OSDN Git Service

anv: Add FIXME for vkResetCommandPool
[android-x86/external-mesa.git] / src / vulkan / anv_cmd_buffer.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 /** \file anv_cmd_buffer.c
33  *
34  * This file contains all of the stuff for emitting commands into a command
35  * buffer.  This includes implementations of most of the vkCmd*
36  * entrypoints.  This file is concerned entirely with state emission and
37  * not with the command buffer data structure itself.  As far as this file
38  * is concerned, most of anv_cmd_buffer is magic.
39  */
40
41 /* TODO: These are taken from GLES.  We should check the Vulkan spec */
42 const struct anv_dynamic_state default_dynamic_state = {
43    .viewport = {
44       .count = 0,
45    },
46    .scissor = {
47       .count = 0,
48    },
49    .line_width = 1.0f,
50    .depth_bias = {
51       .bias = 0.0f,
52       .clamp = 0.0f,
53       .slope = 0.0f,
54    },
55    .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
56    .depth_bounds = {
57       .min = 0.0f,
58       .max = 1.0f,
59    },
60    .stencil_compare_mask = {
61       .front = ~0u,
62       .back = ~0u,
63    },
64    .stencil_write_mask = {
65       .front = ~0u,
66       .back = ~0u,
67    },
68    .stencil_reference = {
69       .front = 0u,
70       .back = 0u,
71    },
72 };
73
74 void
75 anv_dynamic_state_copy(struct anv_dynamic_state *dest,
76                        const struct anv_dynamic_state *src,
77                        uint32_t copy_mask)
78 {
79    if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
80       dest->viewport.count = src->viewport.count;
81       typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
82                    src->viewport.count);
83    }
84
85    if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
86       dest->scissor.count = src->scissor.count;
87       typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
88                    src->scissor.count);
89    }
90
91    if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
92       dest->line_width = src->line_width;
93
94    if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
95       dest->depth_bias = src->depth_bias;
96
97    if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
98       typed_memcpy(dest->blend_constants, src->blend_constants, 4);
99
100    if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
101       dest->depth_bounds = src->depth_bounds;
102
103    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
104       dest->stencil_compare_mask = src->stencil_compare_mask;
105
106    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
107       dest->stencil_write_mask = src->stencil_write_mask;
108
109    if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
110       dest->stencil_reference = src->stencil_reference;
111 }
112
113 static void
114 anv_cmd_state_init(struct anv_cmd_state *state)
115 {
116    memset(&state->descriptors, 0, sizeof(state->descriptors));
117    memset(&state->push_constants, 0, sizeof(state->push_constants));
118
119    state->dirty = ~0;
120    state->vb_dirty = 0;
121    state->descriptors_dirty = 0;
122    state->push_constants_dirty = 0;
123    state->pipeline = NULL;
124    state->restart_index = UINT32_MAX;
125    state->dynamic = default_dynamic_state;
126    state->need_query_wa = true;
127
128    state->gen7.index_buffer = NULL;
129 }
130
131 static VkResult
132 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
133                                           gl_shader_stage stage, uint32_t size)
134 {
135    struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
136
137    if (*ptr == NULL) {
138       *ptr = anv_alloc(&cmd_buffer->pool->alloc, size, 8,
139                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
140       if (*ptr == NULL)
141          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
142    } else if ((*ptr)->size < size) {
143       *ptr = anv_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8,
144                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
145       if (*ptr == NULL)
146          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
147    }
148    (*ptr)->size = size;
149
150    return VK_SUCCESS;
151 }
152
153 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
154    anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
155       (offsetof(struct anv_push_constants, field) + \
156        sizeof(cmd_buffer->state.push_constants[0]->field)))
157
158 static VkResult anv_create_cmd_buffer(
159     struct anv_device *                         device,
160     struct anv_cmd_pool *                       pool,
161     VkCommandBufferLevel                        level,
162     VkCommandBuffer*                            pCommandBuffer)
163 {
164    struct anv_cmd_buffer *cmd_buffer;
165    VkResult result;
166
167    cmd_buffer = anv_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
168                           VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
169    if (cmd_buffer == NULL)
170       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
171
172    cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
173    cmd_buffer->device = device;
174    cmd_buffer->pool = pool;
175
176    result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
177    if (result != VK_SUCCESS)
178       goto fail;
179
180    anv_state_stream_init(&cmd_buffer->surface_state_stream,
181                          &device->surface_state_block_pool);
182    anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
183                          &device->dynamic_state_block_pool);
184
185    cmd_buffer->level = level;
186    cmd_buffer->usage_flags = 0;
187
188    anv_cmd_state_init(&cmd_buffer->state);
189
190    if (pool) {
191       list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
192    } else {
193       /* Init the pool_link so we can safefly call list_del when we destroy
194        * the command buffer
195        */
196       list_inithead(&cmd_buffer->pool_link);
197    }
198
199    *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
200
201    return VK_SUCCESS;
202
203  fail:
204    anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
205
206    return result;
207 }
208
209 VkResult anv_AllocateCommandBuffers(
210     VkDevice                                    _device,
211     const VkCommandBufferAllocateInfo*          pAllocateInfo,
212     VkCommandBuffer*                            pCommandBuffers)
213 {
214    ANV_FROM_HANDLE(anv_device, device, _device);
215    ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool);
216
217    VkResult result = VK_SUCCESS;
218    uint32_t i;
219
220    for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
221       result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level,
222                                      &pCommandBuffers[i]);
223       if (result != VK_SUCCESS)
224          break;
225    }
226
227    if (result != VK_SUCCESS)
228       anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
229                              i, pCommandBuffers);
230
231    return result;
232 }
233
234 static void
235 anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer)
236 {
237    list_del(&cmd_buffer->pool_link);
238
239    anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
240
241    anv_state_stream_finish(&cmd_buffer->surface_state_stream);
242    anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
243
244    anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
245 }
246
247 void anv_FreeCommandBuffers(
248     VkDevice                                    device,
249     VkCommandPool                               commandPool,
250     uint32_t                                    commandBufferCount,
251     const VkCommandBuffer*                      pCommandBuffers)
252 {
253    for (uint32_t i = 0; i < commandBufferCount; i++) {
254       ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
255
256       anv_cmd_buffer_destroy(cmd_buffer);
257    }
258 }
259
260 VkResult anv_ResetCommandBuffer(
261     VkCommandBuffer                             commandBuffer,
262     VkCommandBufferResetFlags                   flags)
263 {
264    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
265
266    anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
267
268    anv_cmd_state_init(&cmd_buffer->state);
269
270    return VK_SUCCESS;
271 }
272
273 void
274 anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
275 {
276    switch (cmd_buffer->device->info.gen) {
277    case 7:
278       if (cmd_buffer->device->info.is_haswell)
279          return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
280       else
281          return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
282    case 8:
283       return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
284    case 9:
285       return gen9_cmd_buffer_emit_state_base_address(cmd_buffer);
286    default:
287       unreachable("unsupported gen\n");
288    }
289 }
290
291 VkResult anv_BeginCommandBuffer(
292     VkCommandBuffer                             commandBuffer,
293     const VkCommandBufferBeginInfo*             pBeginInfo)
294 {
295    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
296
297    anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
298
299    cmd_buffer->usage_flags = pBeginInfo->flags;
300
301    assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
302           !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
303
304    if (cmd_buffer->usage_flags &
305        VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
306       cmd_buffer->state.framebuffer =
307          anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
308       cmd_buffer->state.pass =
309          anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
310
311       struct anv_subpass *subpass =
312          &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
313
314       anv_cmd_buffer_begin_subpass(cmd_buffer, subpass);
315    }
316
317    anv_cmd_buffer_emit_state_base_address(cmd_buffer);
318    cmd_buffer->state.current_pipeline = UINT32_MAX;
319
320    return VK_SUCCESS;
321 }
322
323 VkResult anv_EndCommandBuffer(
324     VkCommandBuffer                             commandBuffer)
325 {
326    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
327    struct anv_device *device = cmd_buffer->device;
328
329    anv_cmd_buffer_end_batch_buffer(cmd_buffer);
330
331    if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
332       /* The algorithm used to compute the validate list is not threadsafe as
333        * it uses the bo->index field.  We have to lock the device around it.
334        * Fortunately, the chances for contention here are probably very low.
335        */
336       pthread_mutex_lock(&device->mutex);
337       anv_cmd_buffer_prepare_execbuf(cmd_buffer);
338       pthread_mutex_unlock(&device->mutex);
339    }
340
341    return VK_SUCCESS;
342 }
343
344 void anv_CmdBindPipeline(
345     VkCommandBuffer                             commandBuffer,
346     VkPipelineBindPoint                         pipelineBindPoint,
347     VkPipeline                                  _pipeline)
348 {
349    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
350    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
351
352    switch (pipelineBindPoint) {
353    case VK_PIPELINE_BIND_POINT_COMPUTE:
354       cmd_buffer->state.compute_pipeline = pipeline;
355       cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
356       cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
357       break;
358
359    case VK_PIPELINE_BIND_POINT_GRAPHICS:
360       cmd_buffer->state.pipeline = pipeline;
361       cmd_buffer->state.vb_dirty |= pipeline->vb_used;
362       cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
363       cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
364
365       /* Apply the dynamic state from the pipeline */
366       cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
367       anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
368                              &pipeline->dynamic_state,
369                              pipeline->dynamic_state_mask);
370       break;
371
372    default:
373       assert(!"invalid bind point");
374       break;
375    }
376 }
377
378 void anv_CmdSetViewport(
379     VkCommandBuffer                             commandBuffer,
380     uint32_t                                    firstViewport,
381     uint32_t                                    viewportCount,
382     const VkViewport*                           pViewports)
383 {
384    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
385
386    const uint32_t total_count = firstViewport + viewportCount;
387    if (cmd_buffer->state.dynamic.viewport.count < total_count);
388       cmd_buffer->state.dynamic.viewport.count = total_count;
389
390    memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport,
391           pViewports, viewportCount * sizeof(*pViewports));
392
393    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
394 }
395
396 void anv_CmdSetScissor(
397     VkCommandBuffer                             commandBuffer,
398     uint32_t                                    firstScissor,
399     uint32_t                                    scissorCount,
400     const VkRect2D*                             pScissors)
401 {
402    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
403
404    const uint32_t total_count = firstScissor + scissorCount;
405    if (cmd_buffer->state.dynamic.scissor.count < total_count);
406       cmd_buffer->state.dynamic.scissor.count = total_count;
407
408    memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor,
409           pScissors, scissorCount * sizeof(*pScissors));
410
411    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
412 }
413
414 void anv_CmdSetLineWidth(
415     VkCommandBuffer                             commandBuffer,
416     float                                       lineWidth)
417 {
418    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
419
420    cmd_buffer->state.dynamic.line_width = lineWidth;
421    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
422 }
423
424 void anv_CmdSetDepthBias(
425     VkCommandBuffer                             commandBuffer,
426     float                                       depthBiasConstantFactor,
427     float                                       depthBiasClamp,
428     float                                       depthBiasSlopeFactor)
429 {
430    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
431
432    cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
433    cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
434    cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
435
436    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
437 }
438
439 void anv_CmdSetBlendConstants(
440     VkCommandBuffer                             commandBuffer,
441     const float                                 blendConstants[4])
442 {
443    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
444
445    memcpy(cmd_buffer->state.dynamic.blend_constants,
446           blendConstants, sizeof(float) * 4);
447
448    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
449 }
450
451 void anv_CmdSetDepthBounds(
452     VkCommandBuffer                             commandBuffer,
453     float                                       minDepthBounds,
454     float                                       maxDepthBounds)
455 {
456    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
457
458    cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
459    cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
460
461    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
462 }
463
464 void anv_CmdSetStencilCompareMask(
465     VkCommandBuffer                             commandBuffer,
466     VkStencilFaceFlags                          faceMask,
467     uint32_t                                    compareMask)
468 {
469    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
470
471    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
472       cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
473    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
474       cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
475
476    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
477 }
478
479 void anv_CmdSetStencilWriteMask(
480     VkCommandBuffer                             commandBuffer,
481     VkStencilFaceFlags                          faceMask,
482     uint32_t                                    writeMask)
483 {
484    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
485
486    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
487       cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
488    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
489       cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
490
491    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
492 }
493
494 void anv_CmdSetStencilReference(
495     VkCommandBuffer                             commandBuffer,
496     VkStencilFaceFlags                          faceMask,
497     uint32_t                                    reference)
498 {
499    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
500
501    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
502       cmd_buffer->state.dynamic.stencil_reference.front = reference;
503    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
504       cmd_buffer->state.dynamic.stencil_reference.back = reference;
505
506    cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
507 }
508
509 void anv_CmdBindDescriptorSets(
510     VkCommandBuffer                             commandBuffer,
511     VkPipelineBindPoint                         pipelineBindPoint,
512     VkPipelineLayout                            _layout,
513     uint32_t                                    firstSet,
514     uint32_t                                    descriptorSetCount,
515     const VkDescriptorSet*                      pDescriptorSets,
516     uint32_t                                    dynamicOffsetCount,
517     const uint32_t*                             pDynamicOffsets)
518 {
519    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
520    ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
521    struct anv_descriptor_set_layout *set_layout;
522
523    assert(firstSet + descriptorSetCount < MAX_SETS);
524
525    uint32_t dynamic_slot = 0;
526    for (uint32_t i = 0; i < descriptorSetCount; i++) {
527       ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
528       set_layout = layout->set[firstSet + i].layout;
529
530       if (cmd_buffer->state.descriptors[firstSet + i] != set) {
531          cmd_buffer->state.descriptors[firstSet + i] = set;
532          cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
533       }
534
535       if (set_layout->dynamic_offset_count > 0) {
536          anv_foreach_stage(s, set_layout->shader_stages) {
537             anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);
538
539             struct anv_push_constants *push =
540                cmd_buffer->state.push_constants[s];
541
542             unsigned d = layout->set[firstSet + i].dynamic_offset_start;
543             const uint32_t *offsets = pDynamicOffsets + dynamic_slot;
544             struct anv_descriptor *desc = set->descriptors;
545
546             for (unsigned b = 0; b < set_layout->binding_count; b++) {
547                if (set_layout->binding[b].dynamic_offset_index < 0)
548                   continue;
549
550                unsigned array_size = set_layout->binding[b].array_size;
551                for (unsigned j = 0; j < array_size; j++) {
552                   uint32_t range = 0;
553                   if (desc->buffer_view)
554                      range = desc->buffer_view->range;
555                   push->dynamic[d].offset = *(offsets++);
556                   push->dynamic[d].range = range;
557                   desc++;
558                   d++;
559                }
560             }
561          }
562          cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
563       }
564    }
565 }
566
567 void anv_CmdBindVertexBuffers(
568     VkCommandBuffer                             commandBuffer,
569     uint32_t                                    firstBinding,
570     uint32_t                                    bindingCount,
571     const VkBuffer*                             pBuffers,
572     const VkDeviceSize*                         pOffsets)
573 {
574    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
575    struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
576
577    /* We have to defer setting up vertex buffer since we need the buffer
578     * stride from the pipeline. */
579
580    assert(firstBinding + bindingCount < MAX_VBS);
581    for (uint32_t i = 0; i < bindingCount; i++) {
582       vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
583       vb[firstBinding + i].offset = pOffsets[i];
584       cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i);
585    }
586 }
587
588 static void
589 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
590                         struct anv_state state, struct anv_bo *bo, uint32_t offset)
591 {
592    /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
593     * 9 for gen8+.  We only write the first dword for gen8+ here and rely on
594     * the initial state to set the high bits to 0. */
595
596    const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8;
597
598    anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
599                       state.offset + dword * 4, bo, offset);
600 }
601
602 const struct anv_format *
603 anv_format_for_descriptor_type(VkDescriptorType type)
604 {
605    switch (type) {
606    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
607    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
608       return anv_format_for_vk_format(VK_FORMAT_R32G32B32A32_SFLOAT);
609
610    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
611    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
612       return anv_format_for_vk_format(VK_FORMAT_UNDEFINED);
613
614    default:
615       unreachable("Invalid descriptor type");
616    }
617 }
618
619 VkResult
620 anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
621                                   gl_shader_stage stage,
622                                   struct anv_state *bt_state)
623 {
624    struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
625    struct anv_subpass *subpass = cmd_buffer->state.subpass;
626    struct anv_pipeline_layout *layout;
627    uint32_t color_count, bias, state_offset;
628
629    switch (stage) {
630    case  MESA_SHADER_FRAGMENT:
631       layout = cmd_buffer->state.pipeline->layout;
632       bias = MAX_RTS;
633       color_count = subpass->color_count;
634       break;
635    case  MESA_SHADER_COMPUTE:
636       layout = cmd_buffer->state.compute_pipeline->layout;
637       bias = 1;
638       color_count = 0;
639       break;
640    default:
641       layout = cmd_buffer->state.pipeline->layout;
642       bias = 0;
643       color_count = 0;
644       break;
645    }
646
647    /* This is a little awkward: layout can be NULL but we still have to
648     * allocate and set a binding table for the PS stage for render
649     * targets. */
650    uint32_t surface_count = layout ? layout->stage[stage].surface_count : 0;
651
652    if (color_count + surface_count == 0) {
653       *bt_state = (struct anv_state) { 0, };
654       return VK_SUCCESS;
655    }
656
657    *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
658                                                   bias + surface_count,
659                                                   &state_offset);
660    uint32_t *bt_map = bt_state->map;
661
662    if (bt_state->map == NULL)
663       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
664
665    for (uint32_t a = 0; a < color_count; a++) {
666       const struct anv_image_view *iview =
667          fb->attachments[subpass->color_attachments[a]];
668
669       assert(iview->color_rt_surface_state.alloc_size);
670       bt_map[a] = iview->color_rt_surface_state.offset + state_offset;
671       add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
672                               iview->bo, iview->offset);
673    }
674
675    if (stage == MESA_SHADER_COMPUTE &&
676        cmd_buffer->state.compute_pipeline->cs_prog_data.uses_num_work_groups) {
677       struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
678       uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
679
680       struct anv_state surface_state;
681       surface_state =
682          anv_cmd_buffer_alloc_surface_state(cmd_buffer);
683
684       const struct anv_format *format =
685          anv_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
686       anv_fill_buffer_surface_state(cmd_buffer->device, surface_state.map,
687                                     format->surface_format, bo_offset, 12, 1);
688
689       if (!cmd_buffer->device->info.has_llc)
690          anv_state_clflush(surface_state);
691
692       bt_map[0] = surface_state.offset + state_offset;
693       add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
694    }
695
696    if (layout == NULL)
697       goto out;
698
699    if (layout->stage[stage].image_count > 0) {
700       VkResult result =
701          anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
702       if (result != VK_SUCCESS)
703          return result;
704
705       cmd_buffer->state.push_constants_dirty |= 1 << stage;
706    }
707
708    uint32_t image = 0;
709    for (uint32_t s = 0; s < layout->stage[stage].surface_count; s++) {
710       struct anv_pipeline_binding *binding =
711          &layout->stage[stage].surface_to_descriptor[s];
712       struct anv_descriptor_set *set =
713          cmd_buffer->state.descriptors[binding->set];
714       struct anv_descriptor *desc = &set->descriptors[binding->offset];
715
716       struct anv_state surface_state;
717       struct anv_bo *bo;
718       uint32_t bo_offset;
719
720       switch (desc->type) {
721       case VK_DESCRIPTOR_TYPE_SAMPLER:
722          /* Nothing for us to do here */
723          continue;
724
725       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
726       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
727       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
728          surface_state = desc->image_view->nonrt_surface_state;
729          assert(surface_state.alloc_size);
730          bo = desc->image_view->bo;
731          bo_offset = desc->image_view->offset;
732          break;
733
734       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
735          surface_state = desc->image_view->storage_surface_state;
736          assert(surface_state.alloc_size);
737          bo = desc->image_view->bo;
738          bo_offset = desc->image_view->offset;
739
740          struct brw_image_param *image_param =
741             &cmd_buffer->state.push_constants[stage]->images[image++];
742
743          anv_image_view_fill_image_param(cmd_buffer->device, desc->image_view,
744                                          image_param);
745          image_param->surface_idx = bias + s;
746          break;
747       }
748
749       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
750       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
751       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
752       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
753       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
754          surface_state = desc->buffer_view->surface_state;
755          assert(surface_state.alloc_size);
756          bo = desc->buffer_view->bo;
757          bo_offset = desc->buffer_view->offset;
758          break;
759
760       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
761          surface_state = desc->buffer_view->storage_surface_state;
762          assert(surface_state.alloc_size);
763          bo = desc->buffer_view->bo;
764          bo_offset = desc->buffer_view->offset;
765
766          struct brw_image_param *image_param =
767             &cmd_buffer->state.push_constants[stage]->images[image++];
768
769          anv_buffer_view_fill_image_param(cmd_buffer->device, desc->buffer_view,
770                                           image_param);
771          image_param->surface_idx = bias + s;
772          break;
773
774       default:
775          assert(!"Invalid descriptor type");
776          continue;
777       }
778
779       bt_map[bias + s] = surface_state.offset + state_offset;
780       add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
781    }
782    assert(image == layout->stage[stage].image_count);
783
784  out:
785    if (!cmd_buffer->device->info.has_llc)
786       anv_state_clflush(*bt_state);
787
788    return VK_SUCCESS;
789 }
790
791 VkResult
792 anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
793                              gl_shader_stage stage, struct anv_state *state)
794 {
795    struct anv_pipeline_layout *layout;
796    uint32_t sampler_count;
797
798    if (stage == MESA_SHADER_COMPUTE)
799       layout = cmd_buffer->state.compute_pipeline->layout;
800    else
801       layout = cmd_buffer->state.pipeline->layout;
802
803    sampler_count = layout ? layout->stage[stage].sampler_count : 0;
804    if (sampler_count == 0) {
805       *state = (struct anv_state) { 0, };
806       return VK_SUCCESS;
807    }
808
809    uint32_t size = sampler_count * 16;
810    *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
811
812    if (state->map == NULL)
813       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
814
815    for (uint32_t s = 0; s < layout->stage[stage].sampler_count; s++) {
816       struct anv_pipeline_binding *binding =
817          &layout->stage[stage].sampler_to_descriptor[s];
818       struct anv_descriptor_set *set =
819          cmd_buffer->state.descriptors[binding->set];
820       struct anv_descriptor *desc = &set->descriptors[binding->offset];
821
822       if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
823           desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
824          continue;
825
826       struct anv_sampler *sampler = desc->sampler;
827
828       /* This can happen if we have an unfilled slot since TYPE_SAMPLER
829        * happens to be zero.
830        */
831       if (sampler == NULL)
832          continue;
833
834       memcpy(state->map + (s * 16),
835              sampler->state, sizeof(sampler->state));
836    }
837
838    if (!cmd_buffer->device->info.has_llc)
839       anv_state_clflush(*state);
840
841    return VK_SUCCESS;
842 }
843
844 struct anv_state
845 anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
846                             const void *data, uint32_t size, uint32_t alignment)
847 {
848    struct anv_state state;
849
850    state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment);
851    memcpy(state.map, data, size);
852
853    if (!cmd_buffer->device->info.has_llc)
854       anv_state_clflush(state);
855
856    VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size));
857
858    return state;
859 }
860
861 struct anv_state
862 anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
863                              uint32_t *a, uint32_t *b,
864                              uint32_t dwords, uint32_t alignment)
865 {
866    struct anv_state state;
867    uint32_t *p;
868
869    state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
870                                               dwords * 4, alignment);
871    p = state.map;
872    for (uint32_t i = 0; i < dwords; i++)
873       p[i] = a[i] | b[i];
874
875    if (!cmd_buffer->device->info.has_llc)
876       anv_state_clflush(state);
877
878    VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
879
880    return state;
881 }
882
883 void
884 anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
885                              struct anv_subpass *subpass)
886 {
887    switch (cmd_buffer->device->info.gen) {
888    case 7:
889       gen7_cmd_buffer_begin_subpass(cmd_buffer, subpass);
890       break;
891    case 8:
892       gen8_cmd_buffer_begin_subpass(cmd_buffer, subpass);
893       break;
894    case 9:
895       gen9_cmd_buffer_begin_subpass(cmd_buffer, subpass);
896       break;
897    default:
898       unreachable("unsupported gen\n");
899    }
900 }
901
902 struct anv_state
903 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
904                               gl_shader_stage stage)
905 {
906    struct anv_push_constants *data =
907       cmd_buffer->state.push_constants[stage];
908    struct brw_stage_prog_data *prog_data =
909       cmd_buffer->state.pipeline->prog_data[stage];
910
911    /* If we don't actually have any push constants, bail. */
912    if (data == NULL || prog_data->nr_params == 0)
913       return (struct anv_state) { .offset = 0 };
914
915    struct anv_state state =
916       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
917                                          prog_data->nr_params * sizeof(float),
918                                          32 /* bottom 5 bits MBZ */);
919
920    /* Walk through the param array and fill the buffer with data */
921    uint32_t *u32_map = state.map;
922    for (unsigned i = 0; i < prog_data->nr_params; i++) {
923       uint32_t offset = (uintptr_t)prog_data->param[i];
924       u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
925    }
926
927    if (!cmd_buffer->device->info.has_llc)
928       anv_state_clflush(state);
929
930    return state;
931 }
932
933 struct anv_state
934 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer)
935 {
936    struct anv_push_constants *data =
937       cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
938    struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
939    const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
940    const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
941
942    const unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
943    const unsigned push_constant_data_size =
944       (local_id_dwords + prog_data->nr_params) * 4;
945    const unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
946    const unsigned param_aligned_count =
947       reg_aligned_constant_size / sizeof(uint32_t);
948
949    /* If we don't actually have any push constants, bail. */
950    if (reg_aligned_constant_size == 0)
951       return (struct anv_state) { .offset = 0 };
952
953    const unsigned threads = pipeline->cs_thread_width_max;
954    const unsigned total_push_constants_size =
955       reg_aligned_constant_size * threads;
956    const unsigned push_constant_alignment =
957       cmd_buffer->device->info.gen < 8 ? 32 : 64;
958    const unsigned aligned_total_push_constants_size =
959       ALIGN(total_push_constants_size, push_constant_alignment);
960    struct anv_state state =
961       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
962                                          aligned_total_push_constants_size,
963                                          push_constant_alignment);
964
965    /* Walk through the param array and fill the buffer with data */
966    uint32_t *u32_map = state.map;
967
968    brw_cs_fill_local_id_payload(cs_prog_data, u32_map, threads,
969                                 reg_aligned_constant_size);
970
971    /* Setup uniform data for the first thread */
972    for (unsigned i = 0; i < prog_data->nr_params; i++) {
973       uint32_t offset = (uintptr_t)prog_data->param[i];
974       u32_map[local_id_dwords + i] = *(uint32_t *)((uint8_t *)data + offset);
975    }
976
977    /* Copy uniform data from the first thread to every other thread */
978    const size_t uniform_data_size = prog_data->nr_params * sizeof(uint32_t);
979    for (unsigned t = 1; t < threads; t++) {
980       memcpy(&u32_map[t * param_aligned_count + local_id_dwords],
981              &u32_map[local_id_dwords],
982              uniform_data_size);
983    }
984
985    if (!cmd_buffer->device->info.has_llc)
986       anv_state_clflush(state);
987
988    return state;
989 }
990
991 void anv_CmdPushConstants(
992     VkCommandBuffer                             commandBuffer,
993     VkPipelineLayout                            layout,
994     VkShaderStageFlags                          stageFlags,
995     uint32_t                                    offset,
996     uint32_t                                    size,
997     const void*                                 pValues)
998 {
999    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1000
1001    anv_foreach_stage(stage, stageFlags) {
1002       anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);
1003
1004       memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
1005              pValues, size);
1006    }
1007
1008    cmd_buffer->state.push_constants_dirty |= stageFlags;
1009 }
1010
1011 void anv_CmdExecuteCommands(
1012     VkCommandBuffer                             commandBuffer,
1013     uint32_t                                    commandBufferCount,
1014     const VkCommandBuffer*                      pCmdBuffers)
1015 {
1016    ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1017
1018    assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1019
1020    anv_assert(primary->state.subpass == &primary->state.pass->subpasses[0]);
1021
1022    for (uint32_t i = 0; i < commandBufferCount; i++) {
1023       ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1024
1025       assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1026
1027       anv_cmd_buffer_add_secondary(primary, secondary);
1028    }
1029 }
1030
1031 VkResult anv_CreateCommandPool(
1032     VkDevice                                    _device,
1033     const VkCommandPoolCreateInfo*              pCreateInfo,
1034     const VkAllocationCallbacks*                pAllocator,
1035     VkCommandPool*                              pCmdPool)
1036 {
1037    ANV_FROM_HANDLE(anv_device, device, _device);
1038    struct anv_cmd_pool *pool;
1039
1040    pool = anv_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
1041                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1042    if (pool == NULL)
1043       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1044
1045    if (pAllocator)
1046       pool->alloc = *pAllocator;
1047    else
1048       pool->alloc = device->alloc;
1049
1050    list_inithead(&pool->cmd_buffers);
1051
1052    *pCmdPool = anv_cmd_pool_to_handle(pool);
1053
1054    return VK_SUCCESS;
1055 }
1056
1057 void anv_DestroyCommandPool(
1058     VkDevice                                    _device,
1059     VkCommandPool                               commandPool,
1060     const VkAllocationCallbacks*                pAllocator)
1061 {
1062    ANV_FROM_HANDLE(anv_device, device, _device);
1063    ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1064
1065    anv_ResetCommandPool(_device, commandPool, 0);
1066
1067    anv_free2(&device->alloc, pAllocator, pool);
1068 }
1069
1070 VkResult anv_ResetCommandPool(
1071     VkDevice                                    device,
1072     VkCommandPool                               commandPool,
1073     VkCommandPoolResetFlags                     flags)
1074 {
1075    ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1076
1077    /* FIXME: vkResetCommandPool must not destroy its command buffers. The
1078     * Vulkan 1.0 spec requires that it only reset them:
1079     *
1080     *    Resetting a command pool recycles all of the resources from all of
1081     *    the command buffers allocated from the command pool back to the
1082     *    command pool. All command buffers that have been allocated from the
1083     *    command pool are put in the initial state.
1084     */
1085    list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
1086                             &pool->cmd_buffers, pool_link) {
1087       anv_cmd_buffer_destroy(cmd_buffer);
1088    }
1089
1090    return VK_SUCCESS;
1091 }
1092
1093 /**
1094  * Return NULL if the current subpass has no depthstencil attachment.
1095  */
1096 const struct anv_image_view *
1097 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
1098 {
1099    const struct anv_subpass *subpass = cmd_buffer->state.subpass;
1100    const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
1101
1102    if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED)
1103       return NULL;
1104
1105    const struct anv_image_view *iview =
1106       fb->attachments[subpass->depth_stencil_attachment];
1107
1108    assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT |
1109                                 VK_IMAGE_ASPECT_STENCIL_BIT));
1110
1111    return iview;
1112 }