OSDN Git Service

anv/pipeline: Only consider double elements which actually exist
[android-x86/external-mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "vk_util.h"
32 #include "vk_format_info.h"
33
34 static uint32_t
35 vertex_element_comp_control(enum isl_format format, unsigned comp)
36 {
37    uint8_t bits;
38    switch (comp) {
39    case 0: bits = isl_format_layouts[format].channels.r.bits; break;
40    case 1: bits = isl_format_layouts[format].channels.g.bits; break;
41    case 2: bits = isl_format_layouts[format].channels.b.bits; break;
42    case 3: bits = isl_format_layouts[format].channels.a.bits; break;
43    default: unreachable("Invalid component");
44    }
45
46    /*
47     * Take in account hardware restrictions when dealing with 64-bit floats.
48     *
49     * From Broadwell spec, command reference structures, page 586:
50     *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
51     *   64-bit components are stored * in the URB without any conversion. In
52     *   this case, vertex elements must be written as 128 or 256 bits, with
53     *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
54     *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
55     *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
56     *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
57     *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
58     *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
59     *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
60     *   256-bit vertex element."
61     */
62    if (bits) {
63       return VFCOMP_STORE_SRC;
64    } else if (comp >= 2 &&
65               !isl_format_layouts[format].channels.b.bits &&
66               isl_format_layouts[format].channels.r.type == ISL_RAW) {
67       /* When emitting 64-bit attributes, we need to write either 128 or 256
68        * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
69        * VFCOMP_STORE_0 to pad the written chunk */
70       return VFCOMP_NOSTORE;
71    } else if (comp < 3 ||
72               isl_format_layouts[format].channels.r.type == ISL_RAW) {
73       /* Note we need to pad with value 0, not 1, due hardware restrictions
74        * (see comment above) */
75       return VFCOMP_STORE_0;
76    } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
77             isl_format_layouts[format].channels.r.type == ISL_SINT) {
78       assert(comp == 3);
79       return VFCOMP_STORE_1_INT;
80    } else {
81       assert(comp == 3);
82       return VFCOMP_STORE_1_FP;
83    }
84 }
85
86 static void
87 emit_vertex_input(struct anv_pipeline *pipeline,
88                   const VkPipelineVertexInputStateCreateInfo *info)
89 {
90    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
91
92    /* Pull inputs_read out of the VS prog data */
93    const uint64_t inputs_read = vs_prog_data->inputs_read;
94    const uint64_t double_inputs_read =
95       vs_prog_data->double_inputs_read & inputs_read;
96    assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
97    const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
98    const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
99    const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
100                                 vs_prog_data->uses_instanceid ||
101                                 vs_prog_data->uses_firstvertex ||
102                                 vs_prog_data->uses_baseinstance;
103
104    uint32_t elem_count = __builtin_popcount(elements) -
105       __builtin_popcount(elements_double) / 2;
106
107    const uint32_t total_elems =
108       elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
109    if (total_elems == 0)
110       return;
111
112    uint32_t *p;
113
114    const uint32_t num_dwords = 1 + total_elems * 2;
115    p = anv_batch_emitn(&pipeline->batch, num_dwords,
116                        GENX(3DSTATE_VERTEX_ELEMENTS));
117    if (!p)
118       return;
119
120    for (uint32_t i = 0; i < total_elems; i++) {
121       /* The SKL docs for VERTEX_ELEMENT_STATE say:
122        *
123        *    "All elements must be valid from Element[0] to the last valid
124        *    element. (I.e. if Element[2] is valid then Element[1] and
125        *    Element[0] must also be valid)."
126        *
127        * The SKL docs for 3D_Vertex_Component_Control say:
128        *
129        *    "Don't store this component. (Not valid for Component 0, but can
130        *    be used for Component 1-3)."
131        *
132        * So we can't just leave a vertex element blank and hope for the best.
133        * We have to tell the VF hardware to put something in it; so we just
134        * store a bunch of zero.
135        *
136        * TODO: Compact vertex elements so we never end up with holes.
137        */
138       struct GENX(VERTEX_ELEMENT_STATE) element = {
139          .Valid = true,
140          .Component0Control = VFCOMP_STORE_0,
141          .Component1Control = VFCOMP_STORE_0,
142          .Component2Control = VFCOMP_STORE_0,
143          .Component3Control = VFCOMP_STORE_0,
144       };
145       GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
146    }
147
148    for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
149       const VkVertexInputAttributeDescription *desc =
150          &info->pVertexAttributeDescriptions[i];
151       enum isl_format format = anv_get_isl_format(&pipeline->device->info,
152                                                   desc->format,
153                                                   VK_IMAGE_ASPECT_COLOR_BIT,
154                                                   VK_IMAGE_TILING_LINEAR);
155
156       assert(desc->binding < MAX_VBS);
157
158       if ((elements & (1 << desc->location)) == 0)
159          continue; /* Binding unused */
160
161       uint32_t slot =
162          __builtin_popcount(elements & ((1 << desc->location) - 1)) -
163          DIV_ROUND_UP(__builtin_popcount(elements_double &
164                                         ((1 << desc->location) -1)), 2);
165
166       struct GENX(VERTEX_ELEMENT_STATE) element = {
167          .VertexBufferIndex = desc->binding,
168          .Valid = true,
169          .SourceElementFormat = format,
170          .EdgeFlagEnable = false,
171          .SourceElementOffset = desc->offset,
172          .Component0Control = vertex_element_comp_control(format, 0),
173          .Component1Control = vertex_element_comp_control(format, 1),
174          .Component2Control = vertex_element_comp_control(format, 2),
175          .Component3Control = vertex_element_comp_control(format, 3),
176       };
177       GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
178
179 #if GEN_GEN >= 8
180       /* On Broadwell and later, we have a separate VF_INSTANCING packet
181        * that controls instancing.  On Haswell and prior, that's part of
182        * VERTEX_BUFFER_STATE which we emit later.
183        */
184       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
185          vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
186          vfi.VertexElementIndex = slot;
187          vfi.InstanceDataStepRate =
188             pipeline->vb[desc->binding].instance_divisor;
189       }
190 #endif
191    }
192
193    const uint32_t id_slot = elem_count;
194    if (needs_svgs_elem) {
195       /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
196        *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
197        *    Control field is set to something other than VFCOMP_STORE_SRC,
198        *    no higher-numbered Component Control fields may be set to
199        *    VFCOMP_STORE_SRC"
200        *
201        * This means, that if we have BaseInstance, we need BaseVertex as
202        * well.  Just do all or nothing.
203        */
204       uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
205                             vs_prog_data->uses_baseinstance) ?
206                            VFCOMP_STORE_SRC : VFCOMP_STORE_0;
207
208       struct GENX(VERTEX_ELEMENT_STATE) element = {
209          .VertexBufferIndex = ANV_SVGS_VB_INDEX,
210          .Valid = true,
211          .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
212          .Component0Control = base_ctrl,
213          .Component1Control = base_ctrl,
214 #if GEN_GEN >= 8
215          .Component2Control = VFCOMP_STORE_0,
216          .Component3Control = VFCOMP_STORE_0,
217 #else
218          .Component2Control = VFCOMP_STORE_VID,
219          .Component3Control = VFCOMP_STORE_IID,
220 #endif
221       };
222       GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
223    }
224
225 #if GEN_GEN >= 8
226    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
227       sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
228       sgvs.VertexIDComponentNumber     = 2;
229       sgvs.VertexIDElementOffset       = id_slot;
230       sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
231       sgvs.InstanceIDComponentNumber   = 3;
232       sgvs.InstanceIDElementOffset     = id_slot;
233    }
234 #endif
235
236    const uint32_t drawid_slot = elem_count + needs_svgs_elem;
237    if (vs_prog_data->uses_drawid) {
238       struct GENX(VERTEX_ELEMENT_STATE) element = {
239          .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
240          .Valid = true,
241          .SourceElementFormat = ISL_FORMAT_R32_UINT,
242          .Component0Control = VFCOMP_STORE_SRC,
243          .Component1Control = VFCOMP_STORE_0,
244          .Component2Control = VFCOMP_STORE_0,
245          .Component3Control = VFCOMP_STORE_0,
246       };
247       GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
248                                       &p[1 + drawid_slot * 2],
249                                       &element);
250
251 #if GEN_GEN >= 8
252       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
253          vfi.VertexElementIndex = drawid_slot;
254       }
255 #endif
256    }
257 }
258
259 void
260 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
261                      const struct gen_l3_config *l3_config,
262                      VkShaderStageFlags active_stages,
263                      const unsigned entry_size[4])
264 {
265    const struct gen_device_info *devinfo = &device->info;
266 #if GEN_IS_HASWELL
267    const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
268 #else
269    const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
270 #endif
271
272    const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
273
274    unsigned entries[4];
275    unsigned start[4];
276    gen_get_urb_config(devinfo,
277                       1024 * push_constant_kb, 1024 * urb_size_kb,
278                       active_stages &
279                          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
280                       active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
281                       entry_size, entries, start);
282
283 #if GEN_GEN == 7 && !GEN_IS_HASWELL
284    /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
285     *
286     *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
287     *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
288     *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
289     *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
290     *    needs to be sent before any combination of VS associated 3DSTATE."
291     */
292    anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
293       pc.DepthStallEnable  = true;
294       pc.PostSyncOperation = WriteImmediateData;
295       pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
296    }
297 #endif
298
299    for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
300       anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
301          urb._3DCommandSubOpcode      += i;
302          urb.VSURBStartingAddress      = start[i];
303          urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
304          urb.VSNumberofURBEntries      = entries[i];
305       }
306    }
307 }
308
309 static void
310 emit_urb_setup(struct anv_pipeline *pipeline)
311 {
312    unsigned entry_size[4];
313    for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
314       const struct brw_vue_prog_data *prog_data =
315          !anv_pipeline_has_stage(pipeline, i) ? NULL :
316          (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
317
318       entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
319    }
320
321    genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
322                         pipeline->urb.l3_config,
323                         pipeline->active_stages, entry_size);
324 }
325
326 static void
327 emit_3dstate_sbe(struct anv_pipeline *pipeline)
328 {
329    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
330
331    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
332       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
333 #if GEN_GEN >= 8
334       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
335 #endif
336       return;
337    }
338
339    const struct brw_vue_map *fs_input_map =
340       &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
341
342    struct GENX(3DSTATE_SBE) sbe = {
343       GENX(3DSTATE_SBE_header),
344       .AttributeSwizzleEnable = true,
345       .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
346       .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
347       .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
348    };
349
350 #if GEN_GEN >= 9
351    for (unsigned i = 0; i < 32; i++)
352       sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
353 #endif
354
355 #if GEN_GEN >= 8
356    /* On Broadwell, they broke 3DSTATE_SBE into two packets */
357    struct GENX(3DSTATE_SBE_SWIZ) swiz = {
358       GENX(3DSTATE_SBE_SWIZ_header),
359    };
360 #else
361 #  define swiz sbe
362 #endif
363
364    /* Skip the VUE header and position slots by default */
365    unsigned urb_entry_read_offset = 1;
366    int max_source_attr = 0;
367    for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
368       int input_index = wm_prog_data->urb_setup[attr];
369
370       if (input_index < 0)
371          continue;
372
373       /* gl_Layer is stored in the VUE header */
374       if (attr == VARYING_SLOT_LAYER) {
375          urb_entry_read_offset = 0;
376          continue;
377       }
378
379       if (attr == VARYING_SLOT_PNTC) {
380          sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
381          continue;
382       }
383
384       const int slot = fs_input_map->varying_to_slot[attr];
385
386       if (input_index >= 16)
387          continue;
388
389       if (slot == -1) {
390          /* This attribute does not exist in the VUE--that means that the
391           * vertex shader did not write to it.  It could be that it's a
392           * regular varying read by the fragment shader but not written by
393           * the vertex shader or it's gl_PrimitiveID. In the first case the
394           * value is undefined, in the second it needs to be
395           * gl_PrimitiveID.
396           */
397          swiz.Attribute[input_index].ConstantSource = PRIM_ID;
398          swiz.Attribute[input_index].ComponentOverrideX = true;
399          swiz.Attribute[input_index].ComponentOverrideY = true;
400          swiz.Attribute[input_index].ComponentOverrideZ = true;
401          swiz.Attribute[input_index].ComponentOverrideW = true;
402       } else {
403          /* We have to subtract two slots to accout for the URB entry output
404           * read offset in the VS and GS stages.
405           */
406          const int source_attr = slot - 2 * urb_entry_read_offset;
407          assert(source_attr >= 0 && source_attr < 32);
408          max_source_attr = MAX2(max_source_attr, source_attr);
409          swiz.Attribute[input_index].SourceAttribute = source_attr;
410       }
411    }
412
413    sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
414    sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
415 #if GEN_GEN >= 8
416    sbe.ForceVertexURBEntryReadOffset = true;
417    sbe.ForceVertexURBEntryReadLength = true;
418 #endif
419
420    uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
421                                         GENX(3DSTATE_SBE_length));
422    if (!dw)
423       return;
424    GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
425
426 #if GEN_GEN >= 8
427    dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
428    if (!dw)
429       return;
430    GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
431 #endif
432 }
433
434 static const uint32_t vk_to_gen_cullmode[] = {
435    [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
436    [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
437    [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
438    [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
439 };
440
441 static const uint32_t vk_to_gen_fillmode[] = {
442    [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
443    [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
444    [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
445 };
446
447 static const uint32_t vk_to_gen_front_face[] = {
448    [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
449    [VK_FRONT_FACE_CLOCKWISE]                 = 0
450 };
451
452 static void
453 emit_rs_state(struct anv_pipeline *pipeline,
454               const VkPipelineRasterizationStateCreateInfo *rs_info,
455               const VkPipelineMultisampleStateCreateInfo *ms_info,
456               const struct anv_render_pass *pass,
457               const struct anv_subpass *subpass)
458 {
459    struct GENX(3DSTATE_SF) sf = {
460       GENX(3DSTATE_SF_header),
461    };
462
463    sf.ViewportTransformEnable = true;
464    sf.StatisticsEnable = true;
465    sf.TriangleStripListProvokingVertexSelect = 0;
466    sf.LineStripListProvokingVertexSelect = 0;
467    sf.TriangleFanProvokingVertexSelect = 1;
468
469    const struct brw_vue_prog_data *last_vue_prog_data =
470       anv_pipeline_get_last_vue_prog_data(pipeline);
471
472    if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
473       sf.PointWidthSource = Vertex;
474    } else {
475       sf.PointWidthSource = State;
476       sf.PointWidth = 1.0;
477    }
478
479 #if GEN_GEN >= 8
480    struct GENX(3DSTATE_RASTER) raster = {
481       GENX(3DSTATE_RASTER_header),
482    };
483 #else
484 #  define raster sf
485 #endif
486
487    /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
488     * "Multisample Modes State".
489     */
490 #if GEN_GEN >= 8
491    raster.DXMultisampleRasterizationEnable = true;
492    /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
493     * computations.  If we ever set this bit to a different value, they will
494     * need to be updated accordingly.
495     */
496    raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
497    raster.ForceMultisampling = false;
498 #else
499    raster.MultisampleRasterizationMode =
500       (ms_info && ms_info->rasterizationSamples > 1) ?
501       MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
502 #endif
503
504    raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
505    raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
506    raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
507    raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
508    raster.ScissorRectangleEnable = true;
509
510 #if GEN_GEN >= 9
511    /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
512    raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
513    raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
514 #elif GEN_GEN >= 8
515    raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
516 #endif
517
518    raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
519    raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
520    raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
521
522 #if GEN_GEN == 7
523    /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
524     * can get the depth offsets correct.
525     */
526    if (subpass->depth_stencil_attachment) {
527       VkFormat vk_format =
528          pass->attachments[subpass->depth_stencil_attachment->attachment].format;
529       assert(vk_format_is_depth_or_stencil(vk_format));
530       if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
531          enum isl_format isl_format =
532             anv_get_isl_format(&pipeline->device->info, vk_format,
533                                VK_IMAGE_ASPECT_DEPTH_BIT,
534                                VK_IMAGE_TILING_OPTIMAL);
535          sf.DepthBufferSurfaceFormat =
536             isl_format_get_depth_format(isl_format, false);
537       }
538    }
539 #endif
540
541 #if GEN_GEN >= 8
542    GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
543    GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
544 #else
545 #  undef raster
546    GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
547 #endif
548 }
549
550 static void
551 emit_ms_state(struct anv_pipeline *pipeline,
552               const VkPipelineMultisampleStateCreateInfo *info)
553 {
554    uint32_t samples = 1;
555    uint32_t log2_samples = 0;
556
557    /* From the Vulkan 1.0 spec:
558     *    If pSampleMask is NULL, it is treated as if the mask has all bits
559     *    enabled, i.e. no coverage is removed from fragments.
560     *
561     * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
562     */
563 #if GEN_GEN >= 8
564    uint32_t sample_mask = 0xffff;
565 #else
566    uint32_t sample_mask = 0xff;
567 #endif
568
569    if (info) {
570       samples = info->rasterizationSamples;
571       log2_samples = __builtin_ffs(samples) - 1;
572    }
573
574    if (info && info->pSampleMask)
575       sample_mask &= info->pSampleMask[0];
576
577    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
578       ms.NumberofMultisamples       = log2_samples;
579
580       ms.PixelLocation              = CENTER;
581 #if GEN_GEN >= 8
582       /* The PRM says that this bit is valid only for DX9:
583        *
584        *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
585        *    should not have any effect by setting or not setting this bit.
586        */
587       ms.PixelPositionOffsetEnable  = false;
588 #else
589
590       switch (samples) {
591       case 1:
592          GEN_SAMPLE_POS_1X(ms.Sample);
593          break;
594       case 2:
595          GEN_SAMPLE_POS_2X(ms.Sample);
596          break;
597       case 4:
598          GEN_SAMPLE_POS_4X(ms.Sample);
599          break;
600       case 8:
601          GEN_SAMPLE_POS_8X(ms.Sample);
602          break;
603       default:
604          break;
605       }
606 #endif
607    }
608
609    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
610       sm.SampleMask = sample_mask;
611    }
612 }
613
614 static const uint32_t vk_to_gen_logic_op[] = {
615    [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
616    [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
617    [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
618    [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
619    [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
620    [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
621    [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
622    [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
623    [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
624    [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
625    [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
626    [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
627    [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
628    [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
629    [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
630    [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
631 };
632
633 static const uint32_t vk_to_gen_blend[] = {
634    [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
635    [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
636    [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
637    [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
638    [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
639    [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
640    [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
641    [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
642    [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
643    [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
644    [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
645    [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
646    [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
647    [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
648    [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
649    [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
650    [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
651    [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
652    [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
653 };
654
655 static const uint32_t vk_to_gen_blend_op[] = {
656    [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
657    [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
658    [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
659    [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
660    [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
661 };
662
663 static const uint32_t vk_to_gen_compare_op[] = {
664    [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
665    [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
666    [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
667    [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
668    [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
669    [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
670    [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
671    [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
672 };
673
674 static const uint32_t vk_to_gen_stencil_op[] = {
675    [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
676    [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
677    [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
678    [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
679    [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
680    [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
681    [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
682    [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
683 };
684
685 /* This function sanitizes the VkStencilOpState by looking at the compare ops
686  * and trying to determine whether or not a given stencil op can ever actually
687  * occur.  Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
688  * This function returns true if, after sanitation, any of the stencil ops are
689  * set to something other than VK_STENCIL_OP_KEEP.
690  */
691 static bool
692 sanitize_stencil_face(VkStencilOpState *face,
693                       VkCompareOp depthCompareOp)
694 {
695    /* If compareOp is ALWAYS then the stencil test will never fail and failOp
696     * will never happen.  Set failOp to KEEP in this case.
697     */
698    if (face->compareOp == VK_COMPARE_OP_ALWAYS)
699       face->failOp = VK_STENCIL_OP_KEEP;
700
701    /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
702     * or stencil tests will fail and passOp will never happen.
703     */
704    if (face->compareOp == VK_COMPARE_OP_NEVER ||
705        depthCompareOp == VK_COMPARE_OP_NEVER)
706       face->passOp = VK_STENCIL_OP_KEEP;
707
708    /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
709     * stencil test will fail or the depth test will pass.  In either case,
710     * depthFailOp will never happen.
711     */
712    if (face->compareOp == VK_COMPARE_OP_NEVER ||
713        depthCompareOp == VK_COMPARE_OP_ALWAYS)
714       face->depthFailOp = VK_STENCIL_OP_KEEP;
715
716    return face->failOp != VK_STENCIL_OP_KEEP ||
717           face->depthFailOp != VK_STENCIL_OP_KEEP ||
718           face->passOp != VK_STENCIL_OP_KEEP;
719 }
720
721 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
722  * are enabled.  In the presence of discards, it's fairly easy to get into the
723  * non-promoted case which means a fairly big performance hit.  From the Iron
724  * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
725  *
726  *    "Non-promoted depth (N) is active whenever the depth test can be done
727  *    early but it cannot determine whether or not to write source depth to
728  *    the depth buffer, therefore the depth write must be performed post pixel
729  *    shader. This includes cases where the pixel shader can kill pixels,
730  *    including via sampler chroma key, as well as cases where the alpha test
731  *    function is enabled, which kills pixels based on a programmable alpha
732  *    test. In this case, even if the depth test fails, the pixel cannot be
733  *    killed if a stencil write is indicated. Whether or not the stencil write
734  *    happens depends on whether or not the pixel is killed later. In these
735  *    cases if stencil test fails and stencil writes are off, the pixels can
736  *    also be killed early. If stencil writes are enabled, the pixels must be
737  *    treated as Computed depth (described above)."
738  *
739  * The same thing as mentioned in the stencil case can happen in the depth
740  * case as well if it thinks it writes depth but, thanks to the depth test
741  * being GL_EQUAL, the write doesn't actually matter.  A little extra work
742  * up-front to try and disable depth and stencil writes can make a big
743  * difference.
744  *
745  * Unfortunately, the way depth and stencil testing is specified, there are
746  * many case where, regardless of depth/stencil writes being enabled, nothing
747  * actually gets written due to some other bit of state being set.  This
748  * function attempts to "sanitize" the depth stencil state and disable writes
749  * and sometimes even testing whenever possible.
750  */
751 static void
752 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
753                   bool *stencilWriteEnable,
754                   VkImageAspectFlags ds_aspects)
755 {
756    *stencilWriteEnable = state->stencilTestEnable;
757
758    /* If the depth test is disabled, we won't be writing anything. */
759    if (!state->depthTestEnable)
760       state->depthWriteEnable = false;
761
762    /* The Vulkan spec requires that if either depth or stencil is not present,
763     * the pipeline is to act as if the test silently passes.
764     */
765    if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
766       state->depthWriteEnable = false;
767       state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
768    }
769
770    if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
771       *stencilWriteEnable = false;
772       state->front.compareOp = VK_COMPARE_OP_ALWAYS;
773       state->back.compareOp = VK_COMPARE_OP_ALWAYS;
774    }
775
776    /* If the stencil test is enabled and always fails, then we will never get
777     * to the depth test so we can just disable the depth test entirely.
778     */
779    if (state->stencilTestEnable &&
780        state->front.compareOp == VK_COMPARE_OP_NEVER &&
781        state->back.compareOp == VK_COMPARE_OP_NEVER) {
782       state->depthTestEnable = false;
783       state->depthWriteEnable = false;
784    }
785
786    /* If depthCompareOp is EQUAL then the value we would be writing to the
787     * depth buffer is the same as the value that's already there so there's no
788     * point in writing it.
789     */
790    if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
791       state->depthWriteEnable = false;
792
793    /* If the stencil ops are such that we don't actually ever modify the
794     * stencil buffer, we should disable writes.
795     */
796    if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
797        !sanitize_stencil_face(&state->back, state->depthCompareOp))
798       *stencilWriteEnable = false;
799
800    /* If the depth test always passes and we never write out depth, that's the
801     * same as if the depth test is disabled entirely.
802     */
803    if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
804        !state->depthWriteEnable)
805       state->depthTestEnable = false;
806
807    /* If the stencil test always passes and we never write out stencil, that's
808     * the same as if the stencil test is disabled entirely.
809     */
810    if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
811        state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
812        !*stencilWriteEnable)
813       state->stencilTestEnable = false;
814 }
815
816 static void
817 emit_ds_state(struct anv_pipeline *pipeline,
818               const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
819               const struct anv_render_pass *pass,
820               const struct anv_subpass *subpass)
821 {
822 #if GEN_GEN == 7
823 #  define depth_stencil_dw pipeline->gen7.depth_stencil_state
824 #elif GEN_GEN == 8
825 #  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
826 #else
827 #  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
828 #endif
829
830    if (pCreateInfo == NULL) {
831       /* We're going to OR this together with the dynamic state.  We need
832        * to make sure it's initialized to something useful.
833        */
834       pipeline->writes_stencil = false;
835       pipeline->stencil_test_enable = false;
836       pipeline->writes_depth = false;
837       pipeline->depth_test_enable = false;
838       memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
839       return;
840    }
841
842    VkImageAspectFlags ds_aspects = 0;
843    if (subpass->depth_stencil_attachment) {
844       VkFormat depth_stencil_format =
845          pass->attachments[subpass->depth_stencil_attachment->attachment].format;
846       ds_aspects = vk_format_aspects(depth_stencil_format);
847    }
848
849    VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
850    sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
851    pipeline->stencil_test_enable = info.stencilTestEnable;
852    pipeline->writes_depth = info.depthWriteEnable;
853    pipeline->depth_test_enable = info.depthTestEnable;
854
855    /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
856
857 #if GEN_GEN <= 7
858    struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
859 #else
860    struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
861 #endif
862       .DepthTestEnable = info.depthTestEnable,
863       .DepthBufferWriteEnable = info.depthWriteEnable,
864       .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
865       .DoubleSidedStencilEnable = true,
866
867       .StencilTestEnable = info.stencilTestEnable,
868       .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
869       .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
870       .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
871       .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
872       .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
873       .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
874       .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
875       .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
876    };
877
878 #if GEN_GEN <= 7
879    GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
880 #else
881    GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
882 #endif
883 }
884
885 static void
886 emit_cb_state(struct anv_pipeline *pipeline,
887               const VkPipelineColorBlendStateCreateInfo *info,
888               const VkPipelineMultisampleStateCreateInfo *ms_info)
889 {
890    struct anv_device *device = pipeline->device;
891
892
893    struct GENX(BLEND_STATE) blend_state = {
894 #if GEN_GEN >= 8
895       .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
896       .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
897 #endif
898    };
899
900    uint32_t surface_count = 0;
901    struct anv_pipeline_bind_map *map;
902    if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
903       map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
904       surface_count = map->surface_count;
905    }
906
907    const uint32_t num_dwords = GENX(BLEND_STATE_length) +
908       GENX(BLEND_STATE_ENTRY_length) * surface_count;
909    pipeline->blend_state =
910       anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
911
912    bool has_writeable_rt = false;
913    uint32_t *state_pos = pipeline->blend_state.map;
914    state_pos += GENX(BLEND_STATE_length);
915 #if GEN_GEN >= 8
916    struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
917 #endif
918    for (unsigned i = 0; i < surface_count; i++) {
919       struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
920
921       /* All color attachments are at the beginning of the binding table */
922       if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
923          break;
924
925       /* We can have at most 8 attachments */
926       assert(i < 8);
927
928       if (info == NULL || binding->index >= info->attachmentCount) {
929          /* Default everything to disabled */
930          struct GENX(BLEND_STATE_ENTRY) entry = {
931             .WriteDisableAlpha = true,
932             .WriteDisableRed = true,
933             .WriteDisableGreen = true,
934             .WriteDisableBlue = true,
935          };
936          GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
937          state_pos += GENX(BLEND_STATE_ENTRY_length);
938          continue;
939       }
940
941       assert(binding->binding == 0);
942       const VkPipelineColorBlendAttachmentState *a =
943          &info->pAttachments[binding->index];
944
945       struct GENX(BLEND_STATE_ENTRY) entry = {
946 #if GEN_GEN < 8
947          .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
948          .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
949 #endif
950          .LogicOpEnable = info->logicOpEnable,
951          .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
952          .ColorBufferBlendEnable = a->blendEnable,
953          .ColorClampRange = COLORCLAMP_RTFORMAT,
954          .PreBlendColorClampEnable = true,
955          .PostBlendColorClampEnable = true,
956          .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
957          .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
958          .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
959          .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
960          .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
961          .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
962          .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
963          .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
964          .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
965          .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
966       };
967
968       if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
969           a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
970           a->colorBlendOp != a->alphaBlendOp) {
971 #if GEN_GEN >= 8
972          blend_state.IndependentAlphaBlendEnable = true;
973 #else
974          entry.IndependentAlphaBlendEnable = true;
975 #endif
976       }
977
978       if (a->colorWriteMask != 0)
979          has_writeable_rt = true;
980
981       /* Our hardware applies the blend factor prior to the blend function
982        * regardless of what function is used.  Technically, this means the
983        * hardware can do MORE than GL or Vulkan specify.  However, it also
984        * means that, for MIN and MAX, we have to stomp the blend factor to
985        * ONE to make it a no-op.
986        */
987       if (a->colorBlendOp == VK_BLEND_OP_MIN ||
988           a->colorBlendOp == VK_BLEND_OP_MAX) {
989          entry.SourceBlendFactor = BLENDFACTOR_ONE;
990          entry.DestinationBlendFactor = BLENDFACTOR_ONE;
991       }
992       if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
993           a->alphaBlendOp == VK_BLEND_OP_MAX) {
994          entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
995          entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
996       }
997       GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
998       state_pos += GENX(BLEND_STATE_ENTRY_length);
999 #if GEN_GEN >= 8
1000       if (i == 0)
1001          bs0 = entry;
1002 #endif
1003    }
1004
1005 #if GEN_GEN >= 8
1006    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1007       blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
1008       blend.HasWriteableRT                = has_writeable_rt;
1009       blend.ColorBufferBlendEnable        = bs0.ColorBufferBlendEnable;
1010       blend.SourceAlphaBlendFactor        = bs0.SourceAlphaBlendFactor;
1011       blend.DestinationAlphaBlendFactor   = bs0.DestinationAlphaBlendFactor;
1012       blend.SourceBlendFactor             = bs0.SourceBlendFactor;
1013       blend.DestinationBlendFactor        = bs0.DestinationBlendFactor;
1014       blend.AlphaTestEnable               = false;
1015       blend.IndependentAlphaBlendEnable   =
1016          blend_state.IndependentAlphaBlendEnable;
1017    }
1018 #else
1019    (void)has_writeable_rt;
1020 #endif
1021
1022    GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1023    anv_state_flush(device, pipeline->blend_state);
1024
1025    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1026       bsp.BlendStatePointer      = pipeline->blend_state.offset;
1027 #if GEN_GEN >= 8
1028       bsp.BlendStatePointerValid = true;
1029 #endif
1030    }
1031 }
1032
1033 static void
1034 emit_3dstate_clip(struct anv_pipeline *pipeline,
1035                   const VkPipelineViewportStateCreateInfo *vp_info,
1036                   const VkPipelineRasterizationStateCreateInfo *rs_info)
1037 {
1038    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1039    (void) wm_prog_data;
1040    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1041       clip.ClipEnable               = true;
1042       clip.StatisticsEnable         = true;
1043       clip.EarlyCullEnable          = true;
1044       clip.APIMode                  = APIMODE_D3D,
1045       clip.ViewportXYClipTestEnable = true;
1046
1047       clip.ClipMode = CLIPMODE_NORMAL;
1048
1049       clip.TriangleStripListProvokingVertexSelect = 0;
1050       clip.LineStripListProvokingVertexSelect     = 0;
1051       clip.TriangleFanProvokingVertexSelect       = 1;
1052
1053       clip.MinimumPointWidth = 0.125;
1054       clip.MaximumPointWidth = 255.875;
1055
1056       const struct brw_vue_prog_data *last =
1057          anv_pipeline_get_last_vue_prog_data(pipeline);
1058
1059       /* From the Vulkan 1.0.45 spec:
1060        *
1061        *    "If the last active vertex processing stage shader entry point's
1062        *    interface does not include a variable decorated with
1063        *    ViewportIndex, then the first viewport is used."
1064        */
1065       if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1066          clip.MaximumVPIndex = vp_info->viewportCount - 1;
1067       } else {
1068          clip.MaximumVPIndex = 0;
1069       }
1070
1071       /* From the Vulkan 1.0.45 spec:
1072        *
1073        *    "If the last active vertex processing stage shader entry point's
1074        *    interface does not include a variable decorated with Layer, then
1075        *    the first layer is used."
1076        */
1077       clip.ForceZeroRTAIndexEnable =
1078          !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1079
1080 #if GEN_GEN == 7
1081       clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
1082       clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
1083       clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1084       if (last) {
1085          clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1086          clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1087       }
1088 #else
1089       clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1090          (wm_prog_data->barycentric_interp_modes &
1091           BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1092 #endif
1093    }
1094 }
1095
1096 static void
1097 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1098                        const VkPipelineRasterizationStateCreateInfo *rs_info)
1099 {
1100    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1101       so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1102    }
1103 }
1104
1105 static uint32_t
1106 get_sampler_count(const struct anv_shader_bin *bin)
1107 {
1108    uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1109
1110    /* We can potentially have way more than 32 samplers and that's ok.
1111     * However, the 3DSTATE_XS packets only have 3 bits to specify how
1112     * many to pre-fetch and all values above 4 are marked reserved.
1113     */
1114    return MIN2(count_by_4, 4);
1115 }
1116
1117 static uint32_t
1118 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1119 {
1120    return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1121 }
1122
1123 static struct anv_address
1124 get_scratch_address(struct anv_pipeline *pipeline,
1125                     gl_shader_stage stage,
1126                     const struct anv_shader_bin *bin)
1127 {
1128    return (struct anv_address) {
1129       .bo = anv_scratch_pool_alloc(pipeline->device,
1130                                    &pipeline->device->scratch_pool,
1131                                    stage, bin->prog_data->total_scratch),
1132       .offset = 0,
1133    };
1134 }
1135
1136 static uint32_t
1137 get_scratch_space(const struct anv_shader_bin *bin)
1138 {
1139    return ffs(bin->prog_data->total_scratch / 2048);
1140 }
1141
1142 static void
1143 emit_3dstate_vs(struct anv_pipeline *pipeline)
1144 {
1145    const struct gen_device_info *devinfo = &pipeline->device->info;
1146    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1147    const struct anv_shader_bin *vs_bin =
1148       pipeline->shaders[MESA_SHADER_VERTEX];
1149
1150    assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1151
1152    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1153       vs.Enable               = true;
1154       vs.StatisticsEnable     = true;
1155       vs.KernelStartPointer   = vs_bin->kernel.offset;
1156 #if GEN_GEN >= 8
1157       vs.SIMD8DispatchEnable  =
1158          vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1159 #endif
1160
1161       assert(!vs_prog_data->base.base.use_alt_mode);
1162 #if GEN_GEN < 11
1163       vs.SingleVertexDispatch       = false;
1164 #endif
1165       vs.VectorMaskEnable           = false;
1166       vs.SamplerCount               = get_sampler_count(vs_bin);
1167      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1168       * disable prefetching of binding tables on A0 and B0 steppings.
1169       * TODO: Revisit this WA on newer steppings.
1170       */
1171       vs.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1172       vs.FloatingPointMode          = IEEE754;
1173       vs.IllegalOpcodeExceptionEnable = false;
1174       vs.SoftwareExceptionEnable    = false;
1175       vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
1176       vs.VertexCacheDisable         = false;
1177
1178       vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
1179       vs.VertexURBEntryReadOffset      = 0;
1180       vs.DispatchGRFStartRegisterForURBData =
1181          vs_prog_data->base.base.dispatch_grf_start_reg;
1182
1183 #if GEN_GEN >= 8
1184       vs.UserClipDistanceClipTestEnableBitmask =
1185          vs_prog_data->base.clip_distance_mask;
1186       vs.UserClipDistanceCullTestEnableBitmask =
1187          vs_prog_data->base.cull_distance_mask;
1188 #endif
1189
1190       vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
1191       vs.ScratchSpaceBasePointer =
1192          get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1193    }
1194 }
1195
1196 static void
1197 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1198                       const VkPipelineTessellationStateCreateInfo *tess_info)
1199 {
1200    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1201       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1202       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1203       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1204       return;
1205    }
1206
1207    const struct gen_device_info *devinfo = &pipeline->device->info;
1208    const struct anv_shader_bin *tcs_bin =
1209       pipeline->shaders[MESA_SHADER_TESS_CTRL];
1210    const struct anv_shader_bin *tes_bin =
1211       pipeline->shaders[MESA_SHADER_TESS_EVAL];
1212
1213    const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1214    const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1215
1216    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1217       hs.Enable = true;
1218       hs.StatisticsEnable = true;
1219       hs.KernelStartPointer = tcs_bin->kernel.offset;
1220
1221       hs.SamplerCount = get_sampler_count(tcs_bin);
1222       /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1223       hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1224       hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1225       hs.IncludeVertexHandles = true;
1226       hs.InstanceCount = tcs_prog_data->instances - 1;
1227
1228       hs.VertexURBEntryReadLength = 0;
1229       hs.VertexURBEntryReadOffset = 0;
1230       hs.DispatchGRFStartRegisterForURBData =
1231          tcs_prog_data->base.base.dispatch_grf_start_reg;
1232
1233       hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1234       hs.ScratchSpaceBasePointer =
1235          get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1236    }
1237
1238    const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
1239       tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR) : NULL;
1240
1241    VkTessellationDomainOriginKHR uv_origin =
1242       domain_origin_state ? domain_origin_state->domainOrigin :
1243                             VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR;
1244
1245    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1246       te.Partitioning = tes_prog_data->partitioning;
1247
1248       if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR) {
1249          te.OutputTopology = tes_prog_data->output_topology;
1250       } else {
1251          /* When the origin is upper-left, we have to flip the winding order */
1252          if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1253             te.OutputTopology = OUTPUT_TRI_CW;
1254          } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1255             te.OutputTopology = OUTPUT_TRI_CCW;
1256          } else {
1257             te.OutputTopology = tes_prog_data->output_topology;
1258          }
1259       }
1260
1261       te.TEDomain = tes_prog_data->domain;
1262       te.TEEnable = true;
1263       te.MaximumTessellationFactorOdd = 63.0;
1264       te.MaximumTessellationFactorNotOdd = 64.0;
1265    }
1266
1267    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1268       ds.Enable = true;
1269       ds.StatisticsEnable = true;
1270       ds.KernelStartPointer = tes_bin->kernel.offset;
1271
1272       ds.SamplerCount = get_sampler_count(tes_bin);
1273       /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1274       ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1275       ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1276
1277       ds.ComputeWCoordinateEnable =
1278          tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1279
1280       ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1281       ds.PatchURBEntryReadOffset = 0;
1282       ds.DispatchGRFStartRegisterForURBData =
1283          tes_prog_data->base.base.dispatch_grf_start_reg;
1284
1285 #if GEN_GEN >= 8
1286 #if GEN_GEN < 11
1287       ds.DispatchMode =
1288          tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1289             DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1290             DISPATCH_MODE_SIMD4X2;
1291 #else
1292       assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1293       ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1294 #endif
1295
1296       ds.UserClipDistanceClipTestEnableBitmask =
1297          tes_prog_data->base.clip_distance_mask;
1298       ds.UserClipDistanceCullTestEnableBitmask =
1299          tes_prog_data->base.cull_distance_mask;
1300 #endif
1301
1302       ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1303       ds.ScratchSpaceBasePointer =
1304          get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1305    }
1306 }
1307
1308 static void
1309 emit_3dstate_gs(struct anv_pipeline *pipeline)
1310 {
1311    const struct gen_device_info *devinfo = &pipeline->device->info;
1312    const struct anv_shader_bin *gs_bin =
1313       pipeline->shaders[MESA_SHADER_GEOMETRY];
1314
1315    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1316       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1317       return;
1318    }
1319
1320    const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1321
1322    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1323       gs.Enable                  = true;
1324       gs.StatisticsEnable        = true;
1325       gs.KernelStartPointer      = gs_bin->kernel.offset;
1326       gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
1327
1328       gs.SingleProgramFlow       = false;
1329       gs.VectorMaskEnable        = false;
1330       gs.SamplerCount            = get_sampler_count(gs_bin);
1331       /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1332       gs.BindingTableEntryCount  = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1333       gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
1334       gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
1335
1336       if (GEN_GEN == 8) {
1337          /* Broadwell is weird.  It needs us to divide by 2. */
1338          gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1339       } else {
1340          gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1341       }
1342
1343       gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1344       gs.OutputTopology          = gs_prog_data->output_topology;
1345       gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1346       gs.ControlDataFormat       = gs_prog_data->control_data_format;
1347       gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
1348       gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
1349       gs.ReorderMode             = TRAILING;
1350
1351 #if GEN_GEN >= 8
1352       gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
1353       gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
1354       gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1355                                    gs_prog_data->static_vertex_count : 0;
1356 #endif
1357
1358       gs.VertexURBEntryReadOffset = 0;
1359       gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1360       gs.DispatchGRFStartRegisterForURBData =
1361          gs_prog_data->base.base.dispatch_grf_start_reg;
1362
1363 #if GEN_GEN >= 8
1364       gs.UserClipDistanceClipTestEnableBitmask =
1365          gs_prog_data->base.clip_distance_mask;
1366       gs.UserClipDistanceCullTestEnableBitmask =
1367          gs_prog_data->base.cull_distance_mask;
1368 #endif
1369
1370       gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
1371       gs.ScratchSpaceBasePointer =
1372          get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1373    }
1374 }
1375
1376 static bool
1377 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1378                                const VkPipelineColorBlendStateCreateInfo *blend)
1379 {
1380    const struct anv_shader_bin *shader_bin =
1381       pipeline->shaders[MESA_SHADER_FRAGMENT];
1382    if (!shader_bin)
1383       return false;
1384
1385    const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1386    for (int i = 0; i < bind_map->surface_count; i++) {
1387       struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1388
1389       if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1390          continue;
1391
1392       if (binding->index == UINT32_MAX)
1393          continue;
1394
1395       if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1396          return true;
1397    }
1398
1399    return false;
1400 }
1401
1402 static void
1403 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1404                 const VkPipelineColorBlendStateCreateInfo *blend,
1405                 const VkPipelineMultisampleStateCreateInfo *multisample)
1406 {
1407    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1408
1409    MAYBE_UNUSED uint32_t samples =
1410       multisample ? multisample->rasterizationSamples : 1;
1411
1412    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1413       wm.StatisticsEnable                    = true;
1414       wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
1415       wm.LineAntialiasingRegionWidth         = _10pixels;
1416       wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
1417
1418       if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1419          if (wm_prog_data->early_fragment_tests) {
1420             wm.EarlyDepthStencilControl         = EDSC_PREPS;
1421          } else if (wm_prog_data->has_side_effects) {
1422             wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
1423          } else {
1424             wm.EarlyDepthStencilControl         = EDSC_NORMAL;
1425          }
1426
1427 #if GEN_GEN >= 8
1428          /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1429           * doesn't take into account KillPixels when no depth or stencil
1430           * writes are enabled.  In order for occlusion queries to work
1431           * correctly with no attachments, we need to force-enable PS thread
1432           * dispatch.
1433           *
1434           * The BDW docs are pretty clear that that this bit isn't validated
1435           * and probably shouldn't be used in production:
1436           *
1437           *    "This must always be set to Normal. This field should not be
1438           *    tested for functional validation."
1439           *
1440           * Unfortunately, however, the other mechanism we have for doing this
1441           * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1442           * Given two bad options, we choose the one which works.
1443           */
1444          if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1445              !has_color_buffer_write_enabled(pipeline, blend))
1446             wm.ForceThreadDispatchEnable = ForceON;
1447 #endif
1448
1449          wm.BarycentricInterpolationMode =
1450             wm_prog_data->barycentric_interp_modes;
1451
1452 #if GEN_GEN < 8
1453          wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1454          wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1455          wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1456          wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1457
1458          /* If the subpass has a depth or stencil self-dependency, then we
1459           * need to force the hardware to do the depth/stencil write *after*
1460           * fragment shader execution.  Otherwise, the writes may hit memory
1461           * before we get around to fetching from the input attachment and we
1462           * may get the depth or stencil value from the current draw rather
1463           * than the previous one.
1464           */
1465          wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1466                                             wm_prog_data->uses_kill;
1467
1468          if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1469              wm_prog_data->has_side_effects ||
1470              wm.PixelShaderKillsPixel ||
1471              has_color_buffer_write_enabled(pipeline, blend))
1472             wm.ThreadDispatchEnable = true;
1473
1474          if (samples > 1) {
1475             wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1476             if (wm_prog_data->persample_dispatch) {
1477                wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1478             } else {
1479                wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1480             }
1481          } else {
1482             wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1483             wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1484          }
1485 #endif
1486       }
1487    }
1488 }
1489
1490 UNUSED static bool
1491 is_dual_src_blend_factor(VkBlendFactor factor)
1492 {
1493    return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1494           factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1495           factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1496           factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1497 }
1498
1499 static void
1500 emit_3dstate_ps(struct anv_pipeline *pipeline,
1501                 const VkPipelineColorBlendStateCreateInfo *blend,
1502                 const VkPipelineMultisampleStateCreateInfo *multisample)
1503 {
1504    MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1505    const struct anv_shader_bin *fs_bin =
1506       pipeline->shaders[MESA_SHADER_FRAGMENT];
1507
1508    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1509       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1510 #if GEN_GEN == 7
1511          /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1512           * we don't at least set the maximum number of threads.
1513           */
1514          ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1515 #endif
1516       }
1517       return;
1518    }
1519
1520    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1521
1522 #if GEN_GEN < 8
1523    /* The hardware wedges if you have this bit set but don't turn on any dual
1524     * source blend factors.
1525     */
1526    bool dual_src_blend = false;
1527    if (wm_prog_data->dual_src_blend && blend) {
1528       for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1529          const VkPipelineColorBlendAttachmentState *bstate =
1530             &blend->pAttachments[i];
1531
1532          if (bstate->blendEnable &&
1533              (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1534               is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1535               is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1536               is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1537             dual_src_blend = true;
1538             break;
1539          }
1540       }
1541    }
1542 #endif
1543
1544    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1545       ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
1546       ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
1547       ps._32PixelDispatchEnable     = wm_prog_data->dispatch_32;
1548
1549       /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1550        *
1551        *    "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1552        *    Dispatch must not be enabled for PER_PIXEL dispatch mode."
1553        *
1554        * Since 16x MSAA is first introduced on SKL, we don't need to apply
1555        * the workaround on any older hardware.
1556        */
1557       if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1558           multisample && multisample->rasterizationSamples == 16) {
1559          assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1560          ps._32PixelDispatchEnable = false;
1561       }
1562
1563       ps.KernelStartPointer0 = fs_bin->kernel.offset +
1564                                brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1565       ps.KernelStartPointer1 = fs_bin->kernel.offset +
1566                                brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1567       ps.KernelStartPointer2 = fs_bin->kernel.offset +
1568                                brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1569
1570       ps.SingleProgramFlow          = false;
1571       ps.VectorMaskEnable           = true;
1572       ps.SamplerCount               = get_sampler_count(fs_bin);
1573       /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1574       ps.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1575       ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
1576                                       wm_prog_data->base.ubo_ranges[0].length;
1577       ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
1578                                       POSOFFSET_SAMPLE: POSOFFSET_NONE;
1579 #if GEN_GEN < 8
1580       ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
1581       ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1582       ps.DualSourceBlendEnable      = dual_src_blend;
1583 #endif
1584
1585 #if GEN_IS_HASWELL
1586       /* Haswell requires the sample mask to be set in this packet as well
1587        * as in 3DSTATE_SAMPLE_MASK; the values should match.
1588        */
1589       ps.SampleMask                 = 0xff;
1590 #endif
1591
1592 #if GEN_GEN >= 9
1593       ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
1594 #elif GEN_GEN >= 8
1595       ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
1596 #else
1597       ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
1598 #endif
1599
1600       ps.DispatchGRFStartRegisterForConstantSetupData0 =
1601          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1602       ps.DispatchGRFStartRegisterForConstantSetupData1 =
1603          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1604       ps.DispatchGRFStartRegisterForConstantSetupData2 =
1605          brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1606
1607       ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
1608       ps.ScratchSpaceBasePointer =
1609          get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1610    }
1611 }
1612
1613 #if GEN_GEN >= 8
1614 static void
1615 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1616                       struct anv_subpass *subpass,
1617                       const VkPipelineColorBlendStateCreateInfo *blend)
1618 {
1619    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1620
1621    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1622       anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1623       return;
1624    }
1625
1626    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1627       ps.PixelShaderValid              = true;
1628       ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
1629       ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
1630       ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
1631       ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1632       ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1633       ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1634
1635       /* If the subpass has a depth or stencil self-dependency, then we need
1636        * to force the hardware to do the depth/stencil write *after* fragment
1637        * shader execution.  Otherwise, the writes may hit memory before we get
1638        * around to fetching from the input attachment and we may get the depth
1639        * or stencil value from the current draw rather than the previous one.
1640        */
1641       ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1642                                          wm_prog_data->uses_kill;
1643
1644 #if GEN_GEN >= 9
1645       ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
1646       ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
1647
1648       ps.InputCoverageMaskState  = ICMS_NONE;
1649       if (wm_prog_data->uses_sample_mask) {
1650          if (wm_prog_data->post_depth_coverage)
1651             ps.InputCoverageMaskState  = ICMS_DEPTH_COVERAGE;
1652          else
1653             ps.InputCoverageMaskState  = ICMS_INNER_CONSERVATIVE;
1654       }
1655 #else
1656       ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1657 #endif
1658    }
1659 }
1660
1661 static void
1662 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1663 {
1664    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1665       vft.PrimitiveTopologyType = pipeline->topology;
1666    }
1667 }
1668 #endif
1669
1670 static void
1671 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1672 {
1673    anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1674       vfs.StatisticsEnable = true;
1675    }
1676 }
1677
1678 static void
1679 compute_kill_pixel(struct anv_pipeline *pipeline,
1680                    const VkPipelineMultisampleStateCreateInfo *ms_info,
1681                    const struct anv_subpass *subpass)
1682 {
1683    if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1684       pipeline->kill_pixel = false;
1685       return;
1686    }
1687
1688    const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1689
1690    /* This computes the KillPixel portion of the computation for whether or
1691     * not we want to enable the PMA fix on gen8 or gen9.  It's given by this
1692     * chunk of the giant formula:
1693     *
1694     *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1695     *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1696     *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1697     *     3DSTATE_PS_BLEND::AlphaTestEnable ||
1698     *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1699     *
1700     * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1701     * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1702     * of an alpha test.
1703     */
1704    pipeline->kill_pixel =
1705       subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1706       wm_prog_data->uses_omask ||
1707       (ms_info && ms_info->alphaToCoverageEnable);
1708 }
1709
1710 static VkResult
1711 genX(graphics_pipeline_create)(
1712     VkDevice                                    _device,
1713     struct anv_pipeline_cache *                 cache,
1714     const VkGraphicsPipelineCreateInfo*         pCreateInfo,
1715     const VkAllocationCallbacks*                pAllocator,
1716     VkPipeline*                                 pPipeline)
1717 {
1718    ANV_FROM_HANDLE(anv_device, device, _device);
1719    ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1720    struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1721    struct anv_pipeline *pipeline;
1722    VkResult result;
1723
1724    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1725
1726    /* Use the default pipeline cache if none is specified */
1727    if (cache == NULL && device->instance->pipeline_cache_enabled)
1728       cache = &device->default_pipeline_cache;
1729
1730    pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1731                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1732    if (pipeline == NULL)
1733       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1734
1735    result = anv_pipeline_init(pipeline, device, cache,
1736                               pCreateInfo, pAllocator);
1737    if (result != VK_SUCCESS) {
1738       vk_free2(&device->alloc, pAllocator, pipeline);
1739       return result;
1740    }
1741
1742    assert(pCreateInfo->pVertexInputState);
1743    emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1744    assert(pCreateInfo->pRasterizationState);
1745    emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1746                  pCreateInfo->pMultisampleState, pass, subpass);
1747    emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1748    emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1749    emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1750                            pCreateInfo->pMultisampleState);
1751    compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1752
1753    emit_urb_setup(pipeline);
1754
1755    emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1756                      pCreateInfo->pRasterizationState);
1757    emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1758
1759 #if 0
1760    /* From gen7_vs_state.c */
1761
1762    /**
1763     * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1764     * Geometry > Geometry Shader > State:
1765     *
1766     *     "Note: Because of corruption in IVB:GT2, software needs to flush the
1767     *     whole fixed function pipeline when the GS enable changes value in
1768     *     the 3DSTATE_GS."
1769     *
1770     * The hardware architects have clarified that in this context "flush the
1771     * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1772     * Stall" bit set.
1773     */
1774    if (!device->info.is_haswell && !device->info.is_baytrail)
1775       gen7_emit_vs_workaround_flush(brw);
1776 #endif
1777
1778    emit_3dstate_vs(pipeline);
1779    emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
1780    emit_3dstate_gs(pipeline);
1781    emit_3dstate_sbe(pipeline);
1782    emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
1783                    pCreateInfo->pMultisampleState);
1784    emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
1785                    pCreateInfo->pMultisampleState);
1786 #if GEN_GEN >= 8
1787    emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
1788    emit_3dstate_vf_topology(pipeline);
1789 #endif
1790    emit_3dstate_vf_statistics(pipeline);
1791
1792    *pPipeline = anv_pipeline_to_handle(pipeline);
1793
1794    return pipeline->batch.status;
1795 }
1796
1797 static VkResult
1798 compute_pipeline_create(
1799     VkDevice                                    _device,
1800     struct anv_pipeline_cache *                 cache,
1801     const VkComputePipelineCreateInfo*          pCreateInfo,
1802     const VkAllocationCallbacks*                pAllocator,
1803     VkPipeline*                                 pPipeline)
1804 {
1805    ANV_FROM_HANDLE(anv_device, device, _device);
1806    const struct anv_physical_device *physical_device =
1807       &device->instance->physicalDevice;
1808    const struct gen_device_info *devinfo = &physical_device->info;
1809    struct anv_pipeline *pipeline;
1810    VkResult result;
1811
1812    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1813
1814    /* Use the default pipeline cache if none is specified */
1815    if (cache == NULL && device->instance->pipeline_cache_enabled)
1816       cache = &device->default_pipeline_cache;
1817
1818    pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1819                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1820    if (pipeline == NULL)
1821       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1822
1823    pipeline->device = device;
1824
1825    pipeline->blend_state.map = NULL;
1826
1827    result = anv_reloc_list_init(&pipeline->batch_relocs,
1828                                 pAllocator ? pAllocator : &device->alloc);
1829    if (result != VK_SUCCESS) {
1830       vk_free2(&device->alloc, pAllocator, pipeline);
1831       return result;
1832    }
1833    pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1834    pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1835    pipeline->batch.relocs = &pipeline->batch_relocs;
1836    pipeline->batch.status = VK_SUCCESS;
1837
1838    /* When we free the pipeline, we detect stages based on the NULL status
1839     * of various prog_data pointers.  Make them NULL by default.
1840     */
1841    memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1842
1843    pipeline->needs_data_cache = false;
1844
1845    assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1846    pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
1847    ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
1848    result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1849                                     pCreateInfo->stage.pName,
1850                                     pCreateInfo->stage.pSpecializationInfo);
1851    if (result != VK_SUCCESS) {
1852       vk_free2(&device->alloc, pAllocator, pipeline);
1853       return result;
1854    }
1855
1856    const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1857
1858    anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1859
1860    uint32_t group_size = cs_prog_data->local_size[0] *
1861       cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1862    uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1863
1864    if (remainder > 0)
1865       pipeline->cs_right_mask = ~0u >> (32 - remainder);
1866    else
1867       pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1868
1869    const uint32_t vfe_curbe_allocation =
1870       ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1871             cs_prog_data->push.cross_thread.regs, 2);
1872
1873    const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1874
1875    const struct anv_shader_bin *cs_bin =
1876       pipeline->shaders[MESA_SHADER_COMPUTE];
1877
1878    anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1879 #if GEN_GEN > 7
1880       vfe.StackSize              = 0;
1881 #else
1882       vfe.GPGPUMode              = true;
1883 #endif
1884       vfe.MaximumNumberofThreads =
1885          devinfo->max_cs_threads * subslices - 1;
1886       vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
1887 #if GEN_GEN < 11
1888       vfe.ResetGatewayTimer      = true;
1889 #endif
1890 #if GEN_GEN <= 8
1891       vfe.BypassGatewayControl   = true;
1892 #endif
1893       vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1894       vfe.CURBEAllocationSize    = vfe_curbe_allocation;
1895
1896       vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1897       vfe.ScratchSpaceBasePointer =
1898          get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1899    }
1900
1901    struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1902       .KernelStartPointer     = cs_bin->kernel.offset,
1903
1904       .SamplerCount           = get_sampler_count(cs_bin),
1905       /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1906       .BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(cs_bin),
1907       .BarrierEnable          = cs_prog_data->uses_barrier,
1908       .SharedLocalMemorySize  =
1909          encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1910
1911 #if !GEN_IS_HASWELL
1912       .ConstantURBEntryReadOffset = 0,
1913 #endif
1914       .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1915 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1916       .CrossThreadConstantDataReadLength =
1917          cs_prog_data->push.cross_thread.regs,
1918 #endif
1919
1920       .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1921    };
1922    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1923                                         pipeline->interface_descriptor_data,
1924                                         &desc);
1925
1926    *pPipeline = anv_pipeline_to_handle(pipeline);
1927
1928    return pipeline->batch.status;
1929 }
1930
1931 VkResult genX(CreateGraphicsPipelines)(
1932     VkDevice                                    _device,
1933     VkPipelineCache                             pipelineCache,
1934     uint32_t                                    count,
1935     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1936     const VkAllocationCallbacks*                pAllocator,
1937     VkPipeline*                                 pPipelines)
1938 {
1939    ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1940
1941    VkResult result = VK_SUCCESS;
1942
1943    unsigned i;
1944    for (i = 0; i < count; i++) {
1945       result = genX(graphics_pipeline_create)(_device,
1946                                               pipeline_cache,
1947                                               &pCreateInfos[i],
1948                                               pAllocator, &pPipelines[i]);
1949
1950       /* Bail out on the first error as it is not obvious what error should be
1951        * report upon 2 different failures. */
1952       if (result != VK_SUCCESS)
1953          break;
1954    }
1955
1956    for (; i < count; i++)
1957       pPipelines[i] = VK_NULL_HANDLE;
1958
1959    return result;
1960 }
1961
1962 VkResult genX(CreateComputePipelines)(
1963     VkDevice                                    _device,
1964     VkPipelineCache                             pipelineCache,
1965     uint32_t                                    count,
1966     const VkComputePipelineCreateInfo*          pCreateInfos,
1967     const VkAllocationCallbacks*                pAllocator,
1968     VkPipeline*                                 pPipelines)
1969 {
1970    ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1971
1972    VkResult result = VK_SUCCESS;
1973
1974    unsigned i;
1975    for (i = 0; i < count; i++) {
1976       result = compute_pipeline_create(_device, pipeline_cache,
1977                                        &pCreateInfos[i],
1978                                        pAllocator, &pPipelines[i]);
1979
1980       /* Bail out on the first error as it is not obvious what error should be
1981        * report upon 2 different failures. */
1982       if (result != VK_SUCCESS)
1983          break;
1984    }
1985
1986    for (; i < count; i++)
1987       pPipelines[i] = VK_NULL_HANDLE;
1988
1989    return result;
1990 }