OSDN Git Service

6729c53fc229dc8a6714760953de475901a0fa54
[android-x86/external-mesa.git] / src / mesa / swrast / s_aaline.c
1 /*
2  * Mesa 3-D graphics library
3  * Version:  6.5.3
4  *
5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23  * OTHER DEALINGS IN THE SOFTWARE.
24  */
25
26
27 #include "main/glheader.h"
28 #include "main/imports.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "swrast/s_aaline.h"
32 #include "swrast/s_context.h"
33 #include "swrast/s_span.h"
34 #include "swrast/swrast.h"
35
36
37 #define SUB_PIXEL 4
38
39
40 /*
41  * Info about the AA line we're rendering
42  */
43 struct LineInfo
44 {
45    GLfloat x0, y0;        /* start */
46    GLfloat x1, y1;        /* end */
47    GLfloat dx, dy;        /* direction vector */
48    GLfloat len;           /* length */
49    GLfloat halfWidth;     /* half of line width */
50    GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
51    /* for coverage computation */
52    GLfloat qx0, qy0;      /* quad vertices */
53    GLfloat qx1, qy1;
54    GLfloat qx2, qy2;
55    GLfloat qx3, qy3;
56    GLfloat ex0, ey0;      /* quad edge vectors */
57    GLfloat ex1, ey1;
58    GLfloat ex2, ey2;
59    GLfloat ex3, ey3;
60
61    /* DO_Z */
62    GLfloat zPlane[4];
63    /* DO_RGBA - always enabled */
64    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
65    /* DO_ATTRIBS */
66    GLfloat wPlane[4];
67    GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
68    GLfloat lambda[VARYING_SLOT_MAX];
69    GLfloat texWidth[VARYING_SLOT_MAX];
70    GLfloat texHeight[VARYING_SLOT_MAX];
71
72    SWspan span;
73 };
74
75
76
77 /*
78  * Compute the equation of a plane used to interpolate line fragment data
79  * such as color, Z, texture coords, etc.
80  * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
81  *        z0, and z1 are the end point values to interpolate.
82  * Output:  plane - the plane equation.
83  *
84  * Note: we don't really have enough parameters to specify a plane.
85  * We take the endpoints of the line and compute a plane such that
86  * the cross product of the line vector and the plane normal is
87  * parallel to the projection plane.
88  */
89 static void
90 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
91               GLfloat z0, GLfloat z1, GLfloat plane[4])
92 {
93 #if 0
94    /* original */
95    const GLfloat px = x1 - x0;
96    const GLfloat py = y1 - y0;
97    const GLfloat pz = z1 - z0;
98    const GLfloat qx = -py;
99    const GLfloat qy = px;
100    const GLfloat qz = 0;
101    const GLfloat a = py * qz - pz * qy;
102    const GLfloat b = pz * qx - px * qz;
103    const GLfloat c = px * qy - py * qx;
104    const GLfloat d = -(a * x0 + b * y0 + c * z0);
105    plane[0] = a;
106    plane[1] = b;
107    plane[2] = c;
108    plane[3] = d;
109 #else
110    /* simplified */
111    const GLfloat px = x1 - x0;
112    const GLfloat py = y1 - y0;
113    const GLfloat pz = z0 - z1;
114    const GLfloat a = pz * px;
115    const GLfloat b = pz * py;
116    const GLfloat c = px * px + py * py;
117    const GLfloat d = -(a * x0 + b * y0 + c * z0);
118    if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
119       plane[0] = 0.0;
120       plane[1] = 0.0;
121       plane[2] = 1.0;
122       plane[3] = 0.0;
123    }
124    else {
125       plane[0] = a;
126       plane[1] = b;
127       plane[2] = c;
128       plane[3] = d;
129    }
130 #endif
131 }
132
133
134 static inline void
135 constant_plane(GLfloat value, GLfloat plane[4])
136 {
137    plane[0] = 0.0;
138    plane[1] = 0.0;
139    plane[2] = -1.0;
140    plane[3] = value;
141 }
142
143
144 static inline GLfloat
145 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
146 {
147    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
148    return z;
149 }
150
151 #define SOLVE_PLANE(X, Y, PLANE) \
152    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
153
154
155 /*
156  * Return 1 / solve_plane().
157  */
158 static inline GLfloat
159 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
160 {
161    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
162    if (denom == 0.0)
163       return 0.0;
164    else
165       return -plane[2] / denom;
166 }
167
168
169 /*
170  * Solve plane and return clamped GLchan value.
171  */
172 static inline GLchan
173 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
174 {
175    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
176 #if CHAN_TYPE == GL_FLOAT
177    return CLAMP(z, 0.0F, CHAN_MAXF);
178 #else
179    if (z < 0)
180       return 0;
181    else if (z > CHAN_MAX)
182       return CHAN_MAX;
183    return (GLchan) IROUND_POS(z);
184 #endif
185 }
186
187
188 /*
189  * Compute mipmap level of detail.
190  */
191 static inline GLfloat
192 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
193                GLfloat invQ, GLfloat width, GLfloat height)
194 {
195    GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
196    GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
197    GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
198    GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
199    GLfloat r1 = dudx * dudx + dudy * dudy;
200    GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
201    GLfloat rho2 = r1 + r2;
202    /* return log base 2 of rho */
203    if (rho2 == 0.0F)
204       return 0.0;
205    else
206       return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
207 }
208
209
210
211
212 /*
213  * Fill in the samples[] array with the (x,y) subpixel positions of
214  * xSamples * ySamples sample positions.
215  * Note that the four corner samples are put into the first four
216  * positions of the array.  This allows us to optimize for the common
217  * case of all samples being inside the polygon.
218  */
219 static void
220 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
221 {
222    const GLfloat dx = 1.0F / (GLfloat) xSamples;
223    const GLfloat dy = 1.0F / (GLfloat) ySamples;
224    GLint x, y;
225    GLint i;
226
227    i = 4;
228    for (x = 0; x < xSamples; x++) {
229       for (y = 0; y < ySamples; y++) {
230          GLint j;
231          if (x == 0 && y == 0) {
232             /* lower left */
233             j = 0;
234          }
235          else if (x == xSamples - 1 && y == 0) {
236             /* lower right */
237             j = 1;
238          }
239          else if (x == 0 && y == ySamples - 1) {
240             /* upper left */
241             j = 2;
242          }
243          else if (x == xSamples - 1 && y == ySamples - 1) {
244             /* upper right */
245             j = 3;
246          }
247          else {
248             j = i++;
249          }
250          samples[j][0] = x * dx + 0.5F * dx;
251          samples[j][1] = y * dy + 0.5F * dy;
252       }
253    }
254 }
255
256
257
258 /*
259  * Compute how much of the given pixel's area is inside the rectangle
260  * defined by vertices v0, v1, v2, v3.
261  * Vertices MUST be specified in counter-clockwise order.
262  * Return:  coverage in [0, 1].
263  */
264 static GLfloat
265 compute_coveragef(const struct LineInfo *info,
266                   GLint winx, GLint winy)
267 {
268    static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
269    static GLboolean haveSamples = GL_FALSE;
270    const GLfloat x = (GLfloat) winx;
271    const GLfloat y = (GLfloat) winy;
272    GLint stop = 4, i;
273    GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
274
275    if (!haveSamples) {
276       make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
277       haveSamples = GL_TRUE;
278    }
279
280 #if 0 /*DEBUG*/
281    {
282       const GLfloat area = dx0 * dy1 - dx1 * dy0;
283       assert(area >= 0.0);
284    }
285 #endif
286
287    for (i = 0; i < stop; i++) {
288       const GLfloat sx = x + samples[i][0];
289       const GLfloat sy = y + samples[i][1];
290       const GLfloat fx0 = sx - info->qx0;
291       const GLfloat fy0 = sy - info->qy0;
292       const GLfloat fx1 = sx - info->qx1;
293       const GLfloat fy1 = sy - info->qy1;
294       const GLfloat fx2 = sx - info->qx2;
295       const GLfloat fy2 = sy - info->qy2;
296       const GLfloat fx3 = sx - info->qx3;
297       const GLfloat fy3 = sy - info->qy3;
298       /* cross product determines if sample is inside or outside each edge */
299       GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
300       GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
301       GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
302       GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
303       /* Check if the sample is exactly on an edge.  If so, let cross be a
304        * positive or negative value depending on the direction of the edge.
305        */
306       if (cross0 == 0.0F)
307          cross0 = info->ex0 + info->ey0;
308       if (cross1 == 0.0F)
309          cross1 = info->ex1 + info->ey1;
310       if (cross2 == 0.0F)
311          cross2 = info->ex2 + info->ey2;
312       if (cross3 == 0.0F)
313          cross3 = info->ex3 + info->ey3;
314       if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
315          /* point is outside quadrilateral */
316          insideCount -= 1.0F;
317          stop = SUB_PIXEL * SUB_PIXEL;
318       }
319    }
320    if (stop == 4)
321       return 1.0F;
322    else
323       return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
324 }
325
326
327 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
328                           int ix, int iy);
329                          
330
331
332 /*
333  * Draw an AA line segment (called many times per line when stippling)
334  */
335 static void
336 segment(struct gl_context *ctx,
337         struct LineInfo *line,
338         plot_func plot,
339         GLfloat t0, GLfloat t1)
340 {
341    const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
342    const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
343    /* compute the actual segment's endpoints */
344    const GLfloat x0 = line->x0 + t0 * line->dx;
345    const GLfloat y0 = line->y0 + t0 * line->dy;
346    const GLfloat x1 = line->x0 + t1 * line->dx;
347    const GLfloat y1 = line->y0 + t1 * line->dy;
348
349    /* compute vertices of the line-aligned quadrilateral */
350    line->qx0 = x0 - line->yAdj;
351    line->qy0 = y0 + line->xAdj;
352    line->qx1 = x0 + line->yAdj;
353    line->qy1 = y0 - line->xAdj;
354    line->qx2 = x1 + line->yAdj;
355    line->qy2 = y1 - line->xAdj;
356    line->qx3 = x1 - line->yAdj;
357    line->qy3 = y1 + line->xAdj;
358    /* compute the quad's edge vectors (for coverage calc) */
359    line->ex0 = line->qx1 - line->qx0;
360    line->ey0 = line->qy1 - line->qy0;
361    line->ex1 = line->qx2 - line->qx1;
362    line->ey1 = line->qy2 - line->qy1;
363    line->ex2 = line->qx3 - line->qx2;
364    line->ey2 = line->qy3 - line->qy2;
365    line->ex3 = line->qx0 - line->qx3;
366    line->ey3 = line->qy0 - line->qy3;
367
368    if (absDx > absDy) {
369       /* X-major line */
370       GLfloat dydx = line->dy / line->dx;
371       GLfloat xLeft, xRight, yBot, yTop;
372       GLint ix, ixRight;
373       if (x0 < x1) {
374          xLeft = x0 - line->halfWidth;
375          xRight = x1 + line->halfWidth;
376          if (line->dy >= 0.0) {
377             yBot = y0 - 3.0F * line->halfWidth;
378             yTop = y0 + line->halfWidth;
379          }
380          else {
381             yBot = y0 - line->halfWidth;
382             yTop = y0 + 3.0F * line->halfWidth;
383          }
384       }
385       else {
386          xLeft = x1 - line->halfWidth;
387          xRight = x0 + line->halfWidth;
388          if (line->dy <= 0.0) {
389             yBot = y1 - 3.0F * line->halfWidth;
390             yTop = y1 + line->halfWidth;
391          }
392          else {
393             yBot = y1 - line->halfWidth;
394             yTop = y1 + 3.0F * line->halfWidth;
395          }
396       }
397
398       /* scan along the line, left-to-right */
399       ixRight = (GLint) (xRight + 1.0F);
400
401       /*printf("avg span height: %g\n", yTop - yBot);*/
402       for (ix = (GLint) xLeft; ix < ixRight; ix++) {
403          const GLint iyBot = (GLint) yBot;
404          const GLint iyTop = (GLint) (yTop + 1.0F);
405          GLint iy;
406          /* scan across the line, bottom-to-top */
407          for (iy = iyBot; iy < iyTop; iy++) {
408             (*plot)(ctx, line, ix, iy);
409          }
410          yBot += dydx;
411          yTop += dydx;
412       }
413    }
414    else {
415       /* Y-major line */
416       GLfloat dxdy = line->dx / line->dy;
417       GLfloat yBot, yTop, xLeft, xRight;
418       GLint iy, iyTop;
419       if (y0 < y1) {
420          yBot = y0 - line->halfWidth;
421          yTop = y1 + line->halfWidth;
422          if (line->dx >= 0.0) {
423             xLeft = x0 - 3.0F * line->halfWidth;
424             xRight = x0 + line->halfWidth;
425          }
426          else {
427             xLeft = x0 - line->halfWidth;
428             xRight = x0 + 3.0F * line->halfWidth;
429          }
430       }
431       else {
432          yBot = y1 - line->halfWidth;
433          yTop = y0 + line->halfWidth;
434          if (line->dx <= 0.0) {
435             xLeft = x1 - 3.0F * line->halfWidth;
436             xRight = x1 + line->halfWidth;
437          }
438          else {
439             xLeft = x1 - line->halfWidth;
440             xRight = x1 + 3.0F * line->halfWidth;
441          }
442       }
443
444       /* scan along the line, bottom-to-top */
445       iyTop = (GLint) (yTop + 1.0F);
446
447       /*printf("avg span width: %g\n", xRight - xLeft);*/
448       for (iy = (GLint) yBot; iy < iyTop; iy++) {
449          const GLint ixLeft = (GLint) xLeft;
450          const GLint ixRight = (GLint) (xRight + 1.0F);
451          GLint ix;
452          /* scan across the line, left-to-right */
453          for (ix = ixLeft; ix < ixRight; ix++) {
454             (*plot)(ctx, line, ix, iy);
455          }
456          xLeft += dxdy;
457          xRight += dxdy;
458       }
459    }
460 }
461
462
463 #define NAME(x) aa_rgba_##x
464 #define DO_Z
465 #include "s_aalinetemp.h"
466
467
468 #define NAME(x)  aa_general_rgba_##x
469 #define DO_Z
470 #define DO_ATTRIBS
471 #include "s_aalinetemp.h"
472
473
474
475 void
476 _swrast_choose_aa_line_function(struct gl_context *ctx)
477 {
478    SWcontext *swrast = SWRAST_CONTEXT(ctx);
479
480    ASSERT(ctx->Line.SmoothFlag);
481
482    if (ctx->Texture._EnabledCoordUnits != 0
483        || _swrast_use_fragment_program(ctx)
484        || (ctx->Light.Enabled &&
485            ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
486        || ctx->Fog.ColorSumEnabled
487        || swrast->_FogEnabled) {
488       swrast->Line = aa_general_rgba_line;
489    }
490    else {
491       swrast->Line = aa_rgba_line;
492    }
493 }