OSDN Git Service

mesa: remove outdated version lines in comments
[android-x86/external-mesa.git] / src / mesa / swrast / s_aaline.c
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24
25
26 #include "main/glheader.h"
27 #include "main/imports.h"
28 #include "main/macros.h"
29 #include "main/mtypes.h"
30 #include "swrast/s_aaline.h"
31 #include "swrast/s_context.h"
32 #include "swrast/s_span.h"
33 #include "swrast/swrast.h"
34
35
36 #define SUB_PIXEL 4
37
38
39 /*
40  * Info about the AA line we're rendering
41  */
42 struct LineInfo
43 {
44    GLfloat x0, y0;        /* start */
45    GLfloat x1, y1;        /* end */
46    GLfloat dx, dy;        /* direction vector */
47    GLfloat len;           /* length */
48    GLfloat halfWidth;     /* half of line width */
49    GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
50    /* for coverage computation */
51    GLfloat qx0, qy0;      /* quad vertices */
52    GLfloat qx1, qy1;
53    GLfloat qx2, qy2;
54    GLfloat qx3, qy3;
55    GLfloat ex0, ey0;      /* quad edge vectors */
56    GLfloat ex1, ey1;
57    GLfloat ex2, ey2;
58    GLfloat ex3, ey3;
59
60    /* DO_Z */
61    GLfloat zPlane[4];
62    /* DO_RGBA - always enabled */
63    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
64    /* DO_ATTRIBS */
65    GLfloat wPlane[4];
66    GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
67    GLfloat lambda[VARYING_SLOT_MAX];
68    GLfloat texWidth[VARYING_SLOT_MAX];
69    GLfloat texHeight[VARYING_SLOT_MAX];
70
71    SWspan span;
72 };
73
74
75
76 /*
77  * Compute the equation of a plane used to interpolate line fragment data
78  * such as color, Z, texture coords, etc.
79  * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
80  *        z0, and z1 are the end point values to interpolate.
81  * Output:  plane - the plane equation.
82  *
83  * Note: we don't really have enough parameters to specify a plane.
84  * We take the endpoints of the line and compute a plane such that
85  * the cross product of the line vector and the plane normal is
86  * parallel to the projection plane.
87  */
88 static void
89 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
90               GLfloat z0, GLfloat z1, GLfloat plane[4])
91 {
92 #if 0
93    /* original */
94    const GLfloat px = x1 - x0;
95    const GLfloat py = y1 - y0;
96    const GLfloat pz = z1 - z0;
97    const GLfloat qx = -py;
98    const GLfloat qy = px;
99    const GLfloat qz = 0;
100    const GLfloat a = py * qz - pz * qy;
101    const GLfloat b = pz * qx - px * qz;
102    const GLfloat c = px * qy - py * qx;
103    const GLfloat d = -(a * x0 + b * y0 + c * z0);
104    plane[0] = a;
105    plane[1] = b;
106    plane[2] = c;
107    plane[3] = d;
108 #else
109    /* simplified */
110    const GLfloat px = x1 - x0;
111    const GLfloat py = y1 - y0;
112    const GLfloat pz = z0 - z1;
113    const GLfloat a = pz * px;
114    const GLfloat b = pz * py;
115    const GLfloat c = px * px + py * py;
116    const GLfloat d = -(a * x0 + b * y0 + c * z0);
117    if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
118       plane[0] = 0.0;
119       plane[1] = 0.0;
120       plane[2] = 1.0;
121       plane[3] = 0.0;
122    }
123    else {
124       plane[0] = a;
125       plane[1] = b;
126       plane[2] = c;
127       plane[3] = d;
128    }
129 #endif
130 }
131
132
133 static inline void
134 constant_plane(GLfloat value, GLfloat plane[4])
135 {
136    plane[0] = 0.0;
137    plane[1] = 0.0;
138    plane[2] = -1.0;
139    plane[3] = value;
140 }
141
142
143 static inline GLfloat
144 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
145 {
146    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
147    return z;
148 }
149
150 #define SOLVE_PLANE(X, Y, PLANE) \
151    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
152
153
154 /*
155  * Return 1 / solve_plane().
156  */
157 static inline GLfloat
158 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
159 {
160    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
161    if (denom == 0.0)
162       return 0.0;
163    else
164       return -plane[2] / denom;
165 }
166
167
168 /*
169  * Solve plane and return clamped GLchan value.
170  */
171 static inline GLchan
172 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
173 {
174    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
175 #if CHAN_TYPE == GL_FLOAT
176    return CLAMP(z, 0.0F, CHAN_MAXF);
177 #else
178    if (z < 0)
179       return 0;
180    else if (z > CHAN_MAX)
181       return CHAN_MAX;
182    return (GLchan) IROUND_POS(z);
183 #endif
184 }
185
186
187 /*
188  * Compute mipmap level of detail.
189  */
190 static inline GLfloat
191 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
192                GLfloat invQ, GLfloat width, GLfloat height)
193 {
194    GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
195    GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
196    GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
197    GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
198    GLfloat r1 = dudx * dudx + dudy * dudy;
199    GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
200    GLfloat rho2 = r1 + r2;
201    /* return log base 2 of rho */
202    if (rho2 == 0.0F)
203       return 0.0;
204    else
205       return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
206 }
207
208
209
210
211 /*
212  * Fill in the samples[] array with the (x,y) subpixel positions of
213  * xSamples * ySamples sample positions.
214  * Note that the four corner samples are put into the first four
215  * positions of the array.  This allows us to optimize for the common
216  * case of all samples being inside the polygon.
217  */
218 static void
219 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
220 {
221    const GLfloat dx = 1.0F / (GLfloat) xSamples;
222    const GLfloat dy = 1.0F / (GLfloat) ySamples;
223    GLint x, y;
224    GLint i;
225
226    i = 4;
227    for (x = 0; x < xSamples; x++) {
228       for (y = 0; y < ySamples; y++) {
229          GLint j;
230          if (x == 0 && y == 0) {
231             /* lower left */
232             j = 0;
233          }
234          else if (x == xSamples - 1 && y == 0) {
235             /* lower right */
236             j = 1;
237          }
238          else if (x == 0 && y == ySamples - 1) {
239             /* upper left */
240             j = 2;
241          }
242          else if (x == xSamples - 1 && y == ySamples - 1) {
243             /* upper right */
244             j = 3;
245          }
246          else {
247             j = i++;
248          }
249          samples[j][0] = x * dx + 0.5F * dx;
250          samples[j][1] = y * dy + 0.5F * dy;
251       }
252    }
253 }
254
255
256
257 /*
258  * Compute how much of the given pixel's area is inside the rectangle
259  * defined by vertices v0, v1, v2, v3.
260  * Vertices MUST be specified in counter-clockwise order.
261  * Return:  coverage in [0, 1].
262  */
263 static GLfloat
264 compute_coveragef(const struct LineInfo *info,
265                   GLint winx, GLint winy)
266 {
267    static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
268    static GLboolean haveSamples = GL_FALSE;
269    const GLfloat x = (GLfloat) winx;
270    const GLfloat y = (GLfloat) winy;
271    GLint stop = 4, i;
272    GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
273
274    if (!haveSamples) {
275       make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
276       haveSamples = GL_TRUE;
277    }
278
279 #if 0 /*DEBUG*/
280    {
281       const GLfloat area = dx0 * dy1 - dx1 * dy0;
282       assert(area >= 0.0);
283    }
284 #endif
285
286    for (i = 0; i < stop; i++) {
287       const GLfloat sx = x + samples[i][0];
288       const GLfloat sy = y + samples[i][1];
289       const GLfloat fx0 = sx - info->qx0;
290       const GLfloat fy0 = sy - info->qy0;
291       const GLfloat fx1 = sx - info->qx1;
292       const GLfloat fy1 = sy - info->qy1;
293       const GLfloat fx2 = sx - info->qx2;
294       const GLfloat fy2 = sy - info->qy2;
295       const GLfloat fx3 = sx - info->qx3;
296       const GLfloat fy3 = sy - info->qy3;
297       /* cross product determines if sample is inside or outside each edge */
298       GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
299       GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
300       GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
301       GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
302       /* Check if the sample is exactly on an edge.  If so, let cross be a
303        * positive or negative value depending on the direction of the edge.
304        */
305       if (cross0 == 0.0F)
306          cross0 = info->ex0 + info->ey0;
307       if (cross1 == 0.0F)
308          cross1 = info->ex1 + info->ey1;
309       if (cross2 == 0.0F)
310          cross2 = info->ex2 + info->ey2;
311       if (cross3 == 0.0F)
312          cross3 = info->ex3 + info->ey3;
313       if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
314          /* point is outside quadrilateral */
315          insideCount -= 1.0F;
316          stop = SUB_PIXEL * SUB_PIXEL;
317       }
318    }
319    if (stop == 4)
320       return 1.0F;
321    else
322       return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
323 }
324
325
326 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
327                           int ix, int iy);
328                          
329
330
331 /*
332  * Draw an AA line segment (called many times per line when stippling)
333  */
334 static void
335 segment(struct gl_context *ctx,
336         struct LineInfo *line,
337         plot_func plot,
338         GLfloat t0, GLfloat t1)
339 {
340    const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
341    const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
342    /* compute the actual segment's endpoints */
343    const GLfloat x0 = line->x0 + t0 * line->dx;
344    const GLfloat y0 = line->y0 + t0 * line->dy;
345    const GLfloat x1 = line->x0 + t1 * line->dx;
346    const GLfloat y1 = line->y0 + t1 * line->dy;
347
348    /* compute vertices of the line-aligned quadrilateral */
349    line->qx0 = x0 - line->yAdj;
350    line->qy0 = y0 + line->xAdj;
351    line->qx1 = x0 + line->yAdj;
352    line->qy1 = y0 - line->xAdj;
353    line->qx2 = x1 + line->yAdj;
354    line->qy2 = y1 - line->xAdj;
355    line->qx3 = x1 - line->yAdj;
356    line->qy3 = y1 + line->xAdj;
357    /* compute the quad's edge vectors (for coverage calc) */
358    line->ex0 = line->qx1 - line->qx0;
359    line->ey0 = line->qy1 - line->qy0;
360    line->ex1 = line->qx2 - line->qx1;
361    line->ey1 = line->qy2 - line->qy1;
362    line->ex2 = line->qx3 - line->qx2;
363    line->ey2 = line->qy3 - line->qy2;
364    line->ex3 = line->qx0 - line->qx3;
365    line->ey3 = line->qy0 - line->qy3;
366
367    if (absDx > absDy) {
368       /* X-major line */
369       GLfloat dydx = line->dy / line->dx;
370       GLfloat xLeft, xRight, yBot, yTop;
371       GLint ix, ixRight;
372       if (x0 < x1) {
373          xLeft = x0 - line->halfWidth;
374          xRight = x1 + line->halfWidth;
375          if (line->dy >= 0.0) {
376             yBot = y0 - 3.0F * line->halfWidth;
377             yTop = y0 + line->halfWidth;
378          }
379          else {
380             yBot = y0 - line->halfWidth;
381             yTop = y0 + 3.0F * line->halfWidth;
382          }
383       }
384       else {
385          xLeft = x1 - line->halfWidth;
386          xRight = x0 + line->halfWidth;
387          if (line->dy <= 0.0) {
388             yBot = y1 - 3.0F * line->halfWidth;
389             yTop = y1 + line->halfWidth;
390          }
391          else {
392             yBot = y1 - line->halfWidth;
393             yTop = y1 + 3.0F * line->halfWidth;
394          }
395       }
396
397       /* scan along the line, left-to-right */
398       ixRight = (GLint) (xRight + 1.0F);
399
400       /*printf("avg span height: %g\n", yTop - yBot);*/
401       for (ix = (GLint) xLeft; ix < ixRight; ix++) {
402          const GLint iyBot = (GLint) yBot;
403          const GLint iyTop = (GLint) (yTop + 1.0F);
404          GLint iy;
405          /* scan across the line, bottom-to-top */
406          for (iy = iyBot; iy < iyTop; iy++) {
407             (*plot)(ctx, line, ix, iy);
408          }
409          yBot += dydx;
410          yTop += dydx;
411       }
412    }
413    else {
414       /* Y-major line */
415       GLfloat dxdy = line->dx / line->dy;
416       GLfloat yBot, yTop, xLeft, xRight;
417       GLint iy, iyTop;
418       if (y0 < y1) {
419          yBot = y0 - line->halfWidth;
420          yTop = y1 + line->halfWidth;
421          if (line->dx >= 0.0) {
422             xLeft = x0 - 3.0F * line->halfWidth;
423             xRight = x0 + line->halfWidth;
424          }
425          else {
426             xLeft = x0 - line->halfWidth;
427             xRight = x0 + 3.0F * line->halfWidth;
428          }
429       }
430       else {
431          yBot = y1 - line->halfWidth;
432          yTop = y0 + line->halfWidth;
433          if (line->dx <= 0.0) {
434             xLeft = x1 - 3.0F * line->halfWidth;
435             xRight = x1 + line->halfWidth;
436          }
437          else {
438             xLeft = x1 - line->halfWidth;
439             xRight = x1 + 3.0F * line->halfWidth;
440          }
441       }
442
443       /* scan along the line, bottom-to-top */
444       iyTop = (GLint) (yTop + 1.0F);
445
446       /*printf("avg span width: %g\n", xRight - xLeft);*/
447       for (iy = (GLint) yBot; iy < iyTop; iy++) {
448          const GLint ixLeft = (GLint) xLeft;
449          const GLint ixRight = (GLint) (xRight + 1.0F);
450          GLint ix;
451          /* scan across the line, left-to-right */
452          for (ix = ixLeft; ix < ixRight; ix++) {
453             (*plot)(ctx, line, ix, iy);
454          }
455          xLeft += dxdy;
456          xRight += dxdy;
457       }
458    }
459 }
460
461
462 #define NAME(x) aa_rgba_##x
463 #define DO_Z
464 #include "s_aalinetemp.h"
465
466
467 #define NAME(x)  aa_general_rgba_##x
468 #define DO_Z
469 #define DO_ATTRIBS
470 #include "s_aalinetemp.h"
471
472
473
474 void
475 _swrast_choose_aa_line_function(struct gl_context *ctx)
476 {
477    SWcontext *swrast = SWRAST_CONTEXT(ctx);
478
479    ASSERT(ctx->Line.SmoothFlag);
480
481    if (ctx->Texture._EnabledCoordUnits != 0
482        || _swrast_use_fragment_program(ctx)
483        || (ctx->Light.Enabled &&
484            ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
485        || ctx->Fog.ColorSumEnabled
486        || swrast->_FogEnabled) {
487       swrast->Line = aa_general_rgba_line;
488    }
489    else {
490       swrast->Line = aa_rgba_line;
491    }
492 }