OSDN Git Service

Merge tag 'memblock-v5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[uclinux-h8/linux.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67         struct evsel *evsel;
68         bool grp;
69
70         if (!evsel__is_group_leader(leader))
71                 return -EINVAL;
72
73         grp = false;
74         evlist__for_each_entry(evlist, evsel) {
75                 if (grp) {
76                         if (!(evsel__leader(evsel) == leader ||
77                              (evsel__leader(evsel) == evsel &&
78                               evsel->core.nr_members <= 1)))
79                                 return -EINVAL;
80                 } else if (evsel == leader) {
81                         grp = true;
82                 }
83                 if (evsel == last)
84                         break;
85         }
86
87         grp = false;
88         evlist__for_each_entry(evlist, evsel) {
89                 if (grp) {
90                         if (!evsel__has_leader(evsel, leader)) {
91                                 evsel__set_leader(evsel, leader);
92                                 if (leader->core.nr_members < 1)
93                                         leader->core.nr_members = 1;
94                                 leader->core.nr_members += 1;
95                         }
96                 } else if (evsel == leader) {
97                         grp = true;
98                 }
99                 if (evsel == last)
100                         break;
101         }
102
103         return 0;
104 }
105
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108         return !session->itrace_synth_opts ||
109                session->itrace_synth_opts->dont_decode;
110 }
111
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113                         struct auxtrace_mmap_params *mp,
114                         void *userpg, int fd)
115 {
116         struct perf_event_mmap_page *pc = userpg;
117
118         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119
120         mm->userpg = userpg;
121         mm->mask = mp->mask;
122         mm->len = mp->len;
123         mm->prev = 0;
124         mm->idx = mp->idx;
125         mm->tid = mp->tid;
126         mm->cpu = mp->cpu.cpu;
127
128         if (!mp->len) {
129                 mm->base = NULL;
130                 return 0;
131         }
132
133         pc->aux_offset = mp->offset;
134         pc->aux_size = mp->len;
135
136         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137         if (mm->base == MAP_FAILED) {
138                 pr_debug2("failed to mmap AUX area\n");
139                 mm->base = NULL;
140                 return -1;
141         }
142
143         return 0;
144 }
145
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148         if (mm->base) {
149                 munmap(mm->base, mm->len);
150                 mm->base = NULL;
151         }
152 }
153
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155                                 off_t auxtrace_offset,
156                                 unsigned int auxtrace_pages,
157                                 bool auxtrace_overwrite)
158 {
159         if (auxtrace_pages) {
160                 mp->offset = auxtrace_offset;
161                 mp->len = auxtrace_pages * (size_t)page_size;
162                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164                 pr_debug2("AUX area mmap length %zu\n", mp->len);
165         } else {
166                 mp->len = 0;
167         }
168 }
169
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171                                    struct evlist *evlist, int idx,
172                                    bool per_cpu)
173 {
174         mp->idx = idx;
175
176         if (per_cpu) {
177                 mp->cpu = perf_cpu_map__cpu(evlist->core.cpus, idx);
178                 if (evlist->core.threads)
179                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
180                 else
181                         mp->tid = -1;
182         } else {
183                 mp->cpu.cpu = -1;
184                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
185         }
186 }
187
188 #define AUXTRACE_INIT_NR_QUEUES 32
189
190 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
191 {
192         struct auxtrace_queue *queue_array;
193         unsigned int max_nr_queues, i;
194
195         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
196         if (nr_queues > max_nr_queues)
197                 return NULL;
198
199         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
200         if (!queue_array)
201                 return NULL;
202
203         for (i = 0; i < nr_queues; i++) {
204                 INIT_LIST_HEAD(&queue_array[i].head);
205                 queue_array[i].priv = NULL;
206         }
207
208         return queue_array;
209 }
210
211 int auxtrace_queues__init(struct auxtrace_queues *queues)
212 {
213         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
214         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
215         if (!queues->queue_array)
216                 return -ENOMEM;
217         return 0;
218 }
219
220 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
221                                  unsigned int new_nr_queues)
222 {
223         unsigned int nr_queues = queues->nr_queues;
224         struct auxtrace_queue *queue_array;
225         unsigned int i;
226
227         if (!nr_queues)
228                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
229
230         while (nr_queues && nr_queues < new_nr_queues)
231                 nr_queues <<= 1;
232
233         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
234                 return -EINVAL;
235
236         queue_array = auxtrace_alloc_queue_array(nr_queues);
237         if (!queue_array)
238                 return -ENOMEM;
239
240         for (i = 0; i < queues->nr_queues; i++) {
241                 list_splice_tail(&queues->queue_array[i].head,
242                                  &queue_array[i].head);
243                 queue_array[i].tid = queues->queue_array[i].tid;
244                 queue_array[i].cpu = queues->queue_array[i].cpu;
245                 queue_array[i].set = queues->queue_array[i].set;
246                 queue_array[i].priv = queues->queue_array[i].priv;
247         }
248
249         queues->nr_queues = nr_queues;
250         queues->queue_array = queue_array;
251
252         return 0;
253 }
254
255 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
256 {
257         int fd = perf_data__fd(session->data);
258         void *p;
259         ssize_t ret;
260
261         if (size > SSIZE_MAX)
262                 return NULL;
263
264         p = malloc(size);
265         if (!p)
266                 return NULL;
267
268         ret = readn(fd, p, size);
269         if (ret != (ssize_t)size) {
270                 free(p);
271                 return NULL;
272         }
273
274         return p;
275 }
276
277 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
278                                          unsigned int idx,
279                                          struct auxtrace_buffer *buffer)
280 {
281         struct auxtrace_queue *queue;
282         int err;
283
284         if (idx >= queues->nr_queues) {
285                 err = auxtrace_queues__grow(queues, idx + 1);
286                 if (err)
287                         return err;
288         }
289
290         queue = &queues->queue_array[idx];
291
292         if (!queue->set) {
293                 queue->set = true;
294                 queue->tid = buffer->tid;
295                 queue->cpu = buffer->cpu.cpu;
296         }
297
298         buffer->buffer_nr = queues->next_buffer_nr++;
299
300         list_add_tail(&buffer->list, &queue->head);
301
302         queues->new_data = true;
303         queues->populated = true;
304
305         return 0;
306 }
307
308 /* Limit buffers to 32MiB on 32-bit */
309 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
310
311 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
312                                          unsigned int idx,
313                                          struct auxtrace_buffer *buffer)
314 {
315         u64 sz = buffer->size;
316         bool consecutive = false;
317         struct auxtrace_buffer *b;
318         int err;
319
320         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
321                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
322                 if (!b)
323                         return -ENOMEM;
324                 b->size = BUFFER_LIMIT_FOR_32_BIT;
325                 b->consecutive = consecutive;
326                 err = auxtrace_queues__queue_buffer(queues, idx, b);
327                 if (err) {
328                         auxtrace_buffer__free(b);
329                         return err;
330                 }
331                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
332                 sz -= BUFFER_LIMIT_FOR_32_BIT;
333                 consecutive = true;
334         }
335
336         buffer->size = sz;
337         buffer->consecutive = consecutive;
338
339         return 0;
340 }
341
342 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
343 {
344         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
345
346         return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
347 }
348
349 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
350                                        struct perf_session *session,
351                                        unsigned int idx,
352                                        struct auxtrace_buffer *buffer,
353                                        struct auxtrace_buffer **buffer_ptr)
354 {
355         int err = -ENOMEM;
356
357         if (filter_cpu(session, buffer->cpu))
358                 return 0;
359
360         buffer = memdup(buffer, sizeof(*buffer));
361         if (!buffer)
362                 return -ENOMEM;
363
364         if (session->one_mmap) {
365                 buffer->data = buffer->data_offset - session->one_mmap_offset +
366                                session->one_mmap_addr;
367         } else if (perf_data__is_pipe(session->data)) {
368                 buffer->data = auxtrace_copy_data(buffer->size, session);
369                 if (!buffer->data)
370                         goto out_free;
371                 buffer->data_needs_freeing = true;
372         } else if (BITS_PER_LONG == 32 &&
373                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
374                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
375                 if (err)
376                         goto out_free;
377         }
378
379         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
380         if (err)
381                 goto out_free;
382
383         /* FIXME: Doesn't work for split buffer */
384         if (buffer_ptr)
385                 *buffer_ptr = buffer;
386
387         return 0;
388
389 out_free:
390         auxtrace_buffer__free(buffer);
391         return err;
392 }
393
394 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
395                                struct perf_session *session,
396                                union perf_event *event, off_t data_offset,
397                                struct auxtrace_buffer **buffer_ptr)
398 {
399         struct auxtrace_buffer buffer = {
400                 .pid = -1,
401                 .tid = event->auxtrace.tid,
402                 .cpu = { event->auxtrace.cpu },
403                 .data_offset = data_offset,
404                 .offset = event->auxtrace.offset,
405                 .reference = event->auxtrace.reference,
406                 .size = event->auxtrace.size,
407         };
408         unsigned int idx = event->auxtrace.idx;
409
410         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
411                                            buffer_ptr);
412 }
413
414 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
415                                               struct perf_session *session,
416                                               off_t file_offset, size_t sz)
417 {
418         union perf_event *event;
419         int err;
420         char buf[PERF_SAMPLE_MAX_SIZE];
421
422         err = perf_session__peek_event(session, file_offset, buf,
423                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
424         if (err)
425                 return err;
426
427         if (event->header.type == PERF_RECORD_AUXTRACE) {
428                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
429                     event->header.size != sz) {
430                         err = -EINVAL;
431                         goto out;
432                 }
433                 file_offset += event->header.size;
434                 err = auxtrace_queues__add_event(queues, session, event,
435                                                  file_offset, NULL);
436         }
437 out:
438         return err;
439 }
440
441 void auxtrace_queues__free(struct auxtrace_queues *queues)
442 {
443         unsigned int i;
444
445         for (i = 0; i < queues->nr_queues; i++) {
446                 while (!list_empty(&queues->queue_array[i].head)) {
447                         struct auxtrace_buffer *buffer;
448
449                         buffer = list_entry(queues->queue_array[i].head.next,
450                                             struct auxtrace_buffer, list);
451                         list_del_init(&buffer->list);
452                         auxtrace_buffer__free(buffer);
453                 }
454         }
455
456         zfree(&queues->queue_array);
457         queues->nr_queues = 0;
458 }
459
460 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
461                              unsigned int pos, unsigned int queue_nr,
462                              u64 ordinal)
463 {
464         unsigned int parent;
465
466         while (pos) {
467                 parent = (pos - 1) >> 1;
468                 if (heap_array[parent].ordinal <= ordinal)
469                         break;
470                 heap_array[pos] = heap_array[parent];
471                 pos = parent;
472         }
473         heap_array[pos].queue_nr = queue_nr;
474         heap_array[pos].ordinal = ordinal;
475 }
476
477 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
478                        u64 ordinal)
479 {
480         struct auxtrace_heap_item *heap_array;
481
482         if (queue_nr >= heap->heap_sz) {
483                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
484
485                 while (heap_sz <= queue_nr)
486                         heap_sz <<= 1;
487                 heap_array = realloc(heap->heap_array,
488                                      heap_sz * sizeof(struct auxtrace_heap_item));
489                 if (!heap_array)
490                         return -ENOMEM;
491                 heap->heap_array = heap_array;
492                 heap->heap_sz = heap_sz;
493         }
494
495         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
496
497         return 0;
498 }
499
500 void auxtrace_heap__free(struct auxtrace_heap *heap)
501 {
502         zfree(&heap->heap_array);
503         heap->heap_cnt = 0;
504         heap->heap_sz = 0;
505 }
506
507 void auxtrace_heap__pop(struct auxtrace_heap *heap)
508 {
509         unsigned int pos, last, heap_cnt = heap->heap_cnt;
510         struct auxtrace_heap_item *heap_array;
511
512         if (!heap_cnt)
513                 return;
514
515         heap->heap_cnt -= 1;
516
517         heap_array = heap->heap_array;
518
519         pos = 0;
520         while (1) {
521                 unsigned int left, right;
522
523                 left = (pos << 1) + 1;
524                 if (left >= heap_cnt)
525                         break;
526                 right = left + 1;
527                 if (right >= heap_cnt) {
528                         heap_array[pos] = heap_array[left];
529                         return;
530                 }
531                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
532                         heap_array[pos] = heap_array[left];
533                         pos = left;
534                 } else {
535                         heap_array[pos] = heap_array[right];
536                         pos = right;
537                 }
538         }
539
540         last = heap_cnt - 1;
541         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
542                          heap_array[last].ordinal);
543 }
544
545 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
546                                        struct evlist *evlist)
547 {
548         if (itr)
549                 return itr->info_priv_size(itr, evlist);
550         return 0;
551 }
552
553 static int auxtrace_not_supported(void)
554 {
555         pr_err("AUX area tracing is not supported on this architecture\n");
556         return -EINVAL;
557 }
558
559 int auxtrace_record__info_fill(struct auxtrace_record *itr,
560                                struct perf_session *session,
561                                struct perf_record_auxtrace_info *auxtrace_info,
562                                size_t priv_size)
563 {
564         if (itr)
565                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
566         return auxtrace_not_supported();
567 }
568
569 void auxtrace_record__free(struct auxtrace_record *itr)
570 {
571         if (itr)
572                 itr->free(itr);
573 }
574
575 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
576 {
577         if (itr && itr->snapshot_start)
578                 return itr->snapshot_start(itr);
579         return 0;
580 }
581
582 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
583 {
584         if (!on_exit && itr && itr->snapshot_finish)
585                 return itr->snapshot_finish(itr);
586         return 0;
587 }
588
589 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
590                                    struct auxtrace_mmap *mm,
591                                    unsigned char *data, u64 *head, u64 *old)
592 {
593         if (itr && itr->find_snapshot)
594                 return itr->find_snapshot(itr, idx, mm, data, head, old);
595         return 0;
596 }
597
598 int auxtrace_record__options(struct auxtrace_record *itr,
599                              struct evlist *evlist,
600                              struct record_opts *opts)
601 {
602         if (itr) {
603                 itr->evlist = evlist;
604                 return itr->recording_options(itr, evlist, opts);
605         }
606         return 0;
607 }
608
609 u64 auxtrace_record__reference(struct auxtrace_record *itr)
610 {
611         if (itr)
612                 return itr->reference(itr);
613         return 0;
614 }
615
616 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
617                                     struct record_opts *opts, const char *str)
618 {
619         if (!str)
620                 return 0;
621
622         /* PMU-agnostic options */
623         switch (*str) {
624         case 'e':
625                 opts->auxtrace_snapshot_on_exit = true;
626                 str++;
627                 break;
628         default:
629                 break;
630         }
631
632         if (itr && itr->parse_snapshot_options)
633                 return itr->parse_snapshot_options(itr, opts, str);
634
635         pr_err("No AUX area tracing to snapshot\n");
636         return -EINVAL;
637 }
638
639 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
640 {
641         struct evsel *evsel;
642
643         if (!itr->evlist || !itr->pmu)
644                 return -EINVAL;
645
646         evlist__for_each_entry(itr->evlist, evsel) {
647                 if (evsel->core.attr.type == itr->pmu->type) {
648                         if (evsel->disabled)
649                                 return 0;
650                         return evlist__enable_event_idx(itr->evlist, evsel, idx);
651                 }
652         }
653         return -EINVAL;
654 }
655
656 /*
657  * Event record size is 16-bit which results in a maximum size of about 64KiB.
658  * Allow about 4KiB for the rest of the sample record, to give a maximum
659  * AUX area sample size of 60KiB.
660  */
661 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
662
663 /* Arbitrary default size if no other default provided */
664 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
665
666 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
667                                              struct record_opts *opts)
668 {
669         struct evsel *evsel;
670         bool has_aux_leader = false;
671         u32 sz;
672
673         evlist__for_each_entry(evlist, evsel) {
674                 sz = evsel->core.attr.aux_sample_size;
675                 if (evsel__is_group_leader(evsel)) {
676                         has_aux_leader = evsel__is_aux_event(evsel);
677                         if (sz) {
678                                 if (has_aux_leader)
679                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
680                                 else
681                                         pr_err("Cannot add AUX area sampling to a group leader\n");
682                                 return -EINVAL;
683                         }
684                 }
685                 if (sz > MAX_AUX_SAMPLE_SIZE) {
686                         pr_err("AUX area sample size %u too big, max. %d\n",
687                                sz, MAX_AUX_SAMPLE_SIZE);
688                         return -EINVAL;
689                 }
690                 if (sz) {
691                         if (!has_aux_leader) {
692                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
693                                 return -EINVAL;
694                         }
695                         evsel__set_sample_bit(evsel, AUX);
696                         opts->auxtrace_sample_mode = true;
697                 } else {
698                         evsel__reset_sample_bit(evsel, AUX);
699                 }
700         }
701
702         if (!opts->auxtrace_sample_mode) {
703                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
704                 return -EINVAL;
705         }
706
707         if (!perf_can_aux_sample()) {
708                 pr_err("AUX area sampling is not supported by kernel\n");
709                 return -EINVAL;
710         }
711
712         return 0;
713 }
714
715 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
716                                   struct evlist *evlist,
717                                   struct record_opts *opts, const char *str)
718 {
719         struct evsel_config_term *term;
720         struct evsel *aux_evsel;
721         bool has_aux_sample_size = false;
722         bool has_aux_leader = false;
723         struct evsel *evsel;
724         char *endptr;
725         unsigned long sz;
726
727         if (!str)
728                 goto no_opt;
729
730         if (!itr) {
731                 pr_err("No AUX area event to sample\n");
732                 return -EINVAL;
733         }
734
735         sz = strtoul(str, &endptr, 0);
736         if (*endptr || sz > UINT_MAX) {
737                 pr_err("Bad AUX area sampling option: '%s'\n", str);
738                 return -EINVAL;
739         }
740
741         if (!sz)
742                 sz = itr->default_aux_sample_size;
743
744         if (!sz)
745                 sz = DEFAULT_AUX_SAMPLE_SIZE;
746
747         /* Set aux_sample_size based on --aux-sample option */
748         evlist__for_each_entry(evlist, evsel) {
749                 if (evsel__is_group_leader(evsel)) {
750                         has_aux_leader = evsel__is_aux_event(evsel);
751                 } else if (has_aux_leader) {
752                         evsel->core.attr.aux_sample_size = sz;
753                 }
754         }
755 no_opt:
756         aux_evsel = NULL;
757         /* Override with aux_sample_size from config term */
758         evlist__for_each_entry(evlist, evsel) {
759                 if (evsel__is_aux_event(evsel))
760                         aux_evsel = evsel;
761                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
762                 if (term) {
763                         has_aux_sample_size = true;
764                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
765                         /* If possible, group with the AUX event */
766                         if (aux_evsel && evsel->core.attr.aux_sample_size)
767                                 evlist__regroup(evlist, aux_evsel, evsel);
768                 }
769         }
770
771         if (!str && !has_aux_sample_size)
772                 return 0;
773
774         if (!itr) {
775                 pr_err("No AUX area event to sample\n");
776                 return -EINVAL;
777         }
778
779         return auxtrace_validate_aux_sample_size(evlist, opts);
780 }
781
782 void auxtrace_regroup_aux_output(struct evlist *evlist)
783 {
784         struct evsel *evsel, *aux_evsel = NULL;
785         struct evsel_config_term *term;
786
787         evlist__for_each_entry(evlist, evsel) {
788                 if (evsel__is_aux_event(evsel))
789                         aux_evsel = evsel;
790                 term = evsel__get_config_term(evsel, AUX_OUTPUT);
791                 /* If possible, group with the AUX event */
792                 if (term && aux_evsel)
793                         evlist__regroup(evlist, aux_evsel, evsel);
794         }
795 }
796
797 struct auxtrace_record *__weak
798 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
799 {
800         *err = 0;
801         return NULL;
802 }
803
804 static int auxtrace_index__alloc(struct list_head *head)
805 {
806         struct auxtrace_index *auxtrace_index;
807
808         auxtrace_index = malloc(sizeof(struct auxtrace_index));
809         if (!auxtrace_index)
810                 return -ENOMEM;
811
812         auxtrace_index->nr = 0;
813         INIT_LIST_HEAD(&auxtrace_index->list);
814
815         list_add_tail(&auxtrace_index->list, head);
816
817         return 0;
818 }
819
820 void auxtrace_index__free(struct list_head *head)
821 {
822         struct auxtrace_index *auxtrace_index, *n;
823
824         list_for_each_entry_safe(auxtrace_index, n, head, list) {
825                 list_del_init(&auxtrace_index->list);
826                 free(auxtrace_index);
827         }
828 }
829
830 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
831 {
832         struct auxtrace_index *auxtrace_index;
833         int err;
834
835         if (list_empty(head)) {
836                 err = auxtrace_index__alloc(head);
837                 if (err)
838                         return NULL;
839         }
840
841         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
842
843         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
844                 err = auxtrace_index__alloc(head);
845                 if (err)
846                         return NULL;
847                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
848                                             list);
849         }
850
851         return auxtrace_index;
852 }
853
854 int auxtrace_index__auxtrace_event(struct list_head *head,
855                                    union perf_event *event, off_t file_offset)
856 {
857         struct auxtrace_index *auxtrace_index;
858         size_t nr;
859
860         auxtrace_index = auxtrace_index__last(head);
861         if (!auxtrace_index)
862                 return -ENOMEM;
863
864         nr = auxtrace_index->nr;
865         auxtrace_index->entries[nr].file_offset = file_offset;
866         auxtrace_index->entries[nr].sz = event->header.size;
867         auxtrace_index->nr += 1;
868
869         return 0;
870 }
871
872 static int auxtrace_index__do_write(int fd,
873                                     struct auxtrace_index *auxtrace_index)
874 {
875         struct auxtrace_index_entry ent;
876         size_t i;
877
878         for (i = 0; i < auxtrace_index->nr; i++) {
879                 ent.file_offset = auxtrace_index->entries[i].file_offset;
880                 ent.sz = auxtrace_index->entries[i].sz;
881                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
882                         return -errno;
883         }
884         return 0;
885 }
886
887 int auxtrace_index__write(int fd, struct list_head *head)
888 {
889         struct auxtrace_index *auxtrace_index;
890         u64 total = 0;
891         int err;
892
893         list_for_each_entry(auxtrace_index, head, list)
894                 total += auxtrace_index->nr;
895
896         if (writen(fd, &total, sizeof(total)) != sizeof(total))
897                 return -errno;
898
899         list_for_each_entry(auxtrace_index, head, list) {
900                 err = auxtrace_index__do_write(fd, auxtrace_index);
901                 if (err)
902                         return err;
903         }
904
905         return 0;
906 }
907
908 static int auxtrace_index__process_entry(int fd, struct list_head *head,
909                                          bool needs_swap)
910 {
911         struct auxtrace_index *auxtrace_index;
912         struct auxtrace_index_entry ent;
913         size_t nr;
914
915         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
916                 return -1;
917
918         auxtrace_index = auxtrace_index__last(head);
919         if (!auxtrace_index)
920                 return -1;
921
922         nr = auxtrace_index->nr;
923         if (needs_swap) {
924                 auxtrace_index->entries[nr].file_offset =
925                                                 bswap_64(ent.file_offset);
926                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
927         } else {
928                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
929                 auxtrace_index->entries[nr].sz = ent.sz;
930         }
931
932         auxtrace_index->nr = nr + 1;
933
934         return 0;
935 }
936
937 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
938                             bool needs_swap)
939 {
940         struct list_head *head = &session->auxtrace_index;
941         u64 nr;
942
943         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
944                 return -1;
945
946         if (needs_swap)
947                 nr = bswap_64(nr);
948
949         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
950                 return -1;
951
952         while (nr--) {
953                 int err;
954
955                 err = auxtrace_index__process_entry(fd, head, needs_swap);
956                 if (err)
957                         return -1;
958         }
959
960         return 0;
961 }
962
963 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
964                                                 struct perf_session *session,
965                                                 struct auxtrace_index_entry *ent)
966 {
967         return auxtrace_queues__add_indexed_event(queues, session,
968                                                   ent->file_offset, ent->sz);
969 }
970
971 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
972                                    struct perf_session *session)
973 {
974         struct auxtrace_index *auxtrace_index;
975         struct auxtrace_index_entry *ent;
976         size_t i;
977         int err;
978
979         if (auxtrace__dont_decode(session))
980                 return 0;
981
982         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
983                 for (i = 0; i < auxtrace_index->nr; i++) {
984                         ent = &auxtrace_index->entries[i];
985                         err = auxtrace_queues__process_index_entry(queues,
986                                                                    session,
987                                                                    ent);
988                         if (err)
989                                 return err;
990                 }
991         }
992         return 0;
993 }
994
995 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
996                                               struct auxtrace_buffer *buffer)
997 {
998         if (buffer) {
999                 if (list_is_last(&buffer->list, &queue->head))
1000                         return NULL;
1001                 return list_entry(buffer->list.next, struct auxtrace_buffer,
1002                                   list);
1003         } else {
1004                 if (list_empty(&queue->head))
1005                         return NULL;
1006                 return list_entry(queue->head.next, struct auxtrace_buffer,
1007                                   list);
1008         }
1009 }
1010
1011 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1012                                                      struct perf_sample *sample,
1013                                                      struct perf_session *session)
1014 {
1015         struct perf_sample_id *sid;
1016         unsigned int idx;
1017         u64 id;
1018
1019         id = sample->id;
1020         if (!id)
1021                 return NULL;
1022
1023         sid = evlist__id2sid(session->evlist, id);
1024         if (!sid)
1025                 return NULL;
1026
1027         idx = sid->idx;
1028
1029         if (idx >= queues->nr_queues)
1030                 return NULL;
1031
1032         return &queues->queue_array[idx];
1033 }
1034
1035 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1036                                 struct perf_session *session,
1037                                 struct perf_sample *sample, u64 data_offset,
1038                                 u64 reference)
1039 {
1040         struct auxtrace_buffer buffer = {
1041                 .pid = -1,
1042                 .data_offset = data_offset,
1043                 .reference = reference,
1044                 .size = sample->aux_sample.size,
1045         };
1046         struct perf_sample_id *sid;
1047         u64 id = sample->id;
1048         unsigned int idx;
1049
1050         if (!id)
1051                 return -EINVAL;
1052
1053         sid = evlist__id2sid(session->evlist, id);
1054         if (!sid)
1055                 return -ENOENT;
1056
1057         idx = sid->idx;
1058         buffer.tid = sid->tid;
1059         buffer.cpu = sid->cpu;
1060
1061         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1062 }
1063
1064 struct queue_data {
1065         bool samples;
1066         bool events;
1067 };
1068
1069 static int auxtrace_queue_data_cb(struct perf_session *session,
1070                                   union perf_event *event, u64 offset,
1071                                   void *data)
1072 {
1073         struct queue_data *qd = data;
1074         struct perf_sample sample;
1075         int err;
1076
1077         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1078                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1079                         return -EINVAL;
1080                 offset += event->header.size;
1081                 return session->auxtrace->queue_data(session, NULL, event,
1082                                                      offset);
1083         }
1084
1085         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1086                 return 0;
1087
1088         err = evlist__parse_sample(session->evlist, event, &sample);
1089         if (err)
1090                 return err;
1091
1092         if (!sample.aux_sample.size)
1093                 return 0;
1094
1095         offset += sample.aux_sample.data - (void *)event;
1096
1097         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1098 }
1099
1100 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1101 {
1102         struct queue_data qd = {
1103                 .samples = samples,
1104                 .events = events,
1105         };
1106
1107         if (auxtrace__dont_decode(session))
1108                 return 0;
1109
1110         if (!session->auxtrace || !session->auxtrace->queue_data)
1111                 return -EINVAL;
1112
1113         return perf_session__peek_events(session, session->header.data_offset,
1114                                          session->header.data_size,
1115                                          auxtrace_queue_data_cb, &qd);
1116 }
1117
1118 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1119 {
1120         int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1121         size_t adj = buffer->data_offset & (page_size - 1);
1122         size_t size = buffer->size + adj;
1123         off_t file_offset = buffer->data_offset - adj;
1124         void *addr;
1125
1126         if (buffer->data)
1127                 return buffer->data;
1128
1129         addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1130         if (addr == MAP_FAILED)
1131                 return NULL;
1132
1133         buffer->mmap_addr = addr;
1134         buffer->mmap_size = size;
1135
1136         buffer->data = addr + adj;
1137
1138         return buffer->data;
1139 }
1140
1141 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1142 {
1143         if (!buffer->data || !buffer->mmap_addr)
1144                 return;
1145         munmap(buffer->mmap_addr, buffer->mmap_size);
1146         buffer->mmap_addr = NULL;
1147         buffer->mmap_size = 0;
1148         buffer->data = NULL;
1149         buffer->use_data = NULL;
1150 }
1151
1152 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1153 {
1154         auxtrace_buffer__put_data(buffer);
1155         if (buffer->data_needs_freeing) {
1156                 buffer->data_needs_freeing = false;
1157                 zfree(&buffer->data);
1158                 buffer->use_data = NULL;
1159                 buffer->size = 0;
1160         }
1161 }
1162
1163 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1164 {
1165         auxtrace_buffer__drop_data(buffer);
1166         free(buffer);
1167 }
1168
1169 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1170                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1171                           const char *msg, u64 timestamp)
1172 {
1173         size_t size;
1174
1175         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1176
1177         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1178         auxtrace_error->type = type;
1179         auxtrace_error->code = code;
1180         auxtrace_error->cpu = cpu;
1181         auxtrace_error->pid = pid;
1182         auxtrace_error->tid = tid;
1183         auxtrace_error->fmt = 1;
1184         auxtrace_error->ip = ip;
1185         auxtrace_error->time = timestamp;
1186         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1187
1188         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1189                strlen(auxtrace_error->msg) + 1;
1190         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1191 }
1192
1193 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1194                                          struct perf_tool *tool,
1195                                          struct perf_session *session,
1196                                          perf_event__handler_t process)
1197 {
1198         union perf_event *ev;
1199         size_t priv_size;
1200         int err;
1201
1202         pr_debug2("Synthesizing auxtrace information\n");
1203         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1204         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1205         if (!ev)
1206                 return -ENOMEM;
1207
1208         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1209         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1210                                         priv_size;
1211         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1212                                          priv_size);
1213         if (err)
1214                 goto out_free;
1215
1216         err = process(tool, ev, NULL, NULL);
1217 out_free:
1218         free(ev);
1219         return err;
1220 }
1221
1222 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1223 {
1224         struct evsel *new_leader = NULL;
1225         struct evsel *evsel;
1226
1227         /* Find new leader for the group */
1228         evlist__for_each_entry(evlist, evsel) {
1229                 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1230                         continue;
1231                 if (!new_leader)
1232                         new_leader = evsel;
1233                 evsel__set_leader(evsel, new_leader);
1234         }
1235
1236         /* Update group information */
1237         if (new_leader) {
1238                 zfree(&new_leader->group_name);
1239                 new_leader->group_name = leader->group_name;
1240                 leader->group_name = NULL;
1241
1242                 new_leader->core.nr_members = leader->core.nr_members - 1;
1243                 leader->core.nr_members = 1;
1244         }
1245 }
1246
1247 static void unleader_auxtrace(struct perf_session *session)
1248 {
1249         struct evsel *evsel;
1250
1251         evlist__for_each_entry(session->evlist, evsel) {
1252                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1253                     evsel__is_group_leader(evsel)) {
1254                         unleader_evsel(session->evlist, evsel);
1255                 }
1256         }
1257 }
1258
1259 int perf_event__process_auxtrace_info(struct perf_session *session,
1260                                       union perf_event *event)
1261 {
1262         enum auxtrace_type type = event->auxtrace_info.type;
1263         int err;
1264
1265         if (dump_trace)
1266                 fprintf(stdout, " type: %u\n", type);
1267
1268         switch (type) {
1269         case PERF_AUXTRACE_INTEL_PT:
1270                 err = intel_pt_process_auxtrace_info(event, session);
1271                 break;
1272         case PERF_AUXTRACE_INTEL_BTS:
1273                 err = intel_bts_process_auxtrace_info(event, session);
1274                 break;
1275         case PERF_AUXTRACE_ARM_SPE:
1276                 err = arm_spe_process_auxtrace_info(event, session);
1277                 break;
1278         case PERF_AUXTRACE_CS_ETM:
1279                 err = cs_etm__process_auxtrace_info(event, session);
1280                 break;
1281         case PERF_AUXTRACE_S390_CPUMSF:
1282                 err = s390_cpumsf_process_auxtrace_info(event, session);
1283                 break;
1284         case PERF_AUXTRACE_UNKNOWN:
1285         default:
1286                 return -EINVAL;
1287         }
1288
1289         if (err)
1290                 return err;
1291
1292         unleader_auxtrace(session);
1293
1294         return 0;
1295 }
1296
1297 s64 perf_event__process_auxtrace(struct perf_session *session,
1298                                  union perf_event *event)
1299 {
1300         s64 err;
1301
1302         if (dump_trace)
1303                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1304                         event->auxtrace.size, event->auxtrace.offset,
1305                         event->auxtrace.reference, event->auxtrace.idx,
1306                         event->auxtrace.tid, event->auxtrace.cpu);
1307
1308         if (auxtrace__dont_decode(session))
1309                 return event->auxtrace.size;
1310
1311         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1312                 return -EINVAL;
1313
1314         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1315         if (err < 0)
1316                 return err;
1317
1318         return event->auxtrace.size;
1319 }
1320
1321 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1322 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1323 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1324 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1325 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1326 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1327
1328 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1329                                     bool no_sample)
1330 {
1331         synth_opts->branches = true;
1332         synth_opts->transactions = true;
1333         synth_opts->ptwrites = true;
1334         synth_opts->pwr_events = true;
1335         synth_opts->other_events = true;
1336         synth_opts->errors = true;
1337         synth_opts->flc = true;
1338         synth_opts->llc = true;
1339         synth_opts->tlb = true;
1340         synth_opts->mem = true;
1341         synth_opts->remote_access = true;
1342
1343         if (no_sample) {
1344                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1345                 synth_opts->period = 1;
1346                 synth_opts->calls = true;
1347         } else {
1348                 synth_opts->instructions = true;
1349                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1350                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1351         }
1352         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1353         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1354         synth_opts->initial_skip = 0;
1355 }
1356
1357 static int get_flag(const char **ptr, unsigned int *flags)
1358 {
1359         while (1) {
1360                 char c = **ptr;
1361
1362                 if (c >= 'a' && c <= 'z') {
1363                         *flags |= 1 << (c - 'a');
1364                         ++*ptr;
1365                         return 0;
1366                 } else if (c == ' ') {
1367                         ++*ptr;
1368                         continue;
1369                 } else {
1370                         return -1;
1371                 }
1372         }
1373 }
1374
1375 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1376 {
1377         while (1) {
1378                 switch (**ptr) {
1379                 case '+':
1380                         ++*ptr;
1381                         if (get_flag(ptr, plus_flags))
1382                                 return -1;
1383                         break;
1384                 case '-':
1385                         ++*ptr;
1386                         if (get_flag(ptr, minus_flags))
1387                                 return -1;
1388                         break;
1389                 case ' ':
1390                         ++*ptr;
1391                         break;
1392                 default:
1393                         return 0;
1394                 }
1395         }
1396 }
1397
1398 /*
1399  * Please check tools/perf/Documentation/perf-script.txt for information
1400  * about the options parsed here, which is introduced after this cset,
1401  * when support in 'perf script' for these options is introduced.
1402  */
1403 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1404                                const char *str, int unset)
1405 {
1406         const char *p;
1407         char *endptr;
1408         bool period_type_set = false;
1409         bool period_set = false;
1410
1411         synth_opts->set = true;
1412
1413         if (unset) {
1414                 synth_opts->dont_decode = true;
1415                 return 0;
1416         }
1417
1418         if (!str) {
1419                 itrace_synth_opts__set_default(synth_opts,
1420                                                synth_opts->default_no_sample);
1421                 return 0;
1422         }
1423
1424         for (p = str; *p;) {
1425                 switch (*p++) {
1426                 case 'i':
1427                         synth_opts->instructions = true;
1428                         while (*p == ' ' || *p == ',')
1429                                 p += 1;
1430                         if (isdigit(*p)) {
1431                                 synth_opts->period = strtoull(p, &endptr, 10);
1432                                 period_set = true;
1433                                 p = endptr;
1434                                 while (*p == ' ' || *p == ',')
1435                                         p += 1;
1436                                 switch (*p++) {
1437                                 case 'i':
1438                                         synth_opts->period_type =
1439                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1440                                         period_type_set = true;
1441                                         break;
1442                                 case 't':
1443                                         synth_opts->period_type =
1444                                                 PERF_ITRACE_PERIOD_TICKS;
1445                                         period_type_set = true;
1446                                         break;
1447                                 case 'm':
1448                                         synth_opts->period *= 1000;
1449                                         /* Fall through */
1450                                 case 'u':
1451                                         synth_opts->period *= 1000;
1452                                         /* Fall through */
1453                                 case 'n':
1454                                         if (*p++ != 's')
1455                                                 goto out_err;
1456                                         synth_opts->period_type =
1457                                                 PERF_ITRACE_PERIOD_NANOSECS;
1458                                         period_type_set = true;
1459                                         break;
1460                                 case '\0':
1461                                         goto out;
1462                                 default:
1463                                         goto out_err;
1464                                 }
1465                         }
1466                         break;
1467                 case 'b':
1468                         synth_opts->branches = true;
1469                         break;
1470                 case 'x':
1471                         synth_opts->transactions = true;
1472                         break;
1473                 case 'w':
1474                         synth_opts->ptwrites = true;
1475                         break;
1476                 case 'p':
1477                         synth_opts->pwr_events = true;
1478                         break;
1479                 case 'o':
1480                         synth_opts->other_events = true;
1481                         break;
1482                 case 'e':
1483                         synth_opts->errors = true;
1484                         if (get_flags(&p, &synth_opts->error_plus_flags,
1485                                       &synth_opts->error_minus_flags))
1486                                 goto out_err;
1487                         break;
1488                 case 'd':
1489                         synth_opts->log = true;
1490                         if (get_flags(&p, &synth_opts->log_plus_flags,
1491                                       &synth_opts->log_minus_flags))
1492                                 goto out_err;
1493                         break;
1494                 case 'c':
1495                         synth_opts->branches = true;
1496                         synth_opts->calls = true;
1497                         break;
1498                 case 'r':
1499                         synth_opts->branches = true;
1500                         synth_opts->returns = true;
1501                         break;
1502                 case 'G':
1503                 case 'g':
1504                         if (p[-1] == 'G')
1505                                 synth_opts->add_callchain = true;
1506                         else
1507                                 synth_opts->callchain = true;
1508                         synth_opts->callchain_sz =
1509                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1510                         while (*p == ' ' || *p == ',')
1511                                 p += 1;
1512                         if (isdigit(*p)) {
1513                                 unsigned int val;
1514
1515                                 val = strtoul(p, &endptr, 10);
1516                                 p = endptr;
1517                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1518                                         goto out_err;
1519                                 synth_opts->callchain_sz = val;
1520                         }
1521                         break;
1522                 case 'L':
1523                 case 'l':
1524                         if (p[-1] == 'L')
1525                                 synth_opts->add_last_branch = true;
1526                         else
1527                                 synth_opts->last_branch = true;
1528                         synth_opts->last_branch_sz =
1529                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1530                         while (*p == ' ' || *p == ',')
1531                                 p += 1;
1532                         if (isdigit(*p)) {
1533                                 unsigned int val;
1534
1535                                 val = strtoul(p, &endptr, 10);
1536                                 p = endptr;
1537                                 if (!val ||
1538                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1539                                         goto out_err;
1540                                 synth_opts->last_branch_sz = val;
1541                         }
1542                         break;
1543                 case 's':
1544                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1545                         if (p == endptr)
1546                                 goto out_err;
1547                         p = endptr;
1548                         break;
1549                 case 'f':
1550                         synth_opts->flc = true;
1551                         break;
1552                 case 'm':
1553                         synth_opts->llc = true;
1554                         break;
1555                 case 't':
1556                         synth_opts->tlb = true;
1557                         break;
1558                 case 'a':
1559                         synth_opts->remote_access = true;
1560                         break;
1561                 case 'M':
1562                         synth_opts->mem = true;
1563                         break;
1564                 case 'q':
1565                         synth_opts->quick += 1;
1566                         break;
1567                 case 'A':
1568                         synth_opts->approx_ipc = true;
1569                         break;
1570                 case 'Z':
1571                         synth_opts->timeless_decoding = true;
1572                         break;
1573                 case ' ':
1574                 case ',':
1575                         break;
1576                 default:
1577                         goto out_err;
1578                 }
1579         }
1580 out:
1581         if (synth_opts->instructions) {
1582                 if (!period_type_set)
1583                         synth_opts->period_type =
1584                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1585                 if (!period_set)
1586                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1587         }
1588
1589         return 0;
1590
1591 out_err:
1592         pr_err("Bad Instruction Tracing options '%s'\n", str);
1593         return -EINVAL;
1594 }
1595
1596 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1597 {
1598         return itrace_do_parse_synth_opts(opt->value, str, unset);
1599 }
1600
1601 static const char * const auxtrace_error_type_name[] = {
1602         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1603 };
1604
1605 static const char *auxtrace_error_name(int type)
1606 {
1607         const char *error_type_name = NULL;
1608
1609         if (type < PERF_AUXTRACE_ERROR_MAX)
1610                 error_type_name = auxtrace_error_type_name[type];
1611         if (!error_type_name)
1612                 error_type_name = "unknown AUX";
1613         return error_type_name;
1614 }
1615
1616 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1617 {
1618         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1619         unsigned long long nsecs = e->time;
1620         const char *msg = e->msg;
1621         int ret;
1622
1623         ret = fprintf(fp, " %s error type %u",
1624                       auxtrace_error_name(e->type), e->type);
1625
1626         if (e->fmt && nsecs) {
1627                 unsigned long secs = nsecs / NSEC_PER_SEC;
1628
1629                 nsecs -= secs * NSEC_PER_SEC;
1630                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1631         } else {
1632                 ret += fprintf(fp, " time 0");
1633         }
1634
1635         if (!e->fmt)
1636                 msg = (const char *)&e->time;
1637
1638         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1639                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1640         return ret;
1641 }
1642
1643 void perf_session__auxtrace_error_inc(struct perf_session *session,
1644                                       union perf_event *event)
1645 {
1646         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1647
1648         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1649                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1650 }
1651
1652 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1653 {
1654         int i;
1655
1656         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1657                 if (!stats->nr_auxtrace_errors[i])
1658                         continue;
1659                 ui__warning("%u %s errors\n",
1660                             stats->nr_auxtrace_errors[i],
1661                             auxtrace_error_name(i));
1662         }
1663 }
1664
1665 int perf_event__process_auxtrace_error(struct perf_session *session,
1666                                        union perf_event *event)
1667 {
1668         if (auxtrace__dont_decode(session))
1669                 return 0;
1670
1671         perf_event__fprintf_auxtrace_error(event, stdout);
1672         return 0;
1673 }
1674
1675 /*
1676  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1677  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1678  * the issues caused by the below sequence on multiple CPUs: when perf tool
1679  * accesses either the load operation or the store operation for 64-bit value,
1680  * on some architectures the operation is divided into two instructions, one
1681  * is for accessing the low 32-bit value and another is for the high 32-bit;
1682  * thus these two user operations can give the kernel chances to access the
1683  * 64-bit value, and thus leads to the unexpected load values.
1684  *
1685  *   kernel (64-bit)                        user (32-bit)
1686  *
1687  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1688  *       STORE $aux_data      |       ,--->
1689  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1690  *       STORE ->aux_head   --|-------`     smp_rmb()
1691  *   }                        |             LOAD $data
1692  *                            |             smp_mb()
1693  *                            |             STORE ->aux_tail_lo
1694  *                            `----------->
1695  *                                          STORE ->aux_tail_hi
1696  *
1697  * For this reason, it's impossible for the perf tool to work correctly when
1698  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1699  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1700  * the pointers can be increased monotonically, whatever the buffer size it is,
1701  * at the end the head and tail can be bigger than 4GB and carry out to the
1702  * high 32-bit.
1703  *
1704  * To mitigate the issues and improve the user experience, we can allow the
1705  * perf tool working in certain conditions and bail out with error if detect
1706  * any overflow cannot be handled.
1707  *
1708  * For reading the AUX head, it reads out the values for three times, and
1709  * compares the high 4 bytes of the values between the first time and the last
1710  * time, if there has no change for high 4 bytes injected by the kernel during
1711  * the user reading sequence, it's safe for use the second value.
1712  *
1713  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1714  * 32 bits, it means there have two store operations in user space and it cannot
1715  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1716  * the caller an overflow error has happened.
1717  */
1718 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1719 {
1720         struct perf_event_mmap_page *pc = mm->userpg;
1721         u64 first, second, last;
1722         u64 mask = (u64)(UINT32_MAX) << 32;
1723
1724         do {
1725                 first = READ_ONCE(pc->aux_head);
1726                 /* Ensure all reads are done after we read the head */
1727                 smp_rmb();
1728                 second = READ_ONCE(pc->aux_head);
1729                 /* Ensure all reads are done after we read the head */
1730                 smp_rmb();
1731                 last = READ_ONCE(pc->aux_head);
1732         } while ((first & mask) != (last & mask));
1733
1734         return second;
1735 }
1736
1737 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1738 {
1739         struct perf_event_mmap_page *pc = mm->userpg;
1740         u64 mask = (u64)(UINT32_MAX) << 32;
1741
1742         if (tail & mask)
1743                 return -1;
1744
1745         /* Ensure all reads are done before we write the tail out */
1746         smp_mb();
1747         WRITE_ONCE(pc->aux_tail, tail);
1748         return 0;
1749 }
1750
1751 static int __auxtrace_mmap__read(struct mmap *map,
1752                                  struct auxtrace_record *itr,
1753                                  struct perf_tool *tool, process_auxtrace_t fn,
1754                                  bool snapshot, size_t snapshot_size)
1755 {
1756         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1757         u64 head, old = mm->prev, offset, ref;
1758         unsigned char *data = mm->base;
1759         size_t size, head_off, old_off, len1, len2, padding;
1760         union perf_event ev;
1761         void *data1, *data2;
1762         int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1763
1764         head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1765
1766         if (snapshot &&
1767             auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1768                 return -1;
1769
1770         if (old == head)
1771                 return 0;
1772
1773         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1774                   mm->idx, old, head, head - old);
1775
1776         if (mm->mask) {
1777                 head_off = head & mm->mask;
1778                 old_off = old & mm->mask;
1779         } else {
1780                 head_off = head % mm->len;
1781                 old_off = old % mm->len;
1782         }
1783
1784         if (head_off > old_off)
1785                 size = head_off - old_off;
1786         else
1787                 size = mm->len - (old_off - head_off);
1788
1789         if (snapshot && size > snapshot_size)
1790                 size = snapshot_size;
1791
1792         ref = auxtrace_record__reference(itr);
1793
1794         if (head > old || size <= head || mm->mask) {
1795                 offset = head - size;
1796         } else {
1797                 /*
1798                  * When the buffer size is not a power of 2, 'head' wraps at the
1799                  * highest multiple of the buffer size, so we have to subtract
1800                  * the remainder here.
1801                  */
1802                 u64 rem = (0ULL - mm->len) % mm->len;
1803
1804                 offset = head - size - rem;
1805         }
1806
1807         if (size > head_off) {
1808                 len1 = size - head_off;
1809                 data1 = &data[mm->len - len1];
1810                 len2 = head_off;
1811                 data2 = &data[0];
1812         } else {
1813                 len1 = size;
1814                 data1 = &data[head_off - len1];
1815                 len2 = 0;
1816                 data2 = NULL;
1817         }
1818
1819         if (itr->alignment) {
1820                 unsigned int unwanted = len1 % itr->alignment;
1821
1822                 len1 -= unwanted;
1823                 size -= unwanted;
1824         }
1825
1826         /* padding must be written by fn() e.g. record__process_auxtrace() */
1827         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1828         if (padding)
1829                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1830
1831         memset(&ev, 0, sizeof(ev));
1832         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1833         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1834         ev.auxtrace.size = size + padding;
1835         ev.auxtrace.offset = offset;
1836         ev.auxtrace.reference = ref;
1837         ev.auxtrace.idx = mm->idx;
1838         ev.auxtrace.tid = mm->tid;
1839         ev.auxtrace.cpu = mm->cpu;
1840
1841         if (fn(tool, map, &ev, data1, len1, data2, len2))
1842                 return -1;
1843
1844         mm->prev = head;
1845
1846         if (!snapshot) {
1847                 int err;
1848
1849                 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1850                 if (err < 0)
1851                         return err;
1852
1853                 if (itr->read_finish) {
1854                         err = itr->read_finish(itr, mm->idx);
1855                         if (err < 0)
1856                                 return err;
1857                 }
1858         }
1859
1860         return 1;
1861 }
1862
1863 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1864                         struct perf_tool *tool, process_auxtrace_t fn)
1865 {
1866         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1867 }
1868
1869 int auxtrace_mmap__read_snapshot(struct mmap *map,
1870                                  struct auxtrace_record *itr,
1871                                  struct perf_tool *tool, process_auxtrace_t fn,
1872                                  size_t snapshot_size)
1873 {
1874         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1875 }
1876
1877 /**
1878  * struct auxtrace_cache - hash table to implement a cache
1879  * @hashtable: the hashtable
1880  * @sz: hashtable size (number of hlists)
1881  * @entry_size: size of an entry
1882  * @limit: limit the number of entries to this maximum, when reached the cache
1883  *         is dropped and caching begins again with an empty cache
1884  * @cnt: current number of entries
1885  * @bits: hashtable size (@sz = 2^@bits)
1886  */
1887 struct auxtrace_cache {
1888         struct hlist_head *hashtable;
1889         size_t sz;
1890         size_t entry_size;
1891         size_t limit;
1892         size_t cnt;
1893         unsigned int bits;
1894 };
1895
1896 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1897                                            unsigned int limit_percent)
1898 {
1899         struct auxtrace_cache *c;
1900         struct hlist_head *ht;
1901         size_t sz, i;
1902
1903         c = zalloc(sizeof(struct auxtrace_cache));
1904         if (!c)
1905                 return NULL;
1906
1907         sz = 1UL << bits;
1908
1909         ht = calloc(sz, sizeof(struct hlist_head));
1910         if (!ht)
1911                 goto out_free;
1912
1913         for (i = 0; i < sz; i++)
1914                 INIT_HLIST_HEAD(&ht[i]);
1915
1916         c->hashtable = ht;
1917         c->sz = sz;
1918         c->entry_size = entry_size;
1919         c->limit = (c->sz * limit_percent) / 100;
1920         c->bits = bits;
1921
1922         return c;
1923
1924 out_free:
1925         free(c);
1926         return NULL;
1927 }
1928
1929 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1930 {
1931         struct auxtrace_cache_entry *entry;
1932         struct hlist_node *tmp;
1933         size_t i;
1934
1935         if (!c)
1936                 return;
1937
1938         for (i = 0; i < c->sz; i++) {
1939                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1940                         hlist_del(&entry->hash);
1941                         auxtrace_cache__free_entry(c, entry);
1942                 }
1943         }
1944
1945         c->cnt = 0;
1946 }
1947
1948 void auxtrace_cache__free(struct auxtrace_cache *c)
1949 {
1950         if (!c)
1951                 return;
1952
1953         auxtrace_cache__drop(c);
1954         zfree(&c->hashtable);
1955         free(c);
1956 }
1957
1958 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1959 {
1960         return malloc(c->entry_size);
1961 }
1962
1963 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1964                                 void *entry)
1965 {
1966         free(entry);
1967 }
1968
1969 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1970                         struct auxtrace_cache_entry *entry)
1971 {
1972         if (c->limit && ++c->cnt > c->limit)
1973                 auxtrace_cache__drop(c);
1974
1975         entry->key = key;
1976         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1977
1978         return 0;
1979 }
1980
1981 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1982                                                        u32 key)
1983 {
1984         struct auxtrace_cache_entry *entry;
1985         struct hlist_head *hlist;
1986         struct hlist_node *n;
1987
1988         if (!c)
1989                 return NULL;
1990
1991         hlist = &c->hashtable[hash_32(key, c->bits)];
1992         hlist_for_each_entry_safe(entry, n, hlist, hash) {
1993                 if (entry->key == key) {
1994                         hlist_del(&entry->hash);
1995                         return entry;
1996                 }
1997         }
1998
1999         return NULL;
2000 }
2001
2002 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2003 {
2004         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2005
2006         auxtrace_cache__free_entry(c, entry);
2007 }
2008
2009 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2010 {
2011         struct auxtrace_cache_entry *entry;
2012         struct hlist_head *hlist;
2013
2014         if (!c)
2015                 return NULL;
2016
2017         hlist = &c->hashtable[hash_32(key, c->bits)];
2018         hlist_for_each_entry(entry, hlist, hash) {
2019                 if (entry->key == key)
2020                         return entry;
2021         }
2022
2023         return NULL;
2024 }
2025
2026 static void addr_filter__free_str(struct addr_filter *filt)
2027 {
2028         zfree(&filt->str);
2029         filt->action   = NULL;
2030         filt->sym_from = NULL;
2031         filt->sym_to   = NULL;
2032         filt->filename = NULL;
2033 }
2034
2035 static struct addr_filter *addr_filter__new(void)
2036 {
2037         struct addr_filter *filt = zalloc(sizeof(*filt));
2038
2039         if (filt)
2040                 INIT_LIST_HEAD(&filt->list);
2041
2042         return filt;
2043 }
2044
2045 static void addr_filter__free(struct addr_filter *filt)
2046 {
2047         if (filt)
2048                 addr_filter__free_str(filt);
2049         free(filt);
2050 }
2051
2052 static void addr_filters__add(struct addr_filters *filts,
2053                               struct addr_filter *filt)
2054 {
2055         list_add_tail(&filt->list, &filts->head);
2056         filts->cnt += 1;
2057 }
2058
2059 static void addr_filters__del(struct addr_filters *filts,
2060                               struct addr_filter *filt)
2061 {
2062         list_del_init(&filt->list);
2063         filts->cnt -= 1;
2064 }
2065
2066 void addr_filters__init(struct addr_filters *filts)
2067 {
2068         INIT_LIST_HEAD(&filts->head);
2069         filts->cnt = 0;
2070 }
2071
2072 void addr_filters__exit(struct addr_filters *filts)
2073 {
2074         struct addr_filter *filt, *n;
2075
2076         list_for_each_entry_safe(filt, n, &filts->head, list) {
2077                 addr_filters__del(filts, filt);
2078                 addr_filter__free(filt);
2079         }
2080 }
2081
2082 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2083                             const char *str_delim)
2084 {
2085         *inp += strspn(*inp, " ");
2086
2087         if (isdigit(**inp)) {
2088                 char *endptr;
2089
2090                 if (!num)
2091                         return -EINVAL;
2092                 errno = 0;
2093                 *num = strtoull(*inp, &endptr, 0);
2094                 if (errno)
2095                         return -errno;
2096                 if (endptr == *inp)
2097                         return -EINVAL;
2098                 *inp = endptr;
2099         } else {
2100                 size_t n;
2101
2102                 if (!str)
2103                         return -EINVAL;
2104                 *inp += strspn(*inp, " ");
2105                 *str = *inp;
2106                 n = strcspn(*inp, str_delim);
2107                 if (!n)
2108                         return -EINVAL;
2109                 *inp += n;
2110                 if (**inp) {
2111                         **inp = '\0';
2112                         *inp += 1;
2113                 }
2114         }
2115         return 0;
2116 }
2117
2118 static int parse_action(struct addr_filter *filt)
2119 {
2120         if (!strcmp(filt->action, "filter")) {
2121                 filt->start = true;
2122                 filt->range = true;
2123         } else if (!strcmp(filt->action, "start")) {
2124                 filt->start = true;
2125         } else if (!strcmp(filt->action, "stop")) {
2126                 filt->start = false;
2127         } else if (!strcmp(filt->action, "tracestop")) {
2128                 filt->start = false;
2129                 filt->range = true;
2130                 filt->action += 5; /* Change 'tracestop' to 'stop' */
2131         } else {
2132                 return -EINVAL;
2133         }
2134         return 0;
2135 }
2136
2137 static int parse_sym_idx(char **inp, int *idx)
2138 {
2139         *idx = -1;
2140
2141         *inp += strspn(*inp, " ");
2142
2143         if (**inp != '#')
2144                 return 0;
2145
2146         *inp += 1;
2147
2148         if (**inp == 'g' || **inp == 'G') {
2149                 *inp += 1;
2150                 *idx = 0;
2151         } else {
2152                 unsigned long num;
2153                 char *endptr;
2154
2155                 errno = 0;
2156                 num = strtoul(*inp, &endptr, 0);
2157                 if (errno)
2158                         return -errno;
2159                 if (endptr == *inp || num > INT_MAX)
2160                         return -EINVAL;
2161                 *inp = endptr;
2162                 *idx = num;
2163         }
2164
2165         return 0;
2166 }
2167
2168 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2169 {
2170         int err = parse_num_or_str(inp, num, str, " ");
2171
2172         if (!err && *str)
2173                 err = parse_sym_idx(inp, idx);
2174
2175         return err;
2176 }
2177
2178 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2179 {
2180         char *fstr;
2181         int err;
2182
2183         filt->str = fstr = strdup(*filter_inp);
2184         if (!fstr)
2185                 return -ENOMEM;
2186
2187         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2188         if (err)
2189                 goto out_err;
2190
2191         err = parse_action(filt);
2192         if (err)
2193                 goto out_err;
2194
2195         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2196                               &filt->sym_from_idx);
2197         if (err)
2198                 goto out_err;
2199
2200         fstr += strspn(fstr, " ");
2201
2202         if (*fstr == '/') {
2203                 fstr += 1;
2204                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2205                                       &filt->sym_to_idx);
2206                 if (err)
2207                         goto out_err;
2208                 filt->range = true;
2209         }
2210
2211         fstr += strspn(fstr, " ");
2212
2213         if (*fstr == '@') {
2214                 fstr += 1;
2215                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2216                 if (err)
2217                         goto out_err;
2218         }
2219
2220         fstr += strspn(fstr, " ,");
2221
2222         *filter_inp += fstr - filt->str;
2223
2224         return 0;
2225
2226 out_err:
2227         addr_filter__free_str(filt);
2228
2229         return err;
2230 }
2231
2232 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2233                                     const char *filter)
2234 {
2235         struct addr_filter *filt;
2236         const char *fstr = filter;
2237         int err;
2238
2239         while (*fstr) {
2240                 filt = addr_filter__new();
2241                 err = parse_one_filter(filt, &fstr);
2242                 if (err) {
2243                         addr_filter__free(filt);
2244                         addr_filters__exit(filts);
2245                         return err;
2246                 }
2247                 addr_filters__add(filts, filt);
2248         }
2249
2250         return 0;
2251 }
2252
2253 struct sym_args {
2254         const char      *name;
2255         u64             start;
2256         u64             size;
2257         int             idx;
2258         int             cnt;
2259         bool            started;
2260         bool            global;
2261         bool            selected;
2262         bool            duplicate;
2263         bool            near;
2264 };
2265
2266 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2267 {
2268         /* A function with the same name, and global or the n'th found or any */
2269         return kallsyms__is_function(type) &&
2270                !strcmp(name, args->name) &&
2271                ((args->global && isupper(type)) ||
2272                 (args->selected && ++(args->cnt) == args->idx) ||
2273                 (!args->global && !args->selected));
2274 }
2275
2276 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2277 {
2278         struct sym_args *args = arg;
2279
2280         if (args->started) {
2281                 if (!args->size)
2282                         args->size = start - args->start;
2283                 if (args->selected) {
2284                         if (args->size)
2285                                 return 1;
2286                 } else if (kern_sym_match(args, name, type)) {
2287                         args->duplicate = true;
2288                         return 1;
2289                 }
2290         } else if (kern_sym_match(args, name, type)) {
2291                 args->started = true;
2292                 args->start = start;
2293         }
2294
2295         return 0;
2296 }
2297
2298 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2299 {
2300         struct sym_args *args = arg;
2301
2302         if (kern_sym_match(args, name, type)) {
2303                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2304                        ++args->cnt, start, type, name);
2305                 args->near = true;
2306         } else if (args->near) {
2307                 args->near = false;
2308                 pr_err("\t\twhich is near\t\t%s\n", name);
2309         }
2310
2311         return 0;
2312 }
2313
2314 static int sym_not_found_error(const char *sym_name, int idx)
2315 {
2316         if (idx > 0) {
2317                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2318                        idx, sym_name);
2319         } else if (!idx) {
2320                 pr_err("Global symbol '%s' not found.\n", sym_name);
2321         } else {
2322                 pr_err("Symbol '%s' not found.\n", sym_name);
2323         }
2324         pr_err("Note that symbols must be functions.\n");
2325
2326         return -EINVAL;
2327 }
2328
2329 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2330 {
2331         struct sym_args args = {
2332                 .name = sym_name,
2333                 .idx = idx,
2334                 .global = !idx,
2335                 .selected = idx > 0,
2336         };
2337         int err;
2338
2339         *start = 0;
2340         *size = 0;
2341
2342         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2343         if (err < 0) {
2344                 pr_err("Failed to parse /proc/kallsyms\n");
2345                 return err;
2346         }
2347
2348         if (args.duplicate) {
2349                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2350                 args.cnt = 0;
2351                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2352                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2353                        sym_name);
2354                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2355                 return -EINVAL;
2356         }
2357
2358         if (!args.started) {
2359                 pr_err("Kernel symbol lookup: ");
2360                 return sym_not_found_error(sym_name, idx);
2361         }
2362
2363         *start = args.start;
2364         *size = args.size;
2365
2366         return 0;
2367 }
2368
2369 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2370                                char type, u64 start)
2371 {
2372         struct sym_args *args = arg;
2373
2374         if (!kallsyms__is_function(type))
2375                 return 0;
2376
2377         if (!args->started) {
2378                 args->started = true;
2379                 args->start = start;
2380         }
2381         /* Don't know exactly where the kernel ends, so we add a page */
2382         args->size = round_up(start, page_size) + page_size - args->start;
2383
2384         return 0;
2385 }
2386
2387 static int addr_filter__entire_kernel(struct addr_filter *filt)
2388 {
2389         struct sym_args args = { .started = false };
2390         int err;
2391
2392         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2393         if (err < 0 || !args.started) {
2394                 pr_err("Failed to parse /proc/kallsyms\n");
2395                 return err;
2396         }
2397
2398         filt->addr = args.start;
2399         filt->size = args.size;
2400
2401         return 0;
2402 }
2403
2404 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2405 {
2406         if (start + size >= filt->addr)
2407                 return 0;
2408
2409         if (filt->sym_from) {
2410                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2411                        filt->sym_to, start, filt->sym_from, filt->addr);
2412         } else {
2413                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2414                        filt->sym_to, start, filt->addr);
2415         }
2416
2417         return -EINVAL;
2418 }
2419
2420 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2421 {
2422         bool no_size = false;
2423         u64 start, size;
2424         int err;
2425
2426         if (symbol_conf.kptr_restrict) {
2427                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2428                 return -EINVAL;
2429         }
2430
2431         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2432                 return addr_filter__entire_kernel(filt);
2433
2434         if (filt->sym_from) {
2435                 err = find_kern_sym(filt->sym_from, &start, &size,
2436                                     filt->sym_from_idx);
2437                 if (err)
2438                         return err;
2439                 filt->addr = start;
2440                 if (filt->range && !filt->size && !filt->sym_to) {
2441                         filt->size = size;
2442                         no_size = !size;
2443                 }
2444         }
2445
2446         if (filt->sym_to) {
2447                 err = find_kern_sym(filt->sym_to, &start, &size,
2448                                     filt->sym_to_idx);
2449                 if (err)
2450                         return err;
2451
2452                 err = check_end_after_start(filt, start, size);
2453                 if (err)
2454                         return err;
2455                 filt->size = start + size - filt->addr;
2456                 no_size = !size;
2457         }
2458
2459         /* The very last symbol in kallsyms does not imply a particular size */
2460         if (no_size) {
2461                 pr_err("Cannot determine size of symbol '%s'\n",
2462                        filt->sym_to ? filt->sym_to : filt->sym_from);
2463                 return -EINVAL;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static struct dso *load_dso(const char *name)
2470 {
2471         struct map *map;
2472         struct dso *dso;
2473
2474         map = dso__new_map(name);
2475         if (!map)
2476                 return NULL;
2477
2478         if (map__load(map) < 0)
2479                 pr_err("File '%s' not found or has no symbols.\n", name);
2480
2481         dso = dso__get(map->dso);
2482
2483         map__put(map);
2484
2485         return dso;
2486 }
2487
2488 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2489                           int idx)
2490 {
2491         /* Same name, and global or the n'th found or any */
2492         return !arch__compare_symbol_names(name, sym->name) &&
2493                ((!idx && sym->binding == STB_GLOBAL) ||
2494                 (idx > 0 && ++*cnt == idx) ||
2495                 idx < 0);
2496 }
2497
2498 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2499 {
2500         struct symbol *sym;
2501         bool near = false;
2502         int cnt = 0;
2503
2504         pr_err("Multiple symbols with name '%s'\n", sym_name);
2505
2506         sym = dso__first_symbol(dso);
2507         while (sym) {
2508                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2509                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2510                                ++cnt, sym->start,
2511                                sym->binding == STB_GLOBAL ? 'g' :
2512                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2513                                sym->name);
2514                         near = true;
2515                 } else if (near) {
2516                         near = false;
2517                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2518                 }
2519                 sym = dso__next_symbol(sym);
2520         }
2521
2522         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2523                sym_name);
2524         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2525 }
2526
2527 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2528                         u64 *size, int idx)
2529 {
2530         struct symbol *sym;
2531         int cnt = 0;
2532
2533         *start = 0;
2534         *size = 0;
2535
2536         sym = dso__first_symbol(dso);
2537         while (sym) {
2538                 if (*start) {
2539                         if (!*size)
2540                                 *size = sym->start - *start;
2541                         if (idx > 0) {
2542                                 if (*size)
2543                                         return 1;
2544                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2545                                 print_duplicate_syms(dso, sym_name);
2546                                 return -EINVAL;
2547                         }
2548                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2549                         *start = sym->start;
2550                         *size = sym->end - sym->start;
2551                 }
2552                 sym = dso__next_symbol(sym);
2553         }
2554
2555         if (!*start)
2556                 return sym_not_found_error(sym_name, idx);
2557
2558         return 0;
2559 }
2560
2561 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2562 {
2563         if (dso__data_file_size(dso, NULL)) {
2564                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2565                        filt->filename);
2566                 return -EINVAL;
2567         }
2568
2569         filt->addr = 0;
2570         filt->size = dso->data.file_size;
2571
2572         return 0;
2573 }
2574
2575 static int addr_filter__resolve_syms(struct addr_filter *filt)
2576 {
2577         u64 start, size;
2578         struct dso *dso;
2579         int err = 0;
2580
2581         if (!filt->sym_from && !filt->sym_to)
2582                 return 0;
2583
2584         if (!filt->filename)
2585                 return addr_filter__resolve_kernel_syms(filt);
2586
2587         dso = load_dso(filt->filename);
2588         if (!dso) {
2589                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2590                 return -EINVAL;
2591         }
2592
2593         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2594                 err = addr_filter__entire_dso(filt, dso);
2595                 goto put_dso;
2596         }
2597
2598         if (filt->sym_from) {
2599                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2600                                    filt->sym_from_idx);
2601                 if (err)
2602                         goto put_dso;
2603                 filt->addr = start;
2604                 if (filt->range && !filt->size && !filt->sym_to)
2605                         filt->size = size;
2606         }
2607
2608         if (filt->sym_to) {
2609                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2610                                    filt->sym_to_idx);
2611                 if (err)
2612                         goto put_dso;
2613
2614                 err = check_end_after_start(filt, start, size);
2615                 if (err)
2616                         return err;
2617
2618                 filt->size = start + size - filt->addr;
2619         }
2620
2621 put_dso:
2622         dso__put(dso);
2623
2624         return err;
2625 }
2626
2627 static char *addr_filter__to_str(struct addr_filter *filt)
2628 {
2629         char filename_buf[PATH_MAX];
2630         const char *at = "";
2631         const char *fn = "";
2632         char *filter;
2633         int err;
2634
2635         if (filt->filename) {
2636                 at = "@";
2637                 fn = realpath(filt->filename, filename_buf);
2638                 if (!fn)
2639                         return NULL;
2640         }
2641
2642         if (filt->range) {
2643                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2644                                filt->action, filt->addr, filt->size, at, fn);
2645         } else {
2646                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2647                                filt->action, filt->addr, at, fn);
2648         }
2649
2650         return err < 0 ? NULL : filter;
2651 }
2652
2653 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2654                              int max_nr)
2655 {
2656         struct addr_filters filts;
2657         struct addr_filter *filt;
2658         int err;
2659
2660         addr_filters__init(&filts);
2661
2662         err = addr_filters__parse_bare_filter(&filts, filter);
2663         if (err)
2664                 goto out_exit;
2665
2666         if (filts.cnt > max_nr) {
2667                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2668                        filts.cnt, max_nr);
2669                 err = -EINVAL;
2670                 goto out_exit;
2671         }
2672
2673         list_for_each_entry(filt, &filts.head, list) {
2674                 char *new_filter;
2675
2676                 err = addr_filter__resolve_syms(filt);
2677                 if (err)
2678                         goto out_exit;
2679
2680                 new_filter = addr_filter__to_str(filt);
2681                 if (!new_filter) {
2682                         err = -ENOMEM;
2683                         goto out_exit;
2684                 }
2685
2686                 if (evsel__append_addr_filter(evsel, new_filter)) {
2687                         err = -ENOMEM;
2688                         goto out_exit;
2689                 }
2690         }
2691
2692 out_exit:
2693         addr_filters__exit(&filts);
2694
2695         if (err) {
2696                 pr_err("Failed to parse address filter: '%s'\n", filter);
2697                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2698                 pr_err("Where multiple filters are separated by space or comma.\n");
2699         }
2700
2701         return err;
2702 }
2703
2704 static int evsel__nr_addr_filter(struct evsel *evsel)
2705 {
2706         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2707         int nr_addr_filters = 0;
2708
2709         if (!pmu)
2710                 return 0;
2711
2712         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2713
2714         return nr_addr_filters;
2715 }
2716
2717 int auxtrace_parse_filters(struct evlist *evlist)
2718 {
2719         struct evsel *evsel;
2720         char *filter;
2721         int err, max_nr;
2722
2723         evlist__for_each_entry(evlist, evsel) {
2724                 filter = evsel->filter;
2725                 max_nr = evsel__nr_addr_filter(evsel);
2726                 if (!filter || !max_nr)
2727                         continue;
2728                 evsel->filter = NULL;
2729                 err = parse_addr_filter(evsel, filter, max_nr);
2730                 free(filter);
2731                 if (err)
2732                         return err;
2733                 pr_debug("Address filter: %s\n", evsel->filter);
2734         }
2735
2736         return 0;
2737 }
2738
2739 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2740                             struct perf_sample *sample, struct perf_tool *tool)
2741 {
2742         if (!session->auxtrace)
2743                 return 0;
2744
2745         return session->auxtrace->process_event(session, event, sample, tool);
2746 }
2747
2748 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2749                                     struct perf_sample *sample)
2750 {
2751         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2752             auxtrace__dont_decode(session))
2753                 return;
2754
2755         session->auxtrace->dump_auxtrace_sample(session, sample);
2756 }
2757
2758 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2759 {
2760         if (!session->auxtrace)
2761                 return 0;
2762
2763         return session->auxtrace->flush_events(session, tool);
2764 }
2765
2766 void auxtrace__free_events(struct perf_session *session)
2767 {
2768         if (!session->auxtrace)
2769                 return;
2770
2771         return session->auxtrace->free_events(session);
2772 }
2773
2774 void auxtrace__free(struct perf_session *session)
2775 {
2776         if (!session->auxtrace)
2777                 return;
2778
2779         return session->auxtrace->free(session);
2780 }
2781
2782 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2783                                  struct evsel *evsel)
2784 {
2785         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2786                 return false;
2787
2788         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2789 }