OSDN Git Service

Merge tag 'perf-tools-for-v5.18-2022-03-26' of git://git.kernel.org/pub/scm/linux...
[uclinux-h8/linux.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67         struct evsel *evsel;
68         bool grp;
69
70         if (!evsel__is_group_leader(leader))
71                 return -EINVAL;
72
73         grp = false;
74         evlist__for_each_entry(evlist, evsel) {
75                 if (grp) {
76                         if (!(evsel__leader(evsel) == leader ||
77                              (evsel__leader(evsel) == evsel &&
78                               evsel->core.nr_members <= 1)))
79                                 return -EINVAL;
80                 } else if (evsel == leader) {
81                         grp = true;
82                 }
83                 if (evsel == last)
84                         break;
85         }
86
87         grp = false;
88         evlist__for_each_entry(evlist, evsel) {
89                 if (grp) {
90                         if (!evsel__has_leader(evsel, leader)) {
91                                 evsel__set_leader(evsel, leader);
92                                 if (leader->core.nr_members < 1)
93                                         leader->core.nr_members = 1;
94                                 leader->core.nr_members += 1;
95                         }
96                 } else if (evsel == leader) {
97                         grp = true;
98                 }
99                 if (evsel == last)
100                         break;
101         }
102
103         return 0;
104 }
105
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108         return !session->itrace_synth_opts ||
109                session->itrace_synth_opts->dont_decode;
110 }
111
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113                         struct auxtrace_mmap_params *mp,
114                         void *userpg, int fd)
115 {
116         struct perf_event_mmap_page *pc = userpg;
117
118         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119
120         mm->userpg = userpg;
121         mm->mask = mp->mask;
122         mm->len = mp->len;
123         mm->prev = 0;
124         mm->idx = mp->idx;
125         mm->tid = mp->tid;
126         mm->cpu = mp->cpu.cpu;
127
128         if (!mp->len) {
129                 mm->base = NULL;
130                 return 0;
131         }
132
133         pc->aux_offset = mp->offset;
134         pc->aux_size = mp->len;
135
136         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137         if (mm->base == MAP_FAILED) {
138                 pr_debug2("failed to mmap AUX area\n");
139                 mm->base = NULL;
140                 return -1;
141         }
142
143         return 0;
144 }
145
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148         if (mm->base) {
149                 munmap(mm->base, mm->len);
150                 mm->base = NULL;
151         }
152 }
153
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155                                 off_t auxtrace_offset,
156                                 unsigned int auxtrace_pages,
157                                 bool auxtrace_overwrite)
158 {
159         if (auxtrace_pages) {
160                 mp->offset = auxtrace_offset;
161                 mp->len = auxtrace_pages * (size_t)page_size;
162                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164                 pr_debug2("AUX area mmap length %zu\n", mp->len);
165         } else {
166                 mp->len = 0;
167         }
168 }
169
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171                                    struct evlist *evlist, int idx,
172                                    bool per_cpu)
173 {
174         mp->idx = idx;
175
176         if (per_cpu) {
177                 mp->cpu = perf_cpu_map__cpu(evlist->core.cpus, idx);
178                 if (evlist->core.threads)
179                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
180                 else
181                         mp->tid = -1;
182         } else {
183                 mp->cpu.cpu = -1;
184                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
185         }
186 }
187
188 #define AUXTRACE_INIT_NR_QUEUES 32
189
190 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
191 {
192         struct auxtrace_queue *queue_array;
193         unsigned int max_nr_queues, i;
194
195         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
196         if (nr_queues > max_nr_queues)
197                 return NULL;
198
199         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
200         if (!queue_array)
201                 return NULL;
202
203         for (i = 0; i < nr_queues; i++) {
204                 INIT_LIST_HEAD(&queue_array[i].head);
205                 queue_array[i].priv = NULL;
206         }
207
208         return queue_array;
209 }
210
211 int auxtrace_queues__init(struct auxtrace_queues *queues)
212 {
213         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
214         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
215         if (!queues->queue_array)
216                 return -ENOMEM;
217         return 0;
218 }
219
220 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
221                                  unsigned int new_nr_queues)
222 {
223         unsigned int nr_queues = queues->nr_queues;
224         struct auxtrace_queue *queue_array;
225         unsigned int i;
226
227         if (!nr_queues)
228                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
229
230         while (nr_queues && nr_queues < new_nr_queues)
231                 nr_queues <<= 1;
232
233         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
234                 return -EINVAL;
235
236         queue_array = auxtrace_alloc_queue_array(nr_queues);
237         if (!queue_array)
238                 return -ENOMEM;
239
240         for (i = 0; i < queues->nr_queues; i++) {
241                 list_splice_tail(&queues->queue_array[i].head,
242                                  &queue_array[i].head);
243                 queue_array[i].tid = queues->queue_array[i].tid;
244                 queue_array[i].cpu = queues->queue_array[i].cpu;
245                 queue_array[i].set = queues->queue_array[i].set;
246                 queue_array[i].priv = queues->queue_array[i].priv;
247         }
248
249         queues->nr_queues = nr_queues;
250         queues->queue_array = queue_array;
251
252         return 0;
253 }
254
255 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
256 {
257         int fd = perf_data__fd(session->data);
258         void *p;
259         ssize_t ret;
260
261         if (size > SSIZE_MAX)
262                 return NULL;
263
264         p = malloc(size);
265         if (!p)
266                 return NULL;
267
268         ret = readn(fd, p, size);
269         if (ret != (ssize_t)size) {
270                 free(p);
271                 return NULL;
272         }
273
274         return p;
275 }
276
277 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
278                                          unsigned int idx,
279                                          struct auxtrace_buffer *buffer)
280 {
281         struct auxtrace_queue *queue;
282         int err;
283
284         if (idx >= queues->nr_queues) {
285                 err = auxtrace_queues__grow(queues, idx + 1);
286                 if (err)
287                         return err;
288         }
289
290         queue = &queues->queue_array[idx];
291
292         if (!queue->set) {
293                 queue->set = true;
294                 queue->tid = buffer->tid;
295                 queue->cpu = buffer->cpu.cpu;
296         }
297
298         buffer->buffer_nr = queues->next_buffer_nr++;
299
300         list_add_tail(&buffer->list, &queue->head);
301
302         queues->new_data = true;
303         queues->populated = true;
304
305         return 0;
306 }
307
308 /* Limit buffers to 32MiB on 32-bit */
309 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
310
311 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
312                                          unsigned int idx,
313                                          struct auxtrace_buffer *buffer)
314 {
315         u64 sz = buffer->size;
316         bool consecutive = false;
317         struct auxtrace_buffer *b;
318         int err;
319
320         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
321                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
322                 if (!b)
323                         return -ENOMEM;
324                 b->size = BUFFER_LIMIT_FOR_32_BIT;
325                 b->consecutive = consecutive;
326                 err = auxtrace_queues__queue_buffer(queues, idx, b);
327                 if (err) {
328                         auxtrace_buffer__free(b);
329                         return err;
330                 }
331                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
332                 sz -= BUFFER_LIMIT_FOR_32_BIT;
333                 consecutive = true;
334         }
335
336         buffer->size = sz;
337         buffer->consecutive = consecutive;
338
339         return 0;
340 }
341
342 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
343 {
344         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
345
346         return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
347 }
348
349 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
350                                        struct perf_session *session,
351                                        unsigned int idx,
352                                        struct auxtrace_buffer *buffer,
353                                        struct auxtrace_buffer **buffer_ptr)
354 {
355         int err = -ENOMEM;
356
357         if (filter_cpu(session, buffer->cpu))
358                 return 0;
359
360         buffer = memdup(buffer, sizeof(*buffer));
361         if (!buffer)
362                 return -ENOMEM;
363
364         if (session->one_mmap) {
365                 buffer->data = buffer->data_offset - session->one_mmap_offset +
366                                session->one_mmap_addr;
367         } else if (perf_data__is_pipe(session->data)) {
368                 buffer->data = auxtrace_copy_data(buffer->size, session);
369                 if (!buffer->data)
370                         goto out_free;
371                 buffer->data_needs_freeing = true;
372         } else if (BITS_PER_LONG == 32 &&
373                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
374                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
375                 if (err)
376                         goto out_free;
377         }
378
379         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
380         if (err)
381                 goto out_free;
382
383         /* FIXME: Doesn't work for split buffer */
384         if (buffer_ptr)
385                 *buffer_ptr = buffer;
386
387         return 0;
388
389 out_free:
390         auxtrace_buffer__free(buffer);
391         return err;
392 }
393
394 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
395                                struct perf_session *session,
396                                union perf_event *event, off_t data_offset,
397                                struct auxtrace_buffer **buffer_ptr)
398 {
399         struct auxtrace_buffer buffer = {
400                 .pid = -1,
401                 .tid = event->auxtrace.tid,
402                 .cpu = { event->auxtrace.cpu },
403                 .data_offset = data_offset,
404                 .offset = event->auxtrace.offset,
405                 .reference = event->auxtrace.reference,
406                 .size = event->auxtrace.size,
407         };
408         unsigned int idx = event->auxtrace.idx;
409
410         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
411                                            buffer_ptr);
412 }
413
414 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
415                                               struct perf_session *session,
416                                               off_t file_offset, size_t sz)
417 {
418         union perf_event *event;
419         int err;
420         char buf[PERF_SAMPLE_MAX_SIZE];
421
422         err = perf_session__peek_event(session, file_offset, buf,
423                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
424         if (err)
425                 return err;
426
427         if (event->header.type == PERF_RECORD_AUXTRACE) {
428                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
429                     event->header.size != sz) {
430                         err = -EINVAL;
431                         goto out;
432                 }
433                 file_offset += event->header.size;
434                 err = auxtrace_queues__add_event(queues, session, event,
435                                                  file_offset, NULL);
436         }
437 out:
438         return err;
439 }
440
441 void auxtrace_queues__free(struct auxtrace_queues *queues)
442 {
443         unsigned int i;
444
445         for (i = 0; i < queues->nr_queues; i++) {
446                 while (!list_empty(&queues->queue_array[i].head)) {
447                         struct auxtrace_buffer *buffer;
448
449                         buffer = list_entry(queues->queue_array[i].head.next,
450                                             struct auxtrace_buffer, list);
451                         list_del_init(&buffer->list);
452                         auxtrace_buffer__free(buffer);
453                 }
454         }
455
456         zfree(&queues->queue_array);
457         queues->nr_queues = 0;
458 }
459
460 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
461                              unsigned int pos, unsigned int queue_nr,
462                              u64 ordinal)
463 {
464         unsigned int parent;
465
466         while (pos) {
467                 parent = (pos - 1) >> 1;
468                 if (heap_array[parent].ordinal <= ordinal)
469                         break;
470                 heap_array[pos] = heap_array[parent];
471                 pos = parent;
472         }
473         heap_array[pos].queue_nr = queue_nr;
474         heap_array[pos].ordinal = ordinal;
475 }
476
477 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
478                        u64 ordinal)
479 {
480         struct auxtrace_heap_item *heap_array;
481
482         if (queue_nr >= heap->heap_sz) {
483                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
484
485                 while (heap_sz <= queue_nr)
486                         heap_sz <<= 1;
487                 heap_array = realloc(heap->heap_array,
488                                      heap_sz * sizeof(struct auxtrace_heap_item));
489                 if (!heap_array)
490                         return -ENOMEM;
491                 heap->heap_array = heap_array;
492                 heap->heap_sz = heap_sz;
493         }
494
495         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
496
497         return 0;
498 }
499
500 void auxtrace_heap__free(struct auxtrace_heap *heap)
501 {
502         zfree(&heap->heap_array);
503         heap->heap_cnt = 0;
504         heap->heap_sz = 0;
505 }
506
507 void auxtrace_heap__pop(struct auxtrace_heap *heap)
508 {
509         unsigned int pos, last, heap_cnt = heap->heap_cnt;
510         struct auxtrace_heap_item *heap_array;
511
512         if (!heap_cnt)
513                 return;
514
515         heap->heap_cnt -= 1;
516
517         heap_array = heap->heap_array;
518
519         pos = 0;
520         while (1) {
521                 unsigned int left, right;
522
523                 left = (pos << 1) + 1;
524                 if (left >= heap_cnt)
525                         break;
526                 right = left + 1;
527                 if (right >= heap_cnt) {
528                         heap_array[pos] = heap_array[left];
529                         return;
530                 }
531                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
532                         heap_array[pos] = heap_array[left];
533                         pos = left;
534                 } else {
535                         heap_array[pos] = heap_array[right];
536                         pos = right;
537                 }
538         }
539
540         last = heap_cnt - 1;
541         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
542                          heap_array[last].ordinal);
543 }
544
545 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
546                                        struct evlist *evlist)
547 {
548         if (itr)
549                 return itr->info_priv_size(itr, evlist);
550         return 0;
551 }
552
553 static int auxtrace_not_supported(void)
554 {
555         pr_err("AUX area tracing is not supported on this architecture\n");
556         return -EINVAL;
557 }
558
559 int auxtrace_record__info_fill(struct auxtrace_record *itr,
560                                struct perf_session *session,
561                                struct perf_record_auxtrace_info *auxtrace_info,
562                                size_t priv_size)
563 {
564         if (itr)
565                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
566         return auxtrace_not_supported();
567 }
568
569 void auxtrace_record__free(struct auxtrace_record *itr)
570 {
571         if (itr)
572                 itr->free(itr);
573 }
574
575 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
576 {
577         if (itr && itr->snapshot_start)
578                 return itr->snapshot_start(itr);
579         return 0;
580 }
581
582 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
583 {
584         if (!on_exit && itr && itr->snapshot_finish)
585                 return itr->snapshot_finish(itr);
586         return 0;
587 }
588
589 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
590                                    struct auxtrace_mmap *mm,
591                                    unsigned char *data, u64 *head, u64 *old)
592 {
593         if (itr && itr->find_snapshot)
594                 return itr->find_snapshot(itr, idx, mm, data, head, old);
595         return 0;
596 }
597
598 int auxtrace_record__options(struct auxtrace_record *itr,
599                              struct evlist *evlist,
600                              struct record_opts *opts)
601 {
602         if (itr) {
603                 itr->evlist = evlist;
604                 return itr->recording_options(itr, evlist, opts);
605         }
606         return 0;
607 }
608
609 u64 auxtrace_record__reference(struct auxtrace_record *itr)
610 {
611         if (itr)
612                 return itr->reference(itr);
613         return 0;
614 }
615
616 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
617                                     struct record_opts *opts, const char *str)
618 {
619         if (!str)
620                 return 0;
621
622         /* PMU-agnostic options */
623         switch (*str) {
624         case 'e':
625                 opts->auxtrace_snapshot_on_exit = true;
626                 str++;
627                 break;
628         default:
629                 break;
630         }
631
632         if (itr && itr->parse_snapshot_options)
633                 return itr->parse_snapshot_options(itr, opts, str);
634
635         pr_err("No AUX area tracing to snapshot\n");
636         return -EINVAL;
637 }
638
639 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
640 {
641         struct evsel *evsel;
642
643         if (!itr->evlist || !itr->pmu)
644                 return -EINVAL;
645
646         evlist__for_each_entry(itr->evlist, evsel) {
647                 if (evsel->core.attr.type == itr->pmu->type) {
648                         if (evsel->disabled)
649                                 return 0;
650                         return evlist__enable_event_idx(itr->evlist, evsel, idx);
651                 }
652         }
653         return -EINVAL;
654 }
655
656 /*
657  * Event record size is 16-bit which results in a maximum size of about 64KiB.
658  * Allow about 4KiB for the rest of the sample record, to give a maximum
659  * AUX area sample size of 60KiB.
660  */
661 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
662
663 /* Arbitrary default size if no other default provided */
664 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
665
666 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
667                                              struct record_opts *opts)
668 {
669         struct evsel *evsel;
670         bool has_aux_leader = false;
671         u32 sz;
672
673         evlist__for_each_entry(evlist, evsel) {
674                 sz = evsel->core.attr.aux_sample_size;
675                 if (evsel__is_group_leader(evsel)) {
676                         has_aux_leader = evsel__is_aux_event(evsel);
677                         if (sz) {
678                                 if (has_aux_leader)
679                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
680                                 else
681                                         pr_err("Cannot add AUX area sampling to a group leader\n");
682                                 return -EINVAL;
683                         }
684                 }
685                 if (sz > MAX_AUX_SAMPLE_SIZE) {
686                         pr_err("AUX area sample size %u too big, max. %d\n",
687                                sz, MAX_AUX_SAMPLE_SIZE);
688                         return -EINVAL;
689                 }
690                 if (sz) {
691                         if (!has_aux_leader) {
692                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
693                                 return -EINVAL;
694                         }
695                         evsel__set_sample_bit(evsel, AUX);
696                         opts->auxtrace_sample_mode = true;
697                 } else {
698                         evsel__reset_sample_bit(evsel, AUX);
699                 }
700         }
701
702         if (!opts->auxtrace_sample_mode) {
703                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
704                 return -EINVAL;
705         }
706
707         if (!perf_can_aux_sample()) {
708                 pr_err("AUX area sampling is not supported by kernel\n");
709                 return -EINVAL;
710         }
711
712         return 0;
713 }
714
715 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
716                                   struct evlist *evlist,
717                                   struct record_opts *opts, const char *str)
718 {
719         struct evsel_config_term *term;
720         struct evsel *aux_evsel;
721         bool has_aux_sample_size = false;
722         bool has_aux_leader = false;
723         struct evsel *evsel;
724         char *endptr;
725         unsigned long sz;
726
727         if (!str)
728                 goto no_opt;
729
730         if (!itr) {
731                 pr_err("No AUX area event to sample\n");
732                 return -EINVAL;
733         }
734
735         sz = strtoul(str, &endptr, 0);
736         if (*endptr || sz > UINT_MAX) {
737                 pr_err("Bad AUX area sampling option: '%s'\n", str);
738                 return -EINVAL;
739         }
740
741         if (!sz)
742                 sz = itr->default_aux_sample_size;
743
744         if (!sz)
745                 sz = DEFAULT_AUX_SAMPLE_SIZE;
746
747         /* Set aux_sample_size based on --aux-sample option */
748         evlist__for_each_entry(evlist, evsel) {
749                 if (evsel__is_group_leader(evsel)) {
750                         has_aux_leader = evsel__is_aux_event(evsel);
751                 } else if (has_aux_leader) {
752                         evsel->core.attr.aux_sample_size = sz;
753                 }
754         }
755 no_opt:
756         aux_evsel = NULL;
757         /* Override with aux_sample_size from config term */
758         evlist__for_each_entry(evlist, evsel) {
759                 if (evsel__is_aux_event(evsel))
760                         aux_evsel = evsel;
761                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
762                 if (term) {
763                         has_aux_sample_size = true;
764                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
765                         /* If possible, group with the AUX event */
766                         if (aux_evsel && evsel->core.attr.aux_sample_size)
767                                 evlist__regroup(evlist, aux_evsel, evsel);
768                 }
769         }
770
771         if (!str && !has_aux_sample_size)
772                 return 0;
773
774         if (!itr) {
775                 pr_err("No AUX area event to sample\n");
776                 return -EINVAL;
777         }
778
779         return auxtrace_validate_aux_sample_size(evlist, opts);
780 }
781
782 void auxtrace_regroup_aux_output(struct evlist *evlist)
783 {
784         struct evsel *evsel, *aux_evsel = NULL;
785         struct evsel_config_term *term;
786
787         evlist__for_each_entry(evlist, evsel) {
788                 if (evsel__is_aux_event(evsel))
789                         aux_evsel = evsel;
790                 term = evsel__get_config_term(evsel, AUX_OUTPUT);
791                 /* If possible, group with the AUX event */
792                 if (term && aux_evsel)
793                         evlist__regroup(evlist, aux_evsel, evsel);
794         }
795 }
796
797 struct auxtrace_record *__weak
798 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
799 {
800         *err = 0;
801         return NULL;
802 }
803
804 static int auxtrace_index__alloc(struct list_head *head)
805 {
806         struct auxtrace_index *auxtrace_index;
807
808         auxtrace_index = malloc(sizeof(struct auxtrace_index));
809         if (!auxtrace_index)
810                 return -ENOMEM;
811
812         auxtrace_index->nr = 0;
813         INIT_LIST_HEAD(&auxtrace_index->list);
814
815         list_add_tail(&auxtrace_index->list, head);
816
817         return 0;
818 }
819
820 void auxtrace_index__free(struct list_head *head)
821 {
822         struct auxtrace_index *auxtrace_index, *n;
823
824         list_for_each_entry_safe(auxtrace_index, n, head, list) {
825                 list_del_init(&auxtrace_index->list);
826                 free(auxtrace_index);
827         }
828 }
829
830 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
831 {
832         struct auxtrace_index *auxtrace_index;
833         int err;
834
835         if (list_empty(head)) {
836                 err = auxtrace_index__alloc(head);
837                 if (err)
838                         return NULL;
839         }
840
841         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
842
843         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
844                 err = auxtrace_index__alloc(head);
845                 if (err)
846                         return NULL;
847                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
848                                             list);
849         }
850
851         return auxtrace_index;
852 }
853
854 int auxtrace_index__auxtrace_event(struct list_head *head,
855                                    union perf_event *event, off_t file_offset)
856 {
857         struct auxtrace_index *auxtrace_index;
858         size_t nr;
859
860         auxtrace_index = auxtrace_index__last(head);
861         if (!auxtrace_index)
862                 return -ENOMEM;
863
864         nr = auxtrace_index->nr;
865         auxtrace_index->entries[nr].file_offset = file_offset;
866         auxtrace_index->entries[nr].sz = event->header.size;
867         auxtrace_index->nr += 1;
868
869         return 0;
870 }
871
872 static int auxtrace_index__do_write(int fd,
873                                     struct auxtrace_index *auxtrace_index)
874 {
875         struct auxtrace_index_entry ent;
876         size_t i;
877
878         for (i = 0; i < auxtrace_index->nr; i++) {
879                 ent.file_offset = auxtrace_index->entries[i].file_offset;
880                 ent.sz = auxtrace_index->entries[i].sz;
881                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
882                         return -errno;
883         }
884         return 0;
885 }
886
887 int auxtrace_index__write(int fd, struct list_head *head)
888 {
889         struct auxtrace_index *auxtrace_index;
890         u64 total = 0;
891         int err;
892
893         list_for_each_entry(auxtrace_index, head, list)
894                 total += auxtrace_index->nr;
895
896         if (writen(fd, &total, sizeof(total)) != sizeof(total))
897                 return -errno;
898
899         list_for_each_entry(auxtrace_index, head, list) {
900                 err = auxtrace_index__do_write(fd, auxtrace_index);
901                 if (err)
902                         return err;
903         }
904
905         return 0;
906 }
907
908 static int auxtrace_index__process_entry(int fd, struct list_head *head,
909                                          bool needs_swap)
910 {
911         struct auxtrace_index *auxtrace_index;
912         struct auxtrace_index_entry ent;
913         size_t nr;
914
915         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
916                 return -1;
917
918         auxtrace_index = auxtrace_index__last(head);
919         if (!auxtrace_index)
920                 return -1;
921
922         nr = auxtrace_index->nr;
923         if (needs_swap) {
924                 auxtrace_index->entries[nr].file_offset =
925                                                 bswap_64(ent.file_offset);
926                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
927         } else {
928                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
929                 auxtrace_index->entries[nr].sz = ent.sz;
930         }
931
932         auxtrace_index->nr = nr + 1;
933
934         return 0;
935 }
936
937 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
938                             bool needs_swap)
939 {
940         struct list_head *head = &session->auxtrace_index;
941         u64 nr;
942
943         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
944                 return -1;
945
946         if (needs_swap)
947                 nr = bswap_64(nr);
948
949         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
950                 return -1;
951
952         while (nr--) {
953                 int err;
954
955                 err = auxtrace_index__process_entry(fd, head, needs_swap);
956                 if (err)
957                         return -1;
958         }
959
960         return 0;
961 }
962
963 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
964                                                 struct perf_session *session,
965                                                 struct auxtrace_index_entry *ent)
966 {
967         return auxtrace_queues__add_indexed_event(queues, session,
968                                                   ent->file_offset, ent->sz);
969 }
970
971 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
972                                    struct perf_session *session)
973 {
974         struct auxtrace_index *auxtrace_index;
975         struct auxtrace_index_entry *ent;
976         size_t i;
977         int err;
978
979         if (auxtrace__dont_decode(session))
980                 return 0;
981
982         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
983                 for (i = 0; i < auxtrace_index->nr; i++) {
984                         ent = &auxtrace_index->entries[i];
985                         err = auxtrace_queues__process_index_entry(queues,
986                                                                    session,
987                                                                    ent);
988                         if (err)
989                                 return err;
990                 }
991         }
992         return 0;
993 }
994
995 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
996                                               struct auxtrace_buffer *buffer)
997 {
998         if (buffer) {
999                 if (list_is_last(&buffer->list, &queue->head))
1000                         return NULL;
1001                 return list_entry(buffer->list.next, struct auxtrace_buffer,
1002                                   list);
1003         } else {
1004                 if (list_empty(&queue->head))
1005                         return NULL;
1006                 return list_entry(queue->head.next, struct auxtrace_buffer,
1007                                   list);
1008         }
1009 }
1010
1011 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1012                                                      struct perf_sample *sample,
1013                                                      struct perf_session *session)
1014 {
1015         struct perf_sample_id *sid;
1016         unsigned int idx;
1017         u64 id;
1018
1019         id = sample->id;
1020         if (!id)
1021                 return NULL;
1022
1023         sid = evlist__id2sid(session->evlist, id);
1024         if (!sid)
1025                 return NULL;
1026
1027         idx = sid->idx;
1028
1029         if (idx >= queues->nr_queues)
1030                 return NULL;
1031
1032         return &queues->queue_array[idx];
1033 }
1034
1035 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1036                                 struct perf_session *session,
1037                                 struct perf_sample *sample, u64 data_offset,
1038                                 u64 reference)
1039 {
1040         struct auxtrace_buffer buffer = {
1041                 .pid = -1,
1042                 .data_offset = data_offset,
1043                 .reference = reference,
1044                 .size = sample->aux_sample.size,
1045         };
1046         struct perf_sample_id *sid;
1047         u64 id = sample->id;
1048         unsigned int idx;
1049
1050         if (!id)
1051                 return -EINVAL;
1052
1053         sid = evlist__id2sid(session->evlist, id);
1054         if (!sid)
1055                 return -ENOENT;
1056
1057         idx = sid->idx;
1058         buffer.tid = sid->tid;
1059         buffer.cpu = sid->cpu;
1060
1061         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1062 }
1063
1064 struct queue_data {
1065         bool samples;
1066         bool events;
1067 };
1068
1069 static int auxtrace_queue_data_cb(struct perf_session *session,
1070                                   union perf_event *event, u64 offset,
1071                                   void *data)
1072 {
1073         struct queue_data *qd = data;
1074         struct perf_sample sample;
1075         int err;
1076
1077         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1078                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1079                         return -EINVAL;
1080                 offset += event->header.size;
1081                 return session->auxtrace->queue_data(session, NULL, event,
1082                                                      offset);
1083         }
1084
1085         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1086                 return 0;
1087
1088         err = evlist__parse_sample(session->evlist, event, &sample);
1089         if (err)
1090                 return err;
1091
1092         if (!sample.aux_sample.size)
1093                 return 0;
1094
1095         offset += sample.aux_sample.data - (void *)event;
1096
1097         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1098 }
1099
1100 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1101 {
1102         struct queue_data qd = {
1103                 .samples = samples,
1104                 .events = events,
1105         };
1106
1107         if (auxtrace__dont_decode(session))
1108                 return 0;
1109
1110         if (!session->auxtrace || !session->auxtrace->queue_data)
1111                 return -EINVAL;
1112
1113         return perf_session__peek_events(session, session->header.data_offset,
1114                                          session->header.data_size,
1115                                          auxtrace_queue_data_cb, &qd);
1116 }
1117
1118 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1119 {
1120         int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1121         size_t adj = buffer->data_offset & (page_size - 1);
1122         size_t size = buffer->size + adj;
1123         off_t file_offset = buffer->data_offset - adj;
1124         void *addr;
1125
1126         if (buffer->data)
1127                 return buffer->data;
1128
1129         addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1130         if (addr == MAP_FAILED)
1131                 return NULL;
1132
1133         buffer->mmap_addr = addr;
1134         buffer->mmap_size = size;
1135
1136         buffer->data = addr + adj;
1137
1138         return buffer->data;
1139 }
1140
1141 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1142 {
1143         if (!buffer->data || !buffer->mmap_addr)
1144                 return;
1145         munmap(buffer->mmap_addr, buffer->mmap_size);
1146         buffer->mmap_addr = NULL;
1147         buffer->mmap_size = 0;
1148         buffer->data = NULL;
1149         buffer->use_data = NULL;
1150 }
1151
1152 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1153 {
1154         auxtrace_buffer__put_data(buffer);
1155         if (buffer->data_needs_freeing) {
1156                 buffer->data_needs_freeing = false;
1157                 zfree(&buffer->data);
1158                 buffer->use_data = NULL;
1159                 buffer->size = 0;
1160         }
1161 }
1162
1163 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1164 {
1165         auxtrace_buffer__drop_data(buffer);
1166         free(buffer);
1167 }
1168
1169 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1170                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1171                           const char *msg, u64 timestamp)
1172 {
1173         size_t size;
1174
1175         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1176
1177         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1178         auxtrace_error->type = type;
1179         auxtrace_error->code = code;
1180         auxtrace_error->cpu = cpu;
1181         auxtrace_error->pid = pid;
1182         auxtrace_error->tid = tid;
1183         auxtrace_error->fmt = 1;
1184         auxtrace_error->ip = ip;
1185         auxtrace_error->time = timestamp;
1186         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1187
1188         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1189                strlen(auxtrace_error->msg) + 1;
1190         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1191 }
1192
1193 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1194                                          struct perf_tool *tool,
1195                                          struct perf_session *session,
1196                                          perf_event__handler_t process)
1197 {
1198         union perf_event *ev;
1199         size_t priv_size;
1200         int err;
1201
1202         pr_debug2("Synthesizing auxtrace information\n");
1203         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1204         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1205         if (!ev)
1206                 return -ENOMEM;
1207
1208         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1209         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1210                                         priv_size;
1211         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1212                                          priv_size);
1213         if (err)
1214                 goto out_free;
1215
1216         err = process(tool, ev, NULL, NULL);
1217 out_free:
1218         free(ev);
1219         return err;
1220 }
1221
1222 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1223 {
1224         struct evsel *new_leader = NULL;
1225         struct evsel *evsel;
1226
1227         /* Find new leader for the group */
1228         evlist__for_each_entry(evlist, evsel) {
1229                 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1230                         continue;
1231                 if (!new_leader)
1232                         new_leader = evsel;
1233                 evsel__set_leader(evsel, new_leader);
1234         }
1235
1236         /* Update group information */
1237         if (new_leader) {
1238                 zfree(&new_leader->group_name);
1239                 new_leader->group_name = leader->group_name;
1240                 leader->group_name = NULL;
1241
1242                 new_leader->core.nr_members = leader->core.nr_members - 1;
1243                 leader->core.nr_members = 1;
1244         }
1245 }
1246
1247 static void unleader_auxtrace(struct perf_session *session)
1248 {
1249         struct evsel *evsel;
1250
1251         evlist__for_each_entry(session->evlist, evsel) {
1252                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1253                     evsel__is_group_leader(evsel)) {
1254                         unleader_evsel(session->evlist, evsel);
1255                 }
1256         }
1257 }
1258
1259 int perf_event__process_auxtrace_info(struct perf_session *session,
1260                                       union perf_event *event)
1261 {
1262         enum auxtrace_type type = event->auxtrace_info.type;
1263         int err;
1264
1265         if (dump_trace)
1266                 fprintf(stdout, " type: %u\n", type);
1267
1268         switch (type) {
1269         case PERF_AUXTRACE_INTEL_PT:
1270                 err = intel_pt_process_auxtrace_info(event, session);
1271                 break;
1272         case PERF_AUXTRACE_INTEL_BTS:
1273                 err = intel_bts_process_auxtrace_info(event, session);
1274                 break;
1275         case PERF_AUXTRACE_ARM_SPE:
1276                 err = arm_spe_process_auxtrace_info(event, session);
1277                 break;
1278         case PERF_AUXTRACE_CS_ETM:
1279                 err = cs_etm__process_auxtrace_info(event, session);
1280                 break;
1281         case PERF_AUXTRACE_S390_CPUMSF:
1282                 err = s390_cpumsf_process_auxtrace_info(event, session);
1283                 break;
1284         case PERF_AUXTRACE_UNKNOWN:
1285         default:
1286                 return -EINVAL;
1287         }
1288
1289         if (err)
1290                 return err;
1291
1292         unleader_auxtrace(session);
1293
1294         return 0;
1295 }
1296
1297 s64 perf_event__process_auxtrace(struct perf_session *session,
1298                                  union perf_event *event)
1299 {
1300         s64 err;
1301
1302         if (dump_trace)
1303                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1304                         event->auxtrace.size, event->auxtrace.offset,
1305                         event->auxtrace.reference, event->auxtrace.idx,
1306                         event->auxtrace.tid, event->auxtrace.cpu);
1307
1308         if (auxtrace__dont_decode(session))
1309                 return event->auxtrace.size;
1310
1311         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1312                 return -EINVAL;
1313
1314         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1315         if (err < 0)
1316                 return err;
1317
1318         return event->auxtrace.size;
1319 }
1320
1321 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1322 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1323 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1324 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1325 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1326 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1327
1328 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1329                                     bool no_sample)
1330 {
1331         synth_opts->branches = true;
1332         synth_opts->transactions = true;
1333         synth_opts->ptwrites = true;
1334         synth_opts->pwr_events = true;
1335         synth_opts->other_events = true;
1336         synth_opts->intr_events = true;
1337         synth_opts->errors = true;
1338         synth_opts->flc = true;
1339         synth_opts->llc = true;
1340         synth_opts->tlb = true;
1341         synth_opts->mem = true;
1342         synth_opts->remote_access = true;
1343
1344         if (no_sample) {
1345                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1346                 synth_opts->period = 1;
1347                 synth_opts->calls = true;
1348         } else {
1349                 synth_opts->instructions = true;
1350                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1351                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1352         }
1353         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1354         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1355         synth_opts->initial_skip = 0;
1356 }
1357
1358 static int get_flag(const char **ptr, unsigned int *flags)
1359 {
1360         while (1) {
1361                 char c = **ptr;
1362
1363                 if (c >= 'a' && c <= 'z') {
1364                         *flags |= 1 << (c - 'a');
1365                         ++*ptr;
1366                         return 0;
1367                 } else if (c == ' ') {
1368                         ++*ptr;
1369                         continue;
1370                 } else {
1371                         return -1;
1372                 }
1373         }
1374 }
1375
1376 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1377 {
1378         while (1) {
1379                 switch (**ptr) {
1380                 case '+':
1381                         ++*ptr;
1382                         if (get_flag(ptr, plus_flags))
1383                                 return -1;
1384                         break;
1385                 case '-':
1386                         ++*ptr;
1387                         if (get_flag(ptr, minus_flags))
1388                                 return -1;
1389                         break;
1390                 case ' ':
1391                         ++*ptr;
1392                         break;
1393                 default:
1394                         return 0;
1395                 }
1396         }
1397 }
1398
1399 /*
1400  * Please check tools/perf/Documentation/perf-script.txt for information
1401  * about the options parsed here, which is introduced after this cset,
1402  * when support in 'perf script' for these options is introduced.
1403  */
1404 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1405                                const char *str, int unset)
1406 {
1407         const char *p;
1408         char *endptr;
1409         bool period_type_set = false;
1410         bool period_set = false;
1411
1412         synth_opts->set = true;
1413
1414         if (unset) {
1415                 synth_opts->dont_decode = true;
1416                 return 0;
1417         }
1418
1419         if (!str) {
1420                 itrace_synth_opts__set_default(synth_opts,
1421                                                synth_opts->default_no_sample);
1422                 return 0;
1423         }
1424
1425         for (p = str; *p;) {
1426                 switch (*p++) {
1427                 case 'i':
1428                         synth_opts->instructions = true;
1429                         while (*p == ' ' || *p == ',')
1430                                 p += 1;
1431                         if (isdigit(*p)) {
1432                                 synth_opts->period = strtoull(p, &endptr, 10);
1433                                 period_set = true;
1434                                 p = endptr;
1435                                 while (*p == ' ' || *p == ',')
1436                                         p += 1;
1437                                 switch (*p++) {
1438                                 case 'i':
1439                                         synth_opts->period_type =
1440                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1441                                         period_type_set = true;
1442                                         break;
1443                                 case 't':
1444                                         synth_opts->period_type =
1445                                                 PERF_ITRACE_PERIOD_TICKS;
1446                                         period_type_set = true;
1447                                         break;
1448                                 case 'm':
1449                                         synth_opts->period *= 1000;
1450                                         /* Fall through */
1451                                 case 'u':
1452                                         synth_opts->period *= 1000;
1453                                         /* Fall through */
1454                                 case 'n':
1455                                         if (*p++ != 's')
1456                                                 goto out_err;
1457                                         synth_opts->period_type =
1458                                                 PERF_ITRACE_PERIOD_NANOSECS;
1459                                         period_type_set = true;
1460                                         break;
1461                                 case '\0':
1462                                         goto out;
1463                                 default:
1464                                         goto out_err;
1465                                 }
1466                         }
1467                         break;
1468                 case 'b':
1469                         synth_opts->branches = true;
1470                         break;
1471                 case 'x':
1472                         synth_opts->transactions = true;
1473                         break;
1474                 case 'w':
1475                         synth_opts->ptwrites = true;
1476                         break;
1477                 case 'p':
1478                         synth_opts->pwr_events = true;
1479                         break;
1480                 case 'o':
1481                         synth_opts->other_events = true;
1482                         break;
1483                 case 'I':
1484                         synth_opts->intr_events = true;
1485                         break;
1486                 case 'e':
1487                         synth_opts->errors = true;
1488                         if (get_flags(&p, &synth_opts->error_plus_flags,
1489                                       &synth_opts->error_minus_flags))
1490                                 goto out_err;
1491                         break;
1492                 case 'd':
1493                         synth_opts->log = true;
1494                         if (get_flags(&p, &synth_opts->log_plus_flags,
1495                                       &synth_opts->log_minus_flags))
1496                                 goto out_err;
1497                         break;
1498                 case 'c':
1499                         synth_opts->branches = true;
1500                         synth_opts->calls = true;
1501                         break;
1502                 case 'r':
1503                         synth_opts->branches = true;
1504                         synth_opts->returns = true;
1505                         break;
1506                 case 'G':
1507                 case 'g':
1508                         if (p[-1] == 'G')
1509                                 synth_opts->add_callchain = true;
1510                         else
1511                                 synth_opts->callchain = true;
1512                         synth_opts->callchain_sz =
1513                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1514                         while (*p == ' ' || *p == ',')
1515                                 p += 1;
1516                         if (isdigit(*p)) {
1517                                 unsigned int val;
1518
1519                                 val = strtoul(p, &endptr, 10);
1520                                 p = endptr;
1521                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1522                                         goto out_err;
1523                                 synth_opts->callchain_sz = val;
1524                         }
1525                         break;
1526                 case 'L':
1527                 case 'l':
1528                         if (p[-1] == 'L')
1529                                 synth_opts->add_last_branch = true;
1530                         else
1531                                 synth_opts->last_branch = true;
1532                         synth_opts->last_branch_sz =
1533                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1534                         while (*p == ' ' || *p == ',')
1535                                 p += 1;
1536                         if (isdigit(*p)) {
1537                                 unsigned int val;
1538
1539                                 val = strtoul(p, &endptr, 10);
1540                                 p = endptr;
1541                                 if (!val ||
1542                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1543                                         goto out_err;
1544                                 synth_opts->last_branch_sz = val;
1545                         }
1546                         break;
1547                 case 's':
1548                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1549                         if (p == endptr)
1550                                 goto out_err;
1551                         p = endptr;
1552                         break;
1553                 case 'f':
1554                         synth_opts->flc = true;
1555                         break;
1556                 case 'm':
1557                         synth_opts->llc = true;
1558                         break;
1559                 case 't':
1560                         synth_opts->tlb = true;
1561                         break;
1562                 case 'a':
1563                         synth_opts->remote_access = true;
1564                         break;
1565                 case 'M':
1566                         synth_opts->mem = true;
1567                         break;
1568                 case 'q':
1569                         synth_opts->quick += 1;
1570                         break;
1571                 case 'A':
1572                         synth_opts->approx_ipc = true;
1573                         break;
1574                 case 'Z':
1575                         synth_opts->timeless_decoding = true;
1576                         break;
1577                 case ' ':
1578                 case ',':
1579                         break;
1580                 default:
1581                         goto out_err;
1582                 }
1583         }
1584 out:
1585         if (synth_opts->instructions) {
1586                 if (!period_type_set)
1587                         synth_opts->period_type =
1588                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1589                 if (!period_set)
1590                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1591         }
1592
1593         return 0;
1594
1595 out_err:
1596         pr_err("Bad Instruction Tracing options '%s'\n", str);
1597         return -EINVAL;
1598 }
1599
1600 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1601 {
1602         return itrace_do_parse_synth_opts(opt->value, str, unset);
1603 }
1604
1605 static const char * const auxtrace_error_type_name[] = {
1606         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1607 };
1608
1609 static const char *auxtrace_error_name(int type)
1610 {
1611         const char *error_type_name = NULL;
1612
1613         if (type < PERF_AUXTRACE_ERROR_MAX)
1614                 error_type_name = auxtrace_error_type_name[type];
1615         if (!error_type_name)
1616                 error_type_name = "unknown AUX";
1617         return error_type_name;
1618 }
1619
1620 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1621 {
1622         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1623         unsigned long long nsecs = e->time;
1624         const char *msg = e->msg;
1625         int ret;
1626
1627         ret = fprintf(fp, " %s error type %u",
1628                       auxtrace_error_name(e->type), e->type);
1629
1630         if (e->fmt && nsecs) {
1631                 unsigned long secs = nsecs / NSEC_PER_SEC;
1632
1633                 nsecs -= secs * NSEC_PER_SEC;
1634                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1635         } else {
1636                 ret += fprintf(fp, " time 0");
1637         }
1638
1639         if (!e->fmt)
1640                 msg = (const char *)&e->time;
1641
1642         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1643                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1644         return ret;
1645 }
1646
1647 void perf_session__auxtrace_error_inc(struct perf_session *session,
1648                                       union perf_event *event)
1649 {
1650         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1651
1652         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1653                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1654 }
1655
1656 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1657 {
1658         int i;
1659
1660         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1661                 if (!stats->nr_auxtrace_errors[i])
1662                         continue;
1663                 ui__warning("%u %s errors\n",
1664                             stats->nr_auxtrace_errors[i],
1665                             auxtrace_error_name(i));
1666         }
1667 }
1668
1669 int perf_event__process_auxtrace_error(struct perf_session *session,
1670                                        union perf_event *event)
1671 {
1672         if (auxtrace__dont_decode(session))
1673                 return 0;
1674
1675         perf_event__fprintf_auxtrace_error(event, stdout);
1676         return 0;
1677 }
1678
1679 /*
1680  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1681  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1682  * the issues caused by the below sequence on multiple CPUs: when perf tool
1683  * accesses either the load operation or the store operation for 64-bit value,
1684  * on some architectures the operation is divided into two instructions, one
1685  * is for accessing the low 32-bit value and another is for the high 32-bit;
1686  * thus these two user operations can give the kernel chances to access the
1687  * 64-bit value, and thus leads to the unexpected load values.
1688  *
1689  *   kernel (64-bit)                        user (32-bit)
1690  *
1691  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1692  *       STORE $aux_data      |       ,--->
1693  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1694  *       STORE ->aux_head   --|-------`     smp_rmb()
1695  *   }                        |             LOAD $data
1696  *                            |             smp_mb()
1697  *                            |             STORE ->aux_tail_lo
1698  *                            `----------->
1699  *                                          STORE ->aux_tail_hi
1700  *
1701  * For this reason, it's impossible for the perf tool to work correctly when
1702  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1703  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1704  * the pointers can be increased monotonically, whatever the buffer size it is,
1705  * at the end the head and tail can be bigger than 4GB and carry out to the
1706  * high 32-bit.
1707  *
1708  * To mitigate the issues and improve the user experience, we can allow the
1709  * perf tool working in certain conditions and bail out with error if detect
1710  * any overflow cannot be handled.
1711  *
1712  * For reading the AUX head, it reads out the values for three times, and
1713  * compares the high 4 bytes of the values between the first time and the last
1714  * time, if there has no change for high 4 bytes injected by the kernel during
1715  * the user reading sequence, it's safe for use the second value.
1716  *
1717  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1718  * 32 bits, it means there have two store operations in user space and it cannot
1719  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1720  * the caller an overflow error has happened.
1721  */
1722 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1723 {
1724         struct perf_event_mmap_page *pc = mm->userpg;
1725         u64 first, second, last;
1726         u64 mask = (u64)(UINT32_MAX) << 32;
1727
1728         do {
1729                 first = READ_ONCE(pc->aux_head);
1730                 /* Ensure all reads are done after we read the head */
1731                 smp_rmb();
1732                 second = READ_ONCE(pc->aux_head);
1733                 /* Ensure all reads are done after we read the head */
1734                 smp_rmb();
1735                 last = READ_ONCE(pc->aux_head);
1736         } while ((first & mask) != (last & mask));
1737
1738         return second;
1739 }
1740
1741 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1742 {
1743         struct perf_event_mmap_page *pc = mm->userpg;
1744         u64 mask = (u64)(UINT32_MAX) << 32;
1745
1746         if (tail & mask)
1747                 return -1;
1748
1749         /* Ensure all reads are done before we write the tail out */
1750         smp_mb();
1751         WRITE_ONCE(pc->aux_tail, tail);
1752         return 0;
1753 }
1754
1755 static int __auxtrace_mmap__read(struct mmap *map,
1756                                  struct auxtrace_record *itr,
1757                                  struct perf_tool *tool, process_auxtrace_t fn,
1758                                  bool snapshot, size_t snapshot_size)
1759 {
1760         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1761         u64 head, old = mm->prev, offset, ref;
1762         unsigned char *data = mm->base;
1763         size_t size, head_off, old_off, len1, len2, padding;
1764         union perf_event ev;
1765         void *data1, *data2;
1766         int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1767
1768         head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1769
1770         if (snapshot &&
1771             auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1772                 return -1;
1773
1774         if (old == head)
1775                 return 0;
1776
1777         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1778                   mm->idx, old, head, head - old);
1779
1780         if (mm->mask) {
1781                 head_off = head & mm->mask;
1782                 old_off = old & mm->mask;
1783         } else {
1784                 head_off = head % mm->len;
1785                 old_off = old % mm->len;
1786         }
1787
1788         if (head_off > old_off)
1789                 size = head_off - old_off;
1790         else
1791                 size = mm->len - (old_off - head_off);
1792
1793         if (snapshot && size > snapshot_size)
1794                 size = snapshot_size;
1795
1796         ref = auxtrace_record__reference(itr);
1797
1798         if (head > old || size <= head || mm->mask) {
1799                 offset = head - size;
1800         } else {
1801                 /*
1802                  * When the buffer size is not a power of 2, 'head' wraps at the
1803                  * highest multiple of the buffer size, so we have to subtract
1804                  * the remainder here.
1805                  */
1806                 u64 rem = (0ULL - mm->len) % mm->len;
1807
1808                 offset = head - size - rem;
1809         }
1810
1811         if (size > head_off) {
1812                 len1 = size - head_off;
1813                 data1 = &data[mm->len - len1];
1814                 len2 = head_off;
1815                 data2 = &data[0];
1816         } else {
1817                 len1 = size;
1818                 data1 = &data[head_off - len1];
1819                 len2 = 0;
1820                 data2 = NULL;
1821         }
1822
1823         if (itr->alignment) {
1824                 unsigned int unwanted = len1 % itr->alignment;
1825
1826                 len1 -= unwanted;
1827                 size -= unwanted;
1828         }
1829
1830         /* padding must be written by fn() e.g. record__process_auxtrace() */
1831         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1832         if (padding)
1833                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1834
1835         memset(&ev, 0, sizeof(ev));
1836         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1837         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1838         ev.auxtrace.size = size + padding;
1839         ev.auxtrace.offset = offset;
1840         ev.auxtrace.reference = ref;
1841         ev.auxtrace.idx = mm->idx;
1842         ev.auxtrace.tid = mm->tid;
1843         ev.auxtrace.cpu = mm->cpu;
1844
1845         if (fn(tool, map, &ev, data1, len1, data2, len2))
1846                 return -1;
1847
1848         mm->prev = head;
1849
1850         if (!snapshot) {
1851                 int err;
1852
1853                 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1854                 if (err < 0)
1855                         return err;
1856
1857                 if (itr->read_finish) {
1858                         err = itr->read_finish(itr, mm->idx);
1859                         if (err < 0)
1860                                 return err;
1861                 }
1862         }
1863
1864         return 1;
1865 }
1866
1867 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1868                         struct perf_tool *tool, process_auxtrace_t fn)
1869 {
1870         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1871 }
1872
1873 int auxtrace_mmap__read_snapshot(struct mmap *map,
1874                                  struct auxtrace_record *itr,
1875                                  struct perf_tool *tool, process_auxtrace_t fn,
1876                                  size_t snapshot_size)
1877 {
1878         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1879 }
1880
1881 /**
1882  * struct auxtrace_cache - hash table to implement a cache
1883  * @hashtable: the hashtable
1884  * @sz: hashtable size (number of hlists)
1885  * @entry_size: size of an entry
1886  * @limit: limit the number of entries to this maximum, when reached the cache
1887  *         is dropped and caching begins again with an empty cache
1888  * @cnt: current number of entries
1889  * @bits: hashtable size (@sz = 2^@bits)
1890  */
1891 struct auxtrace_cache {
1892         struct hlist_head *hashtable;
1893         size_t sz;
1894         size_t entry_size;
1895         size_t limit;
1896         size_t cnt;
1897         unsigned int bits;
1898 };
1899
1900 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1901                                            unsigned int limit_percent)
1902 {
1903         struct auxtrace_cache *c;
1904         struct hlist_head *ht;
1905         size_t sz, i;
1906
1907         c = zalloc(sizeof(struct auxtrace_cache));
1908         if (!c)
1909                 return NULL;
1910
1911         sz = 1UL << bits;
1912
1913         ht = calloc(sz, sizeof(struct hlist_head));
1914         if (!ht)
1915                 goto out_free;
1916
1917         for (i = 0; i < sz; i++)
1918                 INIT_HLIST_HEAD(&ht[i]);
1919
1920         c->hashtable = ht;
1921         c->sz = sz;
1922         c->entry_size = entry_size;
1923         c->limit = (c->sz * limit_percent) / 100;
1924         c->bits = bits;
1925
1926         return c;
1927
1928 out_free:
1929         free(c);
1930         return NULL;
1931 }
1932
1933 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1934 {
1935         struct auxtrace_cache_entry *entry;
1936         struct hlist_node *tmp;
1937         size_t i;
1938
1939         if (!c)
1940                 return;
1941
1942         for (i = 0; i < c->sz; i++) {
1943                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1944                         hlist_del(&entry->hash);
1945                         auxtrace_cache__free_entry(c, entry);
1946                 }
1947         }
1948
1949         c->cnt = 0;
1950 }
1951
1952 void auxtrace_cache__free(struct auxtrace_cache *c)
1953 {
1954         if (!c)
1955                 return;
1956
1957         auxtrace_cache__drop(c);
1958         zfree(&c->hashtable);
1959         free(c);
1960 }
1961
1962 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1963 {
1964         return malloc(c->entry_size);
1965 }
1966
1967 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1968                                 void *entry)
1969 {
1970         free(entry);
1971 }
1972
1973 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1974                         struct auxtrace_cache_entry *entry)
1975 {
1976         if (c->limit && ++c->cnt > c->limit)
1977                 auxtrace_cache__drop(c);
1978
1979         entry->key = key;
1980         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1981
1982         return 0;
1983 }
1984
1985 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1986                                                        u32 key)
1987 {
1988         struct auxtrace_cache_entry *entry;
1989         struct hlist_head *hlist;
1990         struct hlist_node *n;
1991
1992         if (!c)
1993                 return NULL;
1994
1995         hlist = &c->hashtable[hash_32(key, c->bits)];
1996         hlist_for_each_entry_safe(entry, n, hlist, hash) {
1997                 if (entry->key == key) {
1998                         hlist_del(&entry->hash);
1999                         return entry;
2000                 }
2001         }
2002
2003         return NULL;
2004 }
2005
2006 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2007 {
2008         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2009
2010         auxtrace_cache__free_entry(c, entry);
2011 }
2012
2013 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2014 {
2015         struct auxtrace_cache_entry *entry;
2016         struct hlist_head *hlist;
2017
2018         if (!c)
2019                 return NULL;
2020
2021         hlist = &c->hashtable[hash_32(key, c->bits)];
2022         hlist_for_each_entry(entry, hlist, hash) {
2023                 if (entry->key == key)
2024                         return entry;
2025         }
2026
2027         return NULL;
2028 }
2029
2030 static void addr_filter__free_str(struct addr_filter *filt)
2031 {
2032         zfree(&filt->str);
2033         filt->action   = NULL;
2034         filt->sym_from = NULL;
2035         filt->sym_to   = NULL;
2036         filt->filename = NULL;
2037 }
2038
2039 static struct addr_filter *addr_filter__new(void)
2040 {
2041         struct addr_filter *filt = zalloc(sizeof(*filt));
2042
2043         if (filt)
2044                 INIT_LIST_HEAD(&filt->list);
2045
2046         return filt;
2047 }
2048
2049 static void addr_filter__free(struct addr_filter *filt)
2050 {
2051         if (filt)
2052                 addr_filter__free_str(filt);
2053         free(filt);
2054 }
2055
2056 static void addr_filters__add(struct addr_filters *filts,
2057                               struct addr_filter *filt)
2058 {
2059         list_add_tail(&filt->list, &filts->head);
2060         filts->cnt += 1;
2061 }
2062
2063 static void addr_filters__del(struct addr_filters *filts,
2064                               struct addr_filter *filt)
2065 {
2066         list_del_init(&filt->list);
2067         filts->cnt -= 1;
2068 }
2069
2070 void addr_filters__init(struct addr_filters *filts)
2071 {
2072         INIT_LIST_HEAD(&filts->head);
2073         filts->cnt = 0;
2074 }
2075
2076 void addr_filters__exit(struct addr_filters *filts)
2077 {
2078         struct addr_filter *filt, *n;
2079
2080         list_for_each_entry_safe(filt, n, &filts->head, list) {
2081                 addr_filters__del(filts, filt);
2082                 addr_filter__free(filt);
2083         }
2084 }
2085
2086 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2087                             const char *str_delim)
2088 {
2089         *inp += strspn(*inp, " ");
2090
2091         if (isdigit(**inp)) {
2092                 char *endptr;
2093
2094                 if (!num)
2095                         return -EINVAL;
2096                 errno = 0;
2097                 *num = strtoull(*inp, &endptr, 0);
2098                 if (errno)
2099                         return -errno;
2100                 if (endptr == *inp)
2101                         return -EINVAL;
2102                 *inp = endptr;
2103         } else {
2104                 size_t n;
2105
2106                 if (!str)
2107                         return -EINVAL;
2108                 *inp += strspn(*inp, " ");
2109                 *str = *inp;
2110                 n = strcspn(*inp, str_delim);
2111                 if (!n)
2112                         return -EINVAL;
2113                 *inp += n;
2114                 if (**inp) {
2115                         **inp = '\0';
2116                         *inp += 1;
2117                 }
2118         }
2119         return 0;
2120 }
2121
2122 static int parse_action(struct addr_filter *filt)
2123 {
2124         if (!strcmp(filt->action, "filter")) {
2125                 filt->start = true;
2126                 filt->range = true;
2127         } else if (!strcmp(filt->action, "start")) {
2128                 filt->start = true;
2129         } else if (!strcmp(filt->action, "stop")) {
2130                 filt->start = false;
2131         } else if (!strcmp(filt->action, "tracestop")) {
2132                 filt->start = false;
2133                 filt->range = true;
2134                 filt->action += 5; /* Change 'tracestop' to 'stop' */
2135         } else {
2136                 return -EINVAL;
2137         }
2138         return 0;
2139 }
2140
2141 static int parse_sym_idx(char **inp, int *idx)
2142 {
2143         *idx = -1;
2144
2145         *inp += strspn(*inp, " ");
2146
2147         if (**inp != '#')
2148                 return 0;
2149
2150         *inp += 1;
2151
2152         if (**inp == 'g' || **inp == 'G') {
2153                 *inp += 1;
2154                 *idx = 0;
2155         } else {
2156                 unsigned long num;
2157                 char *endptr;
2158
2159                 errno = 0;
2160                 num = strtoul(*inp, &endptr, 0);
2161                 if (errno)
2162                         return -errno;
2163                 if (endptr == *inp || num > INT_MAX)
2164                         return -EINVAL;
2165                 *inp = endptr;
2166                 *idx = num;
2167         }
2168
2169         return 0;
2170 }
2171
2172 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2173 {
2174         int err = parse_num_or_str(inp, num, str, " ");
2175
2176         if (!err && *str)
2177                 err = parse_sym_idx(inp, idx);
2178
2179         return err;
2180 }
2181
2182 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2183 {
2184         char *fstr;
2185         int err;
2186
2187         filt->str = fstr = strdup(*filter_inp);
2188         if (!fstr)
2189                 return -ENOMEM;
2190
2191         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2192         if (err)
2193                 goto out_err;
2194
2195         err = parse_action(filt);
2196         if (err)
2197                 goto out_err;
2198
2199         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2200                               &filt->sym_from_idx);
2201         if (err)
2202                 goto out_err;
2203
2204         fstr += strspn(fstr, " ");
2205
2206         if (*fstr == '/') {
2207                 fstr += 1;
2208                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2209                                       &filt->sym_to_idx);
2210                 if (err)
2211                         goto out_err;
2212                 filt->range = true;
2213         }
2214
2215         fstr += strspn(fstr, " ");
2216
2217         if (*fstr == '@') {
2218                 fstr += 1;
2219                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2220                 if (err)
2221                         goto out_err;
2222         }
2223
2224         fstr += strspn(fstr, " ,");
2225
2226         *filter_inp += fstr - filt->str;
2227
2228         return 0;
2229
2230 out_err:
2231         addr_filter__free_str(filt);
2232
2233         return err;
2234 }
2235
2236 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2237                                     const char *filter)
2238 {
2239         struct addr_filter *filt;
2240         const char *fstr = filter;
2241         int err;
2242
2243         while (*fstr) {
2244                 filt = addr_filter__new();
2245                 err = parse_one_filter(filt, &fstr);
2246                 if (err) {
2247                         addr_filter__free(filt);
2248                         addr_filters__exit(filts);
2249                         return err;
2250                 }
2251                 addr_filters__add(filts, filt);
2252         }
2253
2254         return 0;
2255 }
2256
2257 struct sym_args {
2258         const char      *name;
2259         u64             start;
2260         u64             size;
2261         int             idx;
2262         int             cnt;
2263         bool            started;
2264         bool            global;
2265         bool            selected;
2266         bool            duplicate;
2267         bool            near;
2268 };
2269
2270 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2271 {
2272         /* A function with the same name, and global or the n'th found or any */
2273         return kallsyms__is_function(type) &&
2274                !strcmp(name, args->name) &&
2275                ((args->global && isupper(type)) ||
2276                 (args->selected && ++(args->cnt) == args->idx) ||
2277                 (!args->global && !args->selected));
2278 }
2279
2280 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2281 {
2282         struct sym_args *args = arg;
2283
2284         if (args->started) {
2285                 if (!args->size)
2286                         args->size = start - args->start;
2287                 if (args->selected) {
2288                         if (args->size)
2289                                 return 1;
2290                 } else if (kern_sym_match(args, name, type)) {
2291                         args->duplicate = true;
2292                         return 1;
2293                 }
2294         } else if (kern_sym_match(args, name, type)) {
2295                 args->started = true;
2296                 args->start = start;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2303 {
2304         struct sym_args *args = arg;
2305
2306         if (kern_sym_match(args, name, type)) {
2307                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2308                        ++args->cnt, start, type, name);
2309                 args->near = true;
2310         } else if (args->near) {
2311                 args->near = false;
2312                 pr_err("\t\twhich is near\t\t%s\n", name);
2313         }
2314
2315         return 0;
2316 }
2317
2318 static int sym_not_found_error(const char *sym_name, int idx)
2319 {
2320         if (idx > 0) {
2321                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2322                        idx, sym_name);
2323         } else if (!idx) {
2324                 pr_err("Global symbol '%s' not found.\n", sym_name);
2325         } else {
2326                 pr_err("Symbol '%s' not found.\n", sym_name);
2327         }
2328         pr_err("Note that symbols must be functions.\n");
2329
2330         return -EINVAL;
2331 }
2332
2333 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2334 {
2335         struct sym_args args = {
2336                 .name = sym_name,
2337                 .idx = idx,
2338                 .global = !idx,
2339                 .selected = idx > 0,
2340         };
2341         int err;
2342
2343         *start = 0;
2344         *size = 0;
2345
2346         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2347         if (err < 0) {
2348                 pr_err("Failed to parse /proc/kallsyms\n");
2349                 return err;
2350         }
2351
2352         if (args.duplicate) {
2353                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2354                 args.cnt = 0;
2355                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2356                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2357                        sym_name);
2358                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2359                 return -EINVAL;
2360         }
2361
2362         if (!args.started) {
2363                 pr_err("Kernel symbol lookup: ");
2364                 return sym_not_found_error(sym_name, idx);
2365         }
2366
2367         *start = args.start;
2368         *size = args.size;
2369
2370         return 0;
2371 }
2372
2373 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2374                                char type, u64 start)
2375 {
2376         struct sym_args *args = arg;
2377
2378         if (!kallsyms__is_function(type))
2379                 return 0;
2380
2381         if (!args->started) {
2382                 args->started = true;
2383                 args->start = start;
2384         }
2385         /* Don't know exactly where the kernel ends, so we add a page */
2386         args->size = round_up(start, page_size) + page_size - args->start;
2387
2388         return 0;
2389 }
2390
2391 static int addr_filter__entire_kernel(struct addr_filter *filt)
2392 {
2393         struct sym_args args = { .started = false };
2394         int err;
2395
2396         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2397         if (err < 0 || !args.started) {
2398                 pr_err("Failed to parse /proc/kallsyms\n");
2399                 return err;
2400         }
2401
2402         filt->addr = args.start;
2403         filt->size = args.size;
2404
2405         return 0;
2406 }
2407
2408 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2409 {
2410         if (start + size >= filt->addr)
2411                 return 0;
2412
2413         if (filt->sym_from) {
2414                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2415                        filt->sym_to, start, filt->sym_from, filt->addr);
2416         } else {
2417                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2418                        filt->sym_to, start, filt->addr);
2419         }
2420
2421         return -EINVAL;
2422 }
2423
2424 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2425 {
2426         bool no_size = false;
2427         u64 start, size;
2428         int err;
2429
2430         if (symbol_conf.kptr_restrict) {
2431                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2432                 return -EINVAL;
2433         }
2434
2435         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2436                 return addr_filter__entire_kernel(filt);
2437
2438         if (filt->sym_from) {
2439                 err = find_kern_sym(filt->sym_from, &start, &size,
2440                                     filt->sym_from_idx);
2441                 if (err)
2442                         return err;
2443                 filt->addr = start;
2444                 if (filt->range && !filt->size && !filt->sym_to) {
2445                         filt->size = size;
2446                         no_size = !size;
2447                 }
2448         }
2449
2450         if (filt->sym_to) {
2451                 err = find_kern_sym(filt->sym_to, &start, &size,
2452                                     filt->sym_to_idx);
2453                 if (err)
2454                         return err;
2455
2456                 err = check_end_after_start(filt, start, size);
2457                 if (err)
2458                         return err;
2459                 filt->size = start + size - filt->addr;
2460                 no_size = !size;
2461         }
2462
2463         /* The very last symbol in kallsyms does not imply a particular size */
2464         if (no_size) {
2465                 pr_err("Cannot determine size of symbol '%s'\n",
2466                        filt->sym_to ? filt->sym_to : filt->sym_from);
2467                 return -EINVAL;
2468         }
2469
2470         return 0;
2471 }
2472
2473 static struct dso *load_dso(const char *name)
2474 {
2475         struct map *map;
2476         struct dso *dso;
2477
2478         map = dso__new_map(name);
2479         if (!map)
2480                 return NULL;
2481
2482         if (map__load(map) < 0)
2483                 pr_err("File '%s' not found or has no symbols.\n", name);
2484
2485         dso = dso__get(map->dso);
2486
2487         map__put(map);
2488
2489         return dso;
2490 }
2491
2492 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2493                           int idx)
2494 {
2495         /* Same name, and global or the n'th found or any */
2496         return !arch__compare_symbol_names(name, sym->name) &&
2497                ((!idx && sym->binding == STB_GLOBAL) ||
2498                 (idx > 0 && ++*cnt == idx) ||
2499                 idx < 0);
2500 }
2501
2502 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2503 {
2504         struct symbol *sym;
2505         bool near = false;
2506         int cnt = 0;
2507
2508         pr_err("Multiple symbols with name '%s'\n", sym_name);
2509
2510         sym = dso__first_symbol(dso);
2511         while (sym) {
2512                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2513                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2514                                ++cnt, sym->start,
2515                                sym->binding == STB_GLOBAL ? 'g' :
2516                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2517                                sym->name);
2518                         near = true;
2519                 } else if (near) {
2520                         near = false;
2521                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2522                 }
2523                 sym = dso__next_symbol(sym);
2524         }
2525
2526         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2527                sym_name);
2528         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2529 }
2530
2531 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2532                         u64 *size, int idx)
2533 {
2534         struct symbol *sym;
2535         int cnt = 0;
2536
2537         *start = 0;
2538         *size = 0;
2539
2540         sym = dso__first_symbol(dso);
2541         while (sym) {
2542                 if (*start) {
2543                         if (!*size)
2544                                 *size = sym->start - *start;
2545                         if (idx > 0) {
2546                                 if (*size)
2547                                         return 1;
2548                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2549                                 print_duplicate_syms(dso, sym_name);
2550                                 return -EINVAL;
2551                         }
2552                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2553                         *start = sym->start;
2554                         *size = sym->end - sym->start;
2555                 }
2556                 sym = dso__next_symbol(sym);
2557         }
2558
2559         if (!*start)
2560                 return sym_not_found_error(sym_name, idx);
2561
2562         return 0;
2563 }
2564
2565 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2566 {
2567         if (dso__data_file_size(dso, NULL)) {
2568                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2569                        filt->filename);
2570                 return -EINVAL;
2571         }
2572
2573         filt->addr = 0;
2574         filt->size = dso->data.file_size;
2575
2576         return 0;
2577 }
2578
2579 static int addr_filter__resolve_syms(struct addr_filter *filt)
2580 {
2581         u64 start, size;
2582         struct dso *dso;
2583         int err = 0;
2584
2585         if (!filt->sym_from && !filt->sym_to)
2586                 return 0;
2587
2588         if (!filt->filename)
2589                 return addr_filter__resolve_kernel_syms(filt);
2590
2591         dso = load_dso(filt->filename);
2592         if (!dso) {
2593                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2594                 return -EINVAL;
2595         }
2596
2597         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2598                 err = addr_filter__entire_dso(filt, dso);
2599                 goto put_dso;
2600         }
2601
2602         if (filt->sym_from) {
2603                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2604                                    filt->sym_from_idx);
2605                 if (err)
2606                         goto put_dso;
2607                 filt->addr = start;
2608                 if (filt->range && !filt->size && !filt->sym_to)
2609                         filt->size = size;
2610         }
2611
2612         if (filt->sym_to) {
2613                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2614                                    filt->sym_to_idx);
2615                 if (err)
2616                         goto put_dso;
2617
2618                 err = check_end_after_start(filt, start, size);
2619                 if (err)
2620                         return err;
2621
2622                 filt->size = start + size - filt->addr;
2623         }
2624
2625 put_dso:
2626         dso__put(dso);
2627
2628         return err;
2629 }
2630
2631 static char *addr_filter__to_str(struct addr_filter *filt)
2632 {
2633         char filename_buf[PATH_MAX];
2634         const char *at = "";
2635         const char *fn = "";
2636         char *filter;
2637         int err;
2638
2639         if (filt->filename) {
2640                 at = "@";
2641                 fn = realpath(filt->filename, filename_buf);
2642                 if (!fn)
2643                         return NULL;
2644         }
2645
2646         if (filt->range) {
2647                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2648                                filt->action, filt->addr, filt->size, at, fn);
2649         } else {
2650                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2651                                filt->action, filt->addr, at, fn);
2652         }
2653
2654         return err < 0 ? NULL : filter;
2655 }
2656
2657 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2658                              int max_nr)
2659 {
2660         struct addr_filters filts;
2661         struct addr_filter *filt;
2662         int err;
2663
2664         addr_filters__init(&filts);
2665
2666         err = addr_filters__parse_bare_filter(&filts, filter);
2667         if (err)
2668                 goto out_exit;
2669
2670         if (filts.cnt > max_nr) {
2671                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2672                        filts.cnt, max_nr);
2673                 err = -EINVAL;
2674                 goto out_exit;
2675         }
2676
2677         list_for_each_entry(filt, &filts.head, list) {
2678                 char *new_filter;
2679
2680                 err = addr_filter__resolve_syms(filt);
2681                 if (err)
2682                         goto out_exit;
2683
2684                 new_filter = addr_filter__to_str(filt);
2685                 if (!new_filter) {
2686                         err = -ENOMEM;
2687                         goto out_exit;
2688                 }
2689
2690                 if (evsel__append_addr_filter(evsel, new_filter)) {
2691                         err = -ENOMEM;
2692                         goto out_exit;
2693                 }
2694         }
2695
2696 out_exit:
2697         addr_filters__exit(&filts);
2698
2699         if (err) {
2700                 pr_err("Failed to parse address filter: '%s'\n", filter);
2701                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2702                 pr_err("Where multiple filters are separated by space or comma.\n");
2703         }
2704
2705         return err;
2706 }
2707
2708 static int evsel__nr_addr_filter(struct evsel *evsel)
2709 {
2710         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2711         int nr_addr_filters = 0;
2712
2713         if (!pmu)
2714                 return 0;
2715
2716         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2717
2718         return nr_addr_filters;
2719 }
2720
2721 int auxtrace_parse_filters(struct evlist *evlist)
2722 {
2723         struct evsel *evsel;
2724         char *filter;
2725         int err, max_nr;
2726
2727         evlist__for_each_entry(evlist, evsel) {
2728                 filter = evsel->filter;
2729                 max_nr = evsel__nr_addr_filter(evsel);
2730                 if (!filter || !max_nr)
2731                         continue;
2732                 evsel->filter = NULL;
2733                 err = parse_addr_filter(evsel, filter, max_nr);
2734                 free(filter);
2735                 if (err)
2736                         return err;
2737                 pr_debug("Address filter: %s\n", evsel->filter);
2738         }
2739
2740         return 0;
2741 }
2742
2743 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2744                             struct perf_sample *sample, struct perf_tool *tool)
2745 {
2746         if (!session->auxtrace)
2747                 return 0;
2748
2749         return session->auxtrace->process_event(session, event, sample, tool);
2750 }
2751
2752 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2753                                     struct perf_sample *sample)
2754 {
2755         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2756             auxtrace__dont_decode(session))
2757                 return;
2758
2759         session->auxtrace->dump_auxtrace_sample(session, sample);
2760 }
2761
2762 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2763 {
2764         if (!session->auxtrace)
2765                 return 0;
2766
2767         return session->auxtrace->flush_events(session, tool);
2768 }
2769
2770 void auxtrace__free_events(struct perf_session *session)
2771 {
2772         if (!session->auxtrace)
2773                 return;
2774
2775         return session->auxtrace->free_events(session);
2776 }
2777
2778 void auxtrace__free(struct perf_session *session)
2779 {
2780         if (!session->auxtrace)
2781                 return;
2782
2783         return session->auxtrace->free(session);
2784 }
2785
2786 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2787                                  struct evsel *evsel)
2788 {
2789         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2790                 return false;
2791
2792         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2793 }