OSDN Git Service

intel: Hook up the WARN_ONCE macro to GL_ARB_debug_output.
[android-x86/external-mesa.git] / src / mesa / drivers / dri / i965 / brw_wm_surface_state.c
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4  develop this 3D driver.
5  
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13  
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17  
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keith@tungstengraphics.com>
30   */
31                    
32
33 #include "main/context.h"
34 #include "main/mtypes.h"
35 #include "main/samplerobj.h"
36 #include "program/prog_parameter.h"
37
38 #include "intel_mipmap_tree.h"
39 #include "intel_batchbuffer.h"
40 #include "intel_tex.h"
41 #include "intel_fbo.h"
42 #include "intel_buffer_objects.h"
43
44 #include "brw_context.h"
45 #include "brw_state.h"
46 #include "brw_defines.h"
47 #include "brw_wm.h"
48
49 GLuint
50 translate_tex_target(GLenum target)
51 {
52    switch (target) {
53    case GL_TEXTURE_1D: 
54    case GL_TEXTURE_1D_ARRAY_EXT:
55       return BRW_SURFACE_1D;
56
57    case GL_TEXTURE_RECTANGLE_NV: 
58       return BRW_SURFACE_2D;
59
60    case GL_TEXTURE_2D: 
61    case GL_TEXTURE_2D_ARRAY_EXT:
62    case GL_TEXTURE_EXTERNAL_OES:
63    case GL_TEXTURE_2D_MULTISAMPLE:
64    case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
65       return BRW_SURFACE_2D;
66
67    case GL_TEXTURE_3D: 
68       return BRW_SURFACE_3D;
69
70    case GL_TEXTURE_CUBE_MAP: 
71    case GL_TEXTURE_CUBE_MAP_ARRAY:
72       return BRW_SURFACE_CUBE;
73
74    default: 
75       assert(0); 
76       return 0;
77    }
78 }
79
80 struct surface_format_info {
81    bool exists;
82    int sampling;
83    int filtering;
84    int shadow_compare;
85    int chroma_key;
86    int render_target;
87    int alpha_blend;
88    int input_vb;
89    int streamed_output_vb;
90    int color_processing;
91 };
92
93 /* This macro allows us to write the table almost as it appears in the PRM,
94  * while restructuring it to turn it into the C code we want.
95  */
96 #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \
97    [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color },
98
99 #define Y 0
100 #define x 999
101 /**
102  * This is the table of support for surface (texture, renderbuffer, and vertex
103  * buffer, but not depthbuffer) formats across the various hardware generations.
104  *
105  * The table is formatted to match the documentation, except that the docs have
106  * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever".  To put
107  * it in our table, here's the mapping:
108  *
109  * Y*: 45
110  * Y+: 45 (g45/gm45)
111  * Y~: 50 (gen5)
112  * Y^: 60 (gen6)
113  * Y#: 70 (gen7)
114  *
115  * The abbreviations in the header below are:
116  * smpl  - Sampling Engine
117  * filt  - Sampling Engine Filtering
118  * shad  - Sampling Engine Shadow Map
119  * CK    - Sampling Engine Chroma Key
120  * RT    - Render Target
121  * AB    - Alpha Blend Render Target
122  * VB    - Input Vertex Buffer
123  * SO    - Steamed Output Vertex Buffers (transform feedback)
124  * color - Color Processing
125  *
126  * See page 88 of the Sandybridge PRM VOL4_Part1 PDF.
127  */
128 const struct surface_format_info surface_formats[] = {
129 /* smpl filt shad CK  RT  AB  VB  SO  color */
130    SF( Y, 50,  x,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT)
131    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_SINT)
132    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32A32_UINT)
133    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM)
134    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM)
135    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64_FLOAT)
136    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT)
137    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED)
138    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED)
139    SF( Y, 50,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_FLOAT)
140    SF( Y,  x,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_SINT)
141    SF( Y,  x,  x,  x,  x,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32B32_UINT)
142    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_UNORM)
143    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_SNORM)
144    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_SSCALED)
145    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32B32_USCALED)
146    SF( Y,  Y,  x,  x,  Y, 45,  Y,  x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM)
147    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM)
148    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SINT)
149    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_UINT)
150    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT)
151    SF( Y, 50,  x,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_FLOAT)
152    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_SINT)
153    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32G32_UINT)
154    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS)
155    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT)
156    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32A32_FLOAT)
157    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_UNORM)
158    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_SNORM)
159    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64_FLOAT)
160    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM)
161    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT)
162    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A32X32_FLOAT)
163    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32X32_FLOAT)
164    SF( Y, 50,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I32X32_FLOAT)
165    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED)
166    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED)
167    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_SSCALED)
168    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32G32_USCALED)
169    SF( Y,  Y,  x,  Y,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM)
170    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB)
171 /* smpl filt shad CK  RT  AB  VB  SO  color */
172    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM)
173    SF( Y,  Y,  x,  x,  x,  x,  x,  x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB)
174    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10A2_UINT)
175    SF( Y,  Y,  x,  x,  x,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM)
176    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM)
177    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB)
178    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM)
179    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SINT)
180    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_UINT)
181    SF( Y,  Y,  x,  x,  Y, 45,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_UNORM)
182    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SNORM)
183    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SINT)
184    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_UINT)
185    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_FLOAT)
186    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM)
187    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB)
188    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R11G11B10_FLOAT)
189    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_SINT)
190    SF( Y,  x,  x,  x,  Y,  x,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_UINT)
191    SF( Y, 50,  Y,  x,  Y,  Y,  Y,  Y,  x, BRW_SURFACEFORMAT_R32_FLOAT)
192    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS)
193    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT)
194    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16A16_UNORM)
195    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I24X8_UNORM)
196    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L24X8_UNORM)
197    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A24X8_UNORM)
198    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I32_FLOAT)
199    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L32_FLOAT)
200    SF( Y, 50,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A32_FLOAT)
201    SF( Y,  Y,  x,  Y,  x,  x,  x,  x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM)
202    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB)
203    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM)
204    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB)
205    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP)
206    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM)
207    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16A16_FLOAT)
208    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_UNORM)
209    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_SNORM)
210 /* smpl filt shad CK  RT  AB  VB  SO  color */
211    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED)
212    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED)
213    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED)
214    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_SSCALED)
215    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16_USCALED)
216    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_SSCALED)
217    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R32_USCALED)
218    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G6R5_UNORM)
219    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB)
220    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM)
221    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB)
222    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM)
223    SF( Y,  Y,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB)
224    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_UNORM)
225    SF( Y,  Y,  x,  Y,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SNORM)
226    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SINT)
227    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_UINT)
228    SF( Y,  Y,  Y,  x,  Y, 45,  Y,  x, 70, BRW_SURFACEFORMAT_R16_UNORM)
229    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SNORM)
230    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SINT)
231    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_UINT)
232    SF( Y,  Y,  x,  x,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R16_FLOAT)
233    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I16_UNORM)
234    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16_UNORM)
235    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A16_UNORM)
236    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8A8_UNORM)
237    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I16_FLOAT)
238    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L16_FLOAT)
239    SF( Y,  Y,  Y,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A16_FLOAT)
240    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB)
241    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM)
242    SF( x,  x,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM)
243    SF( x,  x,  x,  x,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB)
244    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_SSCALED)
245    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8_USCALED)
246 /* smpl filt shad CK  RT  AB  VB  SO  color */
247    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_SSCALED)
248    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16_USCALED)
249    SF( Y,  Y,  x, 45,  Y,  Y,  Y,  x,  x, BRW_SURFACEFORMAT_R8_UNORM)
250    SF( Y,  Y,  x,  x,  Y, 60,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SNORM)
251    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SINT)
252    SF( Y,  x,  x,  x,  Y,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_UINT)
253    SF( Y,  Y,  x,  Y,  Y,  Y,  x,  x,  x, BRW_SURFACEFORMAT_A8_UNORM)
254    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_I8_UNORM)
255    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8_UNORM)
256    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_P4A4_UNORM)
257    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_A4P4_UNORM)
258    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_SSCALED)
259    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8_USCALED)
260    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_L8_UNORM_SRGB)
261    SF(45, 45,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB)
262    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_R1_UINT)
263    SF( Y,  Y,  x,  Y,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL)
264    SF( Y,  Y,  x,  Y,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY)
265    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC1_UNORM)
266    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC2_UNORM)
267    SF( Y,  Y,  x,  Y,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC3_UNORM)
268    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC4_UNORM)
269    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC5_UNORM)
270    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB)
271    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB)
272    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB)
273    SF( Y,  x,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_MONO8)
274    SF( Y,  Y,  x,  x,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV)
275    SF( Y,  Y,  x,  x,  Y,  x,  x,  x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY)
276    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_DXT1_RGB)
277 /* smpl filt shad CK  RT  AB  VB  SO  color */
278    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_FXT1)
279    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_UNORM)
280    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_SNORM)
281    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_SSCALED)
282    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R8G8B8_USCALED)
283    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT)
284    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R64G64B64_FLOAT)
285    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC4_SNORM)
286    SF( Y,  Y,  x,  x,  x,  x,  x,  x,  x, BRW_SURFACEFORMAT_BC5_SNORM)
287    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_UNORM)
288    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_SNORM)
289    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_SSCALED)
290    SF( x,  x,  x,  x,  x,  x,  Y,  x,  x, BRW_SURFACEFORMAT_R16G16B16_USCALED)
291 };
292 #undef x
293 #undef Y
294
295 uint32_t
296 brw_format_for_mesa_format(gl_format mesa_format)
297 {
298    /* This table is ordered according to the enum ordering in formats.h.  We do
299     * expect that enum to be extended without our explicit initialization
300     * staying in sync, so we initialize to 0 even though
301     * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0.
302     */
303    static const uint32_t table[MESA_FORMAT_COUNT] =
304    {
305       [MESA_FORMAT_RGBA8888] = 0,
306       [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM,
307       [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM,
308       [MESA_FORMAT_ARGB8888_REV] = 0,
309       [MESA_FORMAT_RGBX8888] = 0,
310       [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM,
311       [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM,
312       [MESA_FORMAT_XRGB8888_REV] = 0,
313       [MESA_FORMAT_RGB888] = 0,
314       [MESA_FORMAT_BGR888] = 0,
315       [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM,
316       [MESA_FORMAT_RGB565_REV] = 0,
317       [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM,
318       [MESA_FORMAT_ARGB4444_REV] = 0,
319       [MESA_FORMAT_RGBA5551] = 0,
320       [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM,
321       [MESA_FORMAT_ARGB1555_REV] = 0,
322       [MESA_FORMAT_AL44] = 0,
323       [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM,
324       [MESA_FORMAT_AL88_REV] = 0,
325       [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM,
326       [MESA_FORMAT_AL1616_REV] = 0,
327       [MESA_FORMAT_RGB332] = 0,
328       [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM,
329       [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM,
330       [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM,
331       [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM,
332       [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM,
333       [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM,
334       [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL,
335       [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY,
336       [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM,
337       [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM,
338       [MESA_FORMAT_RG88] = 0,
339       [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM,
340       [MESA_FORMAT_GR1616] = BRW_SURFACEFORMAT_R16G16_UNORM,
341       [MESA_FORMAT_RG1616] = 0,
342       [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM,
343       [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT,
344       [MESA_FORMAT_Z24_S8] = 0,
345       [MESA_FORMAT_S8_Z24] = 0,
346       [MESA_FORMAT_Z16] = 0,
347       [MESA_FORMAT_X8_Z24] = 0,
348       [MESA_FORMAT_Z24_X8] = 0,
349       [MESA_FORMAT_Z32] = 0,
350       [MESA_FORMAT_S8] = 0,
351
352       [MESA_FORMAT_SRGB8] = 0,
353       [MESA_FORMAT_SRGBA8] = 0,
354       [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB,
355       [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB,
356       [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB,
357       [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB,
358       [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB,
359       [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB,
360       [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB,
361
362       [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1,
363       [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1,
364       [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB,
365       [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM,
366       [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM,
367       [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM,
368
369       [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT,
370       [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
371       [MESA_FORMAT_RGB_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32_FLOAT,
372       [MESA_FORMAT_RGB_FLOAT16] = 0,
373       [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT,
374       [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT,
375       [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT,
376       [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT,
377       [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT,
378       [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT,
379       [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT,
380       [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT,
381       [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT,
382       [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT,
383       [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT,
384       [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT,
385
386       [MESA_FORMAT_ALPHA_UINT8] = 0,
387       [MESA_FORMAT_ALPHA_UINT16] = 0,
388       [MESA_FORMAT_ALPHA_UINT32] = 0,
389       [MESA_FORMAT_ALPHA_INT8] = 0,
390       [MESA_FORMAT_ALPHA_INT16] = 0,
391       [MESA_FORMAT_ALPHA_INT32] = 0,
392
393       [MESA_FORMAT_INTENSITY_UINT8] = 0,
394       [MESA_FORMAT_INTENSITY_UINT16] = 0,
395       [MESA_FORMAT_INTENSITY_UINT32] = 0,
396       [MESA_FORMAT_INTENSITY_INT8] = 0,
397       [MESA_FORMAT_INTENSITY_INT16] = 0,
398       [MESA_FORMAT_INTENSITY_INT32] = 0,
399
400       [MESA_FORMAT_LUMINANCE_UINT8] = 0,
401       [MESA_FORMAT_LUMINANCE_UINT16] = 0,
402       [MESA_FORMAT_LUMINANCE_UINT32] = 0,
403       [MESA_FORMAT_LUMINANCE_INT8] = 0,
404       [MESA_FORMAT_LUMINANCE_INT16] = 0,
405       [MESA_FORMAT_LUMINANCE_INT32] = 0,
406
407       [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0,
408       [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0,
409       [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0,
410       [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0,
411       [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0,
412       [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0,
413
414       [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT,
415       [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT,
416       [MESA_FORMAT_RGB_INT8] = 0,
417       [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT,
418       [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT,
419       [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT,
420       [MESA_FORMAT_RGB_INT16] = 0,
421       [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT,
422       [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT,
423       [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT,
424       [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT,
425       [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT,
426
427       [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT,
428       [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT,
429       [MESA_FORMAT_RGB_UINT8] = 0,
430       [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT,
431       [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT,
432       [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT,
433       [MESA_FORMAT_RGB_UINT16] = 0,
434       [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT,
435       [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT,
436       [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT,
437       [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT,
438       [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT,
439
440       [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM,
441       [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM,
442       [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM,
443       [MESA_FORMAT_SIGNED_RGBX8888] = 0,
444       [MESA_FORMAT_SIGNED_RGBA8888] = 0,
445       [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM,
446       [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM,
447       [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM,
448       [MESA_FORMAT_SIGNED_RGB_16] = 0,
449       [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM,
450       [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM,
451
452       [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM,
453       [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM,
454       [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM,
455       [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM,
456
457       [MESA_FORMAT_L_LATC1] = 0,
458       [MESA_FORMAT_SIGNED_L_LATC1] = 0,
459       [MESA_FORMAT_LA_LATC2] = 0,
460       [MESA_FORMAT_SIGNED_LA_LATC2] = 0,
461
462       [MESA_FORMAT_SIGNED_A8] = 0,
463       [MESA_FORMAT_SIGNED_L8] = 0,
464       [MESA_FORMAT_SIGNED_AL88] = 0,
465       [MESA_FORMAT_SIGNED_I8] = 0,
466       [MESA_FORMAT_SIGNED_A16] = 0,
467       [MESA_FORMAT_SIGNED_L16] = 0,
468       [MESA_FORMAT_SIGNED_AL1616] = 0,
469       [MESA_FORMAT_SIGNED_I16] = 0,
470
471       [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP,
472       [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT,
473
474       [MESA_FORMAT_Z32_FLOAT] = 0,
475       [MESA_FORMAT_Z32_FLOAT_X24S8] = 0,
476    };
477    assert(mesa_format < MESA_FORMAT_COUNT);
478    return table[mesa_format];
479 }
480
481 void
482 brw_init_surface_formats(struct brw_context *brw)
483 {
484    struct intel_context *intel = &brw->intel;
485    struct gl_context *ctx = &intel->ctx;
486    int gen;
487    gl_format format;
488
489    gen = intel->gen * 10;
490    if (intel->is_g4x)
491       gen += 5;
492
493    for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) {
494       uint32_t texture, render;
495       const struct surface_format_info *rinfo, *tinfo;
496       bool is_integer = _mesa_is_format_integer_color(format);
497
498       render = texture = brw_format_for_mesa_format(format);
499       tinfo = &surface_formats[texture];
500
501       /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip
502        * it.
503        */
504       if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32)
505          continue;
506
507       if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer))
508          ctx->TextureFormatSupported[format] = true;
509
510       /* Re-map some render target formats to make them supported when they
511        * wouldn't be using their format for texturing.
512        */
513       switch (render) {
514          /* For these formats, we just need to read/write the first
515           * channel into R, which is to say that we just treat them as
516           * GL_RED.
517           */
518       case BRW_SURFACEFORMAT_I32_FLOAT:
519       case BRW_SURFACEFORMAT_L32_FLOAT:
520          render = BRW_SURFACEFORMAT_R32_FLOAT;
521          break;
522       case BRW_SURFACEFORMAT_I16_FLOAT:
523       case BRW_SURFACEFORMAT_L16_FLOAT:
524          render = BRW_SURFACEFORMAT_R16_FLOAT;
525          break;
526       case BRW_SURFACEFORMAT_B8G8R8X8_UNORM:
527          /* XRGB is handled as ARGB because the chips in this family
528           * cannot render to XRGB targets.  This means that we have to
529           * mask writes to alpha (ala glColorMask) and reconfigure the
530           * alpha blending hardware to use GL_ONE (or GL_ZERO) for
531           * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is
532           * used.
533           */
534          render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
535          break;
536       }
537
538       rinfo = &surface_formats[render];
539
540       /* Note that GL_EXT_texture_integer says that blending doesn't occur for
541        * integer, so we don't need hardware support for blending on it.  Other
542        * than that, GL in general requires alpha blending for render targets,
543        * even though we don't support it for some formats.
544        */
545       if (gen >= rinfo->render_target &&
546           (gen >= rinfo->alpha_blend || is_integer)) {
547          brw->render_target_format[format] = render;
548          brw->format_supported_as_render_target[format] = true;
549       }
550    }
551
552    /* We will check this table for FBO completeness, but the surface format
553     * table above only covered color rendering.
554     */
555    brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true;
556    brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true;
557    brw->format_supported_as_render_target[MESA_FORMAT_S8] = true;
558    brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true;
559    brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true;
560    brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
561
562    /* We remap depth formats to a supported texturing format in
563     * translate_tex_format().
564     */
565    ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true;
566    ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true;
567    ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true;
568    ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true;
569    ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true;
570
571    /* On hardware that lacks support for ETC1, we map ETC1 to RGBX
572     * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1.
573     */
574    ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true;
575
576    /* On hardware that lacks support for ETC2, we map ETC2 to a suitable
577     * MESA_FORMAT during glCompressedTexImage2D().
578     * See intel_mipmap_tree::wraps_etc2.
579     */
580    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true;
581    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true;
582    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true;
583    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true;
584    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true;
585    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true;
586    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true;
587    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true;
588    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true;
589    ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true;
590 }
591
592 bool
593 brw_render_target_supported(struct intel_context *intel,
594                             struct gl_renderbuffer *rb)
595 {
596    struct brw_context *brw = brw_context(&intel->ctx);
597    gl_format format = rb->Format;
598
599    /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means
600     * we would consider them renderable even though we don't have surface
601     * support for their alpha behavior and don't have the blending unit
602     * available to fake it like we do for XRGB8888.  Force them to being
603     * unsupported.
604     */
605    if ((rb->_BaseFormat != GL_RGBA &&
606         rb->_BaseFormat != GL_RG &&
607         rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format))
608       return false;
609
610    /* Under some conditions, MSAA is not supported for formats whose width is
611     * more than 64 bits.
612     */
613    if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) {
614       /* Gen6: MSAA on >64 bit formats is unsupported. */
615       if (intel->gen <= 6)
616          return false;
617
618       /* Gen7: 8x MSAA on >64 bit formats is unsupported. */
619       if (rb->NumSamples >= 8)
620          return false;
621    }
622
623    return brw->format_supported_as_render_target[format];
624 }
625
626 GLuint
627 translate_tex_format(struct intel_context *intel,
628                      gl_format mesa_format,
629                      GLenum internal_format,
630                      GLenum depth_mode,
631                      GLenum srgb_decode)
632 {
633    struct gl_context *ctx = &intel->ctx;
634    if (srgb_decode == GL_SKIP_DECODE_EXT)
635       mesa_format = _mesa_get_srgb_format_linear(mesa_format);
636
637    switch( mesa_format ) {
638
639    case MESA_FORMAT_Z16:
640       return BRW_SURFACEFORMAT_I16_UNORM;
641
642    case MESA_FORMAT_S8_Z24:
643    case MESA_FORMAT_X8_Z24:
644       return BRW_SURFACEFORMAT_I24X8_UNORM;
645
646    case MESA_FORMAT_Z32_FLOAT:
647       return BRW_SURFACEFORMAT_I32_FLOAT;
648
649    case MESA_FORMAT_Z32_FLOAT_X24S8:
650       return BRW_SURFACEFORMAT_R32G32_FLOAT;
651
652    case MESA_FORMAT_RGBA_FLOAT32:
653       /* The value of this BRW_SURFACEFORMAT is 0, which tricks the
654        * assertion below.
655        */
656       return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
657
658    case MESA_FORMAT_SRGB_DXT1:
659       if (intel->gen == 4 && !intel->is_g4x) {
660          /* Work around missing SRGB DXT1 support on original gen4 by just
661           * skipping SRGB decode.  It's not worth not supporting sRGB in
662           * general to prevent this.
663           */
664          WARN_ONCE(true, "Demoting sRGB DXT1 texture to non-sRGB\n");
665          mesa_format = MESA_FORMAT_RGB_DXT1;
666       }
667       return brw_format_for_mesa_format(mesa_format);
668
669    default:
670       assert(brw_format_for_mesa_format(mesa_format) != 0);
671       return brw_format_for_mesa_format(mesa_format);
672    }
673 }
674
675 uint32_t
676 brw_get_surface_tiling_bits(uint32_t tiling)
677 {
678    switch (tiling) {
679    case I915_TILING_X:
680       return BRW_SURFACE_TILED;
681    case I915_TILING_Y:
682       return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y;
683    default:
684       return 0;
685    }
686 }
687
688
689 uint32_t
690 brw_get_surface_num_multisamples(unsigned num_samples)
691 {
692    if (num_samples > 1)
693       return BRW_SURFACE_MULTISAMPLECOUNT_4;
694    else
695       return BRW_SURFACE_MULTISAMPLECOUNT_1;
696 }
697
698
699 /**
700  * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle
701  * swizzling.
702  */
703 int
704 brw_get_texture_swizzle(const struct gl_context *ctx,
705                         const struct gl_texture_object *t)
706 {
707    const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
708
709    int swizzles[SWIZZLE_NIL + 1] = {
710       SWIZZLE_X,
711       SWIZZLE_Y,
712       SWIZZLE_Z,
713       SWIZZLE_W,
714       SWIZZLE_ZERO,
715       SWIZZLE_ONE,
716       SWIZZLE_NIL
717    };
718
719    if (img->_BaseFormat == GL_DEPTH_COMPONENT ||
720        img->_BaseFormat == GL_DEPTH_STENCIL) {
721       GLenum depth_mode = t->DepthMode;
722
723       /* In ES 3.0, DEPTH_TEXTURE_MODE is expected to be GL_RED for textures
724        * with depth component data specified with a sized internal format.
725        * Otherwise, it's left at the old default, GL_LUMINANCE.
726        */
727       if (_mesa_is_gles3(ctx) &&
728           img->InternalFormat != GL_DEPTH_COMPONENT &&
729           img->InternalFormat != GL_DEPTH_STENCIL) {
730          depth_mode = GL_RED;
731       }
732
733       switch (depth_mode) {
734       case GL_ALPHA:
735          swizzles[0] = SWIZZLE_ZERO;
736          swizzles[1] = SWIZZLE_ZERO;
737          swizzles[2] = SWIZZLE_ZERO;
738          swizzles[3] = SWIZZLE_X;
739          break;
740       case GL_LUMINANCE:
741          swizzles[0] = SWIZZLE_X;
742          swizzles[1] = SWIZZLE_X;
743          swizzles[2] = SWIZZLE_X;
744          swizzles[3] = SWIZZLE_ONE;
745          break;
746       case GL_INTENSITY:
747          swizzles[0] = SWIZZLE_X;
748          swizzles[1] = SWIZZLE_X;
749          swizzles[2] = SWIZZLE_X;
750          swizzles[3] = SWIZZLE_X;
751          break;
752       case GL_RED:
753          swizzles[0] = SWIZZLE_X;
754          swizzles[1] = SWIZZLE_ZERO;
755          swizzles[2] = SWIZZLE_ZERO;
756          swizzles[3] = SWIZZLE_ONE;
757          break;
758       }
759    }
760
761    /* If the texture's format is alpha-only, force R, G, and B to
762     * 0.0. Similarly, if the texture's format has no alpha channel,
763     * force the alpha value read to 1.0. This allows for the
764     * implementation to use an RGBA texture for any of these formats
765     * without leaking any unexpected values.
766     */
767    switch (img->_BaseFormat) {
768    case GL_ALPHA:
769       swizzles[0] = SWIZZLE_ZERO;
770       swizzles[1] = SWIZZLE_ZERO;
771       swizzles[2] = SWIZZLE_ZERO;
772       break;
773    case GL_RED:
774    case GL_RG:
775    case GL_RGB:
776       swizzles[3] = SWIZZLE_ONE;
777       break;
778    }
779
780    return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)],
781                         swizzles[GET_SWZ(t->_Swizzle, 1)],
782                         swizzles[GET_SWZ(t->_Swizzle, 2)],
783                         swizzles[GET_SWZ(t->_Swizzle, 3)]);
784 }
785
786
787 static void
788 brw_update_buffer_texture_surface(struct gl_context *ctx,
789                                   unsigned unit,
790                                   uint32_t *binding_table,
791                                   unsigned surf_index)
792 {
793    struct brw_context *brw = brw_context(ctx);
794    struct intel_context *intel = &brw->intel;
795    struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
796    uint32_t *surf;
797    struct intel_buffer_object *intel_obj =
798       intel_buffer_object(tObj->BufferObject);
799    drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL;
800    gl_format format = tObj->_BufferObjectFormat;
801    uint32_t brw_format = brw_format_for_mesa_format(format);
802    int texel_size = _mesa_get_format_bytes(format);
803
804    if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) {
805       _mesa_problem(NULL, "bad format %s for texture buffer\n",
806                     _mesa_get_format_name(format));
807    }
808
809    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
810                           6 * 4, 32, &binding_table[surf_index]);
811
812    surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
813               (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT));
814
815    if (intel->gen >= 6)
816       surf[0] |= BRW_SURFACE_RC_READ_WRITE;
817
818    if (bo) {
819       surf[1] = bo->offset; /* reloc */
820
821       /* Emit relocation to surface contents. */
822       drm_intel_bo_emit_reloc(brw->intel.batch.bo,
823                               binding_table[surf_index] + 4,
824                               bo, 0, I915_GEM_DOMAIN_SAMPLER, 0);
825
826       int w = intel_obj->Base.Size / texel_size;
827       surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
828                  ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
829       surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
830                  (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT);
831    } else {
832       surf[1] = 0;
833       surf[2] = 0;
834       surf[3] = 0;
835    }
836
837    surf[4] = 0;
838    surf[5] = 0;
839 }
840
841 static void
842 brw_update_texture_surface(struct gl_context *ctx,
843                            unsigned unit,
844                            uint32_t *binding_table,
845                            unsigned surf_index)
846 {
847    struct intel_context *intel = intel_context(ctx);
848    struct brw_context *brw = brw_context(ctx);
849    struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current;
850    struct intel_texture_object *intelObj = intel_texture_object(tObj);
851    struct intel_mipmap_tree *mt = intelObj->mt;
852    struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel];
853    struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
854    uint32_t *surf;
855    int width, height, depth;
856    uint32_t tile_x, tile_y;
857
858    if (tObj->Target == GL_TEXTURE_BUFFER) {
859       brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index);
860       return;
861    }
862
863    intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth);
864
865    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
866                           6 * 4, 32, &binding_table[surf_index]);
867
868    surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT |
869               BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
870               BRW_SURFACE_CUBEFACE_ENABLES |
871               (translate_tex_format(intel,
872                                     mt->format,
873                                     firstImage->InternalFormat,
874                                     tObj->DepthMode,
875                                     sampler->sRGBDecode) <<
876                BRW_SURFACE_FORMAT_SHIFT));
877
878    surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */
879
880    surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT |
881               (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
882               (height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
883
884    surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) |
885               (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
886               (intelObj->mt->region->pitch - 1) <<
887               BRW_SURFACE_PITCH_SHIFT);
888
889    surf[4] = brw_get_surface_num_multisamples(intelObj->mt->num_samples);
890
891    intel_miptree_get_tile_offsets(intelObj->mt, firstImage->Level, 0,
892                                   &tile_x, &tile_y);
893    assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
894    /* Note that the low bits of these fields are missing, so
895     * there's the possibility of getting in trouble.
896     */
897    assert(tile_x % 4 == 0);
898    assert(tile_y % 2 == 0);
899    surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
900               (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
901               (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
902
903    /* Emit relocation to surface contents */
904    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
905                            binding_table[surf_index] + 4,
906                            intelObj->mt->region->bo,
907                            intelObj->mt->offset,
908                            I915_GEM_DOMAIN_SAMPLER, 0);
909 }
910
911 /**
912  * Create the constant buffer surface.  Vertex/fragment shader constants will be
913  * read from this buffer with Data Port Read instructions/messages.
914  */
915 void
916 brw_create_constant_surface(struct brw_context *brw,
917                             drm_intel_bo *bo,
918                             uint32_t offset,
919                             int width,
920                             uint32_t *out_offset)
921 {
922    struct intel_context *intel = &brw->intel;
923    const GLint w = width - 1;
924    uint32_t *surf;
925
926    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
927                           6 * 4, 32, out_offset);
928
929    surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
930               BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
931               BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT);
932
933    if (intel->gen >= 6)
934       surf[0] |= BRW_SURFACE_RC_READ_WRITE;
935
936    surf[1] = bo->offset + offset; /* reloc */
937
938    surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT |
939               ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT);
940
941    surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT |
942               (16 - 1) << BRW_SURFACE_PITCH_SHIFT); /* ignored */
943
944    surf[4] = 0;
945    surf[5] = 0;
946
947    /* Emit relocation to surface contents.  Section 5.1.1 of the gen4
948     * bspec ("Data Cache") says that the data cache does not exist as
949     * a separate cache and is just the sampler cache.
950     */
951    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
952                            *out_offset + 4,
953                            bo, offset,
954                            I915_GEM_DOMAIN_SAMPLER, 0);
955 }
956
957 /**
958  * Set up a binding table entry for use by stream output logic (transform
959  * feedback).
960  *
961  * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES.
962  */
963 void
964 brw_update_sol_surface(struct brw_context *brw,
965                        struct gl_buffer_object *buffer_obj,
966                        uint32_t *out_offset, unsigned num_vector_components,
967                        unsigned stride_dwords, unsigned offset_dwords)
968 {
969    struct intel_context *intel = &brw->intel;
970    struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj);
971    drm_intel_bo *bo =
972       intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART);
973    uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32,
974                                     out_offset);
975    uint32_t pitch_minus_1 = 4*stride_dwords - 1;
976    uint32_t offset_bytes = 4 * offset_dwords;
977    size_t size_dwords = buffer_obj->Size / 4;
978    uint32_t buffer_size_minus_1, width, height, depth, surface_format;
979
980    /* FIXME: can we rely on core Mesa to ensure that the buffer isn't
981     * too big to map using a single binding table entry?
982     */
983    assert((size_dwords - offset_dwords) / stride_dwords
984           <= BRW_MAX_NUM_BUFFER_ENTRIES);
985
986    if (size_dwords > offset_dwords + num_vector_components) {
987       /* There is room for at least 1 transform feedback output in the buffer.
988        * Compute the number of additional transform feedback outputs the
989        * buffer has room for.
990        */
991       buffer_size_minus_1 =
992          (size_dwords - offset_dwords - num_vector_components) / stride_dwords;
993    } else {
994       /* There isn't even room for a single transform feedback output in the
995        * buffer.  We can't configure the binding table entry to prevent output
996        * entirely; we'll have to rely on the geometry shader to detect
997        * overflow.  But to minimize the damage in case of a bug, set up the
998        * binding table entry to just allow a single output.
999        */
1000       buffer_size_minus_1 = 0;
1001    }
1002    width = buffer_size_minus_1 & 0x7f;
1003    height = (buffer_size_minus_1 & 0xfff80) >> 7;
1004    depth = (buffer_size_minus_1 & 0x7f00000) >> 20;
1005
1006    switch (num_vector_components) {
1007    case 1:
1008       surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1009       break;
1010    case 2:
1011       surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
1012       break;
1013    case 3:
1014       surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
1015       break;
1016    case 4:
1017       surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
1018       break;
1019    default:
1020       assert(!"Invalid vector size for transform feedback output");
1021       surface_format = BRW_SURFACEFORMAT_R32_FLOAT;
1022       break;
1023    }
1024
1025    surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
1026       BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT |
1027       surface_format << BRW_SURFACE_FORMAT_SHIFT |
1028       BRW_SURFACE_RC_READ_WRITE;
1029    surf[1] = bo->offset + offset_bytes; /* reloc */
1030    surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT |
1031               height << BRW_SURFACE_HEIGHT_SHIFT);
1032    surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT |
1033               pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1034    surf[4] = 0;
1035    surf[5] = 0;
1036
1037    /* Emit relocation to surface contents. */
1038    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1039                            *out_offset + 4,
1040                            bo, offset_bytes,
1041                            I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1042 }
1043
1044 /* Creates a new WM constant buffer reflecting the current fragment program's
1045  * constants, if needed by the fragment program.
1046  *
1047  * Otherwise, constants go through the CURBEs using the brw_constant_buffer
1048  * state atom.
1049  */
1050 static void
1051 brw_upload_wm_pull_constants(struct brw_context *brw)
1052 {
1053    struct gl_context *ctx = &brw->intel.ctx;
1054    struct intel_context *intel = &brw->intel;
1055    /* BRW_NEW_FRAGMENT_PROGRAM */
1056    struct brw_fragment_program *fp =
1057       (struct brw_fragment_program *) brw->fragment_program;
1058    struct gl_program_parameter_list *params = fp->program.Base.Parameters;
1059    const int size = brw->wm.prog_data->nr_pull_params * sizeof(float);
1060    const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER;
1061    float *constants;
1062    unsigned int i;
1063
1064    _mesa_load_state_parameters(ctx, params);
1065
1066    /* CACHE_NEW_WM_PROG */
1067    if (brw->wm.prog_data->nr_pull_params == 0) {
1068       if (brw->wm.const_bo) {
1069          drm_intel_bo_unreference(brw->wm.const_bo);
1070          brw->wm.const_bo = NULL;
1071          brw->wm.surf_offset[surf_index] = 0;
1072          brw->state.dirty.brw |= BRW_NEW_SURFACES;
1073       }
1074       return;
1075    }
1076
1077    drm_intel_bo_unreference(brw->wm.const_bo);
1078    brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo",
1079                                          size, 64);
1080
1081    /* _NEW_PROGRAM_CONSTANTS */
1082    drm_intel_gem_bo_map_gtt(brw->wm.const_bo);
1083    constants = brw->wm.const_bo->virtual;
1084    for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) {
1085       constants[i] = *brw->wm.prog_data->pull_param[i];
1086    }
1087    drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo);
1088
1089    intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0,
1090                                        ALIGN(brw->wm.prog_data->nr_pull_params, 4) / 4,
1091                                        &brw->wm.surf_offset[surf_index]);
1092
1093    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1094 }
1095
1096 const struct brw_tracked_state brw_wm_pull_constants = {
1097    .dirty = {
1098       .mesa = (_NEW_PROGRAM_CONSTANTS),
1099       .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM),
1100       .cache = CACHE_NEW_WM_PROG,
1101    },
1102    .emit = brw_upload_wm_pull_constants,
1103 };
1104
1105 static void
1106 brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit)
1107 {
1108    /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming
1109     * Notes):
1110     *
1111     *     A null surface will be used in instances where an actual surface is
1112     *     not bound. When a write message is generated to a null surface, no
1113     *     actual surface is written to. When a read message (including any
1114     *     sampling engine message) is generated to a null surface, the result
1115     *     is all zeros. Note that a null surface type is allowed to be used
1116     *     with all messages, even if it is not specificially indicated as
1117     *     supported. All of the remaining fields in surface state are ignored
1118     *     for null surfaces, with the following exceptions:
1119     *
1120     *     - [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1121     *       depth buffer’s corresponding state for all render target surfaces,
1122     *       including null.
1123     *
1124     *     - Surface Format must be R8G8B8A8_UNORM.
1125     */
1126    struct intel_context *intel = &brw->intel;
1127    struct gl_context *ctx = &intel->ctx;
1128    uint32_t *surf;
1129    unsigned surface_type = BRW_SURFACE_NULL;
1130    drm_intel_bo *bo = NULL;
1131    unsigned pitch_minus_1 = 0;
1132    uint32_t multisampling_state = 0;
1133
1134    /* _NEW_BUFFERS */
1135    const struct gl_framebuffer *fb = ctx->DrawBuffer;
1136
1137    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1138                           6 * 4, 32, &brw->wm.surf_offset[unit]);
1139
1140    if (fb->Visual.samples > 1) {
1141       /* On Gen6, null render targets seem to cause GPU hangs when
1142        * multisampling.  So work around this problem by rendering into dummy
1143        * color buffer.
1144        *
1145        * To decrease the amount of memory needed by the workaround buffer, we
1146        * set its pitch to 128 bytes (the width of a Y tile).  This means that
1147        * the amount of memory needed for the workaround buffer is
1148        * (width_in_tiles + height_in_tiles - 1) tiles.
1149        *
1150        * Note that since the workaround buffer will be interpreted by the
1151        * hardware as an interleaved multisampled buffer, we need to compute
1152        * width_in_tiles and height_in_tiles by dividing the width and height
1153        * by 16 rather than the normal Y-tile size of 32.
1154        */
1155       unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16;
1156       unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16;
1157       unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096;
1158       brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo,
1159                          size_needed);
1160       bo = brw->wm.multisampled_null_render_target_bo;
1161       surface_type = BRW_SURFACE_2D;
1162       pitch_minus_1 = 127;
1163       multisampling_state =
1164          brw_get_surface_num_multisamples(fb->Visual.samples);
1165    }
1166
1167    surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT |
1168               BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT);
1169    if (intel->gen < 6) {
1170       surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT |
1171                   1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT |
1172                   1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT |
1173                   1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT);
1174    }
1175    surf[1] = bo ? bo->offset : 0;
1176    surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1177               (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1178
1179    /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming
1180     * Notes):
1181     *
1182     *     If Surface Type is SURFTYPE_NULL, this field must be TRUE
1183     */
1184    surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y |
1185               pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT);
1186    surf[4] = multisampling_state;
1187    surf[5] = 0;
1188
1189    if (bo) {
1190       drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1191                               brw->wm.surf_offset[unit] + 4,
1192                               bo, 0,
1193                               I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
1194    }
1195 }
1196
1197 /**
1198  * Sets up a surface state structure to point at the given region.
1199  * While it is only used for the front/back buffer currently, it should be
1200  * usable for further buffers when doing ARB_draw_buffer support.
1201  */
1202 static void
1203 brw_update_renderbuffer_surface(struct brw_context *brw,
1204                                 struct gl_renderbuffer *rb,
1205                                 unsigned int unit)
1206 {
1207    struct intel_context *intel = &brw->intel;
1208    struct gl_context *ctx = &intel->ctx;
1209    struct intel_renderbuffer *irb = intel_renderbuffer(rb);
1210    struct intel_mipmap_tree *mt = irb->mt;
1211    struct intel_region *region;
1212    uint32_t *surf;
1213    uint32_t tile_x, tile_y;
1214    uint32_t format = 0;
1215    gl_format rb_format = intel_rb_format(irb);
1216
1217    if (irb->tex_image && !brw->has_surface_tile_offset) {
1218       intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y);
1219
1220       if (tile_x != 0 || tile_y != 0) {
1221          /* Original gen4 hardware couldn't draw to a non-tile-aligned
1222           * destination in a miptree unless you actually setup your renderbuffer
1223           * as a miptree and used the fragile lod/array_index/etc. controls to
1224           * select the image.  So, instead, we just make a new single-level
1225           * miptree and render into that.
1226           */
1227          intel_renderbuffer_move_to_temp(intel, irb);
1228          mt = irb->mt;
1229       }
1230    }
1231
1232    region = irb->mt->region;
1233
1234    surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE,
1235                           6 * 4, 32, &brw->wm.surf_offset[unit]);
1236
1237    switch (rb_format) {
1238    case MESA_FORMAT_SARGB8:
1239       /* _NEW_BUFFERS
1240        *
1241        * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the
1242        * blend/update as sRGB.
1243        */
1244       if (ctx->Color.sRGBEnabled)
1245          format = brw_format_for_mesa_format(rb_format);
1246       else
1247          format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
1248       break;
1249    default:
1250       format = brw->render_target_format[rb_format];
1251       if (unlikely(!brw->format_supported_as_render_target[rb_format])) {
1252          _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n",
1253                        __FUNCTION__, _mesa_get_format_name(rb_format));
1254       }
1255       break;
1256    }
1257
1258    surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT |
1259               format << BRW_SURFACE_FORMAT_SHIFT);
1260
1261    /* reloc */
1262    surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) +
1263               region->bo->offset);
1264
1265    surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1266               (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT);
1267
1268    surf[3] = (brw_get_surface_tiling_bits(region->tiling) |
1269               (region->pitch - 1) << BRW_SURFACE_PITCH_SHIFT);
1270
1271    surf[4] = brw_get_surface_num_multisamples(mt->num_samples);
1272
1273    assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0));
1274    /* Note that the low bits of these fields are missing, so
1275     * there's the possibility of getting in trouble.
1276     */
1277    assert(tile_x % 4 == 0);
1278    assert(tile_y % 2 == 0);
1279    surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT |
1280               (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT |
1281               (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0));
1282
1283    if (intel->gen < 6) {
1284       /* _NEW_COLOR */
1285       if (!ctx->Color.ColorLogicOpEnabled &&
1286           (ctx->Color.BlendEnabled & (1 << unit)))
1287          surf[0] |= BRW_SURFACE_BLEND_ENABLED;
1288
1289       if (!ctx->Color.ColorMask[unit][0])
1290          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT;
1291       if (!ctx->Color.ColorMask[unit][1])
1292          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT;
1293       if (!ctx->Color.ColorMask[unit][2])
1294          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT;
1295
1296       /* As mentioned above, disable writes to the alpha component when the
1297        * renderbuffer is XRGB.
1298        */
1299       if (ctx->DrawBuffer->Visual.alphaBits == 0 ||
1300           !ctx->Color.ColorMask[unit][3]) {
1301          surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT;
1302       }
1303    }
1304
1305    drm_intel_bo_emit_reloc(brw->intel.batch.bo,
1306                            brw->wm.surf_offset[unit] + 4,
1307                            region->bo,
1308                            surf[1] - region->bo->offset,
1309                            I915_GEM_DOMAIN_RENDER,
1310                            I915_GEM_DOMAIN_RENDER);
1311 }
1312
1313 /**
1314  * Construct SURFACE_STATE objects for renderbuffers/draw buffers.
1315  */
1316 static void
1317 brw_update_renderbuffer_surfaces(struct brw_context *brw)
1318 {
1319    struct intel_context *intel = &brw->intel;
1320    struct gl_context *ctx = &brw->intel.ctx;
1321    GLuint i;
1322
1323    /* _NEW_BUFFERS | _NEW_COLOR */
1324    /* Update surfaces for drawing buffers */
1325    if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) {
1326       for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1327          if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) {
1328             intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i);
1329          } else {
1330             intel->vtbl.update_null_renderbuffer_surface(brw, i);
1331          }
1332       }
1333    } else {
1334       intel->vtbl.update_null_renderbuffer_surface(brw, 0);
1335    }
1336    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1337 }
1338
1339 const struct brw_tracked_state brw_renderbuffer_surfaces = {
1340    .dirty = {
1341       .mesa = (_NEW_COLOR |
1342                _NEW_BUFFERS),
1343       .brw = BRW_NEW_BATCH,
1344       .cache = 0
1345    },
1346    .emit = brw_update_renderbuffer_surfaces,
1347 };
1348
1349 const struct brw_tracked_state gen6_renderbuffer_surfaces = {
1350    .dirty = {
1351       .mesa = _NEW_BUFFERS,
1352       .brw = BRW_NEW_BATCH,
1353       .cache = 0
1354    },
1355    .emit = brw_update_renderbuffer_surfaces,
1356 };
1357
1358 /**
1359  * Construct SURFACE_STATE objects for enabled textures.
1360  */
1361 static void
1362 brw_update_texture_surfaces(struct brw_context *brw)
1363 {
1364    struct intel_context *intel = &brw->intel;
1365    struct gl_context *ctx = &intel->ctx;
1366
1367    /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM:
1368     * Unfortunately, we're stuck using the gl_program structs until the
1369     * ARB_fragment_program front-end gets converted to GLSL IR.  These
1370     * have the downside that SamplerUnits is split and only contains the
1371     * mappings for samplers active in that stage.
1372     */
1373    struct gl_program *vs = (struct gl_program *) brw->vertex_program;
1374    struct gl_program *fs = (struct gl_program *) brw->fragment_program;
1375
1376    unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed);
1377
1378    for (unsigned s = 0; s < num_samplers; s++) {
1379       brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0;
1380       brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0;
1381
1382       if (vs->SamplersUsed & (1 << s)) {
1383          const unsigned unit = vs->SamplerUnits[s];
1384
1385          /* _NEW_TEXTURE */
1386          if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1387             intel->vtbl.update_texture_surface(ctx, unit,
1388                                                brw->vs.surf_offset,
1389                                                SURF_INDEX_VS_TEXTURE(s));
1390          }
1391       }
1392
1393       if (fs->SamplersUsed & (1 << s)) {
1394          const unsigned unit = fs->SamplerUnits[s];
1395
1396          /* _NEW_TEXTURE */
1397          if (ctx->Texture.Unit[unit]._ReallyEnabled) {
1398             intel->vtbl.update_texture_surface(ctx, unit,
1399                                                brw->wm.surf_offset,
1400                                                SURF_INDEX_TEXTURE(s));
1401          }
1402       }
1403    }
1404
1405    brw->state.dirty.brw |= BRW_NEW_SURFACES;
1406 }
1407
1408 const struct brw_tracked_state brw_texture_surfaces = {
1409    .dirty = {
1410       .mesa = _NEW_TEXTURE,
1411       .brw = BRW_NEW_BATCH |
1412              BRW_NEW_VERTEX_PROGRAM |
1413              BRW_NEW_FRAGMENT_PROGRAM,
1414       .cache = 0
1415    },
1416    .emit = brw_update_texture_surfaces,
1417 };
1418
1419 void
1420 brw_upload_ubo_surfaces(struct brw_context *brw,
1421                         struct gl_shader *shader,
1422                         uint32_t *surf_offsets)
1423 {
1424    struct gl_context *ctx = &brw->intel.ctx;
1425    struct intel_context *intel = &brw->intel;
1426
1427    if (!shader)
1428       return;
1429
1430    for (int i = 0; i < shader->NumUniformBlocks; i++) {
1431       struct gl_uniform_buffer_binding *binding;
1432       struct intel_buffer_object *intel_bo;
1433
1434       binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding];
1435       intel_bo = intel_buffer_object(binding->BufferObject);
1436       drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ);
1437
1438       /* Because behavior for referencing outside of the binding's size in the
1439        * glBindBufferRange case is undefined, we can just bind the whole buffer
1440        * glBindBufferBase wants and be a correct implementation.
1441        */
1442       int size = bo->size - binding->Offset;
1443       size = ALIGN(size, 16) / 16; /* The interface takes a number of vec4s */
1444
1445       intel->vtbl.create_constant_surface(brw, bo, binding->Offset,
1446                                           size,
1447                                           &surf_offsets[i]);
1448    }
1449
1450    if (shader->NumUniformBlocks)
1451       brw->state.dirty.brw |= BRW_NEW_SURFACES;
1452 }
1453
1454 static void
1455 brw_upload_wm_ubo_surfaces(struct brw_context *brw)
1456 {
1457    struct gl_context *ctx = &brw->intel.ctx;
1458    /* _NEW_PROGRAM */
1459    struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram;
1460
1461    if (!prog)
1462       return;
1463
1464    brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1465                            &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]);
1466 }
1467
1468 const struct brw_tracked_state brw_wm_ubo_surfaces = {
1469    .dirty = {
1470       .mesa = (_NEW_PROGRAM |
1471                _NEW_BUFFER_OBJECT),
1472       .brw = BRW_NEW_BATCH,
1473       .cache = 0,
1474    },
1475    .emit = brw_upload_wm_ubo_surfaces,
1476 };
1477
1478 /**
1479  * Constructs the binding table for the WM surface state, which maps unit
1480  * numbers to surface state objects.
1481  */
1482 static void
1483 brw_upload_wm_binding_table(struct brw_context *brw)
1484 {
1485    struct intel_context *intel = &brw->intel;
1486    uint32_t *bind;
1487    int i;
1488
1489    if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1490       intel->vtbl.create_constant_surface(brw, brw->shader_time.bo, 0,
1491                                           brw->shader_time.bo->size,
1492                                           &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]);
1493    }
1494
1495    /* Might want to calculate nr_surfaces first, to avoid taking up so much
1496     * space for the binding table.
1497     */
1498    bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE,
1499                           sizeof(uint32_t) * BRW_MAX_WM_SURFACES,
1500                           32, &brw->wm.bind_bo_offset);
1501
1502    /* BRW_NEW_SURFACES */
1503    for (i = 0; i < BRW_MAX_WM_SURFACES; i++) {
1504       bind[i] = brw->wm.surf_offset[i];
1505    }
1506
1507    brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE;
1508 }
1509
1510 const struct brw_tracked_state brw_wm_binding_table = {
1511    .dirty = {
1512       .mesa = 0,
1513       .brw = (BRW_NEW_BATCH |
1514               BRW_NEW_SURFACES),
1515       .cache = 0
1516    },
1517    .emit = brw_upload_wm_binding_table,
1518 };
1519
1520 void
1521 gen4_init_vtable_surface_functions(struct brw_context *brw)
1522 {
1523    struct intel_context *intel = &brw->intel;
1524
1525    intel->vtbl.update_texture_surface = brw_update_texture_surface;
1526    intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface;
1527    intel->vtbl.update_null_renderbuffer_surface =
1528       brw_update_null_renderbuffer_surface;
1529    intel->vtbl.create_constant_surface = brw_create_constant_surface;
1530 }