OSDN Git Service

24ae5ecf32e50d2bbfa2020c630777de8009ce9f
[qmiga/qemu.git] / target / arm / tcg / helper-a64.c
1 /*
2  *  AArch64 specific helpers
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
35 #include "fpu/softfloat.h"
36 #include <zlib.h> /* For crc32 */
37
38 /* C2.4.7 Multiply and divide */
39 /* special cases for 0 and LLONG_MIN are mandated by the standard */
40 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
41 {
42     if (den == 0) {
43         return 0;
44     }
45     return num / den;
46 }
47
48 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
49 {
50     if (den == 0) {
51         return 0;
52     }
53     if (num == LLONG_MIN && den == -1) {
54         return LLONG_MIN;
55     }
56     return num / den;
57 }
58
59 uint64_t HELPER(rbit64)(uint64_t x)
60 {
61     return revbit64(x);
62 }
63
64 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
65 {
66     update_spsel(env, imm);
67 }
68
69 static void daif_check(CPUARMState *env, uint32_t op,
70                        uint32_t imm, uintptr_t ra)
71 {
72     /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
73     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
74         raise_exception_ra(env, EXCP_UDEF,
75                            syn_aa64_sysregtrap(0, extract32(op, 0, 3),
76                                                extract32(op, 3, 3), 4,
77                                                imm, 0x1f, 0),
78                            exception_target_el(env), ra);
79     }
80 }
81
82 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
83 {
84     daif_check(env, 0x1e, imm, GETPC());
85     env->daif |= (imm << 6) & PSTATE_DAIF;
86     arm_rebuild_hflags(env);
87 }
88
89 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
90 {
91     daif_check(env, 0x1f, imm, GETPC());
92     env->daif &= ~((imm << 6) & PSTATE_DAIF);
93     arm_rebuild_hflags(env);
94 }
95
96 /* Convert a softfloat float_relation_ (as returned by
97  * the float*_compare functions) to the correct ARM
98  * NZCV flag state.
99  */
100 static inline uint32_t float_rel_to_flags(int res)
101 {
102     uint64_t flags;
103     switch (res) {
104     case float_relation_equal:
105         flags = PSTATE_Z | PSTATE_C;
106         break;
107     case float_relation_less:
108         flags = PSTATE_N;
109         break;
110     case float_relation_greater:
111         flags = PSTATE_C;
112         break;
113     case float_relation_unordered:
114     default:
115         flags = PSTATE_C | PSTATE_V;
116         break;
117     }
118     return flags;
119 }
120
121 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
122 {
123     return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
124 }
125
126 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
127 {
128     return float_rel_to_flags(float16_compare(x, y, fp_status));
129 }
130
131 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
132 {
133     return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
134 }
135
136 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
137 {
138     return float_rel_to_flags(float32_compare(x, y, fp_status));
139 }
140
141 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
142 {
143     return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
144 }
145
146 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
147 {
148     return float_rel_to_flags(float64_compare(x, y, fp_status));
149 }
150
151 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
152 {
153     float_status *fpst = fpstp;
154
155     a = float32_squash_input_denormal(a, fpst);
156     b = float32_squash_input_denormal(b, fpst);
157
158     if ((float32_is_zero(a) && float32_is_infinity(b)) ||
159         (float32_is_infinity(a) && float32_is_zero(b))) {
160         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
161         return make_float32((1U << 30) |
162                             ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
163     }
164     return float32_mul(a, b, fpst);
165 }
166
167 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
168 {
169     float_status *fpst = fpstp;
170
171     a = float64_squash_input_denormal(a, fpst);
172     b = float64_squash_input_denormal(b, fpst);
173
174     if ((float64_is_zero(a) && float64_is_infinity(b)) ||
175         (float64_is_infinity(a) && float64_is_zero(b))) {
176         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
177         return make_float64((1ULL << 62) |
178                             ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
179     }
180     return float64_mul(a, b, fpst);
181 }
182
183 /* 64bit/double versions of the neon float compare functions */
184 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
185 {
186     float_status *fpst = fpstp;
187     return -float64_eq_quiet(a, b, fpst);
188 }
189
190 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
191 {
192     float_status *fpst = fpstp;
193     return -float64_le(b, a, fpst);
194 }
195
196 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
197 {
198     float_status *fpst = fpstp;
199     return -float64_lt(b, a, fpst);
200 }
201
202 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
203  * versions, these do a fully fused multiply-add or
204  * multiply-add-and-halve.
205  */
206
207 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
208 {
209     float_status *fpst = fpstp;
210
211     a = float16_squash_input_denormal(a, fpst);
212     b = float16_squash_input_denormal(b, fpst);
213
214     a = float16_chs(a);
215     if ((float16_is_infinity(a) && float16_is_zero(b)) ||
216         (float16_is_infinity(b) && float16_is_zero(a))) {
217         return float16_two;
218     }
219     return float16_muladd(a, b, float16_two, 0, fpst);
220 }
221
222 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
223 {
224     float_status *fpst = fpstp;
225
226     a = float32_squash_input_denormal(a, fpst);
227     b = float32_squash_input_denormal(b, fpst);
228
229     a = float32_chs(a);
230     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
231         (float32_is_infinity(b) && float32_is_zero(a))) {
232         return float32_two;
233     }
234     return float32_muladd(a, b, float32_two, 0, fpst);
235 }
236
237 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
238 {
239     float_status *fpst = fpstp;
240
241     a = float64_squash_input_denormal(a, fpst);
242     b = float64_squash_input_denormal(b, fpst);
243
244     a = float64_chs(a);
245     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
246         (float64_is_infinity(b) && float64_is_zero(a))) {
247         return float64_two;
248     }
249     return float64_muladd(a, b, float64_two, 0, fpst);
250 }
251
252 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
253 {
254     float_status *fpst = fpstp;
255
256     a = float16_squash_input_denormal(a, fpst);
257     b = float16_squash_input_denormal(b, fpst);
258
259     a = float16_chs(a);
260     if ((float16_is_infinity(a) && float16_is_zero(b)) ||
261         (float16_is_infinity(b) && float16_is_zero(a))) {
262         return float16_one_point_five;
263     }
264     return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
265 }
266
267 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
268 {
269     float_status *fpst = fpstp;
270
271     a = float32_squash_input_denormal(a, fpst);
272     b = float32_squash_input_denormal(b, fpst);
273
274     a = float32_chs(a);
275     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
276         (float32_is_infinity(b) && float32_is_zero(a))) {
277         return float32_one_point_five;
278     }
279     return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
280 }
281
282 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
283 {
284     float_status *fpst = fpstp;
285
286     a = float64_squash_input_denormal(a, fpst);
287     b = float64_squash_input_denormal(b, fpst);
288
289     a = float64_chs(a);
290     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
291         (float64_is_infinity(b) && float64_is_zero(a))) {
292         return float64_one_point_five;
293     }
294     return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
295 }
296
297 /* Pairwise long add: add pairs of adjacent elements into
298  * double-width elements in the result (eg _s8 is an 8x8->16 op)
299  */
300 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
301 {
302     uint64_t nsignmask = 0x0080008000800080ULL;
303     uint64_t wsignmask = 0x8000800080008000ULL;
304     uint64_t elementmask = 0x00ff00ff00ff00ffULL;
305     uint64_t tmp1, tmp2;
306     uint64_t res, signres;
307
308     /* Extract odd elements, sign extend each to a 16 bit field */
309     tmp1 = a & elementmask;
310     tmp1 ^= nsignmask;
311     tmp1 |= wsignmask;
312     tmp1 = (tmp1 - nsignmask) ^ wsignmask;
313     /* Ditto for the even elements */
314     tmp2 = (a >> 8) & elementmask;
315     tmp2 ^= nsignmask;
316     tmp2 |= wsignmask;
317     tmp2 = (tmp2 - nsignmask) ^ wsignmask;
318
319     /* calculate the result by summing bits 0..14, 16..22, etc,
320      * and then adjusting the sign bits 15, 23, etc manually.
321      * This ensures the addition can't overflow the 16 bit field.
322      */
323     signres = (tmp1 ^ tmp2) & wsignmask;
324     res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
325     res ^= signres;
326
327     return res;
328 }
329
330 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
331 {
332     uint64_t tmp;
333
334     tmp = a & 0x00ff00ff00ff00ffULL;
335     tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
336     return tmp;
337 }
338
339 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
340 {
341     int32_t reslo, reshi;
342
343     reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
344     reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
345
346     return (uint32_t)reslo | (((uint64_t)reshi) << 32);
347 }
348
349 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
350 {
351     uint64_t tmp;
352
353     tmp = a & 0x0000ffff0000ffffULL;
354     tmp += (a >> 16) & 0x0000ffff0000ffffULL;
355     return tmp;
356 }
357
358 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
359 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
360 {
361     float_status *fpst = fpstp;
362     uint16_t val16, sbit;
363     int16_t exp;
364
365     if (float16_is_any_nan(a)) {
366         float16 nan = a;
367         if (float16_is_signaling_nan(a, fpst)) {
368             float_raise(float_flag_invalid, fpst);
369             if (!fpst->default_nan_mode) {
370                 nan = float16_silence_nan(a, fpst);
371             }
372         }
373         if (fpst->default_nan_mode) {
374             nan = float16_default_nan(fpst);
375         }
376         return nan;
377     }
378
379     a = float16_squash_input_denormal(a, fpst);
380
381     val16 = float16_val(a);
382     sbit = 0x8000 & val16;
383     exp = extract32(val16, 10, 5);
384
385     if (exp == 0) {
386         return make_float16(deposit32(sbit, 10, 5, 0x1e));
387     } else {
388         return make_float16(deposit32(sbit, 10, 5, ~exp));
389     }
390 }
391
392 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
393 {
394     float_status *fpst = fpstp;
395     uint32_t val32, sbit;
396     int32_t exp;
397
398     if (float32_is_any_nan(a)) {
399         float32 nan = a;
400         if (float32_is_signaling_nan(a, fpst)) {
401             float_raise(float_flag_invalid, fpst);
402             if (!fpst->default_nan_mode) {
403                 nan = float32_silence_nan(a, fpst);
404             }
405         }
406         if (fpst->default_nan_mode) {
407             nan = float32_default_nan(fpst);
408         }
409         return nan;
410     }
411
412     a = float32_squash_input_denormal(a, fpst);
413
414     val32 = float32_val(a);
415     sbit = 0x80000000ULL & val32;
416     exp = extract32(val32, 23, 8);
417
418     if (exp == 0) {
419         return make_float32(sbit | (0xfe << 23));
420     } else {
421         return make_float32(sbit | (~exp & 0xff) << 23);
422     }
423 }
424
425 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
426 {
427     float_status *fpst = fpstp;
428     uint64_t val64, sbit;
429     int64_t exp;
430
431     if (float64_is_any_nan(a)) {
432         float64 nan = a;
433         if (float64_is_signaling_nan(a, fpst)) {
434             float_raise(float_flag_invalid, fpst);
435             if (!fpst->default_nan_mode) {
436                 nan = float64_silence_nan(a, fpst);
437             }
438         }
439         if (fpst->default_nan_mode) {
440             nan = float64_default_nan(fpst);
441         }
442         return nan;
443     }
444
445     a = float64_squash_input_denormal(a, fpst);
446
447     val64 = float64_val(a);
448     sbit = 0x8000000000000000ULL & val64;
449     exp = extract64(float64_val(a), 52, 11);
450
451     if (exp == 0) {
452         return make_float64(sbit | (0x7feULL << 52));
453     } else {
454         return make_float64(sbit | (~exp & 0x7ffULL) << 52);
455     }
456 }
457
458 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
459 {
460     /* Von Neumann rounding is implemented by using round-to-zero
461      * and then setting the LSB of the result if Inexact was raised.
462      */
463     float32 r;
464     float_status *fpst = &env->vfp.fp_status;
465     float_status tstat = *fpst;
466     int exflags;
467
468     set_float_rounding_mode(float_round_to_zero, &tstat);
469     set_float_exception_flags(0, &tstat);
470     r = float64_to_float32(a, &tstat);
471     exflags = get_float_exception_flags(&tstat);
472     if (exflags & float_flag_inexact) {
473         r = make_float32(float32_val(r) | 1);
474     }
475     exflags |= get_float_exception_flags(fpst);
476     set_float_exception_flags(exflags, fpst);
477     return r;
478 }
479
480 /* 64-bit versions of the CRC helpers. Note that although the operation
481  * (and the prototypes of crc32c() and crc32() mean that only the bottom
482  * 32 bits of the accumulator and result are used, we pass and return
483  * uint64_t for convenience of the generated code. Unlike the 32-bit
484  * instruction set versions, val may genuinely have 64 bits of data in it.
485  * The upper bytes of val (above the number specified by 'bytes') must have
486  * been zeroed out by the caller.
487  */
488 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
489 {
490     uint8_t buf[8];
491
492     stq_le_p(buf, val);
493
494     /* zlib crc32 converts the accumulator and output to one's complement.  */
495     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
496 }
497
498 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
499 {
500     uint8_t buf[8];
501
502     stq_le_p(buf, val);
503
504     /* Linux crc32c converts the output to one's complement.  */
505     return crc32c(acc, buf, bytes) ^ 0xffffffff;
506 }
507
508 /*
509  * AdvSIMD half-precision
510  */
511
512 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
513
514 #define ADVSIMD_HALFOP(name) \
515 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
516 { \
517     float_status *fpst = fpstp; \
518     return float16_ ## name(a, b, fpst);    \
519 }
520
521 ADVSIMD_HALFOP(add)
522 ADVSIMD_HALFOP(sub)
523 ADVSIMD_HALFOP(mul)
524 ADVSIMD_HALFOP(div)
525 ADVSIMD_HALFOP(min)
526 ADVSIMD_HALFOP(max)
527 ADVSIMD_HALFOP(minnum)
528 ADVSIMD_HALFOP(maxnum)
529
530 #define ADVSIMD_TWOHALFOP(name)                                         \
531 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
532 { \
533     float16  a1, a2, b1, b2;                        \
534     uint32_t r1, r2;                                \
535     float_status *fpst = fpstp;                     \
536     a1 = extract32(two_a, 0, 16);                   \
537     a2 = extract32(two_a, 16, 16);                  \
538     b1 = extract32(two_b, 0, 16);                   \
539     b2 = extract32(two_b, 16, 16);                  \
540     r1 = float16_ ## name(a1, b1, fpst);            \
541     r2 = float16_ ## name(a2, b2, fpst);            \
542     return deposit32(r1, 16, 16, r2);               \
543 }
544
545 ADVSIMD_TWOHALFOP(add)
546 ADVSIMD_TWOHALFOP(sub)
547 ADVSIMD_TWOHALFOP(mul)
548 ADVSIMD_TWOHALFOP(div)
549 ADVSIMD_TWOHALFOP(min)
550 ADVSIMD_TWOHALFOP(max)
551 ADVSIMD_TWOHALFOP(minnum)
552 ADVSIMD_TWOHALFOP(maxnum)
553
554 /* Data processing - scalar floating-point and advanced SIMD */
555 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
556 {
557     float_status *fpst = fpstp;
558
559     a = float16_squash_input_denormal(a, fpst);
560     b = float16_squash_input_denormal(b, fpst);
561
562     if ((float16_is_zero(a) && float16_is_infinity(b)) ||
563         (float16_is_infinity(a) && float16_is_zero(b))) {
564         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
565         return make_float16((1U << 14) |
566                             ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
567     }
568     return float16_mul(a, b, fpst);
569 }
570
571 ADVSIMD_HALFOP(mulx)
572 ADVSIMD_TWOHALFOP(mulx)
573
574 /* fused multiply-accumulate */
575 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
576                                  void *fpstp)
577 {
578     float_status *fpst = fpstp;
579     return float16_muladd(a, b, c, 0, fpst);
580 }
581
582 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
583                                   uint32_t two_c, void *fpstp)
584 {
585     float_status *fpst = fpstp;
586     float16  a1, a2, b1, b2, c1, c2;
587     uint32_t r1, r2;
588     a1 = extract32(two_a, 0, 16);
589     a2 = extract32(two_a, 16, 16);
590     b1 = extract32(two_b, 0, 16);
591     b2 = extract32(two_b, 16, 16);
592     c1 = extract32(two_c, 0, 16);
593     c2 = extract32(two_c, 16, 16);
594     r1 = float16_muladd(a1, b1, c1, 0, fpst);
595     r2 = float16_muladd(a2, b2, c2, 0, fpst);
596     return deposit32(r1, 16, 16, r2);
597 }
598
599 /*
600  * Floating point comparisons produce an integer result. Softfloat
601  * routines return float_relation types which we convert to the 0/-1
602  * Neon requires.
603  */
604
605 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
606
607 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
608 {
609     float_status *fpst = fpstp;
610     int compare = float16_compare_quiet(a, b, fpst);
611     return ADVSIMD_CMPRES(compare == float_relation_equal);
612 }
613
614 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
615 {
616     float_status *fpst = fpstp;
617     int compare = float16_compare(a, b, fpst);
618     return ADVSIMD_CMPRES(compare == float_relation_greater ||
619                           compare == float_relation_equal);
620 }
621
622 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
623 {
624     float_status *fpst = fpstp;
625     int compare = float16_compare(a, b, fpst);
626     return ADVSIMD_CMPRES(compare == float_relation_greater);
627 }
628
629 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
630 {
631     float_status *fpst = fpstp;
632     float16 f0 = float16_abs(a);
633     float16 f1 = float16_abs(b);
634     int compare = float16_compare(f0, f1, fpst);
635     return ADVSIMD_CMPRES(compare == float_relation_greater ||
636                           compare == float_relation_equal);
637 }
638
639 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
640 {
641     float_status *fpst = fpstp;
642     float16 f0 = float16_abs(a);
643     float16 f1 = float16_abs(b);
644     int compare = float16_compare(f0, f1, fpst);
645     return ADVSIMD_CMPRES(compare == float_relation_greater);
646 }
647
648 /* round to integral */
649 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
650 {
651     return float16_round_to_int(x, fp_status);
652 }
653
654 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
655 {
656     int old_flags = get_float_exception_flags(fp_status), new_flags;
657     float16 ret;
658
659     ret = float16_round_to_int(x, fp_status);
660
661     /* Suppress any inexact exceptions the conversion produced */
662     if (!(old_flags & float_flag_inexact)) {
663         new_flags = get_float_exception_flags(fp_status);
664         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
665     }
666
667     return ret;
668 }
669
670 /*
671  * Half-precision floating point conversion functions
672  *
673  * There are a multitude of conversion functions with various
674  * different rounding modes. This is dealt with by the calling code
675  * setting the mode appropriately before calling the helper.
676  */
677
678 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
679 {
680     float_status *fpst = fpstp;
681
682     /* Invalid if we are passed a NaN */
683     if (float16_is_any_nan(a)) {
684         float_raise(float_flag_invalid, fpst);
685         return 0;
686     }
687     return float16_to_int16(a, fpst);
688 }
689
690 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
691 {
692     float_status *fpst = fpstp;
693
694     /* Invalid if we are passed a NaN */
695     if (float16_is_any_nan(a)) {
696         float_raise(float_flag_invalid, fpst);
697         return 0;
698     }
699     return float16_to_uint16(a, fpst);
700 }
701
702 static int el_from_spsr(uint32_t spsr)
703 {
704     /* Return the exception level that this SPSR is requesting a return to,
705      * or -1 if it is invalid (an illegal return)
706      */
707     if (spsr & PSTATE_nRW) {
708         switch (spsr & CPSR_M) {
709         case ARM_CPU_MODE_USR:
710             return 0;
711         case ARM_CPU_MODE_HYP:
712             return 2;
713         case ARM_CPU_MODE_FIQ:
714         case ARM_CPU_MODE_IRQ:
715         case ARM_CPU_MODE_SVC:
716         case ARM_CPU_MODE_ABT:
717         case ARM_CPU_MODE_UND:
718         case ARM_CPU_MODE_SYS:
719             return 1;
720         case ARM_CPU_MODE_MON:
721             /* Returning to Mon from AArch64 is never possible,
722              * so this is an illegal return.
723              */
724         default:
725             return -1;
726         }
727     } else {
728         if (extract32(spsr, 1, 1)) {
729             /* Return with reserved M[1] bit set */
730             return -1;
731         }
732         if (extract32(spsr, 0, 4) == 1) {
733             /* return to EL0 with M[0] bit set */
734             return -1;
735         }
736         return extract32(spsr, 2, 2);
737     }
738 }
739
740 static void cpsr_write_from_spsr_elx(CPUARMState *env,
741                                      uint32_t val)
742 {
743     uint32_t mask;
744
745     /* Save SPSR_ELx.SS into PSTATE. */
746     env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
747     val &= ~PSTATE_SS;
748
749     /* Move DIT to the correct location for CPSR */
750     if (val & PSTATE_DIT) {
751         val &= ~PSTATE_DIT;
752         val |= CPSR_DIT;
753     }
754
755     mask = aarch32_cpsr_valid_mask(env->features, \
756         &env_archcpu(env)->isar);
757     cpsr_write(env, val, mask, CPSRWriteRaw);
758 }
759
760 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
761 {
762     int cur_el = arm_current_el(env);
763     unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
764     uint32_t spsr = env->banked_spsr[spsr_idx];
765     int new_el;
766     bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
767
768     aarch64_save_sp(env, cur_el);
769
770     arm_clear_exclusive(env);
771
772     /* We must squash the PSTATE.SS bit to zero unless both of the
773      * following hold:
774      *  1. debug exceptions are currently disabled
775      *  2. singlestep will be active in the EL we return to
776      * We check 1 here and 2 after we've done the pstate/cpsr write() to
777      * transition to the EL we're going to.
778      */
779     if (arm_generate_debug_exceptions(env)) {
780         spsr &= ~PSTATE_SS;
781     }
782
783     /*
784      * FEAT_RME forbids return from EL3 with an invalid security state.
785      * We don't need an explicit check for FEAT_RME here because we enforce
786      * in scr_write() that you can't set the NSE bit without it.
787      */
788     if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
789         goto illegal_return;
790     }
791
792     new_el = el_from_spsr(spsr);
793     if (new_el == -1) {
794         goto illegal_return;
795     }
796     if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
797         /* Disallow return to an EL which is unimplemented or higher
798          * than the current one.
799          */
800         goto illegal_return;
801     }
802
803     if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
804         /* Return to an EL which is configured for a different register width */
805         goto illegal_return;
806     }
807
808     if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
809         goto illegal_return;
810     }
811
812     qemu_mutex_lock_iothread();
813     arm_call_pre_el_change_hook(env_archcpu(env));
814     qemu_mutex_unlock_iothread();
815
816     if (!return_to_aa64) {
817         env->aarch64 = false;
818         /* We do a raw CPSR write because aarch64_sync_64_to_32()
819          * will sort the register banks out for us, and we've already
820          * caught all the bad-mode cases in el_from_spsr().
821          */
822         cpsr_write_from_spsr_elx(env, spsr);
823         if (!arm_singlestep_active(env)) {
824             env->pstate &= ~PSTATE_SS;
825         }
826         aarch64_sync_64_to_32(env);
827
828         if (spsr & CPSR_T) {
829             env->regs[15] = new_pc & ~0x1;
830         } else {
831             env->regs[15] = new_pc & ~0x3;
832         }
833         helper_rebuild_hflags_a32(env, new_el);
834         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
835                       "AArch32 EL%d PC 0x%" PRIx32 "\n",
836                       cur_el, new_el, env->regs[15]);
837     } else {
838         int tbii;
839
840         env->aarch64 = true;
841         spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
842         pstate_write(env, spsr);
843         if (!arm_singlestep_active(env)) {
844             env->pstate &= ~PSTATE_SS;
845         }
846         aarch64_restore_sp(env, new_el);
847         helper_rebuild_hflags_a64(env, new_el);
848
849         /*
850          * Apply TBI to the exception return address.  We had to delay this
851          * until after we selected the new EL, so that we could select the
852          * correct TBI+TBID bits.  This is made easier by waiting until after
853          * the hflags rebuild, since we can pull the composite TBII field
854          * from there.
855          */
856         tbii = EX_TBFLAG_A64(env->hflags, TBII);
857         if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
858             /* TBI is enabled. */
859             int core_mmu_idx = cpu_mmu_index(env, false);
860             if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
861                 new_pc = sextract64(new_pc, 0, 56);
862             } else {
863                 new_pc = extract64(new_pc, 0, 56);
864             }
865         }
866         env->pc = new_pc;
867
868         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
869                       "AArch64 EL%d PC 0x%" PRIx64 "\n",
870                       cur_el, new_el, env->pc);
871     }
872
873     /*
874      * Note that cur_el can never be 0.  If new_el is 0, then
875      * el0_a64 is return_to_aa64, else el0_a64 is ignored.
876      */
877     aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
878
879     qemu_mutex_lock_iothread();
880     arm_call_el_change_hook(env_archcpu(env));
881     qemu_mutex_unlock_iothread();
882
883     return;
884
885 illegal_return:
886     /* Illegal return events of various kinds have architecturally
887      * mandated behaviour:
888      * restore NZCV and DAIF from SPSR_ELx
889      * set PSTATE.IL
890      * restore PC from ELR_ELx
891      * no change to exception level, execution state or stack pointer
892      */
893     env->pstate |= PSTATE_IL;
894     env->pc = new_pc;
895     spsr &= PSTATE_NZCV | PSTATE_DAIF;
896     spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
897     pstate_write(env, spsr);
898     if (!arm_singlestep_active(env)) {
899         env->pstate &= ~PSTATE_SS;
900     }
901     helper_rebuild_hflags_a64(env, cur_el);
902     qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
903                   "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
904 }
905
906 /*
907  * Square Root and Reciprocal square root
908  */
909
910 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
911 {
912     float_status *s = fpstp;
913
914     return float16_sqrt(a, s);
915 }
916
917 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
918 {
919     /*
920      * Implement DC ZVA, which zeroes a fixed-length block of memory.
921      * Note that we do not implement the (architecturally mandated)
922      * alignment fault for attempts to use this on Device memory
923      * (which matches the usual QEMU behaviour of not implementing either
924      * alignment faults or any memory attribute handling).
925      */
926     int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
927     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
928     int mmu_idx = cpu_mmu_index(env, false);
929     void *mem;
930
931     /*
932      * Trapless lookup.  In addition to actual invalid page, may
933      * return NULL for I/O, watchpoints, clean pages, etc.
934      */
935     mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
936
937 #ifndef CONFIG_USER_ONLY
938     if (unlikely(!mem)) {
939         uintptr_t ra = GETPC();
940
941         /*
942          * Trap if accessing an invalid page.  DC_ZVA requires that we supply
943          * the original pointer for an invalid page.  But watchpoints require
944          * that we probe the actual space.  So do both.
945          */
946         (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
947         mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
948
949         if (unlikely(!mem)) {
950             /*
951              * The only remaining reason for mem == NULL is I/O.
952              * Just do a series of byte writes as the architecture demands.
953              */
954             for (int i = 0; i < blocklen; i++) {
955                 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
956             }
957             return;
958         }
959     }
960 #endif
961
962     memset(mem, 0, blocklen);
963 }
964
965 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
966                               uint32_t access_type, uint32_t mmu_idx)
967 {
968     arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
969                                 mmu_idx, GETPC());
970 }
971
972 /* Memory operations (memset, memmove, memcpy) */
973
974 /*
975  * Return true if the CPY* and SET* insns can execute; compare
976  * pseudocode CheckMOPSEnabled(), though we refactor it a little.
977  */
978 static bool mops_enabled(CPUARMState *env)
979 {
980     int el = arm_current_el(env);
981
982     if (el < 2 &&
983         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
984         !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
985         return false;
986     }
987
988     if (el == 0) {
989         if (!el_is_in_host(env, 0)) {
990             return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
991         } else {
992             return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
993         }
994     }
995     return true;
996 }
997
998 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
999 {
1000     if (!mops_enabled(env)) {
1001         raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
1002                            exception_target_el(env), ra);
1003     }
1004 }
1005
1006 /*
1007  * Return the target exception level for an exception due
1008  * to mismatched arguments in a FEAT_MOPS copy or set.
1009  * Compare pseudocode MismatchedCpySetTargetEL()
1010  */
1011 static int mops_mismatch_exception_target_el(CPUARMState *env)
1012 {
1013     int el = arm_current_el(env);
1014
1015     if (el > 1) {
1016         return el;
1017     }
1018     if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
1019         return 2;
1020     }
1021     if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
1022         return 2;
1023     }
1024     return 1;
1025 }
1026
1027 /*
1028  * Check whether an M or E instruction was executed with a CF value
1029  * indicating the wrong option for this implementation.
1030  * Assumes we are always Option A.
1031  */
1032 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
1033                                     uintptr_t ra)
1034 {
1035     if (env->CF != 0) {
1036         syndrome |= 1 << 17; /* Set the wrong-option bit */
1037         raise_exception_ra(env, EXCP_UDEF, syndrome,
1038                            mops_mismatch_exception_target_el(env), ra);
1039     }
1040 }
1041
1042 /*
1043  * Return the maximum number of bytes we can transfer starting at addr
1044  * without crossing a page boundary.
1045  */
1046 static uint64_t page_limit(uint64_t addr)
1047 {
1048     return TARGET_PAGE_ALIGN(addr + 1) - addr;
1049 }
1050
1051 /*
1052  * Perform part of a memory set on an area of guest memory starting at
1053  * toaddr (a dirty address) and extending for setsize bytes.
1054  *
1055  * Returns the number of bytes actually set, which might be less than
1056  * setsize; the caller should loop until the whole set has been done.
1057  * The caller should ensure that the guest registers are correct
1058  * for the possibility that the first byte of the set encounters
1059  * an exception or watchpoint. We guarantee not to take any faults
1060  * for bytes other than the first.
1061  */
1062 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
1063                          uint64_t setsize, uint32_t data, int memidx,
1064                          uint32_t *mtedesc, uintptr_t ra)
1065 {
1066     void *mem;
1067
1068     setsize = MIN(setsize, page_limit(toaddr));
1069     if (*mtedesc) {
1070         uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
1071         if (mtesize == 0) {
1072             /* Trap, or not. All CPU state is up to date */
1073             mte_check_fail(env, *mtedesc, toaddr, ra);
1074             /* Continue, with no further MTE checks required */
1075             *mtedesc = 0;
1076         } else {
1077             /* Advance to the end, or to the tag mismatch */
1078             setsize = MIN(setsize, mtesize);
1079         }
1080     }
1081
1082     toaddr = useronly_clean_ptr(toaddr);
1083     /*
1084      * Trapless lookup: returns NULL for invalid page, I/O,
1085      * watchpoints, clean pages, etc.
1086      */
1087     mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
1088
1089 #ifndef CONFIG_USER_ONLY
1090     if (unlikely(!mem)) {
1091         /*
1092          * Slow-path: just do one byte write. This will handle the
1093          * watchpoint, invalid page, etc handling correctly.
1094          * For clean code pages, the next iteration will see
1095          * the page dirty and will use the fast path.
1096          */
1097         cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
1098         return 1;
1099     }
1100 #endif
1101     /* Easy case: just memset the host memory */
1102     memset(mem, data, setsize);
1103     return setsize;
1104 }
1105
1106 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1107                         uint64_t setsize, uint32_t data,
1108                         int memidx, uint32_t *mtedesc, uintptr_t ra);
1109
1110 /* Extract register numbers from a MOPS exception syndrome value */
1111 static int mops_destreg(uint32_t syndrome)
1112 {
1113     return extract32(syndrome, 10, 5);
1114 }
1115
1116 static int mops_srcreg(uint32_t syndrome)
1117 {
1118     return extract32(syndrome, 5, 5);
1119 }
1120
1121 static int mops_sizereg(uint32_t syndrome)
1122 {
1123     return extract32(syndrome, 0, 5);
1124 }
1125
1126 /*
1127  * Return true if TCMA and TBI bits mean we need to do MTE checks.
1128  * We only need to do this once per MOPS insn, not for every page.
1129  */
1130 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1131 {
1132     int bit55 = extract64(ptr, 55, 1);
1133
1134     /*
1135      * Note that tbi_check() returns true for "access checked" but
1136      * tcma_check() returns true for "access unchecked".
1137      */
1138     if (!tbi_check(desc, bit55)) {
1139         return false;
1140     }
1141     return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1142 }
1143
1144 /*
1145  * For the Memory Set operation, our implementation chooses
1146  * always to use "option A", where we update Xd to the final
1147  * address in the SETP insn, and set Xn to be -(bytes remaining).
1148  * On SETM and SETE insns we only need update Xn.
1149  *
1150  * @env: CPU
1151  * @syndrome: syndrome value for mismatch exceptions
1152  * (also contains the register numbers we need to use)
1153  * @mtedesc: MTE descriptor word
1154  * @stepfn: function which does a single part of the set operation
1155  * @is_setg: true if this is the tag-setting SETG variant
1156  */
1157 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1158                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1159 {
1160     /* Prologue: we choose to do up to the next page boundary */
1161     int rd = mops_destreg(syndrome);
1162     int rs = mops_srcreg(syndrome);
1163     int rn = mops_sizereg(syndrome);
1164     uint8_t data = env->xregs[rs];
1165     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1166     uint64_t toaddr = env->xregs[rd];
1167     uint64_t setsize = env->xregs[rn];
1168     uint64_t stagesetsize, step;
1169
1170     check_mops_enabled(env, ra);
1171
1172     if (setsize > INT64_MAX) {
1173         setsize = INT64_MAX;
1174     }
1175
1176     if (!mte_checks_needed(toaddr, mtedesc)) {
1177         mtedesc = 0;
1178     }
1179
1180     stagesetsize = MIN(setsize, page_limit(toaddr));
1181     while (stagesetsize) {
1182         env->xregs[rd] = toaddr;
1183         env->xregs[rn] = setsize;
1184         step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1185         toaddr += step;
1186         setsize -= step;
1187         stagesetsize -= step;
1188     }
1189     /* Insn completed, so update registers to the Option A format */
1190     env->xregs[rd] = toaddr + setsize;
1191     env->xregs[rn] = -setsize;
1192
1193     /* Set NZCV = 0000 to indicate we are an Option A implementation */
1194     env->NF = 0;
1195     env->ZF = 1; /* our env->ZF encoding is inverted */
1196     env->CF = 0;
1197     env->VF = 0;
1198     return;
1199 }
1200
1201 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1202 {
1203     do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1204 }
1205
1206 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1207                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1208 {
1209     /* Main: we choose to do all the full-page chunks */
1210     CPUState *cs = env_cpu(env);
1211     int rd = mops_destreg(syndrome);
1212     int rs = mops_srcreg(syndrome);
1213     int rn = mops_sizereg(syndrome);
1214     uint8_t data = env->xregs[rs];
1215     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1216     uint64_t setsize = -env->xregs[rn];
1217     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1218     uint64_t step, stagesetsize;
1219
1220     check_mops_enabled(env, ra);
1221
1222     /*
1223      * We're allowed to NOP out "no data to copy" before the consistency
1224      * checks; we choose to do so.
1225      */
1226     if (env->xregs[rn] == 0) {
1227         return;
1228     }
1229
1230     check_mops_wrong_option(env, syndrome, ra);
1231
1232     /*
1233      * Our implementation will work fine even if we have an unaligned
1234      * destination address, and because we update Xn every time around
1235      * the loop below and the return value from stepfn() may be less
1236      * than requested, we might find toaddr is unaligned. So we don't
1237      * have an IMPDEF check for alignment here.
1238      */
1239
1240     if (!mte_checks_needed(toaddr, mtedesc)) {
1241         mtedesc = 0;
1242     }
1243
1244     /* Do the actual memset: we leave the last partial page to SETE */
1245     stagesetsize = setsize & TARGET_PAGE_MASK;
1246     while (stagesetsize > 0) {
1247         step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1248         toaddr += step;
1249         setsize -= step;
1250         stagesetsize -= step;
1251         env->xregs[rn] = -setsize;
1252         if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1253             cpu_loop_exit_restore(cs, ra);
1254         }
1255     }
1256 }
1257
1258 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1259 {
1260     do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1261 }
1262
1263 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1264                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1265 {
1266     /* Epilogue: do the last partial page */
1267     int rd = mops_destreg(syndrome);
1268     int rs = mops_srcreg(syndrome);
1269     int rn = mops_sizereg(syndrome);
1270     uint8_t data = env->xregs[rs];
1271     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1272     uint64_t setsize = -env->xregs[rn];
1273     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1274     uint64_t step;
1275
1276     check_mops_enabled(env, ra);
1277
1278     /*
1279      * We're allowed to NOP out "no data to copy" before the consistency
1280      * checks; we choose to do so.
1281      */
1282     if (setsize == 0) {
1283         return;
1284     }
1285
1286     check_mops_wrong_option(env, syndrome, ra);
1287
1288     /*
1289      * Our implementation has no address alignment requirements, but
1290      * we do want to enforce the "less than a page" size requirement,
1291      * so we don't need to have the "check for interrupts" here.
1292      */
1293     if (setsize >= TARGET_PAGE_SIZE) {
1294         raise_exception_ra(env, EXCP_UDEF, syndrome,
1295                            mops_mismatch_exception_target_el(env), ra);
1296     }
1297
1298     if (!mte_checks_needed(toaddr, mtedesc)) {
1299         mtedesc = 0;
1300     }
1301
1302     /* Do the actual memset */
1303     while (setsize > 0) {
1304         step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1305         toaddr += step;
1306         setsize -= step;
1307         env->xregs[rn] = -setsize;
1308     }
1309 }
1310
1311 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1312 {
1313     do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1314 }