OSDN Git Service

i965: Make the fragment shader pull constants index by dwords, not vec4s.
[android-x86/external-mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4  develop this 3D driver.
5  
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13  
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17  
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keith@tungstengraphics.com>
30   */
31                    
32
33 #include "main/context.h"
34 #include "main/mtypes.h"
35 #include "main/samplerobj.h"
36 #include "program/prog_parameter.h"
37
38 #include "intel_mipmap_tree.h"
39 #include "intel_batchbuffer.h"
40 #include "intel_tex.h"
41 #include "intel_fbo.h"
42 #include "intel_buffer_objects.h"
43
44 #include "brw_context.h"
45 #include "brw_state.h"
46 #include "brw_defines.h"
47 #include "brw_wm.h"
48
49 GLuint
50 translate_tex_target(GLenum target)
51 {
52    switch (target) {
53    case GL_TEXTURE_1D: 
54    case GL_TEXTURE_1D_ARRAY_EXT:
55       return BRW_SURFACE_1D;
56
57    case GL_TEXTURE_RECTANGLE_NV: 
58       return BRW_SURFACE_2D;
59
60    case GL_TEXTURE_2D: 
61    case GL_TEXTURE_2D_ARRAY_EXT:
62    case GL_TEXTURE_EXTERNAL_OES:
63    case GL_TEXTURE_2D_MULTISAMPLE:
64    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
65       return BRW_SURFACE_2D;
66
67    case GL_TEXTURE_3D: 
68       return BRW_SURFACE_3D;
69
70    case GL_TEXTURE_CUBE_MAP: 
71    case GL_TEXTURE_CUBE_MAP_ARRAY:
72       return BRW_SURFACE_CUBE;
73
74    default: 
75       assert(0); 
76       return 0;
77    }
78 }
79
80 struct surface_format_info {
81    bool exists;
82    int sampling;
83    int filtering;
84    int shadow_compare;
85    int chroma_key;
86    int render_target;
87    int alpha_blend;
88    int input_vb;
89    int streamed_output_vb;
90    int color_processing;
91 };
92
93 /* This macro allows us to write the table almost as it appears in the PRM,
94  * while restructuring it to turn it into the C code we want.
95  */
96 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
97    [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
98
99 #define Y 0
100 #define x 999
101 /**
102  * This is the table of support for surface (texture, renderbuffer, and vertex
103  * buffer, but not depthbuffer) formats across the various hardware generations.
104  *
105  * The table is formatted to match the documentation, except that the docs have
106  * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever".  To put
107  * it in our table, here's the mapping:
108  *
109  * Y*: 45
110  * Y+: 45 (g45/gm45)
111  * Y~: 50 (gen5)
112  * Y^: 60 (gen6)
113  * Y#: 70 (gen7)
114  *
115  * The abbreviations in the header below are:
116  * smpl  - Sampling Engine
117  * filt  - Sampling Engine Filtering
118  * shad  - Sampling Engine Shadow Map
119  * CK    - Sampling Engine Chroma Key
120  * RT    - Render Target
121  * AB    - Alpha Blend Render Target
122  * VB    - Input Vertex Buffer
123  * SO    - Steamed Output Vertex Buffers (transform feedback)
124  * color - Color Processing
125  *
126  * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
127  */
128 const struct surface_format_info surface_formats[] = {
129 /* smpl filt shad CK  RT  AB  VB  SO  color */
130    SF( Y, 50,  x,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
131    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
132    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
133    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
134    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
135    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64_FLOAT)
136    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
137    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
138    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
139    SF( Y, 50,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
140    SF( Y,  x,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_SINT)
141    SF( Y,  x,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_UINT)
142    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
143    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
144    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
145    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
146    SF( Y,  Y,  x,  x,  Y, 45,  Y,  x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
147    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
148    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
149    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
150    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
151    SF( Y, 50,  x,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_FLOAT)
152    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_SINT)
153    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_UINT)
154    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
155    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
156    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32A32_FLOAT)
157    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_UNORM)
158    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_SNORM)
159    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64_FLOAT)
160    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
161    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
162    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A32X32_FLOAT)
163    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32X32_FLOAT)
164    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I32X32_FLOAT)
165    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
166    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
167    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_SSCALED)
168    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_USCALED)
169    SF( Y,  Y,  x,  Y,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
170    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
171 /* smpl filt shad CK  RT  AB  VB  SO  color */
172    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
173    SF( Y,  Y,  x,  x,  x,  x,  x,  x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
174    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
175    SF( Y,  Y,  x,  x,  x,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
176    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
177    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
178    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
179    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
180    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
181    SF( Y,  Y,  x,  x,  Y, 45,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_UNORM)
182    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SNORM)
183    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SINT)
184    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_UINT)
185    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_FLOAT)
186    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
187    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
188    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
189    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_SINT)
190    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_UINT)
191    SF( Y, 50,  Y,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_FLOAT)
192    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
193    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
194    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16A16_UNORM)
195    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I24X8_UNORM)
196    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L24X8_UNORM)
197    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A24X8_UNORM)
198    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I32_FLOAT)
199    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32_FLOAT)
200    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A32_FLOAT)
201    SF( Y,  Y,  x,  Y,  x,  x,  x,  x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
202    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
203    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
204    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
205    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
206    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
207    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16A16_FLOAT)
208    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_UNORM)
209    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_SNORM)
210 /* smpl filt shad CK  RT  AB  VB  SO  color */
211    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
212    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
213    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
214    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SSCALED)
215    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_USCALED)
216    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_SSCALED)
217    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_USCALED)
218    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
219    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
220    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
221    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
222    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
223    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
224    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_UNORM)
225    SF( Y,  Y,  x,  Y,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SNORM)
226    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SINT)
227    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_UINT)
228    SF( Y,  Y,  Y,  x,  Y, 45,  Y,  x, 70, BRW_SURFACEFORMAT_R16_UNORM)
229    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SNORM)
230    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SINT)
231    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_UINT)
232    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16_FLOAT)
233    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I16_UNORM)
234    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16_UNORM)
235    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A16_UNORM)
236    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8A8_UNORM)
237    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I16_FLOAT)
238    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16_FLOAT)
239    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A16_FLOAT)
240    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
241    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
242    SF( x,  x,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
243    SF( x,  x,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
244    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SSCALED)
245    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_USCALED)
246 /* smpl filt shad CK  RT  AB  VB  SO  color */
247    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SSCALED)
248    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_USCALED)
249    SF( Y,  Y,  x, 45,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R8_UNORM)
250    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SNORM)
251    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SINT)
252    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_UINT)
253    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_A8_UNORM)
254    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I8_UNORM)
255    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8_UNORM)
256    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_P4A4_UNORM)
257    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A4P4_UNORM)
258    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SSCALED)
259    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_USCALED)
260    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
261    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
262    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R1_UINT)
263    SF( Y,  Y,  x,  Y,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
264    SF( Y,  Y,  x,  Y,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
265    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC1_UNORM)
266    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC2_UNORM)
267    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC3_UNORM)
268    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC4_UNORM)
269    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC5_UNORM)
270    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
271    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
272    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
273    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_MONO8)
274    SF( Y,  Y,  x,  x,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
275    SF( Y,  Y,  x,  x,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
276    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_DXT1_RGB)
277 /* smpl filt shad CK  RT  AB  VB  SO  color */
278    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_FXT1)
279    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
280    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
281    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
282    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
283    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
284    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
285    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC4_SNORM)
286    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC5_SNORM)
287    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
288    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
289    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
290    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
291 };
292 #undef x
293 #undef Y
294
295 uint32_t
296 brw_format_for_mesa_format(gl_format mesa_format)
297 {
298    /* This table is ordered according to the enum ordering in formats.h.  We do
299     * expect that enum to be extended without our explicit initialization
300     * staying in sync, so we initialize to 0 even though
301     * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
302     */
303    static const uint32_t table[MESA_FORMAT_COUNT] =
304    {
305       [MESA_FORMAT_RGBA8888] = 0,
306       [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
307       [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
308       [MESA_FORMAT_ARGB8888_REV] = 0,
309       [MESA_FORMAT_RGBX8888] = 0,
310       [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
311       [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
312       [MESA_FORMAT_XRGB8888_REV] = 0,
313       [MESA_FORMAT_RGB888] = 0,
314       [MESA_FORMAT_BGR888] = 0,
315       [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
316       [MESA_FORMAT_RGB565_REV] = 0,
317       [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
318       [MESA_FORMAT_ARGB4444_REV] = 0,
319       [MESA_FORMAT_RGBA5551] = 0,
320       [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
321       [MESA_FORMAT_ARGB1555_REV] = 0,
322       [MESA_FORMAT_AL44] = 0,
323       [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
324       [MESA_FORMAT_AL88_REV] = 0,
325       [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
326       [MESA_FORMAT_AL1616_REV] = 0,
327       [MESA_FORMAT_RGB332] = 0,
328       [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
329       [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
330       [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
331       [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
332       [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
333       [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
334       [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
335       [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
336       [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
337       [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
338       [MESA_FORMAT_RG88] = 0,
339       [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
340       [MESA_FORMAT_GR1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
341       [MESA_FORMAT_RG1616] = 0,
342       [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
343       [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT,
344       [MESA_FORMAT_Z24_S8] = 0,
345       [MESA_FORMAT_S8_Z24] = 0,
346       [MESA_FORMAT_Z16] = 0,
347       [MESA_FORMAT_X8_Z24] = 0,
348       [MESA_FORMAT_Z24_X8] = 0,
349       [MESA_FORMAT_Z32] = 0,
350       [MESA_FORMAT_S8] = 0,
351
352       [MESA_FORMAT_SRGB8] = 0,
353       [MESA_FORMAT_SRGBA8] = 0,
354       [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
355       [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
356       [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
357       [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
358       [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
359       [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
360       [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
361
362       [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
363       [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
364       [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
365       [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
366       [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
367       [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
368
369       [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
370       [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
371       [MESA_FORMAT_RGB_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32_FLOAT,
372       [MESA_FORMAT_RGB_FLOAT16] = 0,
373       [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
374       [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
375       [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
376       [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
377       [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
378       [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
379       [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
380       [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
381       [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
382       [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
383       [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
384       [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
385
386       [MESA_FORMAT_ALPHA_UINT8] = 0,
387       [MESA_FORMAT_ALPHA_UINT16] = 0,
388       [MESA_FORMAT_ALPHA_UINT32] = 0,
389       [MESA_FORMAT_ALPHA_INT8] = 0,
390       [MESA_FORMAT_ALPHA_INT16] = 0,
391       [MESA_FORMAT_ALPHA_INT32] = 0,
392
393       [MESA_FORMAT_INTENSITY_UINT8] = 0,
394       [MESA_FORMAT_INTENSITY_UINT16] = 0,
395       [MESA_FORMAT_INTENSITY_UINT32] = 0,
396       [MESA_FORMAT_INTENSITY_INT8] = 0,
397       [MESA_FORMAT_INTENSITY_INT16] = 0,
398       [MESA_FORMAT_INTENSITY_INT32] = 0,
399
400       [MESA_FORMAT_LUMINANCE_UINT8] = 0,
401       [MESA_FORMAT_LUMINANCE_UINT16] = 0,
402       [MESA_FORMAT_LUMINANCE_UINT32] = 0,
403       [MESA_FORMAT_LUMINANCE_INT8] = 0,
404       [MESA_FORMAT_LUMINANCE_INT16] = 0,
405       [MESA_FORMAT_LUMINANCE_INT32] = 0,
406
407       [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
408       [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
409       [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
410       [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
411       [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
412       [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
413
414       [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
415       [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
416       [MESA_FORMAT_RGB_INT8] = 0,
417       [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
418       [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
419       [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
420       [MESA_FORMAT_RGB_INT16] = 0,
421       [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
422       [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
423       [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
424       [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
425       [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
426
427       [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
428       [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
429       [MESA_FORMAT_RGB_UINT8] = 0,
430       [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
431       [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
432       [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
433       [MESA_FORMAT_RGB_UINT16] = 0,
434       [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
435       [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
436       [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
437       [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
438       [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
439
440       [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
441       [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
442       [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
443       [MESA_FORMAT_SIGNED_RGBX8888] = 0,
444       [MESA_FORMAT_SIGNED_RGBA8888] = 0,
445       [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
446       [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
447       [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
448       [MESA_FORMAT_SIGNED_RGB_16] = 0,
449       [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
450       [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
451
452       [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
453       [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
454       [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
455       [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
456
457       [MESA_FORMAT_L_LATC1] = 0,
458       [MESA_FORMAT_SIGNED_L_LATC1] = 0,
459       [MESA_FORMAT_LA_LATC2] = 0,
460       [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
461
462       [MESA_FORMAT_SIGNED_A8] = 0,
463       [MESA_FORMAT_SIGNED_L8] = 0,
464       [MESA_FORMAT_SIGNED_AL88] = 0,
465       [MESA_FORMAT_SIGNED_I8] = 0,
466       [MESA_FORMAT_SIGNED_A16] = 0,
467       [MESA_FORMAT_SIGNED_L16] = 0,
468       [MESA_FORMAT_SIGNED_AL1616] = 0,
469       [MESA_FORMAT_SIGNED_I16] = 0,
470
471       [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
472       [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
473
474       [MESA_FORMAT_Z32_FLOAT] = 0,
475       [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
476    };
477    assert(mesa_format < MESA_FORMAT_COUNT);
478    return table[mesa_format];
479 }
480
481 void
482 brw_init_surface_formats(struct brw_context *brw)
483 {
484    struct intel_context *intel = &brw->intel;
485    struct gl_context *ctx = &intel->ctx;
486    int gen;
487    gl_format format;
488
489    gen = intel->gen * 10;
490    if (intel->is_g4x)
491       gen += 5;
492
493    for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
494       uint32_t texture, render;
495       const struct surface_format_info *rinfo, *tinfo;
496       bool is_integer = _mesa_is_format_integer_color(format);
497
498       render = texture = brw_format_for_mesa_format(format);
499       tinfo = &surface_formats[texture];
500
501       /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
502        * it.
503        */
504       if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
505          continue;
506
507       if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
508          ctx->TextureFormatSupported[format] = true;
509
510       /* Re-map some render target formats to make them supported when they
511        * wouldn't be using their format for texturing.
512        */
513       switch (render) {
514          /* For these formats, we just need to read/write the first
515           * channel into R, which is to say that we just treat them as
516           * GL_RED.
517           */
518       case BRW_SURFACEFORMAT_I32_FLOAT:
519       case BRW_SURFACEFORMAT_L32_FLOAT:
520          render = BRW_SURFACEFORMAT_R32_FLOAT;
521          break;
522       case BRW_SURFACEFORMAT_I16_FLOAT:
523       case BRW_SURFACEFORMAT_L16_FLOAT:
524          render = BRW_SURFACEFORMAT_R16_FLOAT;
525          break;
526       case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
527          /* XRGB is handled as ARGB because the chips in this family
528           * cannot render to XRGB targets.  This means that we have to
529           * mask writes to alpha (ala glColorMask) and reconfigure the
530           * alpha blending hardware to use GL_ONE (or GL_ZERO) for
531           * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
532           * used.
533           */
534          render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
535          break;
536       }
537
538       rinfo = &surface_formats[render];
539
540       /* Note that GL_EXT_texture_integer says that blending doesn't occur for
541        * integer, so we don't need hardware support for blending on it.  Other
542        * than that, GL in general requires alpha blending for render targets,
543        * even though we don't support it for some formats.
544        */
545       if (gen >= rinfo->render_target &&
546           (gen >= rinfo->alpha_blend || is_integer)) {
547          brw->render_target_format[format] = render;
548          brw->format_supported_as_render_target[format] = true;
549       }
550    }
551
552    /* We will check this table for FBO completeness, but the surface format
553     * table above only covered color rendering.
554     */
555    brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
556    brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
557    brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
558    brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
559    brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
560    brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
561
562    /* We remap depth formats to a supported texturing format in
563     * translate_tex_format().
564     */
565    ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
566    ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
567    ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
568    ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
569    ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
570
571    /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
572     * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
573     */
574    ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
575
576    /* On hardware that lacks support for ETC2, we map ETC2 to a suitable
577     * MESA_FORMAT during glCompressedTexImage2D().
578     * See intel_mipmap_tree::wraps_etc2.
579     */
580    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true;
581    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true;
582    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true;
583    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true;
584    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true;
585    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true;
586    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true;
587    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true;
588    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true;
589    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true;
590 }
591
592 bool
593 brw_render_target_supported(struct intel_context *intel,
594                             struct gl_renderbuffer *rb)
595 {
596    struct brw_context *brw = brw_context(&intel->ctx);
597    gl_format format = rb->Format;
598
599    /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
600     * we would consider them renderable even though we don't have surface
601     * support for their alpha behavior and don't have the blending unit
602     * available to fake it like we do for XRGB8888.  Force them to being
603     * unsupported.
604     */
605    if ((rb->_BaseFormat != GL_RGBA &&
606         rb->_BaseFormat != GL_RG &&
607         rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
608       return false;
609
610    /* Under some conditions, MSAA is not supported for formats whose width is
611     * more than 64 bits.
612     */
613    if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
614       /* Gen6: MSAA on >64 bit formats is unsupported. */
615       if (intel->gen <= 6)
616          return false;
617
618       /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
619       if (rb->NumSamples >= 8)
620          return false;
621    }
622
623    return brw->format_supported_as_render_target[format];
624 }
625
626 GLuint
627 translate_tex_format(struct intel_context *intel,
628                      gl_format mesa_format,
629                      GLenum internal_format,
630                      GLenum depth_mode,
631                      GLenum srgb_decode)
632 {
633    struct gl_context *ctx = &intel->ctx;
634    if (srgb_decode == GL_SKIP_DECODE_EXT)
635       mesa_format = _mesa_get_srgb_format_linear(mesa_format);
636
637    switch( mesa_format ) {
638
639    case MESA_FORMAT_Z16:
640       return BRW_SURFACEFORMAT_I16_UNORM;
641
642    case MESA_FORMAT_S8_Z24:
643    case MESA_FORMAT_X8_Z24:
644       return BRW_SURFACEFORMAT_I24X8_UNORM;
645
646    case MESA_FORMAT_Z32_FLOAT:
647       return BRW_SURFACEFORMAT_I32_FLOAT;
648
649    case MESA_FORMAT_Z32_FLOAT_X24S8:
650       return BRW_SURFACEFORMAT_R32G32_FLOAT;
651
652    case MESA_FORMAT_RGBA_FLOAT32:
653       /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
654        * assertion below.
655        */
656       return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
657
658    case MESA_FORMAT_SRGB_DXT1:
659       if (intel->gen == 4 && !intel->is_g4x) {
660          /* Work around missing SRGB DXT1 support on original gen4 by just
661           * skipping SRGB decode.  It's not worth not supporting sRGB in
662           * general to prevent this.
663           */
664          WARN_ONCE(true, "Demoting sRGB DXT1 texture to non-sRGB\n");
665          mesa_format = MESA_FORMAT_RGB_DXT1;
666       }
667       return brw_format_for_mesa_format(mesa_format);
668
669    default:
670       assert(brw_format_for_mesa_format(mesa_format) != 0);
671       return brw_format_for_mesa_format(mesa_format);
672    }
673 }
674
675 uint32_t
676 brw_get_surface_tiling_bits(uint32_t tiling)
677 {
678    switch (tiling) {
679    case I915_TILING_X:
680       return BRW_SURFACE_TILED;
681    case I915_TILING_Y:
682       return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
683    default:
684       return 0;
685    }
686 }
687
688
689 uint32_t
690 brw_get_surface_num_multisamples(unsigned num_samples)
691 {
692    if (num_samples > 1)
693       return BRW_SURFACE_MULTISAMPLECOUNT_4;
694    else
695       return BRW_SURFACE_MULTISAMPLECOUNT_1;
696 }
697
698
699 /**
700  * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
701  * swizzling.
702  */
703 int
704 brw_get_texture_swizzle(const struct gl_context *ctx,
705                         const struct gl_texture_object *t)
706 {
707    const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
708
709    int swizzles[SWIZZLE_NIL + 1] = {
710       SWIZZLE_X,
711       SWIZZLE_Y,
712       SWIZZLE_Z,
713       SWIZZLE_W,
714       SWIZZLE_ZERO,
715       SWIZZLE_ONE,
716       SWIZZLE_NIL
717    };
718
719    if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
720        img->_BaseFormat == GL_DEPTH_STENCIL) {
721       GLenum depth_mode = t->DepthMode;
722
723       /* In ES 3.0, DEPTH_TEXTURE_MODE is expected to be GL_RED for textures
724        * with depth component data specified with a sized internal format.
725        * Otherwise, it's left at the old default, GL_LUMINANCE.
726        */
727       if (_mesa_is_gles3(ctx) &&
728           img->InternalFormat != GL_DEPTH_COMPONENT &&
729           img->InternalFormat != GL_DEPTH_STENCIL) {
730          depth_mode = GL_RED;
731       }
732
733       switch (depth_mode) {
734       case GL_ALPHA:
735          swizzles[0] = SWIZZLE_ZERO;
736          swizzles[1] = SWIZZLE_ZERO;
737          swizzles[2] = SWIZZLE_ZERO;
738          swizzles[3] = SWIZZLE_X;
739          break;
740       case GL_LUMINANCE:
741          swizzles[0] = SWIZZLE_X;
742          swizzles[1] = SWIZZLE_X;
743          swizzles[2] = SWIZZLE_X;
744          swizzles[3] = SWIZZLE_ONE;
745          break;
746       case GL_INTENSITY:
747          swizzles[0] = SWIZZLE_X;
748          swizzles[1] = SWIZZLE_X;
749          swizzles[2] = SWIZZLE_X;
750          swizzles[3] = SWIZZLE_X;
751          break;
752       case GL_RED:
753          swizzles[0] = SWIZZLE_X;
754          swizzles[1] = SWIZZLE_ZERO;
755          swizzles[2] = SWIZZLE_ZERO;
756          swizzles[3] = SWIZZLE_ONE;
757          break;
758       }
759    }
760
761    /* If the texture's format is alpha-only, force R, G, and B to
762     * 0.0. Similarly, if the texture's format has no alpha channel,
763     * force the alpha value read to 1.0. This allows for the
764     * implementation to use an RGBA texture for any of these formats
765     * without leaking any unexpected values.
766     */
767    switch (img->_BaseFormat) {
768    case GL_ALPHA:
769       swizzles[0] = SWIZZLE_ZERO;
770       swizzles[1] = SWIZZLE_ZERO;
771       swizzles[2] = SWIZZLE_ZERO;
772       break;
773    case GL_RED:
774    case GL_RG:
775    case GL_RGB:
776       if (_mesa_get_format_bits(img->TexFormat, GL_ALPHA_BITS) > 0)
777          swizzles[3] = SWIZZLE_ONE;
778       break;
779    }
780
781    return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
782                         swizzles[GET_SWZ(t->_Swizzle, 1)],
783                         swizzles[GET_SWZ(t->_Swizzle, 2)],
784                         swizzles[GET_SWZ(t->_Swizzle, 3)]);
785 }
786
787
788 static void
789 brw_update_buffer_texture_surface(struct gl_context *ctx,
790                                   unsigned unit,
791                                   uint32_t *binding_table,
792                                   unsigned surf_index)
793 {
794    struct brw_context *brw = brw_context(ctx);
795    struct intel_context *intel = &brw->intel;
796    struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
797    uint32_t *surf;
798    struct intel_buffer_object *intel_obj =
799       intel_buffer_object(tObj->BufferObject);
800    drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
801    gl_format format = tObj->_BufferObjectFormat;
802    uint32_t brw_format = brw_format_for_mesa_format(format);
803    int texel_size = _mesa_get_format_bytes(format);
804
805    if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
806       _mesa_problem(NULL, "bad format %s for texture buffer\n",
807                     _mesa_get_format_name(format));
808    }
809
810    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
811                           6 * 4, 32, &binding_table[surf_index]);
812
813    surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
814               (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
815
816    if (intel->gen >= 6)
817       surf[0] |= BRW_SURFACE_RC_READ_WRITE;
818
819    if (bo) {
820       surf[1] = bo->offset; /* reloc */
821
822       /* Emit relocation to surface contents. */
823       drm_intel_bo_emit_reloc(brw->intel.batch.bo,
824                               binding_table[surf_index] + 4,
825                               bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
826
827       int w = intel_obj->Base.Size / texel_size;
828       surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
829                  ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
830       surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
831                  (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
832    } else {
833       surf[1] = 0;
834       surf[2] = 0;
835       surf[3] = 0;
836    }
837
838    surf[4] = 0;
839    surf[5] = 0;
840 }
841
842 static void
843 brw_update_texture_surface(struct gl_context *ctx,
844                            unsigned unit,
845                            uint32_t *binding_table,
846                            unsigned surf_index)
847 {
848    struct intel_context *intel = intel_context(ctx);
849    struct brw_context *brw = brw_context(ctx);
850    struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
851    struct intel_texture_object *intelObj = intel_texture_object(tObj);
852    struct intel_mipmap_tree *mt = intelObj->mt;
853    struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
854    struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
855    uint32_t *surf;
856    int width, height, depth;
857    uint32_t tile_x, tile_y;
858
859    if (tObj->Target == GL_TEXTURE_BUFFER) {
860       brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index);
861       return;
862    }
863
864    intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
865
866    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
867                           6 * 4, 32, &binding_table[surf_index]);
868
869    surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
870               BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
871               BRW_SURFACE_CUBEFACE_ENABLES |
872               (translate_tex_format(intel,
873                                     mt->format,
874                                     firstImage->InternalFormat,
875                                     tObj->DepthMode,
876                                     sampler->sRGBDecode) <<
877                BRW_SURFACE_FORMAT_SHIFT));
878
879    surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
880
881    surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
882               (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
883               (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
884
885    surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
886               (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
887               (intelObj->mt->region->pitch - 1) <<
888               BRW_SURFACE_PITCH_SHIFT);
889
890    surf[4] = brw_get_surface_num_multisamples(intelObj->mt->num_samples);
891
892    intel_miptree_get_tile_offsets(intelObj->mt, firstImage->Level, 0,
893                                   &tile_x, &tile_y);
894    assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
895    /* Note that the low bits of these fields are missing, so
896     * there's the possibility of getting in trouble.
897     */
898    assert(tile_x % 4 == 0);
899    assert(tile_y % 2 == 0);
900    surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
901               (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
902               (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
903
904    /* Emit relocation to surface contents */
905    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
906                            binding_table[surf_index] + 4,
907                            intelObj->mt->region->bo,
908                            intelObj->mt->offset,
909                            I915_GEM_DOMAIN_SAMPLER, 0);
910 }
911
912 /**
913  * Create the constant buffer surface.  Vertex/fragment shader constants will be
914  * read from this buffer with Data Port Read instructions/messages.
915  */
916 static void
917 brw_create_constant_surface(struct brw_context *brw,
918                             drm_intel_bo *bo,
919                             uint32_t offset,
920                             uint32_t size,
921                             uint32_t *out_offset,
922                             bool dword_pitch)
923 {
924    struct intel_context *intel = &brw->intel;
925    uint32_t stride = dword_pitch ? 4 : 16;
926    uint32_t elements = ALIGN(size, stride) / stride;
927    const GLint w = elements - 1;
928    uint32_t *surf;
929
930    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
931                           6 * 4, 32, out_offset);
932
933    surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
934               BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
935               BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
936
937    if (intel->gen >= 6)
938       surf[0] |= BRW_SURFACE_RC_READ_WRITE;
939
940    surf[1] = bo->offset + offset; /* reloc */
941
942    surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
943               ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
944
945    surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
946               (stride - 1) << BRW_SURFACE_PITCH_SHIFT);
947
948    surf[4] = 0;
949    surf[5] = 0;
950
951    /* Emit relocation to surface contents.  Section 5.1.1 of the gen4
952     * bspec ("Data Cache") says that the data cache does not exist as
953     * a separate cache and is just the sampler cache.
954     */
955    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
956                            *out_offset + 4,
957                            bo, offset,
958                            I915_GEM_DOMAIN_SAMPLER, 0);
959 }
960
961 /**
962  * Set up a binding table entry for use by stream output logic (transform
963  * feedback).
964  *
965  * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
966  */
967 void
968 brw_update_sol_surface(struct brw_context *brw,
969                        struct gl_buffer_object *buffer_obj,
970                        uint32_t *out_offset, unsigned num_vector_components,
971                        unsigned stride_dwords, unsigned offset_dwords)
972 {
973    struct intel_context *intel = &brw->intel;
974    struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
975    drm_intel_bo *bo =
976       intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
977    uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
978                                     out_offset);
979    uint32_t pitch_minus_1 = 4*stride_dwords - 1;
980    uint32_t offset_bytes = 4 * offset_dwords;
981    size_t size_dwords = buffer_obj->Size / 4;
982    uint32_t buffer_size_minus_1, width, height, depth, surface_format;
983
984    /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
985     * too big to map using a single binding table entry?
986     */
987    assert((size_dwords - offset_dwords) / stride_dwords
988           <= BRW_MAX_NUM_BUFFER_ENTRIES);
989
990    if (size_dwords > offset_dwords + num_vector_components) {
991       /* There is room for at least 1 transform feedback output in the buffer.
992        * Compute the number of additional transform feedback outputs the
993        * buffer has room for.
994        */
995       buffer_size_minus_1 =
996          (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
997    } else {
998       /* There isn't even room for a single transform feedback output in the
999        * buffer.  We can't configure the binding table entry to prevent output
1000        * entirely; we'll have to rely on the geometry shader to detect
1001        * overflow.  But to minimize the damage in case of a bug, set up the
1002        * binding table entry to just allow a single output.
1003        */
1004       buffer_size_minus_1 = 0;
1005    }
1006    width = buffer_size_minus_1 & 0x7f;
1007    height = (buffer_size_minus_1 & 0xfff80) >> 7;
1008    depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
1009
1010    switch (num_vector_components) {
1011    case 1:
1012       surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1013       break;
1014    case 2:
1015       surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
1016       break;
1017    case 3:
1018       surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
1019       break;
1020    case 4:
1021       surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
1022       break;
1023    default:
1024       assert(!"Invalid vector size for transform feedback output");
1025       surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1026       break;
1027    }
1028
1029    surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
1030       BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
1031       surface_format << BRW_SURFACE_FORMAT_SHIFT |
1032       BRW_SURFACE_RC_READ_WRITE;
1033    surf[1] = bo->offset + offset_bytes; /* reloc */
1034    surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
1035               height << BRW_SURFACE_HEIGHT_SHIFT);
1036    surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
1037               pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1038    surf[4] = 0;
1039    surf[5] = 0;
1040
1041    /* Emit relocation to surface contents. */
1042    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1043                            *out_offset + 4,
1044                            bo, offset_bytes,
1045                            I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1046 }
1047
1048 /* Creates a new WM constant buffer reflecting the current fragment program's
1049  * constants, if needed by the fragment program.
1050  *
1051  * Otherwise, constants go through the CURBEs using the brw_constant_buffer
1052  * state atom.
1053  */
1054 static void
1055 brw_upload_wm_pull_constants(struct brw_context *brw)
1056 {
1057    struct gl_context *ctx = &brw->intel.ctx;
1058    struct intel_context *intel = &brw->intel;
1059    /* BRW_NEW_FRAGMENT_PROGRAM */
1060    struct brw_fragment_program *fp =
1061       (struct brw_fragment_program *) brw->fragment_program;
1062    struct gl_program_parameter_list *params = fp->program.Base.Parameters;
1063    const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
1064    const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
1065    float *constants;
1066    unsigned int i;
1067
1068    _mesa_load_state_parameters(ctx, params);
1069
1070    /* CACHE_NEW_WM_PROG */
1071    if (brw->wm.prog_data->nr_pull_params == 0) {
1072       if (brw->wm.const_bo) {
1073          drm_intel_bo_unreference(brw->wm.const_bo);
1074          brw->wm.const_bo = NULL;
1075          brw->wm.surf_offset[surf_index] = 0;
1076          brw->state.dirty.brw |= BRW_NEW_SURFACES;
1077       }
1078       return;
1079    }
1080
1081    drm_intel_bo_unreference(brw->wm.const_bo);
1082    brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
1083                                          size, 64);
1084
1085    /* _NEW_PROGRAM_CONSTANTS */
1086    drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
1087    constants = brw->wm.const_bo->virtual;
1088    for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
1089       constants[i] = *brw->wm.prog_data->pull_param[i];
1090    }
1091    drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
1092
1093    intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0, size,
1094                                        &brw->wm.surf_offset[surf_index],
1095                                        true);
1096
1097    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1098 }
1099
1100 const struct brw_tracked_state brw_wm_pull_constants = {
1101    .dirty = {
1102       .mesa = (_NEW_PROGRAM_CONSTANTS),
1103       .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
1104       .cache = CACHE_NEW_WM_PROG,
1105    },
1106    .emit = brw_upload_wm_pull_constants,
1107 };
1108
1109 static void
1110 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
1111 {
1112    /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
1113     * Notes):
1114     *
1115     *     A null surface will be used in instances where an actual surface is
1116     *     not bound. When a write message is generated to a null surface, no
1117     *     actual surface is written to. When a read message (including any
1118     *     sampling engine message) is generated to a null surface, the result
1119     *     is all zeros. Note that a null surface type is allowed to be used
1120     *     with all messages, even if it is not specificially indicated as
1121     *     supported. All of the remaining fields in surface state are ignored
1122     *     for null surfaces, with the following exceptions:
1123     *
1124     *     - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1125     *       depth buffer’s corresponding state for all render target surfaces,
1126     *       including null.
1127     *
1128     *     - Surface Format must be R8G8B8A8_UNORM.
1129     */
1130    struct intel_context *intel = &brw->intel;
1131    struct gl_context *ctx = &intel->ctx;
1132    uint32_t *surf;
1133    unsigned surface_type = BRW_SURFACE_NULL;
1134    drm_intel_bo *bo = NULL;
1135    unsigned pitch_minus_1 = 0;
1136    uint32_t multisampling_state = 0;
1137
1138    /* _NEW_BUFFERS */
1139    const struct gl_framebuffer *fb = ctx->DrawBuffer;
1140
1141    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1142                           6 * 4, 32, &brw->wm.surf_offset[unit]);
1143
1144    if (fb->Visual.samples > 1) {
1145       /* On Gen6, null render targets seem to cause GPU hangs when
1146        * multisampling.  So work around this problem by rendering into dummy
1147        * color buffer.
1148        *
1149        * To decrease the amount of memory needed by the workaround buffer, we
1150        * set its pitch to 128 bytes (the width of a Y tile).  This means that
1151        * the amount of memory needed for the workaround buffer is
1152        * (width_in_tiles + height_in_tiles - 1) tiles.
1153        *
1154        * Note that since the workaround buffer will be interpreted by the
1155        * hardware as an interleaved multisampled buffer, we need to compute
1156        * width_in_tiles and height_in_tiles by dividing the width and height
1157        * by 16 rather than the normal Y-tile size of 32.
1158        */
1159       unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1160       unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1161       unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1162       brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1163                          size_needed);
1164       bo = brw->wm.multisampled_null_render_target_bo;
1165       surface_type = BRW_SURFACE_2D;
1166       pitch_minus_1 = 127;
1167       multisampling_state =
1168          brw_get_surface_num_multisamples(fb->Visual.samples);
1169    }
1170
1171    surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1172               BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1173    if (intel->gen < 6) {
1174       surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1175                   1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1176                   1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1177                   1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1178    }
1179    surf[1] = bo ? bo->offset : 0;
1180    surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1181               (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1182
1183    /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1184     * Notes):
1185     *
1186     *     If Surface Type is SURFTYPE_NULL, this field must be TRUE
1187     */
1188    surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1189               pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1190    surf[4] = multisampling_state;
1191    surf[5] = 0;
1192
1193    if (bo) {
1194       drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1195                               brw->wm.surf_offset[unit] + 4,
1196                               bo, 0,
1197                               I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1198    }
1199 }
1200
1201 /**
1202  * Sets up a surface state structure to point at the given region.
1203  * While it is only used for the front/back buffer currently, it should be
1204  * usable for further buffers when doing ARB_draw_buffer support.
1205  */
1206 static void
1207 brw_update_renderbuffer_surface(struct brw_context *brw,
1208                                 struct gl_renderbuffer *rb,
1209                                 unsigned int unit)
1210 {
1211    struct intel_context *intel = &brw->intel;
1212    struct gl_context *ctx = &intel->ctx;
1213    struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1214    struct intel_mipmap_tree *mt = irb->mt;
1215    struct intel_region *region;
1216    uint32_t *surf;
1217    uint32_t tile_x, tile_y;
1218    uint32_t format = 0;
1219    gl_format rb_format = intel_rb_format(irb);
1220
1221    if (irb->tex_image && !brw->has_surface_tile_offset) {
1222       intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1223
1224       if (tile_x != 0 || tile_y != 0) {
1225          /* Original gen4 hardware couldn't draw to a non-tile-aligned
1226           * destination in a miptree unless you actually setup your renderbuffer
1227           * as a miptree and used the fragile lod/array_index/etc. controls to
1228           * select the image.  So, instead, we just make a new single-level
1229           * miptree and render into that.
1230           */
1231          intel_renderbuffer_move_to_temp(intel, irb, false);
1232          mt = irb->mt;
1233       }
1234    }
1235
1236    region = irb->mt->region;
1237
1238    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1239                           6 * 4, 32, &brw->wm.surf_offset[unit]);
1240
1241    switch (rb_format) {
1242    case MESA_FORMAT_SARGB8:
1243       /* _NEW_BUFFERS
1244        *
1245        * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1246        * blend/update as sRGB.
1247        */
1248       if (ctx->Color.sRGBEnabled)
1249          format = brw_format_for_mesa_format(rb_format);
1250       else
1251          format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1252       break;
1253    default:
1254       format = brw->render_target_format[rb_format];
1255       if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1256          _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1257                        __FUNCTION__, _mesa_get_format_name(rb_format));
1258       }
1259       break;
1260    }
1261
1262    surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1263               format << BRW_SURFACE_FORMAT_SHIFT);
1264
1265    /* reloc */
1266    surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1267               region->bo->offset);
1268
1269    surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1270               (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1271
1272    surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1273               (region->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
1274
1275    surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1276
1277    assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1278    /* Note that the low bits of these fields are missing, so
1279     * there's the possibility of getting in trouble.
1280     */
1281    assert(tile_x % 4 == 0);
1282    assert(tile_y % 2 == 0);
1283    surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1284               (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1285               (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1286
1287    if (intel->gen < 6) {
1288       /* _NEW_COLOR */
1289       if (!ctx->Color.ColorLogicOpEnabled &&
1290           (ctx->Color.BlendEnabled & (1 << unit)))
1291          surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1292
1293       if (!ctx->Color.ColorMask[unit][0])
1294          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1295       if (!ctx->Color.ColorMask[unit][1])
1296          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1297       if (!ctx->Color.ColorMask[unit][2])
1298          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1299
1300       /* As mentioned above, disable writes to the alpha component when the
1301        * renderbuffer is XRGB.
1302        */
1303       if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1304           !ctx->Color.ColorMask[unit][3]) {
1305          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1306       }
1307    }
1308
1309    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1310                            brw->wm.surf_offset[unit] + 4,
1311                            region->bo,
1312                            surf[1] - region->bo->offset,
1313                            I915_GEM_DOMAIN_RENDER,
1314                            I915_GEM_DOMAIN_RENDER);
1315 }
1316
1317 /**
1318  * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1319  */
1320 static void
1321 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1322 {
1323    struct intel_context *intel = &brw->intel;
1324    struct gl_context *ctx = &brw->intel.ctx;
1325    GLuint i;
1326
1327    /* _NEW_BUFFERS | _NEW_COLOR */
1328    /* Update surfaces for drawing buffers */
1329    if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1330       for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1331          if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1332             intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1333          } else {
1334             intel->vtbl.update_null_renderbuffer_surface(brw, i);
1335          }
1336       }
1337    } else {
1338       intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1339    }
1340    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1341 }
1342
1343 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1344    .dirty = {
1345       .mesa = (_NEW_COLOR |
1346                _NEW_BUFFERS),
1347       .brw = BRW_NEW_BATCH,
1348       .cache = 0
1349    },
1350    .emit = brw_update_renderbuffer_surfaces,
1351 };
1352
1353 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1354    .dirty = {
1355       .mesa = _NEW_BUFFERS,
1356       .brw = BRW_NEW_BATCH,
1357       .cache = 0
1358    },
1359    .emit = brw_update_renderbuffer_surfaces,
1360 };
1361
1362 /**
1363  * Construct SURFACE_STATE objects for enabled textures.
1364  */
1365 static void
1366 brw_update_texture_surfaces(struct brw_context *brw)
1367 {
1368    struct intel_context *intel = &brw->intel;
1369    struct gl_context *ctx = &intel->ctx;
1370
1371    /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM:
1372     * Unfortunately, we're stuck using the gl_program structs until the
1373     * ARB_fragment_program front-end gets converted to GLSL IR.  These
1374     * have the downside that SamplerUnits is split and only contains the
1375     * mappings for samplers active in that stage.
1376     */
1377    struct gl_program *vs = (struct gl_program *) brw->vertex_program;
1378    struct gl_program *fs = (struct gl_program *) brw->fragment_program;
1379
1380    unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed);
1381
1382    for (unsigned s = 0; s < num_samplers; s++) {
1383       brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0;
1384       brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0;
1385
1386       if (vs->SamplersUsed & (1 << s)) {
1387          const unsigned unit = vs->SamplerUnits[s];
1388
1389          /* _NEW_TEXTURE */
1390          if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1391             intel->vtbl.update_texture_surface(ctx, unit,
1392                                                brw->vs.surf_offset,
1393                                                SURF_INDEX_VS_TEXTURE(s));
1394          }
1395       }
1396
1397       if (fs->SamplersUsed & (1 << s)) {
1398          const unsigned unit = fs->SamplerUnits[s];
1399
1400          /* _NEW_TEXTURE */
1401          if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1402             intel->vtbl.update_texture_surface(ctx, unit,
1403                                                brw->wm.surf_offset,
1404                                                SURF_INDEX_TEXTURE(s));
1405          }
1406       }
1407    }
1408
1409    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1410 }
1411
1412 const struct brw_tracked_state brw_texture_surfaces = {
1413    .dirty = {
1414       .mesa = _NEW_TEXTURE,
1415       .brw = BRW_NEW_BATCH |
1416              BRW_NEW_VERTEX_PROGRAM |
1417              BRW_NEW_FRAGMENT_PROGRAM,
1418       .cache = 0
1419    },
1420    .emit = brw_update_texture_surfaces,
1421 };
1422
1423 void
1424 brw_upload_ubo_surfaces(struct brw_context *brw,
1425                         struct gl_shader *shader,
1426                         uint32_t *surf_offsets)
1427 {
1428    struct gl_context *ctx = &brw->intel.ctx;
1429    struct intel_context *intel = &brw->intel;
1430
1431    if (!shader)
1432       return;
1433
1434    for (int i = 0; i < shader->NumUniformBlocks; i++) {
1435       struct gl_uniform_buffer_binding *binding;
1436       struct intel_buffer_object *intel_bo;
1437
1438       binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
1439       intel_bo = intel_buffer_object(binding->BufferObject);
1440       drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ);
1441
1442       /* Because behavior for referencing outside of the binding's size in the
1443        * glBindBufferRange case is undefined, we can just bind the whole buffer
1444        * glBindBufferBase wants and be a correct implementation.
1445        */
1446       intel->vtbl.create_constant_surface(brw, bo, binding->Offset,
1447                                           bo->size - binding->Offset,
1448                                           &surf_offsets[i],
1449                                           shader->Type == GL_FRAGMENT_SHADER);
1450    }
1451
1452    if (shader->NumUniformBlocks)
1453       brw->state.dirty.brw |= BRW_NEW_SURFACES;
1454 }
1455
1456 static void
1457 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
1458 {
1459    struct gl_context *ctx = &brw->intel.ctx;
1460    /* _NEW_PROGRAM */
1461    struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
1462
1463    if (!prog)
1464       return;
1465
1466    brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1467                            &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]);
1468 }
1469
1470 const struct brw_tracked_state brw_wm_ubo_surfaces = {
1471    .dirty = {
1472       .mesa = (_NEW_PROGRAM |
1473                _NEW_BUFFER_OBJECT),
1474       .brw = BRW_NEW_BATCH,
1475       .cache = 0,
1476    },
1477    .emit = brw_upload_wm_ubo_surfaces,
1478 };
1479
1480 /**
1481  * Constructs the binding table for the WM surface state, which maps unit
1482  * numbers to surface state objects.
1483  */
1484 static void
1485 brw_upload_wm_binding_table(struct brw_context *brw)
1486 {
1487    uint32_t *bind;
1488    int i;
1489
1490    if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1491       gen7_create_shader_time_surface(brw, &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]);
1492    }
1493
1494    /* Might want to calculate nr_surfaces first, to avoid taking up so much
1495     * space for the binding table.
1496     */
1497    bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1498                           sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1499                           32, &brw->wm.bind_bo_offset);
1500
1501    /* BRW_NEW_SURFACES */
1502    for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1503       bind[i] = brw->wm.surf_offset[i];
1504    }
1505
1506    brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1507 }
1508
1509 const struct brw_tracked_state brw_wm_binding_table = {
1510    .dirty = {
1511       .mesa = 0,
1512       .brw = (BRW_NEW_BATCH |
1513               BRW_NEW_SURFACES),
1514       .cache = 0
1515    },
1516    .emit = brw_upload_wm_binding_table,
1517 };
1518
1519 void
1520 gen4_init_vtable_surface_functions(struct brw_context *brw)
1521 {
1522    struct intel_context *intel = &brw->intel;
1523
1524    intel->vtbl.update_texture_surface = brw_update_texture_surface;
1525    intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1526    intel->vtbl.update_null_renderbuffer_surface =
1527       brw_update_null_renderbuffer_surface;
1528    intel->vtbl.create_constant_surface = brw_create_constant_surface;
1529 }