the number of parameters */
332    prog_data->nr_params = 0;
333
334    if (nir->num_uniforms > 0) {
335       /* If the shader uses any push constants at all, we'll just give
336        * them the maximum possible number
337        */
338       prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
339    }
340
341    if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
342       prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
343
344    if (nir->info.num_images > 0)
345       prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
346
347    if (prog_data->nr_params > 0) {
348       /* XXX: I think we're leaking this */
349       prog_data->param = (const union gl_constant_value **)
350          malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
351
352       /* We now set the param values to be offsets into a
353        * anv_push_constant_data structure.  Since the compiler doesn't
354        * actually dereference any of the gl_constant_value pointers in the
355        * params array, it doesn't really matter what we put here.
356        */
357       struct anv_push_constants *null_data = NULL;
358       if (nir->num_uniforms > 0) {
359          /* Fill out the push constants section of the param array */
360          for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
361             prog_data->param[i] = (const union gl_constant_value *)
362                &null_data->client_data[i * sizeof(float)];
363       }
364    }
365
366    /* Set up dynamic offsets */
367    anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
368
369    char surface_usage_mask[256], sampler_usage_mask[256];
370    zero(surface_usage_mask);
371    zero(sampler_usage_mask);
372
373    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
374    if (pipeline->layout)
375       anv_nir_apply_pipeline_layout(pipeline, nir, prog_data);
376
377    /* All binding table offsets provided by apply_pipeline_layout() are
378     * relative to the start of the bindint table (plus MAX_RTS for VS).
379     */
380    unsigned bias;
381    switch (stage) {
382    case MESA_SHADER_FRAGMENT:
383       bias = MAX_RTS;
384       break;
385    case MESA_SHADER_COMPUTE:
386       bias = 1;
387       break;
388    default:
389       bias = 0;
390       break;
391    }
392    prog_data->binding_table.size_bytes = 0;
393    prog_data->binding_table.texture_start = bias;
394    prog_data->binding_table.ubo_start = bias;
395    prog_data->binding_table.ssbo_start = bias;
396    prog_data->binding_table.image_start = bias;
397
398    /* Finish the optimization and compilation process */
399    if (nir->stage == MESA_SHADER_COMPUTE)
400       brw_nir_lower_shared(nir);
401
402    /* nir_lower_io will only handle the push constants; we need to set this
403     * to the full number of possible uniforms.
404     */
405    nir->num_uniforms = prog_data->nr_params * 4;
406
407    return nir;
408 }
409
410 static void
411 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
412                                 gl_shader_stage stage,
413                                 struct brw_stage_prog_data *prog_data)
414 {
415    struct brw_device_info *devinfo = &pipeline->device->info;
416    uint32_t max_threads[] = {
417       [MESA_SHADER_VERTEX]                  = devinfo->max_vs_threads,
418       [MESA_SHADER_TESS_CTRL]               = devinfo->max_hs_threads,
419       [MESA_SHADER_TESS_EVAL]               = devinfo->max_ds_threads,
420       [MESA_SHADER_GEOMETRY]                = devinfo->max_gs_threads,
421       [MESA_SHADER_FRAGMENT]                = devinfo->max_wm_threads,
422       [MESA_SHADER_COMPUTE]                 = devinfo->max_cs_threads,
423    };
424
425    pipeline->prog_data[stage] = prog_data;
426    pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
427    pipeline->scratch_start[stage] = pipeline->total_scratch;
428    pipeline->total_scratch =
429       align_u32(pipeline->total_scratch, 1024) +
430       prog_data->total_scratch * max_threads[stage];
431 }
432
433 static VkResult
434 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
435                         struct anv_pipeline_cache *cache,
436                         const VkGraphicsPipelineCreateInfo *info,
437                         struct anv_shader_module *module,
438                         const char *entrypoint,
439                         const VkSpecializationInfo *spec_info)
440 {
441    const struct brw_compiler *compiler =
442       pipeline->device->instance->physicalDevice.compiler;
443    struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
444    struct brw_vs_prog_key key;
445    uint32_t kernel;
446    unsigned char sha1[20], *hash;
447
448    populate_vs_prog_key(&pipeline->device->info, &key);
449
450    if (module->size > 0) {
451       hash = sha1;
452       anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
453       kernel = anv_pipeline_cache_search(cache, hash, prog_data);
454    } else {
455       hash = NULL;
456    }
457
458    if (module->size == 0 || kernel == NO_KERNEL) {
459       memset(prog_data, 0, sizeof(*prog_data));
460
461       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
462                                              MESA_SHADER_VERTEX, spec_info,
463                                              &prog_data->base.base);
464       if (nir == NULL)
465          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
466
467       void *mem_ctx = ralloc_context(NULL);
468
469       if (module->nir == NULL)
470          ralloc_steal(mem_ctx, nir);
471
472       prog_data->inputs_read = nir->info.inputs_read;
473       if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
474          pipeline->writes_point_size = true;
475
476       brw_compute_vue_map(&pipeline->device->info,
477                           &prog_data->base.vue_map,
478                           nir->info.outputs_written,
479                           nir->info.separate_shader);
480
481       unsigned code_size;
482       const unsigned *shader_code =
483          brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir,
484                         NULL, false, -1, &code_size, NULL);
485       if (shader_code == NULL) {
486          ralloc_free(mem_ctx);
487          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
488       }
489
490       kernel = anv_pipeline_cache_upload_kernel(cache, hash,
491                                                 shader_code, code_size,
492                                                 prog_data, sizeof(*prog_data));
493       ralloc_free(mem_ctx);
494    }
495
496    if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
497       pipeline->vs_simd8 = kernel;
498       pipeline->vs_vec4 = NO_KERNEL;
499    } else {
500       pipeline->vs_simd8 = NO_KERNEL;
501       pipeline->vs_vec4 = kernel;
502    }
503
504    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
505                                    &prog_data->base.base);
506
507    return VK_SUCCESS;
508 }
509
510 static VkResult
511 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
512                         struct anv_pipeline_cache *cache,
513                         const VkGraphicsPipelineCreateInfo *info,
514                         struct anv_shader_module *module,
515                         const char *entrypoint,
516                         const VkSpecializationInfo *spec_info)
517 {
518    const struct brw_compiler *compiler =
519       pipeline->device->instance->physicalDevice.compiler;
520    struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data;
521    struct brw_gs_prog_key key;
522    uint32_t kernel;
523    unsigned char sha1[20], *hash;
524
525    populate_gs_prog_key(&pipeline->device->info, &key);
526
527    if (module->size > 0) {
528       hash = sha1;
529       anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
530       kernel = anv_pipeline_cache_search(cache, hash, prog_data);
531    } else {
532       hash = NULL;
533    }
534
535    if (module->size == 0 || kernel == NO_KERNEL) {
536       memset(prog_data, 0, sizeof(*prog_data));
537
538       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
539                                              MESA_SHADER_GEOMETRY, spec_info,
540                                              &prog_data->base.base);
541       if (nir == NULL)
542          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
543
544       void *mem_ctx = ralloc_context(NULL);
545
546       if (module->nir == NULL)
547          ralloc_steal(mem_ctx, nir);
548
549       if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
550          pipeline->writes_point_size = true;
551
552       brw_compute_vue_map(&pipeline->device->info,
553                           &prog_data->base.vue_map,
554                           nir->info.outputs_written,
555                           nir->info.separate_shader);
556
557       unsigned code_size;
558       const unsigned *shader_code =
559          brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir,
560                         NULL, -1, &code_size, NULL);
561       if (shader_code == NULL) {
562          ralloc_free(mem_ctx);
563          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
564       }
565
566       /* TODO: SIMD8 GS */
567       kernel = anv_pipeline_cache_upload_kernel(cache, hash,
568                                                 shader_code, code_size,
569                                                 prog_data, sizeof(*prog_data));
570
571       ralloc_free(mem_ctx);
572    }
573
574    pipeline->gs_kernel = kernel;
575
576    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
577                                    &prog_data->base.base);
578
579    return VK_SUCCESS;
580 }
581
582 static VkResult
583 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
584                         struct anv_pipeline_cache *cache,
585                         const VkGraphicsPipelineCreateInfo *info,
586                         const struct anv_graphics_pipeline_create_info *extra,
587                         struct anv_shader_module *module,
588                         const char *entrypoint,
589                         const VkSpecializationInfo *spec_info)
590 {
591    const struct brw_compiler *compiler =
592       pipeline->device->instance->physicalDevice.compiler;
593    struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
594    struct brw_wm_prog_key key;
595    uint32_t kernel;
596    unsigned char sha1[20], *hash;
597
598    populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
599
600    if (pipeline->use_repclear)
601       key.nr_color_regions = 1;
602
603    if (module->size > 0) {
604       hash = sha1;
605       anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
606       kernel = anv_pipeline_cache_search(cache, hash, prog_data);
607    } else {
608       hash = NULL;
609    }
610
611    if (module->size == 0 || kernel == NO_KERNEL) {
612       memset(prog_data, 0, sizeof(*prog_data));
613
614       prog_data->binding_table.render_target_start = 0;
615
616       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
617                                              MESA_SHADER_FRAGMENT, spec_info,
618                                              &prog_data->base);
619       if (nir == NULL)
620          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
621
622       nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl;
623       nir_foreach_variable_safe(var, &nir->outputs) {
624          if (var->data.location < FRAG_RESULT_DATA0)
625             continue;
626
627          unsigned rt = var->data.location - FRAG_RESULT_DATA0;
628          if (rt >= key.nr_color_regions) {
629             var->data.mode = nir_var_local;
630             exec_node_remove(&var->node);
631             exec_list_push_tail(&impl->locals, &var->node);
632          }
633       }
634
635       void *mem_ctx = ralloc_context(NULL);
636
637       if (module->nir == NULL)
638          ralloc_steal(mem_ctx, nir);
639
640       unsigned code_size;
641       const unsigned *shader_code =
642          brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir,
643                         NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
644       if (shader_code == NULL) {
645          ralloc_free(mem_ctx);
646          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
647       }
648
649       kernel = anv_pipeline_cache_upload_kernel(cache, hash,
650                                                 shader_code, code_size,
651                                                 prog_data, sizeof(*prog_data));
652
653       ralloc_free(mem_ctx);
654    }
655
656    if (prog_data->no_8)
657       pipeline->ps_simd8 = NO_KERNEL;
658    else
659       pipeline->ps_simd8 = kernel;
660
661    if (prog_data->no_8 || prog_data->prog_offset_16) {
662       pipeline->ps_simd16 = kernel + prog_data->prog_offset_16;
663    } else {
664       pipeline->ps_simd16 = NO_KERNEL;
665    }
666
667    pipeline->ps_ksp2 = 0;
668    pipeline->ps_grf_start2 = 0;
669    if (pipeline->ps_simd8 != NO_KERNEL) {
670       pipeline->ps_ksp0 = pipeline->ps_simd8;
671       pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg;
672       if (pipeline->ps_simd16 != NO_KERNEL) {
673          pipeline->ps_ksp2 = pipeline->ps_simd16;
674          pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16;
675       }
676    } else if (pipeline->ps_simd16 != NO_KERNEL) {
677       pipeline->ps_ksp0 = pipeline->ps_simd16;
678       pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16;
679    }
680
681    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
682                                    &prog_data->base);
683
684    return VK_SUCCESS;
685 }
686
687 VkResult
688 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
689                         struct anv_pipeline_cache *cache,
690                         const VkComputePipelineCreateInfo *info,
691                         struct anv_shader_module *module,
692                         const char *entrypoint,
693                         const VkSpecializationInfo *spec_info)
694 {
695    const struct brw_compiler *compiler =
696       pipeline->device->instance->physicalDevice.compiler;
697    struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
698    struct brw_cs_prog_key key;
699    uint32_t kernel;
700    unsigned char sha1[20], *hash;
701
702    populate_cs_prog_key(&pipeline->device->info, &key);
703
704    if (module->size > 0) {
705       hash = sha1;
706       anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
707       kernel = anv_pipeline_cache_search(cache, hash, prog_data);
708    } else {
709       hash = NULL;
710    }
711
712    if (module->size == 0 || kernel == NO_KERNEL) {
713       memset(prog_data, 0, sizeof(*prog_data));
714
715       prog_data->binding_table.work_groups_start = 0;
716
717       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
718                                              MESA_SHADER_COMPUTE, spec_info,
719                                              &prog_data->base);
720       if (nir == NULL)
721          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
722
723       prog_data->base.total_shared = nir->num_shared;
724
725       void *mem_ctx = ralloc_context(NULL);
726
727       if (module->nir == NULL)
728          ralloc_steal(mem_ctx, nir);
729
730       unsigned code_size;
731       const unsigned *shader_code =
732          brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir,
733                         -1, &code_size, NULL);
734       if (shader_code == NULL) {
735          ralloc_free(mem_ctx);
736          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
737       }
738
739       kernel = anv_pipeline_cache_upload_kernel(cache, hash,
740                                                 shader_code, code_size,
741                                                 prog_data, sizeof(*prog_data));
742       ralloc_free(mem_ctx);
743    }
744
745    pipeline->cs_simd = kernel;
746
747    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
748                                    &prog_data->base);
749
750    return VK_SUCCESS;
751 }
752
753 static void
754 gen7_compute_urb_partition(struct anv_pipeline *pipeline)
755 {
756    const struct brw_device_info *devinfo = &pipeline->device->info;
757    bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
758    unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
759    unsigned vs_entry_size_bytes = vs_size * 64;
760    bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
761    unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
762    unsigned gs_entry_size_bytes = gs_size * 64;
763
764    /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
765     *
766     *     VS Number of URB Entries must be divisible by 8 if the VS URB Entry
767     *     Allocation Size is less than 9 512-bit URB entries.
768     *
769     * Similar text exists for GS.
770     */
771    unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
772    unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
773
774    /* URB allocations must be done in 8k chunks. */
775    unsigned chunk_size_bytes = 8192;
776
777    /* Determine the size of the URB in chunks. */
778    unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
779
780    /* Reserve space for push constants */
781    unsigned push_constant_kb;
782    if (pipeline->device->info.gen >= 8)
783       push_constant_kb = 32;
784    else if (pipeline->device->info.is_haswell)
785       push_constant_kb = pipeline->device->info.gt == 3 ? 32 : 16;
786    else
787       push_constant_kb = 16;
788
789    unsigned push_constant_bytes = push_constant_kb * 1024;
790    unsigned push_constant_chunks =
791       push_constant_bytes / chunk_size_bytes;
792
793    /* Initially, assign each stage the minimum amount of URB space it needs,
794     * and make a note of how much additional space it "wants" (the amount of
795     * additional space it could actually make use of).
796     */
797
798    /* VS has a lower limit on the number of URB entries */
799    unsigned vs_chunks =
800       ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
801             chunk_size_bytes) / chunk_size_bytes;
802    unsigned vs_wants =
803       ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
804             chunk_size_bytes) / chunk_size_bytes - vs_chunks;
805
806    unsigned gs_chunks = 0;
807    unsigned gs_wants = 0;
808    if (gs_present) {
809       /* There are two constraints on the minimum amount of URB space we can
810        * allocate:
811        *
812        * (1) We need room for at least 2 URB entries, since we always operate
813        * the GS in DUAL_OBJECT mode.
814        *
815        * (2) We can't allocate less than nr_gs_entries_granularity.
816        */
817       gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
818                         chunk_size_bytes) / chunk_size_bytes;
819       gs_wants =
820          ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
821                chunk_size_bytes) / chunk_size_bytes - gs_chunks;
822    }
823
824    /* There should always be enough URB space to satisfy the minimum
825     * requirements of each stage.
826     */
827    unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
828    assert(total_needs <= urb_chunks);
829
830    /* Mete out remaining space (if any) in proportion to "wants". */
831    unsigned total_wants = vs_wants + gs_wants;
832    unsigned remaining_space = urb_chunks - total_needs;
833    if (remaining_space > total_wants)
834       remaining_space = total_wants;
835    if (remaining_space > 0) {
836       unsigned vs_additional = (unsigned)
837          round(vs_wants * (((double) remaining_space) / total_wants));
838       vs_chunks += vs_additional;
839       remaining_space -= vs_additional;
840       gs_chunks += remaining_space;
841    }
842
843    /* Sanity check that we haven't over-allocated. */
844    assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
845
846    /* Finally, compute the number of entries that can fit in the space
847     * allocated to each stage.
848     */
849    unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
850    unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
851
852    /* Since we rounded up when computing *_wants, this may be slightly more
853     * than the maximum allowed amount, so correct for that.
854     */
855    nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
856    nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
857
858    /* Ensure that we program a multiple of the granularity. */
859    nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
860    nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
861
862    /* Finally, sanity check to make sure we have at least the minimum number
863     * of entries needed for each stage.
864     */
865    assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
866    if (gs_present)
867       assert(nr_gs_entries >= 2);
868
869    /* Lay out the URB in the following order:
870     * - push constants
871     * - VS
872     * - GS
873     */
874    pipeline->urb.start[MESA_SHADER_VERTEX] = push_constant_chunks;
875    pipeline->urb.size[MESA_SHADER_VERTEX] = vs_size;
876    pipeline->urb.entries[MESA_SHADER_VERTEX] = nr_vs_entries;
877
878    pipeline->urb.start[MESA_SHADER_GEOMETRY] = push_constant_chunks + vs_chunks;
879    pipeline->urb.size[MESA_SHADER_GEOMETRY] = gs_size;
880    pipeline->urb.entries[MESA_SHADER_GEOMETRY] = nr_gs_entries;
881
882    pipeline->urb.start[MESA_SHADER_TESS_CTRL] = push_constant_chunks;
883    pipeline->urb.size[MESA_SHADER_TESS_CTRL] = 1;
884    pipeline->urb.entries[MESA_SHADER_TESS_CTRL] = 0;
885
886    pipeline->urb.start[MESA_SHADER_TESS_EVAL] = push_constant_chunks;
887    pipeline->urb.size[MESA_SHADER_TESS_EVAL] = 1;
888    pipeline->urb.entries[MESA_SHADER_TESS_EVAL] = 0;
889
890    const unsigned stages =
891       _mesa_bitcount(pipeline->active_stages & VK_SHADER_STAGE_ALL_GRAPHICS);
892    unsigned size_per_stage = stages ? (push_constant_kb / stages) : 0;
893    unsigned used_kb = 0;
894
895    /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
896     * units of 2KB.  Incidentally, these are the same platforms that have
897     * 32KB worth of push constant space.
898     */
899    if (push_constant_kb == 32)
900       size_per_stage &= ~1u;
901
902    for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
903       pipeline->urb.push_size[i] =
904          (pipeline->active_stages & (1 << i)) ? size_per_stage : 0;
905       used_kb += pipeline->urb.push_size[i];
906       assert(used_kb <= push_constant_kb);
907    }
908
909    pipeline->urb.push_size[MESA_SHADER_FRAGMENT] =
910       push_constant_kb - used_kb;
911 }
912
913 static void
914 anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
915                                 const VkGraphicsPipelineCreateInfo *pCreateInfo)
916 {
917    anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
918    ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
919    struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
920
921    pipeline->dynamic_state = default_dynamic_state;
922
923    if (pCreateInfo->pDynamicState) {
924       /* Remove all of the states that are marked as dynamic */
925       uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
926       for (uint32_t s = 0; s < count; s++)
927          states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
928    }
929
930    struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
931
932    dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
933    if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
934       typed_memcpy(dynamic->viewport.viewports,
935                    pCreateInfo->pViewportState->pViewports,
936                    pCreateInfo->pViewportState->viewportCount);
937    }
938
939    dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
940    if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
941       typed_memcpy(dynamic->scissor.scissors,
942                    pCreateInfo->pViewportState->pScissors,
943                    pCreateInfo->pViewportState->scissorCount);
944    }
945
946    if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
947       assert(pCreateInfo->pRasterizationState);
948       dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
949    }
950
951    if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
952       assert(pCreateInfo->pRasterizationState);
953       dynamic->depth_bias.bias =
954          pCreateInfo->pRasterizationState->depthBiasConstantFactor;
955       dynamic->depth_bias.clamp =
956          pCreateInfo->pRasterizationState->depthBiasClamp;
957       dynamic->depth_bias.slope =
958          pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
959    }
960
961    if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
962       assert(pCreateInfo->pColorBlendState);
963       typed_memcpy(dynamic->blend_constants,
964                    pCreateInfo->pColorBlendState->blendConstants, 4);
965    }
966
967    /* If there is no depthstencil attachment, then don't read
968     * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
969     * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
970     * no need to override the depthstencil defaults in
971     * anv_pipeline::dynamic_state when there is no depthstencil attachment.
972     *
973     * From the Vulkan spec (20 Oct 2015, git-aa308cb):
974     *
975     *    pDepthStencilState [...] may only be NULL if renderPass and subpass
976     *    specify a subpass that has no depth/stencil attachment.
977     */
978    if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
979       if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
980          assert(pCreateInfo->pDepthStencilState);
981          dynamic->depth_bounds.min =
982             pCreateInfo->pDepthStencilState->minDepthBounds;
983          dynamic->depth_bounds.max =
984             pCreateInfo->pDepthStencilState->maxDepthBounds;
985       }
986
987       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
988          assert(pCreateInfo->pDepthStencilState);
989          dynamic->stencil_compare_mask.front =
990             pCreateInfo->pDepthStencilState->front.compareMask;
991          dynamic->stencil_compare_mask.back =
992             pCreateInfo->pDepthStencilState->back.compareMask;
993       }
994
995       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
996          assert(pCreateInfo->pDepthStencilState);
997          dynamic->stencil_write_mask.front =
998             pCreateInfo->pDepthStencilState->front.writeMask;
999          dynamic->stencil_write_mask.back =
1000             pCreateInfo->pDepthStencilState->back.writeMask;
1001       }
1002
1003       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1004          assert(pCreateInfo->pDepthStencilState);
1005          dynamic->stencil_reference.front =
1006             pCreateInfo->pDepthStencilState->front.reference;
1007          dynamic->stencil_reference.back =
1008             pCreateInfo->pDepthStencilState->back.reference;
1009       }
1010    }
1011
1012    pipeline->dynamic_state_mask = states;
1013 }
1014
1015 static void
1016 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1017 {
1018    struct anv_render_pass *renderpass = NULL;
1019    struct anv_subpass *subpass = NULL;
1020
1021    /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1022     * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
1023     * 4.2 Graphics Pipeline.
1024     */
1025    assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1026
1027    renderpass = anv_render_pass_from_handle(info->renderPass);
1028    assert(renderpass);
1029
1030    if (renderpass != &anv_meta_dummy_renderpass) {
1031       assert(info->subpass < renderpass->subpass_count);
1032       subpass = &renderpass->subpasses[info->subpass];
1033    }
1034
1035    assert(info->stageCount >= 1);
1036    assert(info->pVertexInputState);
1037    assert(info->pInputAssemblyState);
1038    assert(info->pViewportState);
1039    assert(info->pRasterizationState);
1040
1041    if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
1042       assert(info->pDepthStencilState);
1043
1044    if (subpass && subpass->color_count > 0)
1045       assert(info->pColorBlendState);
1046
1047    for (uint32_t i = 0; i < info->stageCount; ++i) {
1048       switch (info->pStages[i].stage) {
1049       case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1050       case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1051          assert(info->pTessellationState);
1052          break;
1053       default:
1054          break;
1055       }
1056    }
1057 }
1058
1059 VkResult
1060 anv_pipeline_init(struct anv_pipeline *pipeline,
1061                   struct anv_device *device,
1062                   struct anv_pipeline_cache *cache,
1063                   const VkGraphicsPipelineCreateInfo *pCreateInfo,
1064                   const struct anv_graphics_pipeline_create_info *extra,
1065                   const VkAllocationCallbacks *alloc)
1066 {
1067    VkResult result;
1068
1069    anv_validate {
1070       anv_pipeline_validate_create_info(pCreateInfo);
1071    }
1072
1073    if (alloc == NULL)
1074       alloc = &device->alloc;
1075
1076    pipeline->device = device;
1077    pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1078
1079    result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1080    if (result != VK_SUCCESS)
1081       return result;
1082
1083    pipeline->batch.alloc = alloc;
1084    pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1085    pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1086    pipeline->batch.relocs = &pipeline->batch_relocs;
1087
1088    anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
1089
1090    if (pCreateInfo->pTessellationState)
1091       anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
1092
1093    pipeline->use_repclear = extra && extra->use_repclear;
1094    pipeline->writes_point_size = false;
1095
1096    /* When we free the pipeline, we detect stages based on the NULL status
1097     * of various prog_data pointers.  Make them NULL by default.
1098     */
1099    memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
1100    memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
1101    memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
1102
1103    pipeline->vs_simd8 = NO_KERNEL;
1104    pipeline->vs_vec4 = NO_KERNEL;
1105    pipeline->gs_kernel = NO_KERNEL;
1106    pipeline->ps_ksp0 = NO_KERNEL;
1107
1108    pipeline->active_stages = 0;
1109    pipeline->total_scratch = 0;
1110
1111    for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1112       ANV_FROM_HANDLE(anv_shader_module, module,
1113                       pCreateInfo->pStages[i].module);
1114
1115       switch (pCreateInfo->pStages[i].stage) {
1116       case VK_SHADER_STAGE_VERTEX_BIT:
1117          anv_pipeline_compile_vs(pipeline, cache, pCreateInfo, module,
1118                                  pCreateInfo->pStages[i].pName,
1119                                  pCreateInfo->pStages[i].pSpecializationInfo);
1120          break;
1121       case VK_SHADER_STAGE_GEOMETRY_BIT:
1122          anv_pipeline_compile_gs(pipeline, cache, pCreateInfo, module,
1123                                  pCreateInfo->pStages[i].pName,
1124                                  pCreateInfo->pStages[i].pSpecializationInfo);
1125          break;
1126       case VK_SHADER_STAGE_FRAGMENT_BIT:
1127          anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra, module,
1128                                  pCreateInfo->pStages[i].pName,
1129                                  pCreateInfo->pStages[i].pSpecializationInfo);
1130          break;
1131       default:
1132          anv_finishme("Unsupported shader stage");
1133       }
1134    }
1135
1136    if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
1137       /* Vertex is only optional if disable_vs is set */
1138       assert(extra->disable_vs);
1139       memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
1140    }
1141
1142    gen7_compute_urb_partition(pipeline);
1143
1144    const VkPipelineVertexInputStateCreateInfo *vi_info =
1145       pCreateInfo->pVertexInputState;
1146
1147    uint64_t inputs_read;
1148    if (extra && extra->disable_vs) {
1149       /* If the VS is disabled, just assume the user knows what they're
1150        * doing and apply the layout blindly.  This can only come from
1151        * meta, so this *should* be safe.
1152        */
1153       inputs_read = ~0ull;
1154    } else {
1155       inputs_read = pipeline->vs_prog_data.inputs_read;
1156    }
1157
1158    pipeline->vb_used = 0;
1159    for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1160       const VkVertexInputAttributeDescription *desc =
1161          &vi_info->pVertexAttributeDescriptions[i];
1162
1163       if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1164          pipeline->vb_used |= 1 << desc->binding;
1165    }
1166
1167    for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1168       const VkVertexInputBindingDescription *desc =
1169          &vi_info->pVertexBindingDescriptions[i];
1170
1171       pipeline->binding_stride[desc->binding] = desc->stride;
1172
1173       /* Step rate is programmed per vertex element (attribute), not
1174        * binding. Set up a map of which bindings step per instance, for
1175        * reference by vertex element setup. */
1176       switch (desc->inputRate) {
1177       default:
1178       case VK_VERTEX_INPUT_RATE_VERTEX:
1179          pipeline->instancing_enable[desc->binding] = false;
1180          break;
1181       case VK_VERTEX_INPUT_RATE_INSTANCE:
1182          pipeline->instancing_enable[desc->binding] = true;
1183          break;
1184       }
1185    }
1186
1187    const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1188       pCreateInfo->pInputAssemblyState;
1189    pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1190    pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1191
1192    if (extra && extra->use_rectlist)
1193       pipeline->topology = _3DPRIM_RECTLIST;
1194
1195    while (anv_block_pool_size(&device->scratch_block_pool) <
1196           pipeline->total_scratch)
1197       anv_block_pool_alloc(&device->scratch_block_pool);
1198
1199    return VK_SUCCESS;
1200 }
1201
1202 VkResult
1203 anv_graphics_pipeline_create(
1204    VkDevice _device,
1205    VkPipelineCache _cache,
1206    const VkGraphicsPipelineCreateInfo *pCreateInfo,
1207    const struct anv_graphics_pipeline_create_info *extra,
1208    const VkAllocationCallbacks *pAllocator,
1209    VkPipeline *pPipeline)
1210 {
1211    ANV_FROM_HANDLE(anv_device, device, _device);
1212    ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1213
1214    if (cache == NULL)
1215       cache = &device->default_pipeline_cache;
1216
1217    switch (device->info.gen) {
1218    case 7:
1219       if (device->info.is_haswell)
1220          return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1221       else
1222          return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1223    case 8:
1224       return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1225    case 9:
1226       return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1227    default:
1228       unreachable("unsupported gen\n");
1229    }
1230 }
1231
1232 VkResult anv_CreateGraphicsPipelines(
1233     VkDevice                                    _device,
1234     VkPipelineCache                             pipelineCache,
1235     uint32_t                                    count,
1236     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1237     const VkAllocationCallbacks*                pAllocator,
1238     VkPipeline*                                 pPipelines)
1239 {
1240    VkResult result = VK_SUCCESS;
1241
1242    unsigned i = 0;
1243    for (; i < count; i++) {
1244       result = anv_graphics_pipeline_create(_device,
1245                                             pipelineCache,
1246                                             &pCreateInfos[i],
1247                                             NULL, pAllocator, &pPipelines[i]);
1248       if (result != VK_SUCCESS) {
1249          for (unsigned j = 0; j < i; j++) {
1250             anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1251          }
1252
1253          return result;
1254       }
1255    }
1256
1257    return VK_SUCCESS;
1258 }
1259
1260 static VkResult anv_compute_pipeline_create(
1261     VkDevice                                    _device,
1262     VkPipelineCache                             _cache,
1263     const VkComputePipelineCreateInfo*          pCreateInfo,
1264     const VkAllocationCallbacks*                pAllocator,
1265     VkPipeline*                                 pPipeline)
1266 {
1267    ANV_FROM_HANDLE(anv_device, device, _device);
1268    ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1269
1270    if (cache == NULL)
1271       cache = &device->default_pipeline_cache;
1272
1273    switch (device->info.gen) {
1274    case 7:
1275       if (device->info.is_haswell)
1276          return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1277       else
1278          return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1279    case 8:
1280       return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1281    case 9:
1282       return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1283    default:
1284       unreachable("unsupported gen\n");
1285    }
1286 }
1287
1288 VkResult anv_CreateComputePipelines(
1289     VkDevice                                    _device,
1290     VkPipelineCache                             pipelineCache,
1291     uint32_t                                    count,
1292     const VkComputePipelineCreateInfo*          pCreateInfos,
1293     const VkAllocationCallbacks*                pAllocator,
1294     VkPipeline*                                 pPipelines)
1295 {
1296    VkResult result = VK_SUCCESS;
1297
1298    unsigned i = 0;
1299    for (; i < count; i++) {
1300       result = anv_compute_pipeline_create(_device, pipelineCache,
1301                                            &pCreateInfos[i],
1302                                            pAllocator, &pPipelines[i]);
1303       if (result != VK_SUCCESS) {
1304          for (unsigned j = 0; j < i; j++) {
1305             anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1306          }
1307
1308          return result;
1309       }
1310    }
1311
1312    return VK_SUCCESS;
1313 }