OSDN Git Service

i965: Index sampler program key data by linker-assigned index.
[android-x86/external-mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 /** @file brw_fs.cpp
25  *
26  * This file drives the GLSL IR -> LIR translation, contains the
27  * optimizations on the LIR, and drives the generation of native code
28  * from the LIR.
29  */
30
31 extern "C" {
32
33 #include <sys/types.h>
34
35 #include "main/macros.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/fbobject.h"
39 #include "program/prog_parameter.h"
40 #include "program/prog_print.h"
41 #include "program/register_allocate.h"
42 #include "program/sampler.h"
43 #include "program/hash_table.h"
44 #include "brw_context.h"
45 #include "brw_eu.h"
46 #include "brw_wm.h"
47 }
48 #include "brw_shader.h"
49 #include "brw_fs.h"
50 #include "glsl/glsl_types.h"
51 #include "glsl/ir_print_visitor.h"
52
53 void
54 fs_inst::init()
55 {
56    memset(this, 0, sizeof(*this));
57    this->opcode = BRW_OPCODE_NOP;
58    this->conditional_mod = BRW_CONDITIONAL_NONE;
59
60    this->dst = reg_undef;
61    this->src[0] = reg_undef;
62    this->src[1] = reg_undef;
63    this->src[2] = reg_undef;
64 }
65
66 fs_inst::fs_inst()
67 {
68    init();
69 }
70
71 fs_inst::fs_inst(enum opcode opcode)
72 {
73    init();
74    this->opcode = opcode;
75 }
76
77 fs_inst::fs_inst(enum opcode opcode, fs_reg dst)
78 {
79    init();
80    this->opcode = opcode;
81    this->dst = dst;
82
83    if (dst.file == GRF)
84       assert(dst.reg_offset >= 0);
85 }
86
87 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0)
88 {
89    init();
90    this->opcode = opcode;
91    this->dst = dst;
92    this->src[0] = src0;
93
94    if (dst.file == GRF)
95       assert(dst.reg_offset >= 0);
96    if (src[0].file == GRF)
97       assert(src[0].reg_offset >= 0);
98 }
99
100 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
101 {
102    init();
103    this->opcode = opcode;
104    this->dst = dst;
105    this->src[0] = src0;
106    this->src[1] = src1;
107
108    if (dst.file == GRF)
109       assert(dst.reg_offset >= 0);
110    if (src[0].file == GRF)
111       assert(src[0].reg_offset >= 0);
112    if (src[1].file == GRF)
113       assert(src[1].reg_offset >= 0);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, fs_reg dst,
117                  fs_reg src0, fs_reg src1, fs_reg src2)
118 {
119    init();
120    this->opcode = opcode;
121    this->dst = dst;
122    this->src[0] = src0;
123    this->src[1] = src1;
124    this->src[2] = src2;
125
126    if (dst.file == GRF)
127       assert(dst.reg_offset >= 0);
128    if (src[0].file == GRF)
129       assert(src[0].reg_offset >= 0);
130    if (src[1].file == GRF)
131       assert(src[1].reg_offset >= 0);
132    if (src[2].file == GRF)
133       assert(src[2].reg_offset >= 0);
134 }
135
136 bool
137 fs_inst::equals(fs_inst *inst)
138 {
139    return (opcode == inst->opcode &&
140            dst.equals(inst->dst) &&
141            src[0].equals(inst->src[0]) &&
142            src[1].equals(inst->src[1]) &&
143            src[2].equals(inst->src[2]) &&
144            saturate == inst->saturate &&
145            predicated == inst->predicated &&
146            conditional_mod == inst->conditional_mod &&
147            mlen == inst->mlen &&
148            base_mrf == inst->base_mrf &&
149            sampler == inst->sampler &&
150            target == inst->target &&
151            eot == inst->eot &&
152            header_present == inst->header_present &&
153            shadow_compare == inst->shadow_compare &&
154            offset == inst->offset);
155 }
156
157 int
158 fs_inst::regs_written()
159 {
160    if (is_tex())
161       return 4;
162
163    /* The SINCOS and INT_DIV_QUOTIENT_AND_REMAINDER math functions return 2,
164     * but we don't currently use them...nor do we have an opcode for them.
165     */
166
167    return 1;
168 }
169
170 bool
171 fs_inst::overwrites_reg(const fs_reg &reg)
172 {
173    return (reg.file == dst.file &&
174            reg.reg == dst.reg &&
175            reg.reg_offset >= dst.reg_offset  &&
176            reg.reg_offset < dst.reg_offset + regs_written());
177 }
178
179 bool
180 fs_inst::is_tex()
181 {
182    return (opcode == SHADER_OPCODE_TEX ||
183            opcode == FS_OPCODE_TXB ||
184            opcode == SHADER_OPCODE_TXD ||
185            opcode == SHADER_OPCODE_TXF ||
186            opcode == SHADER_OPCODE_TXL ||
187            opcode == SHADER_OPCODE_TXS);
188 }
189
190 bool
191 fs_inst::is_math()
192 {
193    return (opcode == SHADER_OPCODE_RCP ||
194            opcode == SHADER_OPCODE_RSQ ||
195            opcode == SHADER_OPCODE_SQRT ||
196            opcode == SHADER_OPCODE_EXP2 ||
197            opcode == SHADER_OPCODE_LOG2 ||
198            opcode == SHADER_OPCODE_SIN ||
199            opcode == SHADER_OPCODE_COS ||
200            opcode == SHADER_OPCODE_INT_QUOTIENT ||
201            opcode == SHADER_OPCODE_INT_REMAINDER ||
202            opcode == SHADER_OPCODE_POW);
203 }
204
205 void
206 fs_reg::init()
207 {
208    memset(this, 0, sizeof(*this));
209    this->smear = -1;
210 }
211
212 /** Generic unset register constructor. */
213 fs_reg::fs_reg()
214 {
215    init();
216    this->file = BAD_FILE;
217 }
218
219 /** Immediate value constructor. */
220 fs_reg::fs_reg(float f)
221 {
222    init();
223    this->file = IMM;
224    this->type = BRW_REGISTER_TYPE_F;
225    this->imm.f = f;
226 }
227
228 /** Immediate value constructor. */
229 fs_reg::fs_reg(int32_t i)
230 {
231    init();
232    this->file = IMM;
233    this->type = BRW_REGISTER_TYPE_D;
234    this->imm.i = i;
235 }
236
237 /** Immediate value constructor. */
238 fs_reg::fs_reg(uint32_t u)
239 {
240    init();
241    this->file = IMM;
242    this->type = BRW_REGISTER_TYPE_UD;
243    this->imm.u = u;
244 }
245
246 /** Fixed brw_reg Immediate value constructor. */
247 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
248 {
249    init();
250    this->file = FIXED_HW_REG;
251    this->fixed_hw_reg = fixed_hw_reg;
252    this->type = fixed_hw_reg.type;
253 }
254
255 bool
256 fs_reg::equals(const fs_reg &r) const
257 {
258    return (file == r.file &&
259            reg == r.reg &&
260            reg_offset == r.reg_offset &&
261            type == r.type &&
262            negate == r.negate &&
263            abs == r.abs &&
264            memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
265                   sizeof(fixed_hw_reg)) == 0 &&
266            smear == r.smear &&
267            imm.u == r.imm.u);
268 }
269
270 int
271 fs_visitor::type_size(const struct glsl_type *type)
272 {
273    unsigned int size, i;
274
275    switch (type->base_type) {
276    case GLSL_TYPE_UINT:
277    case GLSL_TYPE_INT:
278    case GLSL_TYPE_FLOAT:
279    case GLSL_TYPE_BOOL:
280       return type->components();
281    case GLSL_TYPE_ARRAY:
282       return type_size(type->fields.array) * type->length;
283    case GLSL_TYPE_STRUCT:
284       size = 0;
285       for (i = 0; i < type->length; i++) {
286          size += type_size(type->fields.structure[i].type);
287       }
288       return size;
289    case GLSL_TYPE_SAMPLER:
290       /* Samplers take up no register space, since they're baked in at
291        * link time.
292        */
293       return 0;
294    default:
295       assert(!"not reached");
296       return 0;
297    }
298 }
299
300 void
301 fs_visitor::fail(const char *format, ...)
302 {
303    va_list va;
304    char *msg;
305
306    if (failed)
307       return;
308
309    failed = true;
310
311    va_start(va, format);
312    msg = ralloc_vasprintf(mem_ctx, format, va);
313    va_end(va);
314    msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
315
316    this->fail_msg = msg;
317
318    if (INTEL_DEBUG & DEBUG_WM) {
319       fprintf(stderr, "%s",  msg);
320    }
321 }
322
323 fs_inst *
324 fs_visitor::emit(enum opcode opcode)
325 {
326    return emit(fs_inst(opcode));
327 }
328
329 fs_inst *
330 fs_visitor::emit(enum opcode opcode, fs_reg dst)
331 {
332    return emit(fs_inst(opcode, dst));
333 }
334
335 fs_inst *
336 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0)
337 {
338    return emit(fs_inst(opcode, dst, src0));
339 }
340
341 fs_inst *
342 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
343 {
344    return emit(fs_inst(opcode, dst, src0, src1));
345 }
346
347 fs_inst *
348 fs_visitor::emit(enum opcode opcode, fs_reg dst,
349                  fs_reg src0, fs_reg src1, fs_reg src2)
350 {
351    return emit(fs_inst(opcode, dst, src0, src1, src2));
352 }
353
354 void
355 fs_visitor::push_force_uncompressed()
356 {
357    force_uncompressed_stack++;
358 }
359
360 void
361 fs_visitor::pop_force_uncompressed()
362 {
363    force_uncompressed_stack--;
364    assert(force_uncompressed_stack >= 0);
365 }
366
367 void
368 fs_visitor::push_force_sechalf()
369 {
370    force_sechalf_stack++;
371 }
372
373 void
374 fs_visitor::pop_force_sechalf()
375 {
376    force_sechalf_stack--;
377    assert(force_sechalf_stack >= 0);
378 }
379
380 /**
381  * Returns how many MRFs an FS opcode will write over.
382  *
383  * Note that this is not the 0 or 1 implied writes in an actual gen
384  * instruction -- the FS opcodes often generate MOVs in addition.
385  */
386 int
387 fs_visitor::implied_mrf_writes(fs_inst *inst)
388 {
389    if (inst->mlen == 0)
390       return 0;
391
392    switch (inst->opcode) {
393    case SHADER_OPCODE_RCP:
394    case SHADER_OPCODE_RSQ:
395    case SHADER_OPCODE_SQRT:
396    case SHADER_OPCODE_EXP2:
397    case SHADER_OPCODE_LOG2:
398    case SHADER_OPCODE_SIN:
399    case SHADER_OPCODE_COS:
400       return 1 * c->dispatch_width / 8;
401    case SHADER_OPCODE_POW:
402    case SHADER_OPCODE_INT_QUOTIENT:
403    case SHADER_OPCODE_INT_REMAINDER:
404       return 2 * c->dispatch_width / 8;
405    case SHADER_OPCODE_TEX:
406    case FS_OPCODE_TXB:
407    case SHADER_OPCODE_TXD:
408    case SHADER_OPCODE_TXF:
409    case SHADER_OPCODE_TXL:
410    case SHADER_OPCODE_TXS:
411       return 1;
412    case FS_OPCODE_FB_WRITE:
413       return 2;
414    case FS_OPCODE_PULL_CONSTANT_LOAD:
415    case FS_OPCODE_UNSPILL:
416       return 1;
417    case FS_OPCODE_SPILL:
418       return 2;
419    default:
420       assert(!"not reached");
421       return inst->mlen;
422    }
423 }
424
425 int
426 fs_visitor::virtual_grf_alloc(int size)
427 {
428    if (virtual_grf_array_size <= virtual_grf_count) {
429       if (virtual_grf_array_size == 0)
430          virtual_grf_array_size = 16;
431       else
432          virtual_grf_array_size *= 2;
433       virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
434                                    virtual_grf_array_size);
435    }
436    virtual_grf_sizes[virtual_grf_count] = size;
437    return virtual_grf_count++;
438 }
439
440 /** Fixed HW reg constructor. */
441 fs_reg::fs_reg(enum register_file file, int reg)
442 {
443    init();
444    this->file = file;
445    this->reg = reg;
446    this->type = BRW_REGISTER_TYPE_F;
447 }
448
449 /** Fixed HW reg constructor. */
450 fs_reg::fs_reg(enum register_file file, int reg, uint32_t type)
451 {
452    init();
453    this->file = file;
454    this->reg = reg;
455    this->type = type;
456 }
457
458 /** Automatic reg constructor. */
459 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
460 {
461    init();
462
463    this->file = GRF;
464    this->reg = v->virtual_grf_alloc(v->type_size(type));
465    this->reg_offset = 0;
466    this->type = brw_type_for_base_type(type);
467 }
468
469 fs_reg *
470 fs_visitor::variable_storage(ir_variable *var)
471 {
472    return (fs_reg *)hash_table_find(this->variable_ht, var);
473 }
474
475 void
476 import_uniforms_callback(const void *key,
477                          void *data,
478                          void *closure)
479 {
480    struct hash_table *dst_ht = (struct hash_table *)closure;
481    const fs_reg *reg = (const fs_reg *)data;
482
483    if (reg->file != UNIFORM)
484       return;
485
486    hash_table_insert(dst_ht, data, key);
487 }
488
489 /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
490  * This brings in those uniform definitions
491  */
492 void
493 fs_visitor::import_uniforms(fs_visitor *v)
494 {
495    hash_table_call_foreach(v->variable_ht,
496                            import_uniforms_callback,
497                            variable_ht);
498    this->params_remap = v->params_remap;
499 }
500
501 /* Our support for uniforms is piggy-backed on the struct
502  * gl_fragment_program, because that's where the values actually
503  * get stored, rather than in some global gl_shader_program uniform
504  * store.
505  */
506 int
507 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
508 {
509    unsigned int offset = 0;
510
511    if (type->is_matrix()) {
512       const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
513                                                         type->vector_elements,
514                                                         1);
515
516       for (unsigned int i = 0; i < type->matrix_columns; i++) {
517          offset += setup_uniform_values(loc + offset, column);
518       }
519
520       return offset;
521    }
522
523    switch (type->base_type) {
524    case GLSL_TYPE_FLOAT:
525    case GLSL_TYPE_UINT:
526    case GLSL_TYPE_INT:
527    case GLSL_TYPE_BOOL:
528       for (unsigned int i = 0; i < type->vector_elements; i++) {
529          unsigned int param = c->prog_data.nr_params++;
530
531          assert(param < ARRAY_SIZE(c->prog_data.param));
532
533          this->param_index[param] = loc;
534          this->param_offset[param] = i;
535       }
536       return 1;
537
538    case GLSL_TYPE_STRUCT:
539       for (unsigned int i = 0; i < type->length; i++) {
540          offset += setup_uniform_values(loc + offset,
541                                         type->fields.structure[i].type);
542       }
543       return offset;
544
545    case GLSL_TYPE_ARRAY:
546       for (unsigned int i = 0; i < type->length; i++) {
547          offset += setup_uniform_values(loc + offset, type->fields.array);
548       }
549       return offset;
550
551    case GLSL_TYPE_SAMPLER:
552       /* The sampler takes up a slot, but we don't use any values from it. */
553       return 1;
554
555    default:
556       assert(!"not reached");
557       return 0;
558    }
559 }
560
561
562 /* Our support for builtin uniforms is even scarier than non-builtin.
563  * It sits on top of the PROG_STATE_VAR parameters that are
564  * automatically updated from GL context state.
565  */
566 void
567 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
568 {
569    const ir_state_slot *const slots = ir->state_slots;
570    assert(ir->state_slots != NULL);
571
572    for (unsigned int i = 0; i < ir->num_state_slots; i++) {
573       /* This state reference has already been setup by ir_to_mesa, but we'll
574        * get the same index back here.
575        */
576       int index = _mesa_add_state_reference(this->fp->Base.Parameters,
577                                             (gl_state_index *)slots[i].tokens);
578
579       /* Add each of the unique swizzles of the element as a parameter.
580        * This'll end up matching the expected layout of the
581        * array/matrix/structure we're trying to fill in.
582        */
583       int last_swiz = -1;
584       for (unsigned int j = 0; j < 4; j++) {
585          int swiz = GET_SWZ(slots[i].swizzle, j);
586          if (swiz == last_swiz)
587             break;
588          last_swiz = swiz;
589
590          this->param_index[c->prog_data.nr_params] = index;
591          this->param_offset[c->prog_data.nr_params] = swiz;
592          c->prog_data.nr_params++;
593       }
594    }
595 }
596
597 fs_reg *
598 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
599 {
600    fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
601    fs_reg wpos = *reg;
602    bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
603
604    /* gl_FragCoord.x */
605    if (ir->pixel_center_integer) {
606       emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
607    } else {
608       emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
609    }
610    wpos.reg_offset++;
611
612    /* gl_FragCoord.y */
613    if (!flip && ir->pixel_center_integer) {
614       emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
615    } else {
616       fs_reg pixel_y = this->pixel_y;
617       float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
618
619       if (flip) {
620          pixel_y.negate = true;
621          offset += c->key.drawable_height - 1.0;
622       }
623
624       emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
625    }
626    wpos.reg_offset++;
627
628    /* gl_FragCoord.z */
629    if (intel->gen >= 6) {
630       emit(BRW_OPCODE_MOV, wpos,
631            fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
632    } else {
633       emit(FS_OPCODE_LINTERP, wpos,
634            this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
635            this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
636            interp_reg(FRAG_ATTRIB_WPOS, 2));
637    }
638    wpos.reg_offset++;
639
640    /* gl_FragCoord.w: Already set up in emit_interpolation */
641    emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
642
643    return reg;
644 }
645
646 fs_inst *
647 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
648                          glsl_interp_qualifier interpolation_mode,
649                          bool is_centroid)
650 {
651    brw_wm_barycentric_interp_mode barycoord_mode;
652    if (is_centroid) {
653       if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
654          barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
655       else
656          barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
657    } else {
658       if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
659          barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
660       else
661          barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
662    }
663    return emit(FS_OPCODE_LINTERP, attr,
664                this->delta_x[barycoord_mode],
665                this->delta_y[barycoord_mode], interp);
666 }
667
668 fs_reg *
669 fs_visitor::emit_general_interpolation(ir_variable *ir)
670 {
671    fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
672    reg->type = brw_type_for_base_type(ir->type->get_scalar_type());
673    fs_reg attr = *reg;
674
675    unsigned int array_elements;
676    const glsl_type *type;
677
678    if (ir->type->is_array()) {
679       array_elements = ir->type->length;
680       if (array_elements == 0) {
681          fail("dereferenced array '%s' has length 0\n", ir->name);
682       }
683       type = ir->type->fields.array;
684    } else {
685       array_elements = 1;
686       type = ir->type;
687    }
688
689    glsl_interp_qualifier interpolation_mode =
690       ir->determine_interpolation_mode(c->key.flat_shade);
691
692    int location = ir->location;
693    for (unsigned int i = 0; i < array_elements; i++) {
694       for (unsigned int j = 0; j < type->matrix_columns; j++) {
695          if (urb_setup[location] == -1) {
696             /* If there's no incoming setup data for this slot, don't
697              * emit interpolation for it.
698              */
699             attr.reg_offset += type->vector_elements;
700             location++;
701             continue;
702          }
703
704          if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
705             /* Constant interpolation (flat shading) case. The SF has
706              * handed us defined values in only the constant offset
707              * field of the setup reg.
708              */
709             for (unsigned int k = 0; k < type->vector_elements; k++) {
710                struct brw_reg interp = interp_reg(location, k);
711                interp = suboffset(interp, 3);
712                interp.type = reg->type;
713                emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
714                attr.reg_offset++;
715             }
716          } else {
717             /* Smooth/noperspective interpolation case. */
718             for (unsigned int k = 0; k < type->vector_elements; k++) {
719                /* FINISHME: At some point we probably want to push
720                 * this farther by giving similar treatment to the
721                 * other potentially constant components of the
722                 * attribute, as well as making brw_vs_constval.c
723                 * handle varyings other than gl_TexCoord.
724                 */
725                if (location >= FRAG_ATTRIB_TEX0 &&
726                    location <= FRAG_ATTRIB_TEX7 &&
727                    k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
728                   emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
729                } else {
730                   struct brw_reg interp = interp_reg(location, k);
731                   emit_linterp(attr, fs_reg(interp), interpolation_mode,
732                                ir->centroid);
733                   if (brw->needs_unlit_centroid_workaround && ir->centroid) {
734                      /* Get the pixel/sample mask into f0 so that we know
735                       * which pixels are lit.  Then, for each channel that is
736                       * unlit, replace the centroid data with non-centroid
737                       * data.
738                       */
739                      emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS, attr);
740                      fs_inst *inst = emit_linterp(attr, fs_reg(interp),
741                                                   interpolation_mode, false);
742                      inst->predicated = true;
743                      inst->predicate_inverse = true;
744                   }
745                   if (intel->gen < 6) {
746                      emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
747                   }
748                }
749                attr.reg_offset++;
750             }
751
752          }
753          location++;
754       }
755    }
756
757    return reg;
758 }
759
760 fs_reg *
761 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
762 {
763    fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
764
765    /* The frontfacing comes in as a bit in the thread payload. */
766    if (intel->gen >= 6) {
767       emit(BRW_OPCODE_ASR, *reg,
768            fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
769            fs_reg(15));
770       emit(BRW_OPCODE_NOT, *reg, *reg);
771       emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
772    } else {
773       struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
774       /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
775        * us front face
776        */
777       fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
778                            fs_reg(r1_6ud),
779                            fs_reg(1u << 31));
780       inst->conditional_mod = BRW_CONDITIONAL_L;
781       emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
782    }
783
784    return reg;
785 }
786
787 fs_inst *
788 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
789 {
790    switch (opcode) {
791    case SHADER_OPCODE_RCP:
792    case SHADER_OPCODE_RSQ:
793    case SHADER_OPCODE_SQRT:
794    case SHADER_OPCODE_EXP2:
795    case SHADER_OPCODE_LOG2:
796    case SHADER_OPCODE_SIN:
797    case SHADER_OPCODE_COS:
798       break;
799    default:
800       assert(!"not reached: bad math opcode");
801       return NULL;
802    }
803
804    /* Can't do hstride == 0 args to gen6 math, so expand it out.  We
805     * might be able to do better by doing execsize = 1 math and then
806     * expanding that result out, but we would need to be careful with
807     * masking.
808     *
809     * Gen 6 hardware ignores source modifiers (negate and abs) on math
810     * instructions, so we also move to a temp to set those up.
811     */
812    if (intel->gen == 6 && (src.file == UNIFORM ||
813                            src.abs ||
814                            src.negate)) {
815       fs_reg expanded = fs_reg(this, glsl_type::float_type);
816       emit(BRW_OPCODE_MOV, expanded, src);
817       src = expanded;
818    }
819
820    fs_inst *inst = emit(opcode, dst, src);
821
822    if (intel->gen < 6) {
823       inst->base_mrf = 2;
824       inst->mlen = c->dispatch_width / 8;
825    }
826
827    return inst;
828 }
829
830 fs_inst *
831 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
832 {
833    int base_mrf = 2;
834    fs_inst *inst;
835
836    switch (opcode) {
837    case SHADER_OPCODE_POW:
838    case SHADER_OPCODE_INT_QUOTIENT:
839    case SHADER_OPCODE_INT_REMAINDER:
840       break;
841    default:
842       assert(!"not reached: unsupported binary math opcode.");
843       return NULL;
844    }
845
846    if (intel->gen >= 7) {
847       inst = emit(opcode, dst, src0, src1);
848    } else if (intel->gen == 6) {
849       /* Can't do hstride == 0 args to gen6 math, so expand it out.
850        *
851        * The hardware ignores source modifiers (negate and abs) on math
852        * instructions, so we also move to a temp to set those up.
853        */
854       if (src0.file == UNIFORM || src0.abs || src0.negate) {
855          fs_reg expanded = fs_reg(this, glsl_type::float_type);
856          expanded.type = src0.type;
857          emit(BRW_OPCODE_MOV, expanded, src0);
858          src0 = expanded;
859       }
860
861       if (src1.file == UNIFORM || src1.abs || src1.negate) {
862          fs_reg expanded = fs_reg(this, glsl_type::float_type);
863          expanded.type = src1.type;
864          emit(BRW_OPCODE_MOV, expanded, src1);
865          src1 = expanded;
866       }
867
868       inst = emit(opcode, dst, src0, src1);
869    } else {
870       /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
871        * "Message Payload":
872        *
873        * "Operand0[7].  For the INT DIV functions, this operand is the
874        *  denominator."
875        *  ...
876        * "Operand1[7].  For the INT DIV functions, this operand is the
877        *  numerator."
878        */
879       bool is_int_div = opcode != SHADER_OPCODE_POW;
880       fs_reg &op0 = is_int_div ? src1 : src0;
881       fs_reg &op1 = is_int_div ? src0 : src1;
882
883       emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1);
884       inst = emit(opcode, dst, op0, reg_null_f);
885
886       inst->base_mrf = base_mrf;
887       inst->mlen = 2 * c->dispatch_width / 8;
888    }
889    return inst;
890 }
891
892 /**
893  * To be called after the last _mesa_add_state_reference() call, to
894  * set up prog_data.param[] for assign_curb_setup() and
895  * setup_pull_constants().
896  */
897 void
898 fs_visitor::setup_paramvalues_refs()
899 {
900    if (c->dispatch_width != 8)
901       return;
902
903    /* Set up the pointers to ParamValues now that that array is finalized. */
904    for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
905       c->prog_data.param[i] =
906          (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] +
907          this->param_offset[i];
908    }
909 }
910
911 void
912 fs_visitor::assign_curb_setup()
913 {
914    c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
915    if (c->dispatch_width == 8) {
916       c->prog_data.first_curbe_grf = c->nr_payload_regs;
917    } else {
918       c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
919    }
920
921    /* Map the offsets in the UNIFORM file to fixed HW regs. */
922    foreach_list(node, &this->instructions) {
923       fs_inst *inst = (fs_inst *)node;
924
925       for (unsigned int i = 0; i < 3; i++) {
926          if (inst->src[i].file == UNIFORM) {
927             int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
928             struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
929                                                   constant_nr / 8,
930                                                   constant_nr % 8);
931
932             inst->src[i].file = FIXED_HW_REG;
933             inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
934          }
935       }
936    }
937 }
938
939 void
940 fs_visitor::calculate_urb_setup()
941 {
942    for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
943       urb_setup[i] = -1;
944    }
945
946    int urb_next = 0;
947    /* Figure out where each of the incoming setup attributes lands. */
948    if (intel->gen >= 6) {
949       for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
950          if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
951             urb_setup[i] = urb_next++;
952          }
953       }
954    } else {
955       /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
956       for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
957          /* Point size is packed into the header, not as a general attribute */
958          if (i == VERT_RESULT_PSIZ)
959             continue;
960
961          if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
962             int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
963
964             /* The back color slot is skipped when the front color is
965              * also written to.  In addition, some slots can be
966              * written in the vertex shader and not read in the
967              * fragment shader.  So the register number must always be
968              * incremented, mapped or not.
969              */
970             if (fp_index >= 0)
971                urb_setup[fp_index] = urb_next;
972             urb_next++;
973          }
974       }
975
976       /*
977        * It's a FS only attribute, and we did interpolation for this attribute
978        * in SF thread. So, count it here, too.
979        *
980        * See compile_sf_prog() for more info.
981        */
982       if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(FRAG_ATTRIB_PNTC))
983          urb_setup[FRAG_ATTRIB_PNTC] = urb_next++;
984    }
985
986    /* Each attribute is 4 setup channels, each of which is half a reg. */
987    c->prog_data.urb_read_length = urb_next * 2;
988 }
989
990 void
991 fs_visitor::assign_urb_setup()
992 {
993    int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
994
995    /* Offset all the urb_setup[] index by the actual position of the
996     * setup regs, now that the location of the constants has been chosen.
997     */
998    foreach_list(node, &this->instructions) {
999       fs_inst *inst = (fs_inst *)node;
1000
1001       if (inst->opcode == FS_OPCODE_LINTERP) {
1002          assert(inst->src[2].file == FIXED_HW_REG);
1003          inst->src[2].fixed_hw_reg.nr += urb_start;
1004       }
1005
1006       if (inst->opcode == FS_OPCODE_CINTERP) {
1007          assert(inst->src[0].file == FIXED_HW_REG);
1008          inst->src[0].fixed_hw_reg.nr += urb_start;
1009       }
1010    }
1011
1012    this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
1013 }
1014
1015 /**
1016  * Split large virtual GRFs into separate components if we can.
1017  *
1018  * This is mostly duplicated with what brw_fs_vector_splitting does,
1019  * but that's really conservative because it's afraid of doing
1020  * splitting that doesn't result in real progress after the rest of
1021  * the optimization phases, which would cause infinite looping in
1022  * optimization.  We can do it once here, safely.  This also has the
1023  * opportunity to split interpolated values, or maybe even uniforms,
1024  * which we don't have at the IR level.
1025  *
1026  * We want to split, because virtual GRFs are what we register
1027  * allocate and spill (due to contiguousness requirements for some
1028  * instructions), and they're what we naturally generate in the
1029  * codegen process, but most virtual GRFs don't actually need to be
1030  * contiguous sets of GRFs.  If we split, we'll end up with reduced
1031  * live intervals and better dead code elimination and coalescing.
1032  */
1033 void
1034 fs_visitor::split_virtual_grfs()
1035 {
1036    int num_vars = this->virtual_grf_count;
1037    bool split_grf[num_vars];
1038    int new_virtual_grf[num_vars];
1039
1040    /* Try to split anything > 0 sized. */
1041    for (int i = 0; i < num_vars; i++) {
1042       if (this->virtual_grf_sizes[i] != 1)
1043          split_grf[i] = true;
1044       else
1045          split_grf[i] = false;
1046    }
1047
1048    if (brw->has_pln &&
1049        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) {
1050       /* PLN opcodes rely on the delta_xy being contiguous.  We only have to
1051        * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to
1052        * Gen6, that was the only supported interpolation mode, and since Gen6,
1053        * delta_x and delta_y are in fixed hardware registers.
1054        */
1055       split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] =
1056          false;
1057    }
1058
1059    foreach_list(node, &this->instructions) {
1060       fs_inst *inst = (fs_inst *)node;
1061
1062       /* If there's a SEND message that requires contiguous destination
1063        * registers, no splitting is allowed.
1064        */
1065       if (inst->regs_written() > 1) {
1066          split_grf[inst->dst.reg] = false;
1067       }
1068    }
1069
1070    /* Allocate new space for split regs.  Note that the virtual
1071     * numbers will be contiguous.
1072     */
1073    for (int i = 0; i < num_vars; i++) {
1074       if (split_grf[i]) {
1075          new_virtual_grf[i] = virtual_grf_alloc(1);
1076          for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1077             int reg = virtual_grf_alloc(1);
1078             assert(reg == new_virtual_grf[i] + j - 1);
1079             (void) reg;
1080          }
1081          this->virtual_grf_sizes[i] = 1;
1082       }
1083    }
1084
1085    foreach_list(node, &this->instructions) {
1086       fs_inst *inst = (fs_inst *)node;
1087
1088       if (inst->dst.file == GRF &&
1089           split_grf[inst->dst.reg] &&
1090           inst->dst.reg_offset != 0) {
1091          inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1092                           inst->dst.reg_offset - 1);
1093          inst->dst.reg_offset = 0;
1094       }
1095       for (int i = 0; i < 3; i++) {
1096          if (inst->src[i].file == GRF &&
1097              split_grf[inst->src[i].reg] &&
1098              inst->src[i].reg_offset != 0) {
1099             inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1100                                 inst->src[i].reg_offset - 1);
1101             inst->src[i].reg_offset = 0;
1102          }
1103       }
1104    }
1105    this->live_intervals_valid = false;
1106 }
1107
1108 bool
1109 fs_visitor::remove_dead_constants()
1110 {
1111    if (c->dispatch_width == 8) {
1112       this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params);
1113
1114       for (unsigned int i = 0; i < c->prog_data.nr_params; i++)
1115          this->params_remap[i] = -1;
1116
1117       /* Find which params are still in use. */
1118       foreach_list(node, &this->instructions) {
1119          fs_inst *inst = (fs_inst *)node;
1120
1121          for (int i = 0; i < 3; i++) {
1122             int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1123
1124             if (inst->src[i].file != UNIFORM)
1125                continue;
1126
1127             assert(constant_nr < (int)c->prog_data.nr_params);
1128
1129             /* For now, set this to non-negative.  We'll give it the
1130              * actual new number in a moment, in order to keep the
1131              * register numbers nicely ordered.
1132              */
1133             this->params_remap[constant_nr] = 0;
1134          }
1135       }
1136
1137       /* Figure out what the new numbers for the params will be.  At some
1138        * point when we're doing uniform array access, we're going to want
1139        * to keep the distinction between .reg and .reg_offset, but for
1140        * now we don't care.
1141        */
1142       unsigned int new_nr_params = 0;
1143       for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
1144          if (this->params_remap[i] != -1) {
1145             this->params_remap[i] = new_nr_params++;
1146          }
1147       }
1148
1149       /* Update the list of params to be uploaded to match our new numbering. */
1150       for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
1151          int remapped = this->params_remap[i];
1152
1153          if (remapped == -1)
1154             continue;
1155
1156          /* We've already done setup_paramvalues_refs() so no need to worry
1157           * about param_index and param_offset.
1158           */
1159          c->prog_data.param[remapped] = c->prog_data.param[i];
1160       }
1161
1162       c->prog_data.nr_params = new_nr_params;
1163    } else {
1164       /* This should have been generated in the 8-wide pass already. */
1165       assert(this->params_remap);
1166    }
1167
1168    /* Now do the renumbering of the shader to remove unused params. */
1169    foreach_list(node, &this->instructions) {
1170       fs_inst *inst = (fs_inst *)node;
1171
1172       for (int i = 0; i < 3; i++) {
1173          int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1174
1175          if (inst->src[i].file != UNIFORM)
1176             continue;
1177
1178          assert(this->params_remap[constant_nr] != -1);
1179          inst->src[i].reg = this->params_remap[constant_nr];
1180          inst->src[i].reg_offset = 0;
1181       }
1182    }
1183
1184    return true;
1185 }
1186
1187 /**
1188  * Choose accesses from the UNIFORM file to demote to using the pull
1189  * constant buffer.
1190  *
1191  * We allow a fragment shader to have more than the specified minimum
1192  * maximum number of fragment shader uniform components (64).  If
1193  * there are too many of these, they'd fill up all of register space.
1194  * So, this will push some of them out to the pull constant buffer and
1195  * update the program to load them.
1196  */
1197 void
1198 fs_visitor::setup_pull_constants()
1199 {
1200    /* Only allow 16 registers (128 uniform components) as push constants. */
1201    unsigned int max_uniform_components = 16 * 8;
1202    if (c->prog_data.nr_params <= max_uniform_components)
1203       return;
1204
1205    if (c->dispatch_width == 16) {
1206       fail("Pull constants not supported in 16-wide\n");
1207       return;
1208    }
1209
1210    /* Just demote the end of the list.  We could probably do better
1211     * here, demoting things that are rarely used in the program first.
1212     */
1213    int pull_uniform_base = max_uniform_components;
1214    int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
1215
1216    foreach_list(node, &this->instructions) {
1217       fs_inst *inst = (fs_inst *)node;
1218
1219       for (int i = 0; i < 3; i++) {
1220          if (inst->src[i].file != UNIFORM)
1221             continue;
1222
1223          int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1224          if (uniform_nr < pull_uniform_base)
1225             continue;
1226
1227          fs_reg dst = fs_reg(this, glsl_type::float_type);
1228          fs_reg index = fs_reg((unsigned)SURF_INDEX_FRAG_CONST_BUFFER);
1229          fs_reg offset = fs_reg((unsigned)(((uniform_nr -
1230                                              pull_uniform_base) * 4) & ~15));
1231          fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
1232                                               dst, index, offset);
1233          pull->ir = inst->ir;
1234          pull->annotation = inst->annotation;
1235          pull->base_mrf = 14;
1236          pull->mlen = 1;
1237
1238          inst->insert_before(pull);
1239
1240          inst->src[i].file = GRF;
1241          inst->src[i].reg = dst.reg;
1242          inst->src[i].reg_offset = 0;
1243          inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
1244       }
1245    }
1246
1247    for (int i = 0; i < pull_uniform_count; i++) {
1248       c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
1249    }
1250    c->prog_data.nr_params -= pull_uniform_count;
1251    c->prog_data.nr_pull_params = pull_uniform_count;
1252 }
1253
1254 /**
1255  * Attempts to move immediate constants into the immediate
1256  * constant slot of following instructions.
1257  *
1258  * Immediate constants are a bit tricky -- they have to be in the last
1259  * operand slot, you can't do abs/negate on them,
1260  */
1261
1262 bool
1263 fs_visitor::propagate_constants()
1264 {
1265    bool progress = false;
1266
1267    calculate_live_intervals();
1268
1269    foreach_list(node, &this->instructions) {
1270       fs_inst *inst = (fs_inst *)node;
1271
1272       if (inst->opcode != BRW_OPCODE_MOV ||
1273           inst->predicated ||
1274           inst->dst.file != GRF || inst->src[0].file != IMM ||
1275           inst->dst.type != inst->src[0].type ||
1276           (c->dispatch_width == 16 &&
1277            (inst->force_uncompressed || inst->force_sechalf)))
1278          continue;
1279
1280       /* Don't bother with cases where we should have had the
1281        * operation on the constant folded in GLSL already.
1282        */
1283       if (inst->saturate)
1284          continue;
1285
1286       /* Found a move of a constant to a GRF.  Find anything else using the GRF
1287        * before it's written, and replace it with the constant if we can.
1288        */
1289       for (fs_inst *scan_inst = (fs_inst *)inst->next;
1290            !scan_inst->is_tail_sentinel();
1291            scan_inst = (fs_inst *)scan_inst->next) {
1292          if (scan_inst->opcode == BRW_OPCODE_DO ||
1293              scan_inst->opcode == BRW_OPCODE_WHILE ||
1294              scan_inst->opcode == BRW_OPCODE_ELSE ||
1295              scan_inst->opcode == BRW_OPCODE_ENDIF) {
1296             break;
1297          }
1298
1299          for (int i = 2; i >= 0; i--) {
1300             if (scan_inst->src[i].file != GRF ||
1301                 scan_inst->src[i].reg != inst->dst.reg ||
1302                 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
1303                continue;
1304
1305             /* Don't bother with cases where we should have had the
1306              * operation on the constant folded in GLSL already.
1307              */
1308             if (scan_inst->src[i].negate || scan_inst->src[i].abs)
1309                continue;
1310
1311             switch (scan_inst->opcode) {
1312             case BRW_OPCODE_MOV:
1313                scan_inst->src[i] = inst->src[0];
1314                progress = true;
1315                break;
1316
1317             case BRW_OPCODE_MUL:
1318             case BRW_OPCODE_ADD:
1319                if (i == 1) {
1320                   scan_inst->src[i] = inst->src[0];
1321                   progress = true;
1322                } else if (i == 0 && scan_inst->src[1].file != IMM) {
1323                   /* Fit this constant in by commuting the operands.
1324                    * Exception: we can't do this for 32-bit integer MUL
1325                    * because it's asymmetric.
1326                    */
1327                   if (scan_inst->opcode == BRW_OPCODE_MUL &&
1328                       (scan_inst->src[1].type == BRW_REGISTER_TYPE_D ||
1329                        scan_inst->src[1].type == BRW_REGISTER_TYPE_UD))
1330                      break;
1331                   scan_inst->src[0] = scan_inst->src[1];
1332                   scan_inst->src[1] = inst->src[0];
1333                   progress = true;
1334                }
1335                break;
1336
1337             case BRW_OPCODE_CMP:
1338             case BRW_OPCODE_IF:
1339                if (i == 1) {
1340                   scan_inst->src[i] = inst->src[0];
1341                   progress = true;
1342                } else if (i == 0 && scan_inst->src[1].file != IMM) {
1343                   uint32_t new_cmod;
1344
1345                   new_cmod = brw_swap_cmod(scan_inst->conditional_mod);
1346                   if (new_cmod != ~0u) {
1347                      /* Fit this constant in by swapping the operands and
1348                       * flipping the test
1349                       */
1350                      scan_inst->src[0] = scan_inst->src[1];
1351                      scan_inst->src[1] = inst->src[0];
1352                      scan_inst->conditional_mod = new_cmod;
1353                      progress = true;
1354                   }
1355                }
1356                break;
1357
1358             case BRW_OPCODE_SEL:
1359                if (i == 1) {
1360                   scan_inst->src[i] = inst->src[0];
1361                   progress = true;
1362                } else if (i == 0 && scan_inst->src[1].file != IMM) {
1363                   scan_inst->src[0] = scan_inst->src[1];
1364                   scan_inst->src[1] = inst->src[0];
1365
1366                   /* If this was predicated, flipping operands means
1367                    * we also need to flip the predicate.
1368                    */
1369                   if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) {
1370                      scan_inst->predicate_inverse =
1371                         !scan_inst->predicate_inverse;
1372                   }
1373                   progress = true;
1374                }
1375                break;
1376
1377             case SHADER_OPCODE_RCP:
1378                /* The hardware doesn't do math on immediate values
1379                 * (because why are you doing that, seriously?), but
1380                 * the correct answer is to just constant fold it
1381                 * anyway.
1382                 */
1383                assert(i == 0);
1384                if (inst->src[0].imm.f != 0.0f) {
1385                   scan_inst->opcode = BRW_OPCODE_MOV;
1386                   scan_inst->src[0] = inst->src[0];
1387                   scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f;
1388                   progress = true;
1389                }
1390                break;
1391
1392             case FS_OPCODE_PULL_CONSTANT_LOAD:
1393                scan_inst->src[i] = inst->src[0];
1394                progress = true;
1395                break;
1396
1397             default:
1398                break;
1399             }
1400          }
1401
1402          if (scan_inst->dst.file == GRF &&
1403              scan_inst->overwrites_reg(inst->dst)) {
1404             break;
1405          }
1406       }
1407    }
1408
1409    if (progress)
1410        this->live_intervals_valid = false;
1411
1412    return progress;
1413 }
1414
1415
1416 /**
1417  * Attempts to move immediate constants into the immediate
1418  * constant slot of following instructions.
1419  *
1420  * Immediate constants are a bit tricky -- they have to be in the last
1421  * operand slot, you can't do abs/negate on them,
1422  */
1423
1424 bool
1425 fs_visitor::opt_algebraic()
1426 {
1427    bool progress = false;
1428
1429    calculate_live_intervals();
1430
1431    foreach_list(node, &this->instructions) {
1432       fs_inst *inst = (fs_inst *)node;
1433
1434       switch (inst->opcode) {
1435       case BRW_OPCODE_MUL:
1436          if (inst->src[1].file != IMM)
1437             continue;
1438
1439          /* a * 1.0 = a */
1440          if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
1441              inst->src[1].imm.f == 1.0) {
1442             inst->opcode = BRW_OPCODE_MOV;
1443             inst->src[1] = reg_undef;
1444             progress = true;
1445             break;
1446          }
1447
1448          break;
1449       default:
1450          break;
1451       }
1452    }
1453
1454    return progress;
1455 }
1456
1457 /**
1458  * Must be called after calculate_live_intervales() to remove unused
1459  * writes to registers -- register allocation will fail otherwise
1460  * because something deffed but not used won't be considered to
1461  * interfere with other regs.
1462  */
1463 bool
1464 fs_visitor::dead_code_eliminate()
1465 {
1466    bool progress = false;
1467    int pc = 0;
1468
1469    calculate_live_intervals();
1470
1471    foreach_list_safe(node, &this->instructions) {
1472       fs_inst *inst = (fs_inst *)node;
1473
1474       if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
1475          inst->remove();
1476          progress = true;
1477       }
1478
1479       pc++;
1480    }
1481
1482    if (progress)
1483       live_intervals_valid = false;
1484
1485    return progress;
1486 }
1487
1488 /**
1489  * Implements a second type of register coalescing: This one checks if
1490  * the two regs involved in a raw move don't interfere, in which case
1491  * they can both by stored in the same place and the MOV removed.
1492  */
1493 bool
1494 fs_visitor::register_coalesce_2()
1495 {
1496    bool progress = false;
1497
1498    calculate_live_intervals();
1499
1500    foreach_list_safe(node, &this->instructions) {
1501       fs_inst *inst = (fs_inst *)node;
1502
1503       if (inst->opcode != BRW_OPCODE_MOV ||
1504           inst->predicated ||
1505           inst->saturate ||
1506           inst->src[0].file != GRF ||
1507           inst->src[0].negate ||
1508           inst->src[0].abs ||
1509           inst->src[0].smear != -1 ||
1510           inst->dst.file != GRF ||
1511           inst->dst.type != inst->src[0].type ||
1512           virtual_grf_sizes[inst->src[0].reg] != 1 ||
1513           virtual_grf_interferes(inst->dst.reg, inst->src[0].reg)) {
1514          continue;
1515       }
1516
1517       int reg_from = inst->src[0].reg;
1518       assert(inst->src[0].reg_offset == 0);
1519       int reg_to = inst->dst.reg;
1520       int reg_to_offset = inst->dst.reg_offset;
1521
1522       foreach_list_safe(node, &this->instructions) {
1523          fs_inst *scan_inst = (fs_inst *)node;
1524
1525          if (scan_inst->dst.file == GRF &&
1526              scan_inst->dst.reg == reg_from) {
1527             scan_inst->dst.reg = reg_to;
1528             scan_inst->dst.reg_offset = reg_to_offset;
1529          }
1530          for (int i = 0; i < 3; i++) {
1531             if (scan_inst->src[i].file == GRF &&
1532                 scan_inst->src[i].reg == reg_from) {
1533                scan_inst->src[i].reg = reg_to;
1534                scan_inst->src[i].reg_offset = reg_to_offset;
1535             }
1536          }
1537       }
1538
1539       inst->remove();
1540       live_intervals_valid = false;
1541       progress = true;
1542       continue;
1543    }
1544
1545    return progress;
1546 }
1547
1548 bool
1549 fs_visitor::register_coalesce()
1550 {
1551    bool progress = false;
1552    int if_depth = 0;
1553    int loop_depth = 0;
1554
1555    foreach_list_safe(node, &this->instructions) {
1556       fs_inst *inst = (fs_inst *)node;
1557
1558       /* Make sure that we dominate the instructions we're going to
1559        * scan for interfering with our coalescing, or we won't have
1560        * scanned enough to see if anything interferes with our
1561        * coalescing.  We don't dominate the following instructions if
1562        * we're in a loop or an if block.
1563        */
1564       switch (inst->opcode) {
1565       case BRW_OPCODE_DO:
1566          loop_depth++;
1567          break;
1568       case BRW_OPCODE_WHILE:
1569          loop_depth--;
1570          break;
1571       case BRW_OPCODE_IF:
1572          if_depth++;
1573          break;
1574       case BRW_OPCODE_ENDIF:
1575          if_depth--;
1576          break;
1577       default:
1578          break;
1579       }
1580       if (loop_depth || if_depth)
1581          continue;
1582
1583       if (inst->opcode != BRW_OPCODE_MOV ||
1584           inst->predicated ||
1585           inst->saturate ||
1586           inst->dst.file != GRF || (inst->src[0].file != GRF &&
1587                                     inst->src[0].file != UNIFORM)||
1588           inst->dst.type != inst->src[0].type)
1589          continue;
1590
1591       bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
1592
1593       /* Found a move of a GRF to a GRF.  Let's see if we can coalesce
1594        * them: check for no writes to either one until the exit of the
1595        * program.
1596        */
1597       bool interfered = false;
1598
1599       for (fs_inst *scan_inst = (fs_inst *)inst->next;
1600            !scan_inst->is_tail_sentinel();
1601            scan_inst = (fs_inst *)scan_inst->next) {
1602          if (scan_inst->dst.file == GRF) {
1603             if (scan_inst->overwrites_reg(inst->dst) ||
1604                 scan_inst->overwrites_reg(inst->src[0])) {
1605                interfered = true;
1606                break;
1607             }
1608          }
1609
1610          /* The gen6 MATH instruction can't handle source modifiers or
1611           * unusual register regions, so avoid coalescing those for
1612           * now.  We should do something more specific.
1613           */
1614          if (intel->gen >= 6 &&
1615              scan_inst->is_math() &&
1616              (has_source_modifiers || inst->src[0].file == UNIFORM)) {
1617             interfered = true;
1618             break;
1619          }
1620
1621          /* The accumulator result appears to get used for the
1622           * conditional modifier generation.  When negating a UD
1623           * value, there is a 33rd bit generated for the sign in the
1624           * accumulator value, so now you can't check, for example,
1625           * equality with a 32-bit value.  See piglit fs-op-neg-uint.
1626           */
1627          if (scan_inst->conditional_mod &&
1628              inst->src[0].negate &&
1629              inst->src[0].type == BRW_REGISTER_TYPE_UD) {
1630             interfered = true;
1631             break;
1632          }
1633       }
1634       if (interfered) {
1635          continue;
1636       }
1637
1638       /* Rewrite the later usage to point at the source of the move to
1639        * be removed.
1640        */
1641       for (fs_inst *scan_inst = inst;
1642            !scan_inst->is_tail_sentinel();
1643            scan_inst = (fs_inst *)scan_inst->next) {
1644          for (int i = 0; i < 3; i++) {
1645             if (scan_inst->src[i].file == GRF &&
1646                 scan_inst->src[i].reg == inst->dst.reg &&
1647                 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
1648                fs_reg new_src = inst->src[0];
1649                if (scan_inst->src[i].abs) {
1650                   new_src.negate = 0;
1651                   new_src.abs = 1;
1652                }
1653                new_src.negate ^= scan_inst->src[i].negate;
1654                scan_inst->src[i] = new_src;
1655             }
1656          }
1657       }
1658
1659       inst->remove();
1660       progress = true;
1661    }
1662
1663    if (progress)
1664       live_intervals_valid = false;
1665
1666    return progress;
1667 }
1668
1669
1670 bool
1671 fs_visitor::compute_to_mrf()
1672 {
1673    bool progress = false;
1674    int next_ip = 0;
1675
1676    calculate_live_intervals();
1677
1678    foreach_list_safe(node, &this->instructions) {
1679       fs_inst *inst = (fs_inst *)node;
1680
1681       int ip = next_ip;
1682       next_ip++;
1683
1684       if (inst->opcode != BRW_OPCODE_MOV ||
1685           inst->predicated ||
1686           inst->dst.file != MRF || inst->src[0].file != GRF ||
1687           inst->dst.type != inst->src[0].type ||
1688           inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
1689          continue;
1690
1691       /* Work out which hardware MRF registers are written by this
1692        * instruction.
1693        */
1694       int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
1695       int mrf_high;
1696       if (inst->dst.reg & BRW_MRF_COMPR4) {
1697          mrf_high = mrf_low + 4;
1698       } else if (c->dispatch_width == 16 &&
1699                  (!inst->force_uncompressed && !inst->force_sechalf)) {
1700          mrf_high = mrf_low + 1;
1701       } else {
1702          mrf_high = mrf_low;
1703       }
1704
1705       /* Can't compute-to-MRF this GRF if someone else was going to
1706        * read it later.
1707        */
1708       if (this->virtual_grf_use[inst->src[0].reg] > ip)
1709          continue;
1710
1711       /* Found a move of a GRF to a MRF.  Let's see if we can go
1712        * rewrite the thing that made this GRF to write into the MRF.
1713        */
1714       fs_inst *scan_inst;
1715       for (scan_inst = (fs_inst *)inst->prev;
1716            scan_inst->prev != NULL;
1717            scan_inst = (fs_inst *)scan_inst->prev) {
1718          if (scan_inst->dst.file == GRF &&
1719              scan_inst->dst.reg == inst->src[0].reg) {
1720             /* Found the last thing to write our reg we want to turn
1721              * into a compute-to-MRF.
1722              */
1723
1724             /* SENDs can only write to GRFs, so no compute-to-MRF. */
1725             if (scan_inst->mlen) {
1726                break;
1727             }
1728
1729             /* If it's predicated, it (probably) didn't populate all
1730              * the channels.  We might be able to rewrite everything
1731              * that writes that reg, but it would require smarter
1732              * tracking to delay the rewriting until complete success.
1733              */
1734             if (scan_inst->predicated)
1735                break;
1736
1737             /* If it's half of register setup and not the same half as
1738              * our MOV we're trying to remove, bail for now.
1739              */
1740             if (scan_inst->force_uncompressed != inst->force_uncompressed ||
1741                 scan_inst->force_sechalf != inst->force_sechalf) {
1742                break;
1743             }
1744
1745             /* SEND instructions can't have MRF as a destination. */
1746             if (scan_inst->mlen)
1747                break;
1748
1749             if (intel->gen >= 6) {
1750                /* gen6 math instructions must have the destination be
1751                 * GRF, so no compute-to-MRF for them.
1752                 */
1753                if (scan_inst->is_math()) {
1754                   break;
1755                }
1756             }
1757
1758             if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1759                /* Found the creator of our MRF's source value. */
1760                scan_inst->dst.file = MRF;
1761                scan_inst->dst.reg = inst->dst.reg;
1762                scan_inst->saturate |= inst->saturate;
1763                inst->remove();
1764                progress = true;
1765             }
1766             break;
1767          }
1768
1769          /* We don't handle flow control here.  Most computation of
1770           * values that end up in MRFs are shortly before the MRF
1771           * write anyway.
1772           */
1773          if (scan_inst->opcode == BRW_OPCODE_DO ||
1774              scan_inst->opcode == BRW_OPCODE_WHILE ||
1775              scan_inst->opcode == BRW_OPCODE_ELSE ||
1776              scan_inst->opcode == BRW_OPCODE_ENDIF) {
1777             break;
1778          }
1779
1780          /* You can't read from an MRF, so if someone else reads our
1781           * MRF's source GRF that we wanted to rewrite, that stops us.
1782           */
1783          bool interfered = false;
1784          for (int i = 0; i < 3; i++) {
1785             if (scan_inst->src[i].file == GRF &&
1786                 scan_inst->src[i].reg == inst->src[0].reg &&
1787                 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1788                interfered = true;
1789             }
1790          }
1791          if (interfered)
1792             break;
1793
1794          if (scan_inst->dst.file == MRF) {
1795             /* If somebody else writes our MRF here, we can't
1796              * compute-to-MRF before that.
1797              */
1798             int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
1799             int scan_mrf_high;
1800
1801             if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
1802                scan_mrf_high = scan_mrf_low + 4;
1803             } else if (c->dispatch_width == 16 &&
1804                        (!scan_inst->force_uncompressed &&
1805                         !scan_inst->force_sechalf)) {
1806                scan_mrf_high = scan_mrf_low + 1;
1807             } else {
1808                scan_mrf_high = scan_mrf_low;
1809             }
1810
1811             if (mrf_low == scan_mrf_low ||
1812                 mrf_low == scan_mrf_high ||
1813                 mrf_high == scan_mrf_low ||
1814                 mrf_high == scan_mrf_high) {
1815                break;
1816             }
1817          }
1818
1819          if (scan_inst->mlen > 0) {
1820             /* Found a SEND instruction, which means that there are
1821              * live values in MRFs from base_mrf to base_mrf +
1822              * scan_inst->mlen - 1.  Don't go pushing our MRF write up
1823              * above it.
1824              */
1825             if (mrf_low >= scan_inst->base_mrf &&
1826                 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
1827                break;
1828             }
1829             if (mrf_high >= scan_inst->base_mrf &&
1830                 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
1831                break;
1832             }
1833          }
1834       }
1835    }
1836
1837    if (progress)
1838       live_intervals_valid = false;
1839
1840    return progress;
1841 }
1842
1843 /**
1844  * Walks through basic blocks, looking for repeated MRF writes and
1845  * removing the later ones.
1846  */
1847 bool
1848 fs_visitor::remove_duplicate_mrf_writes()
1849 {
1850    fs_inst *last_mrf_move[16];
1851    bool progress = false;
1852
1853    /* Need to update the MRF tracking for compressed instructions. */
1854    if (c->dispatch_width == 16)
1855       return false;
1856
1857    memset(last_mrf_move, 0, sizeof(last_mrf_move));
1858
1859    foreach_list_safe(node, &this->instructions) {
1860       fs_inst *inst = (fs_inst *)node;
1861
1862       switch (inst->opcode) {
1863       case BRW_OPCODE_DO:
1864       case BRW_OPCODE_WHILE:
1865       case BRW_OPCODE_IF:
1866       case BRW_OPCODE_ELSE:
1867       case BRW_OPCODE_ENDIF:
1868          memset(last_mrf_move, 0, sizeof(last_mrf_move));
1869          continue;
1870       default:
1871          break;
1872       }
1873
1874       if (inst->opcode == BRW_OPCODE_MOV &&
1875           inst->dst.file == MRF) {
1876          fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
1877          if (prev_inst && inst->equals(prev_inst)) {
1878             inst->remove();
1879             progress = true;
1880             continue;
1881          }
1882       }
1883
1884       /* Clear out the last-write records for MRFs that were overwritten. */
1885       if (inst->dst.file == MRF) {
1886          last_mrf_move[inst->dst.reg] = NULL;
1887       }
1888
1889       if (inst->mlen > 0) {
1890          /* Found a SEND instruction, which will include two or fewer
1891           * implied MRF writes.  We could do better here.
1892           */
1893          for (int i = 0; i < implied_mrf_writes(inst); i++) {
1894             last_mrf_move[inst->base_mrf + i] = NULL;
1895          }
1896       }
1897
1898       /* Clear out any MRF move records whose sources got overwritten. */
1899       if (inst->dst.file == GRF) {
1900          for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
1901             if (last_mrf_move[i] &&
1902                 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
1903                last_mrf_move[i] = NULL;
1904             }
1905          }
1906       }
1907
1908       if (inst->opcode == BRW_OPCODE_MOV &&
1909           inst->dst.file == MRF &&
1910           inst->src[0].file == GRF &&
1911           !inst->predicated) {
1912          last_mrf_move[inst->dst.reg] = inst;
1913       }
1914    }
1915
1916    if (progress)
1917       live_intervals_valid = false;
1918
1919    return progress;
1920 }
1921
1922 /**
1923  * Possibly returns an instruction that set up @param reg.
1924  *
1925  * Sometimes we want to take the result of some expression/variable
1926  * dereference tree and rewrite the instruction generating the result
1927  * of the tree.  When processing the tree, we know that the
1928  * instructions generated are all writing temporaries that are dead
1929  * outside of this tree.  So, if we have some instructions that write
1930  * a temporary, we're free to point that temp write somewhere else.
1931  *
1932  * Note that this doesn't guarantee that the instruction generated
1933  * only reg -- it might be the size=4 destination of a texture instruction.
1934  */
1935 fs_inst *
1936 fs_visitor::get_instruction_generating_reg(fs_inst *start,
1937                                            fs_inst *end,
1938                                            fs_reg reg)
1939 {
1940    if (end == start ||
1941        end->predicated ||
1942        end->force_uncompressed ||
1943        end->force_sechalf ||
1944        !reg.equals(end->dst)) {
1945       return NULL;
1946    } else {
1947       return end;
1948    }
1949 }
1950
1951 bool
1952 fs_visitor::run()
1953 {
1954    uint32_t prog_offset_16 = 0;
1955    uint32_t orig_nr_params = c->prog_data.nr_params;
1956
1957    brw_wm_payload_setup(brw, c);
1958
1959    if (c->dispatch_width == 16) {
1960       /* align to 64 byte boundary. */
1961       while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
1962          brw_NOP(p);
1963       }
1964
1965       /* Save off the start of this 16-wide program in case we succeed. */
1966       prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
1967
1968       brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1969    }
1970
1971    if (0) {
1972       emit_dummy_fs();
1973    } else {
1974       calculate_urb_setup();
1975       if (intel->gen < 6)
1976          emit_interpolation_setup_gen4();
1977       else
1978          emit_interpolation_setup_gen6();
1979
1980       /* Generate FS IR for main().  (the visitor only descends into
1981        * functions called "main").
1982        */
1983       foreach_list(node, &*shader->ir) {
1984          ir_instruction *ir = (ir_instruction *)node;
1985          base_ir = ir;
1986          this->result = reg_undef;
1987          ir->accept(this);
1988       }
1989       if (failed)
1990          return false;
1991
1992       emit_fb_writes();
1993
1994       split_virtual_grfs();
1995
1996       setup_paramvalues_refs();
1997       setup_pull_constants();
1998
1999       bool progress;
2000       do {
2001          progress = false;
2002
2003          progress = remove_duplicate_mrf_writes() || progress;
2004
2005          progress = propagate_constants() || progress;
2006          progress = opt_algebraic() || progress;
2007          progress = opt_cse() || progress;
2008          progress = opt_copy_propagate() || progress;
2009          progress = register_coalesce() || progress;
2010          progress = register_coalesce_2() || progress;
2011          progress = compute_to_mrf() || progress;
2012          progress = dead_code_eliminate() || progress;
2013       } while (progress);
2014
2015       remove_dead_constants();
2016
2017       schedule_instructions();
2018
2019       assign_curb_setup();
2020       assign_urb_setup();
2021
2022       if (0) {
2023          /* Debug of register spilling: Go spill everything. */
2024          for (int i = 0; i < virtual_grf_count; i++) {
2025             spill_reg(i);
2026          }
2027       }
2028
2029       if (0)
2030          assign_regs_trivial();
2031       else {
2032          while (!assign_regs()) {
2033             if (failed)
2034                break;
2035          }
2036       }
2037    }
2038    assert(force_uncompressed_stack == 0);
2039    assert(force_sechalf_stack == 0);
2040
2041    if (failed)
2042       return false;
2043
2044    generate_code();
2045
2046    if (c->dispatch_width == 8) {
2047       c->prog_data.reg_blocks = brw_register_blocks(grf_used);
2048    } else {
2049       c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
2050       c->prog_data.prog_offset_16 = prog_offset_16;
2051
2052       /* Make sure we didn't try to sneak in an extra uniform */
2053       assert(orig_nr_params == c->prog_data.nr_params);
2054       (void) orig_nr_params;
2055    }
2056
2057    return !failed;
2058 }
2059
2060 bool
2061 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
2062                struct gl_shader_program *prog)
2063 {
2064    struct intel_context *intel = &brw->intel;
2065    bool start_busy = false;
2066    float start_time = 0;
2067
2068    if (!prog)
2069       return false;
2070
2071    if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2072       start_busy = (intel->batch.last_bo &&
2073                     drm_intel_bo_busy(intel->batch.last_bo));
2074       start_time = get_time();
2075    }
2076
2077    struct brw_shader *shader =
2078      (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2079    if (!shader)
2080       return false;
2081
2082    if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
2083       printf("GLSL IR for native fragment shader %d:\n", prog->Name);
2084       _mesa_print_ir(shader->ir, NULL);
2085       printf("\n\n");
2086    }
2087
2088    /* Now the main event: Visit the shader IR and generate our FS IR for it.
2089     */
2090    c->dispatch_width = 8;
2091
2092    fs_visitor v(c, prog, shader);
2093    if (!v.run()) {
2094       prog->LinkStatus = false;
2095       ralloc_strcat(&prog->InfoLog, v.fail_msg);
2096
2097       _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
2098                     v.fail_msg);
2099
2100       return false;
2101    }
2102
2103    if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
2104       c->dispatch_width = 16;
2105       fs_visitor v2(c, prog, shader);
2106       v2.import_uniforms(&v);
2107       if (!v2.run()) {
2108          perf_debug("16-wide shader failed to compile, falling back to "
2109                     "8-wide at a 10-20%% performance cost: %s", v2.fail_msg);
2110       }
2111    }
2112
2113    c->prog_data.dispatch_width = 8;
2114
2115    if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2116       if (shader->compiled_once)
2117          brw_wm_debug_recompile(brw, prog, &c->key);
2118       shader->compiled_once = true;
2119
2120       if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) {
2121          perf_debug("FS compile took %.03f ms and stalled the GPU\n",
2122                     (get_time() - start_time) * 1000);
2123       }
2124    }
2125
2126    return true;
2127 }
2128
2129 bool
2130 brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
2131 {
2132    struct brw_context *brw = brw_context(ctx);
2133    struct intel_context *intel = &brw->intel;
2134    struct brw_wm_prog_key key;
2135
2136    if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT])
2137       return true;
2138
2139    struct gl_fragment_program *fp = (struct gl_fragment_program *)
2140       prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
2141    struct brw_fragment_program *bfp = brw_fragment_program(fp);
2142    bool program_uses_dfdy = fp->UsesDFdy;
2143
2144    memset(&key, 0, sizeof(key));
2145
2146    if (intel->gen < 6) {
2147       if (fp->UsesKill)
2148          key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
2149
2150       if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
2151          key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
2152
2153       /* Just assume depth testing. */
2154       key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
2155       key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
2156    }
2157
2158    if (prog->Name != 0)
2159       key.proj_attrib_mask = 0xffffffff;
2160
2161    if (intel->gen < 6)
2162       key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
2163
2164    for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2165       if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
2166          continue;
2167
2168       if (prog->Name == 0)
2169          key.proj_attrib_mask |= 1 << i;
2170
2171       if (intel->gen < 6) {
2172          int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
2173
2174          if (vp_index >= 0)
2175             key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
2176       }
2177    }
2178
2179    key.clamp_fragment_color = true;
2180
2181    for (int i = 0; i < MAX_SAMPLERS; i++) {
2182       /* FINISHME: depth compares might use (0,0,0,W) for example */
2183       key.tex.swizzles[i] = SWIZZLE_XYZW;
2184    }
2185
2186    if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
2187       key.drawable_height = ctx->DrawBuffer->Height;
2188    }
2189
2190    if ((fp->Base.InputsRead & FRAG_BIT_WPOS) || program_uses_dfdy) {
2191       key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
2192    }
2193
2194    key.nr_color_regions = 1;
2195
2196    key.program_string_id = bfp->id;
2197
2198    uint32_t old_prog_offset = brw->wm.prog_offset;
2199    struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
2200
2201    bool success = do_wm_prog(brw, prog, bfp, &key);
2202
2203    brw->wm.prog_offset = old_prog_offset;
2204    brw->wm.prog_data = old_prog_data;
2205
2206    return success;
2207 }