OSDN Git Service

ra: Pull the body of a loop out to a helper function.
[android-x86/external-mesa.git] / src / util / register_allocate.c
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 /** @file register_allocate.c
29  *
30  * Graph-coloring register allocator.
31  *
32  * The basic idea of graph coloring is to make a node in a graph for
33  * every thing that needs a register (color) number assigned, and make
34  * edges in the graph between nodes that interfere (can't be allocated
35  * to the same register at the same time).
36  *
37  * During the "simplify" process, any any node with fewer edges than
38  * there are registers means that that edge can get assigned a
39  * register regardless of what its neighbors choose, so that node is
40  * pushed on a stack and removed (with its edges) from the graph.
41  * That likely causes other nodes to become trivially colorable as well.
42  *
43  * Then during the "select" process, nodes are popped off of that
44  * stack, their edges restored, and assigned a color different from
45  * their neighbors.  Because they were pushed on the stack only when
46  * they were trivially colorable, any color chosen won't interfere
47  * with the registers to be popped later.
48  *
49  * The downside to most graph coloring is that real hardware often has
50  * limitations, like registers that need to be allocated to a node in
51  * pairs, or aligned on some boundary.  This implementation follows
52  * the paper "Retargetable Graph-Coloring Register Allocation for
53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54  *
55  * In this system, there are register classes each containing various
56  * registers, and registers may interfere with other registers.  For
57  * example, one might have a class of base registers, and a class of
58  * aligned register pairs that would each interfere with their pair of
59  * the base registers.  Each node has a register class it needs to be
60  * assigned to.  Define p(B) to be the size of register class B, and
61  * q(B,C) to be the number of registers in B that the worst choice
62  * register in C could conflict with.  Then, this system replaces the
63  * basic graph coloring test of "fewer edges from this node than there
64  * are registers" with "For this node of class B, the sum of q(B,C)
65  * for each neighbor node of class C is less than pB".
66  *
67  * A nice feature of the pq test is that q(B,C) can be computed once
68  * up front and stored in a 2-dimensional array, so that the cost of
69  * coloring a node is constant with the number of registers.  We do
70  * this during ra_set_finalize().
71  */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "util/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0U
83
84 struct ra_reg {
85    BITSET_WORD *conflicts;
86    unsigned int *conflict_list;
87    unsigned int conflict_list_size;
88    unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92    struct ra_reg *regs;
93    unsigned int count;
94
95    struct ra_class **classes;
96    unsigned int class_count;
97
98    bool round_robin;
99 };
100
101 struct ra_class {
102    /**
103     * Bitset indicating which registers belong to this class.
104     *
105     * (If bit N is set, then register N belongs to this class.)
106     */
107    BITSET_WORD *regs;
108
109    /**
110     * p(B) in Runeson/Nyström paper.
111     *
112     * This is "how many regs are in the set."
113     */
114    unsigned int p;
115
116    /**
117     * q(B,C) (indexed by C, B is this register class) in
118     * Runeson/Nyström paper.  This is "how many registers of B could
119     * the worst choice register from C conflict with".
120     */
121    unsigned int *q;
122 };
123
124 struct ra_node {
125    /** @{
126     *
127     * List of which nodes this node interferes with.  This should be
128     * symmetric with the other node.
129     */
130    BITSET_WORD *adjacency;
131    unsigned int *adjacency_list;
132    unsigned int adjacency_list_size;
133    unsigned int adjacency_count;
134    /** @} */
135
136    unsigned int class;
137
138    /* Register, if assigned, or NO_REG. */
139    unsigned int reg;
140
141    /**
142     * Set when the node is in the trivially colorable stack.  When
143     * set, the adjacency to this node is ignored, to implement the
144     * "remove the edge from the graph" in simplification without
145     * having to actually modify the adjacency_list.
146     */
147    bool in_stack;
148
149    /**
150     * The q total, as defined in the Runeson/Nyström paper, for all the
151     * interfering nodes not in the stack.
152     */
153    unsigned int q_total;
154
155    /* For an implementation that needs register spilling, this is the
156     * approximate cost of spilling this node.
157     */
158    float spill_cost;
159 };
160
161 struct ra_graph {
162    struct ra_regs *regs;
163    /**
164     * the variables that need register allocation.
165     */
166    struct ra_node *nodes;
167    unsigned int count; /**< count of nodes. */
168
169    unsigned int *stack;
170    unsigned int stack_count;
171
172    /**
173     * Tracks the start of the set of optimistically-colored registers in the
174     * stack.
175     */
176    unsigned int stack_optimistic_start;
177 };
178
179 /**
180  * Creates a set of registers for the allocator.
181  *
182  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
183  * using ralloc_free().
184  */
185 struct ra_regs *
186 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
187 {
188    unsigned int i;
189    struct ra_regs *regs;
190
191    regs = rzalloc(mem_ctx, struct ra_regs);
192    regs->count = count;
193    regs->regs = rzalloc_array(regs, struct ra_reg, count);
194
195    for (i = 0; i < count; i++) {
196       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
197                                               BITSET_WORDS(count));
198       BITSET_SET(regs->regs[i].conflicts, i);
199
200       if (need_conflict_lists) {
201          regs->regs[i].conflict_list = ralloc_array(regs->regs,
202                                                     unsigned int, 4);
203          regs->regs[i].conflict_list_size = 4;
204          regs->regs[i].conflict_list[0] = i;
205       } else {
206          regs->regs[i].conflict_list = NULL;
207          regs->regs[i].conflict_list_size = 0;
208       }
209       regs->regs[i].num_conflicts = 1;
210    }
211
212    return regs;
213 }
214
215 /**
216  * The register allocator by default prefers to allocate low register numbers,
217  * since it was written for hardware (gen4/5 Intel) that is limited in its
218  * multithreadedness by the number of registers used in a given shader.
219  *
220  * However, for hardware without that restriction, densely packed register
221  * allocation can put serious constraints on instruction scheduling.  This
222  * function tells the allocator to rotate around the registers if possible as
223  * it allocates the nodes.
224  */
225 void
226 ra_set_allocate_round_robin(struct ra_regs *regs)
227 {
228    regs->round_robin = true;
229 }
230
231 static void
232 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
233 {
234    struct ra_reg *reg1 = &regs->regs[r1];
235
236    if (reg1->conflict_list) {
237       if (reg1->conflict_list_size == reg1->num_conflicts) {
238          reg1->conflict_list_size *= 2;
239          reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
240                                         unsigned int, reg1->conflict_list_size);
241       }
242       reg1->conflict_list[reg1->num_conflicts++] = r2;
243    }
244    BITSET_SET(reg1->conflicts, r2);
245 }
246
247 void
248 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
249 {
250    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
251       ra_add_conflict_list(regs, r1, r2);
252       ra_add_conflict_list(regs, r2, r1);
253    }
254 }
255
256 /**
257  * Adds a conflict between base_reg and reg, and also between reg and
258  * anything that base_reg conflicts with.
259  *
260  * This can simplify code for setting up multiple register classes
261  * which are aggregates of some base hardware registers, compared to
262  * explicitly using ra_add_reg_conflict.
263  */
264 void
265 ra_add_transitive_reg_conflict(struct ra_regs *regs,
266                                unsigned int base_reg, unsigned int reg)
267 {
268    unsigned int i;
269
270    ra_add_reg_conflict(regs, reg, base_reg);
271
272    for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
273       ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
274    }
275 }
276
277 /**
278  * Makes every conflict on the given register transitive.  In other words,
279  * every register that conflicts with r will now conflict with every other
280  * register conflicting with r.
281  *
282  * This can simplify code for setting up multiple register classes
283  * which are aggregates of some base hardware registers, compared to
284  * explicitly using ra_add_reg_conflict.
285  */
286 void
287 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
288 {
289    struct ra_reg *reg = &regs->regs[r];
290    BITSET_WORD tmp;
291    int c;
292
293    BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
294       struct ra_reg *other = &regs->regs[c];
295       unsigned i;
296       for (i = 0; i < BITSET_WORDS(regs->count); i++)
297          other->conflicts[i] |= reg->conflicts[i];
298    }
299 }
300
301 unsigned int
302 ra_alloc_reg_class(struct ra_regs *regs)
303 {
304    struct ra_class *class;
305
306    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
307                             regs->class_count + 1);
308
309    class = rzalloc(regs, struct ra_class);
310    regs->classes[regs->class_count] = class;
311
312    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
313
314    return regs->class_count++;
315 }
316
317 void
318 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
319 {
320    struct ra_class *class = regs->classes[c];
321
322    BITSET_SET(class->regs, r);
323    class->p++;
324 }
325
326 /**
327  * Returns true if the register belongs to the given class.
328  */
329 static bool
330 reg_belongs_to_class(unsigned int r, struct ra_class *c)
331 {
332    return BITSET_TEST(c->regs, r);
333 }
334
335 /**
336  * Must be called after all conflicts and register classes have been
337  * set up and before the register set is used for allocation.
338  * To avoid costly q value computation, use the q_values paramater
339  * to pass precomputed q values to this function.
340  */
341 void
342 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
343 {
344    unsigned int b, c;
345
346    for (b = 0; b < regs->class_count; b++) {
347       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
348    }
349
350    if (q_values) {
351       for (b = 0; b < regs->class_count; b++) {
352          for (c = 0; c < regs->class_count; c++) {
353             regs->classes[b]->q[c] = q_values[b][c];
354          }
355       }
356    } else {
357       /* Compute, for each class B and C, how many regs of B an
358        * allocation to C could conflict with.
359        */
360       for (b = 0; b < regs->class_count; b++) {
361          for (c = 0; c < regs->class_count; c++) {
362             unsigned int rc;
363             int max_conflicts = 0;
364
365             for (rc = 0; rc < regs->count; rc++) {
366                int conflicts = 0;
367                unsigned int i;
368
369                if (!reg_belongs_to_class(rc, regs->classes[c]))
370                   continue;
371
372                for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
373                   unsigned int rb = regs->regs[rc].conflict_list[i];
374                   if (reg_belongs_to_class(rb, regs->classes[b]))
375                      conflicts++;
376                }
377                max_conflicts = MAX2(max_conflicts, conflicts);
378             }
379             regs->classes[b]->q[c] = max_conflicts;
380          }
381       }
382    }
383
384    for (b = 0; b < regs->count; b++) {
385       ralloc_free(regs->regs[b].conflict_list);
386       regs->regs[b].conflict_list = NULL;
387    }
388 }
389
390 static void
391 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
392 {
393    BITSET_SET(g->nodes[n1].adjacency, n2);
394
395    if (n1 != n2) {
396       int n1_class = g->nodes[n1].class;
397       int n2_class = g->nodes[n2].class;
398       g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
399    }
400
401    if (g->nodes[n1].adjacency_count >=
402        g->nodes[n1].adjacency_list_size) {
403       g->nodes[n1].adjacency_list_size *= 2;
404       g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
405                                              unsigned int,
406                                              g->nodes[n1].adjacency_list_size);
407    }
408
409    g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
410    g->nodes[n1].adjacency_count++;
411 }
412
413 struct ra_graph *
414 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
415 {
416    struct ra_graph *g;
417    unsigned int i;
418
419    g = rzalloc(NULL, struct ra_graph);
420    g->regs = regs;
421    g->nodes = rzalloc_array(g, struct ra_node, count);
422    g->count = count;
423
424    g->stack = rzalloc_array(g, unsigned int, count);
425
426    for (i = 0; i < count; i++) {
427       int bitset_count = BITSET_WORDS(count);
428       g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
429
430       g->nodes[i].adjacency_list_size = 4;
431       g->nodes[i].adjacency_list =
432          ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
433       g->nodes[i].adjacency_count = 0;
434       g->nodes[i].q_total = 0;
435
436       ra_add_node_adjacency(g, i, i);
437       g->nodes[i].reg = NO_REG;
438    }
439
440    return g;
441 }
442
443 void
444 ra_set_node_class(struct ra_graph *g,
445                   unsigned int n, unsigned int class)
446 {
447    g->nodes[n].class = class;
448 }
449
450 void
451 ra_add_node_interference(struct ra_graph *g,
452                          unsigned int n1, unsigned int n2)
453 {
454    if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
455       ra_add_node_adjacency(g, n1, n2);
456       ra_add_node_adjacency(g, n2, n1);
457    }
458 }
459
460 static bool
461 pq_test(struct ra_graph *g, unsigned int n)
462 {
463    int n_class = g->nodes[n].class;
464
465    return g->nodes[n].q_total < g->regs->classes[n_class]->p;
466 }
467
468 static void
469 decrement_q(struct ra_graph *g, unsigned int n)
470 {
471    unsigned int i;
472    int n_class = g->nodes[n].class;
473
474    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
475       unsigned int n2 = g->nodes[n].adjacency_list[i];
476       unsigned int n2_class = g->nodes[n2].class;
477
478       if (n != n2 && !g->nodes[n2].in_stack) {
479          assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
480          g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
481       }
482    }
483 }
484
485 /**
486  * Simplifies the interference graph by pushing all
487  * trivially-colorable nodes into a stack of nodes to be colored,
488  * removing them from the graph, and rinsing and repeating.
489  *
490  * If we encounter a case where we can't push any nodes on the stack, then
491  * we optimistically choose a node and push it on the stack. We heuristically
492  * push the node with the lowest total q value, since it has the fewest
493  * neighbors and therefore is most likely to be allocated.
494  */
495 static void
496 ra_simplify(struct ra_graph *g)
497 {
498    bool progress = true;
499    unsigned int stack_optimistic_start = UINT_MAX;
500    int i;
501
502    while (progress) {
503       unsigned int best_optimistic_node = ~0;
504       unsigned int lowest_q_total = ~0;
505
506       progress = false;
507
508       for (i = g->count - 1; i >= 0; i--) {
509          if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
510             continue;
511
512          if (pq_test(g, i)) {
513             decrement_q(g, i);
514             g->stack[g->stack_count] = i;
515             g->stack_count++;
516             g->nodes[i].in_stack = true;
517             progress = true;
518          } else {
519             unsigned int new_q_total = g->nodes[i].q_total;
520             if (new_q_total < lowest_q_total) {
521                best_optimistic_node = i;
522                lowest_q_total = new_q_total;
523             }
524          }
525       }
526
527       if (!progress && best_optimistic_node != ~0U) {
528          if (stack_optimistic_start == UINT_MAX)
529             stack_optimistic_start = g->stack_count;
530
531          decrement_q(g, best_optimistic_node);
532          g->stack[g->stack_count] = best_optimistic_node;
533          g->stack_count++;
534          g->nodes[best_optimistic_node].in_stack = true;
535          progress = true;
536       }
537    }
538
539    g->stack_optimistic_start = stack_optimistic_start;
540 }
541
542 static bool
543 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
544 {
545    unsigned int i;
546
547    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
548       unsigned int n2 = g->nodes[n].adjacency_list[i];
549
550       if (!g->nodes[n2].in_stack &&
551           BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
552          return true;
553       }
554    }
555
556    return false;
557 }
558
559 /**
560  * Pops nodes from the stack back into the graph, coloring them with
561  * registers as they go.
562  *
563  * If all nodes were trivially colorable, then this must succeed.  If
564  * not (optimistic coloring), then it may return false;
565  */
566 static bool
567 ra_select(struct ra_graph *g)
568 {
569    int start_search_reg = 0;
570
571    while (g->stack_count != 0) {
572       unsigned int ri;
573       unsigned int r = -1;
574       int n = g->stack[g->stack_count - 1];
575       struct ra_class *c = g->regs->classes[g->nodes[n].class];
576
577       /* Find the lowest-numbered reg which is not used by a member
578        * of the graph adjacent to us.
579        */
580       for (ri = 0; ri < g->regs->count; ri++) {
581          r = (start_search_reg + ri) % g->regs->count;
582          if (!reg_belongs_to_class(r, c))
583             continue;
584
585          if (!ra_any_neighbors_conflict(g, n, r))
586             break;
587       }
588
589       /* set this to false even if we return here so that
590        * ra_get_best_spill_node() considers this node later.
591        */
592       g->nodes[n].in_stack = false;
593
594       if (ri == g->regs->count)
595          return false;
596
597       g->nodes[n].reg = r;
598       g->stack_count--;
599
600       /* Rotate the starting point except for any nodes above the lowest
601        * optimistically colorable node.  The likelihood that we will succeed
602        * at allocating optimistically colorable nodes is highly dependent on
603        * the way that the previous nodes popped off the stack are laid out.
604        * The round-robin strategy increases the fragmentation of the register
605        * file and decreases the number of nearby nodes assigned to the same
606        * color, what increases the likelihood of spilling with respect to the
607        * dense packing strategy.
608        */
609       if (g->regs->round_robin &&
610           g->stack_count - 1 <= g->stack_optimistic_start)
611          start_search_reg = r + 1;
612    }
613
614    return true;
615 }
616
617 bool
618 ra_allocate(struct ra_graph *g)
619 {
620    ra_simplify(g);
621    return ra_select(g);
622 }
623
624 unsigned int
625 ra_get_node_reg(struct ra_graph *g, unsigned int n)
626 {
627    return g->nodes[n].reg;
628 }
629
630 /**
631  * Forces a node to a specific register.  This can be used to avoid
632  * creating a register class containing one node when handling data
633  * that must live in a fixed location and is known to not conflict
634  * with other forced register assignment (as is common with shader
635  * input data).  These nodes do not end up in the stack during
636  * ra_simplify(), and thus at ra_select() time it is as if they were
637  * the first popped off the stack and assigned their fixed locations.
638  * Nodes that use this function do not need to be assigned a register
639  * class.
640  *
641  * Must be called before ra_simplify().
642  */
643 void
644 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
645 {
646    g->nodes[n].reg = reg;
647    g->nodes[n].in_stack = false;
648 }
649
650 static float
651 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
652 {
653    unsigned int j;
654    float benefit = 0;
655    int n_class = g->nodes[n].class;
656
657    /* Define the benefit of eliminating an interference between n, n2
658     * through spilling as q(C, B) / p(C).  This is similar to the
659     * "count number of edges" approach of traditional graph coloring,
660     * but takes classes into account.
661     */
662    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
663       unsigned int n2 = g->nodes[n].adjacency_list[j];
664       if (n != n2) {
665          unsigned int n2_class = g->nodes[n2].class;
666          benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
667                      g->regs->classes[n_class]->p);
668       }
669    }
670
671    return benefit;
672 }
673
674 /**
675  * Returns a node number to be spilled according to the cost/benefit using
676  * the pq test, or -1 if there are no spillable nodes.
677  */
678 int
679 ra_get_best_spill_node(struct ra_graph *g)
680 {
681    unsigned int best_node = -1;
682    float best_benefit = 0.0;
683    unsigned int n;
684
685    /* Consider any nodes that we colored successfully or the node we failed to
686     * color for spilling. When we failed to color a node in ra_select(), we
687     * only considered these nodes, so spilling any other ones would not result
688     * in us making progress.
689     */
690    for (n = 0; n < g->count; n++) {
691       float cost = g->nodes[n].spill_cost;
692       float benefit;
693
694       if (cost <= 0.0f)
695          continue;
696
697       if (g->nodes[n].in_stack)
698          continue;
699
700       benefit = ra_get_spill_benefit(g, n);
701
702       if (benefit / cost > best_benefit) {
703          best_benefit = benefit / cost;
704          best_node = n;
705       }
706    }
707
708    return best_node;
709 }
710
711 /**
712  * Only nodes with a spill cost set (cost != 0.0) will be considered
713  * for register spilling.
714  */
715 void
716 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
717 {
718    g->nodes[n].spill_cost = cost;
719 }