OSDN Git Service

perf auxtrace: Define auxtrace record alignment
[android-x86/kernel.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <sys/types.h>
17 #include <sys/mman.h>
18 #include <stdbool.h>
19 #include <ctype.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "symbol/kallsyms.h"
50 #include "auxtrace.h"
51
52 #include <linux/hash.h>
53
54 #include "event.h"
55 #include "session.h"
56 #include "debug.h"
57 #include <subcmd/parse-options.h>
58
59 #include "intel-pt.h"
60 #include "intel-bts.h"
61
62 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
63                         struct auxtrace_mmap_params *mp,
64                         void *userpg, int fd)
65 {
66         struct perf_event_mmap_page *pc = userpg;
67
68         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
69
70         mm->userpg = userpg;
71         mm->mask = mp->mask;
72         mm->len = mp->len;
73         mm->prev = 0;
74         mm->idx = mp->idx;
75         mm->tid = mp->tid;
76         mm->cpu = mp->cpu;
77
78         if (!mp->len) {
79                 mm->base = NULL;
80                 return 0;
81         }
82
83 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
84         pr_err("Cannot use AUX area tracing mmaps\n");
85         return -1;
86 #endif
87
88         pc->aux_offset = mp->offset;
89         pc->aux_size = mp->len;
90
91         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
92         if (mm->base == MAP_FAILED) {
93                 pr_debug2("failed to mmap AUX area\n");
94                 mm->base = NULL;
95                 return -1;
96         }
97
98         return 0;
99 }
100
101 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
102 {
103         if (mm->base) {
104                 munmap(mm->base, mm->len);
105                 mm->base = NULL;
106         }
107 }
108
109 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
110                                 off_t auxtrace_offset,
111                                 unsigned int auxtrace_pages,
112                                 bool auxtrace_overwrite)
113 {
114         if (auxtrace_pages) {
115                 mp->offset = auxtrace_offset;
116                 mp->len = auxtrace_pages * (size_t)page_size;
117                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
118                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
119                 pr_debug2("AUX area mmap length %zu\n", mp->len);
120         } else {
121                 mp->len = 0;
122         }
123 }
124
125 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
126                                    struct perf_evlist *evlist, int idx,
127                                    bool per_cpu)
128 {
129         mp->idx = idx;
130
131         if (per_cpu) {
132                 mp->cpu = evlist->cpus->map[idx];
133                 if (evlist->threads)
134                         mp->tid = thread_map__pid(evlist->threads, 0);
135                 else
136                         mp->tid = -1;
137         } else {
138                 mp->cpu = -1;
139                 mp->tid = thread_map__pid(evlist->threads, idx);
140         }
141 }
142
143 #define AUXTRACE_INIT_NR_QUEUES 32
144
145 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
146 {
147         struct auxtrace_queue *queue_array;
148         unsigned int max_nr_queues, i;
149
150         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
151         if (nr_queues > max_nr_queues)
152                 return NULL;
153
154         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
155         if (!queue_array)
156                 return NULL;
157
158         for (i = 0; i < nr_queues; i++) {
159                 INIT_LIST_HEAD(&queue_array[i].head);
160                 queue_array[i].priv = NULL;
161         }
162
163         return queue_array;
164 }
165
166 int auxtrace_queues__init(struct auxtrace_queues *queues)
167 {
168         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
169         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
170         if (!queues->queue_array)
171                 return -ENOMEM;
172         return 0;
173 }
174
175 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
176                                  unsigned int new_nr_queues)
177 {
178         unsigned int nr_queues = queues->nr_queues;
179         struct auxtrace_queue *queue_array;
180         unsigned int i;
181
182         if (!nr_queues)
183                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
184
185         while (nr_queues && nr_queues < new_nr_queues)
186                 nr_queues <<= 1;
187
188         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
189                 return -EINVAL;
190
191         queue_array = auxtrace_alloc_queue_array(nr_queues);
192         if (!queue_array)
193                 return -ENOMEM;
194
195         for (i = 0; i < queues->nr_queues; i++) {
196                 list_splice_tail(&queues->queue_array[i].head,
197                                  &queue_array[i].head);
198                 queue_array[i].tid = queues->queue_array[i].tid;
199                 queue_array[i].cpu = queues->queue_array[i].cpu;
200                 queue_array[i].set = queues->queue_array[i].set;
201                 queue_array[i].priv = queues->queue_array[i].priv;
202         }
203
204         queues->nr_queues = nr_queues;
205         queues->queue_array = queue_array;
206
207         return 0;
208 }
209
210 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
211 {
212         int fd = perf_data_file__fd(session->file);
213         void *p;
214         ssize_t ret;
215
216         if (size > SSIZE_MAX)
217                 return NULL;
218
219         p = malloc(size);
220         if (!p)
221                 return NULL;
222
223         ret = readn(fd, p, size);
224         if (ret != (ssize_t)size) {
225                 free(p);
226                 return NULL;
227         }
228
229         return p;
230 }
231
232 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
233                                        unsigned int idx,
234                                        struct auxtrace_buffer *buffer)
235 {
236         struct auxtrace_queue *queue;
237         int err;
238
239         if (idx >= queues->nr_queues) {
240                 err = auxtrace_queues__grow(queues, idx + 1);
241                 if (err)
242                         return err;
243         }
244
245         queue = &queues->queue_array[idx];
246
247         if (!queue->set) {
248                 queue->set = true;
249                 queue->tid = buffer->tid;
250                 queue->cpu = buffer->cpu;
251         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
252                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
253                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
254                 return -EINVAL;
255         }
256
257         buffer->buffer_nr = queues->next_buffer_nr++;
258
259         list_add_tail(&buffer->list, &queue->head);
260
261         queues->new_data = true;
262         queues->populated = true;
263
264         return 0;
265 }
266
267 /* Limit buffers to 32MiB on 32-bit */
268 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
269
270 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
271                                          unsigned int idx,
272                                          struct auxtrace_buffer *buffer)
273 {
274         u64 sz = buffer->size;
275         bool consecutive = false;
276         struct auxtrace_buffer *b;
277         int err;
278
279         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
280                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
281                 if (!b)
282                         return -ENOMEM;
283                 b->size = BUFFER_LIMIT_FOR_32_BIT;
284                 b->consecutive = consecutive;
285                 err = auxtrace_queues__add_buffer(queues, idx, b);
286                 if (err) {
287                         auxtrace_buffer__free(b);
288                         return err;
289                 }
290                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
291                 sz -= BUFFER_LIMIT_FOR_32_BIT;
292                 consecutive = true;
293         }
294
295         buffer->size = sz;
296         buffer->consecutive = consecutive;
297
298         return 0;
299 }
300
301 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
302                                              struct perf_session *session,
303                                              unsigned int idx,
304                                              struct auxtrace_buffer *buffer)
305 {
306         if (session->one_mmap) {
307                 buffer->data = buffer->data_offset - session->one_mmap_offset +
308                                session->one_mmap_addr;
309         } else if (perf_data_file__is_pipe(session->file)) {
310                 buffer->data = auxtrace_copy_data(buffer->size, session);
311                 if (!buffer->data)
312                         return -ENOMEM;
313                 buffer->data_needs_freeing = true;
314         } else if (BITS_PER_LONG == 32 &&
315                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
316                 int err;
317
318                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
319                 if (err)
320                         return err;
321         }
322
323         return auxtrace_queues__add_buffer(queues, idx, buffer);
324 }
325
326 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
327                                struct perf_session *session,
328                                union perf_event *event, off_t data_offset,
329                                struct auxtrace_buffer **buffer_ptr)
330 {
331         struct auxtrace_buffer *buffer;
332         unsigned int idx;
333         int err;
334
335         buffer = zalloc(sizeof(struct auxtrace_buffer));
336         if (!buffer)
337                 return -ENOMEM;
338
339         buffer->pid = -1;
340         buffer->tid = event->auxtrace.tid;
341         buffer->cpu = event->auxtrace.cpu;
342         buffer->data_offset = data_offset;
343         buffer->offset = event->auxtrace.offset;
344         buffer->reference = event->auxtrace.reference;
345         buffer->size = event->auxtrace.size;
346         idx = event->auxtrace.idx;
347
348         err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
349         if (err)
350                 goto out_err;
351
352         if (buffer_ptr)
353                 *buffer_ptr = buffer;
354
355         return 0;
356
357 out_err:
358         auxtrace_buffer__free(buffer);
359         return err;
360 }
361
362 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
363                                               struct perf_session *session,
364                                               off_t file_offset, size_t sz)
365 {
366         union perf_event *event;
367         int err;
368         char buf[PERF_SAMPLE_MAX_SIZE];
369
370         err = perf_session__peek_event(session, file_offset, buf,
371                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
372         if (err)
373                 return err;
374
375         if (event->header.type == PERF_RECORD_AUXTRACE) {
376                 if (event->header.size < sizeof(struct auxtrace_event) ||
377                     event->header.size != sz) {
378                         err = -EINVAL;
379                         goto out;
380                 }
381                 file_offset += event->header.size;
382                 err = auxtrace_queues__add_event(queues, session, event,
383                                                  file_offset, NULL);
384         }
385 out:
386         return err;
387 }
388
389 void auxtrace_queues__free(struct auxtrace_queues *queues)
390 {
391         unsigned int i;
392
393         for (i = 0; i < queues->nr_queues; i++) {
394                 while (!list_empty(&queues->queue_array[i].head)) {
395                         struct auxtrace_buffer *buffer;
396
397                         buffer = list_entry(queues->queue_array[i].head.next,
398                                             struct auxtrace_buffer, list);
399                         list_del(&buffer->list);
400                         auxtrace_buffer__free(buffer);
401                 }
402         }
403
404         zfree(&queues->queue_array);
405         queues->nr_queues = 0;
406 }
407
408 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
409                              unsigned int pos, unsigned int queue_nr,
410                              u64 ordinal)
411 {
412         unsigned int parent;
413
414         while (pos) {
415                 parent = (pos - 1) >> 1;
416                 if (heap_array[parent].ordinal <= ordinal)
417                         break;
418                 heap_array[pos] = heap_array[parent];
419                 pos = parent;
420         }
421         heap_array[pos].queue_nr = queue_nr;
422         heap_array[pos].ordinal = ordinal;
423 }
424
425 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
426                        u64 ordinal)
427 {
428         struct auxtrace_heap_item *heap_array;
429
430         if (queue_nr >= heap->heap_sz) {
431                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
432
433                 while (heap_sz <= queue_nr)
434                         heap_sz <<= 1;
435                 heap_array = realloc(heap->heap_array,
436                                      heap_sz * sizeof(struct auxtrace_heap_item));
437                 if (!heap_array)
438                         return -ENOMEM;
439                 heap->heap_array = heap_array;
440                 heap->heap_sz = heap_sz;
441         }
442
443         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
444
445         return 0;
446 }
447
448 void auxtrace_heap__free(struct auxtrace_heap *heap)
449 {
450         zfree(&heap->heap_array);
451         heap->heap_cnt = 0;
452         heap->heap_sz = 0;
453 }
454
455 void auxtrace_heap__pop(struct auxtrace_heap *heap)
456 {
457         unsigned int pos, last, heap_cnt = heap->heap_cnt;
458         struct auxtrace_heap_item *heap_array;
459
460         if (!heap_cnt)
461                 return;
462
463         heap->heap_cnt -= 1;
464
465         heap_array = heap->heap_array;
466
467         pos = 0;
468         while (1) {
469                 unsigned int left, right;
470
471                 left = (pos << 1) + 1;
472                 if (left >= heap_cnt)
473                         break;
474                 right = left + 1;
475                 if (right >= heap_cnt) {
476                         heap_array[pos] = heap_array[left];
477                         return;
478                 }
479                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
480                         heap_array[pos] = heap_array[left];
481                         pos = left;
482                 } else {
483                         heap_array[pos] = heap_array[right];
484                         pos = right;
485                 }
486         }
487
488         last = heap_cnt - 1;
489         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
490                          heap_array[last].ordinal);
491 }
492
493 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
494                                        struct perf_evlist *evlist)
495 {
496         if (itr)
497                 return itr->info_priv_size(itr, evlist);
498         return 0;
499 }
500
501 static int auxtrace_not_supported(void)
502 {
503         pr_err("AUX area tracing is not supported on this architecture\n");
504         return -EINVAL;
505 }
506
507 int auxtrace_record__info_fill(struct auxtrace_record *itr,
508                                struct perf_session *session,
509                                struct auxtrace_info_event *auxtrace_info,
510                                size_t priv_size)
511 {
512         if (itr)
513                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
514         return auxtrace_not_supported();
515 }
516
517 void auxtrace_record__free(struct auxtrace_record *itr)
518 {
519         if (itr)
520                 itr->free(itr);
521 }
522
523 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
524 {
525         if (itr && itr->snapshot_start)
526                 return itr->snapshot_start(itr);
527         return 0;
528 }
529
530 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
531 {
532         if (itr && itr->snapshot_finish)
533                 return itr->snapshot_finish(itr);
534         return 0;
535 }
536
537 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
538                                    struct auxtrace_mmap *mm,
539                                    unsigned char *data, u64 *head, u64 *old)
540 {
541         if (itr && itr->find_snapshot)
542                 return itr->find_snapshot(itr, idx, mm, data, head, old);
543         return 0;
544 }
545
546 int auxtrace_record__options(struct auxtrace_record *itr,
547                              struct perf_evlist *evlist,
548                              struct record_opts *opts)
549 {
550         if (itr)
551                 return itr->recording_options(itr, evlist, opts);
552         return 0;
553 }
554
555 u64 auxtrace_record__reference(struct auxtrace_record *itr)
556 {
557         if (itr)
558                 return itr->reference(itr);
559         return 0;
560 }
561
562 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
563                                     struct record_opts *opts, const char *str)
564 {
565         if (!str)
566                 return 0;
567
568         if (itr)
569                 return itr->parse_snapshot_options(itr, opts, str);
570
571         pr_err("No AUX area tracing to snapshot\n");
572         return -EINVAL;
573 }
574
575 struct auxtrace_record *__weak
576 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
577 {
578         *err = 0;
579         return NULL;
580 }
581
582 static int auxtrace_index__alloc(struct list_head *head)
583 {
584         struct auxtrace_index *auxtrace_index;
585
586         auxtrace_index = malloc(sizeof(struct auxtrace_index));
587         if (!auxtrace_index)
588                 return -ENOMEM;
589
590         auxtrace_index->nr = 0;
591         INIT_LIST_HEAD(&auxtrace_index->list);
592
593         list_add_tail(&auxtrace_index->list, head);
594
595         return 0;
596 }
597
598 void auxtrace_index__free(struct list_head *head)
599 {
600         struct auxtrace_index *auxtrace_index, *n;
601
602         list_for_each_entry_safe(auxtrace_index, n, head, list) {
603                 list_del(&auxtrace_index->list);
604                 free(auxtrace_index);
605         }
606 }
607
608 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
609 {
610         struct auxtrace_index *auxtrace_index;
611         int err;
612
613         if (list_empty(head)) {
614                 err = auxtrace_index__alloc(head);
615                 if (err)
616                         return NULL;
617         }
618
619         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
620
621         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
622                 err = auxtrace_index__alloc(head);
623                 if (err)
624                         return NULL;
625                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
626                                             list);
627         }
628
629         return auxtrace_index;
630 }
631
632 int auxtrace_index__auxtrace_event(struct list_head *head,
633                                    union perf_event *event, off_t file_offset)
634 {
635         struct auxtrace_index *auxtrace_index;
636         size_t nr;
637
638         auxtrace_index = auxtrace_index__last(head);
639         if (!auxtrace_index)
640                 return -ENOMEM;
641
642         nr = auxtrace_index->nr;
643         auxtrace_index->entries[nr].file_offset = file_offset;
644         auxtrace_index->entries[nr].sz = event->header.size;
645         auxtrace_index->nr += 1;
646
647         return 0;
648 }
649
650 static int auxtrace_index__do_write(int fd,
651                                     struct auxtrace_index *auxtrace_index)
652 {
653         struct auxtrace_index_entry ent;
654         size_t i;
655
656         for (i = 0; i < auxtrace_index->nr; i++) {
657                 ent.file_offset = auxtrace_index->entries[i].file_offset;
658                 ent.sz = auxtrace_index->entries[i].sz;
659                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
660                         return -errno;
661         }
662         return 0;
663 }
664
665 int auxtrace_index__write(int fd, struct list_head *head)
666 {
667         struct auxtrace_index *auxtrace_index;
668         u64 total = 0;
669         int err;
670
671         list_for_each_entry(auxtrace_index, head, list)
672                 total += auxtrace_index->nr;
673
674         if (writen(fd, &total, sizeof(total)) != sizeof(total))
675                 return -errno;
676
677         list_for_each_entry(auxtrace_index, head, list) {
678                 err = auxtrace_index__do_write(fd, auxtrace_index);
679                 if (err)
680                         return err;
681         }
682
683         return 0;
684 }
685
686 static int auxtrace_index__process_entry(int fd, struct list_head *head,
687                                          bool needs_swap)
688 {
689         struct auxtrace_index *auxtrace_index;
690         struct auxtrace_index_entry ent;
691         size_t nr;
692
693         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
694                 return -1;
695
696         auxtrace_index = auxtrace_index__last(head);
697         if (!auxtrace_index)
698                 return -1;
699
700         nr = auxtrace_index->nr;
701         if (needs_swap) {
702                 auxtrace_index->entries[nr].file_offset =
703                                                 bswap_64(ent.file_offset);
704                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
705         } else {
706                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
707                 auxtrace_index->entries[nr].sz = ent.sz;
708         }
709
710         auxtrace_index->nr = nr + 1;
711
712         return 0;
713 }
714
715 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
716                             bool needs_swap)
717 {
718         struct list_head *head = &session->auxtrace_index;
719         u64 nr;
720
721         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
722                 return -1;
723
724         if (needs_swap)
725                 nr = bswap_64(nr);
726
727         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
728                 return -1;
729
730         while (nr--) {
731                 int err;
732
733                 err = auxtrace_index__process_entry(fd, head, needs_swap);
734                 if (err)
735                         return -1;
736         }
737
738         return 0;
739 }
740
741 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
742                                                 struct perf_session *session,
743                                                 struct auxtrace_index_entry *ent)
744 {
745         return auxtrace_queues__add_indexed_event(queues, session,
746                                                   ent->file_offset, ent->sz);
747 }
748
749 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
750                                    struct perf_session *session)
751 {
752         struct auxtrace_index *auxtrace_index;
753         struct auxtrace_index_entry *ent;
754         size_t i;
755         int err;
756
757         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
758                 for (i = 0; i < auxtrace_index->nr; i++) {
759                         ent = &auxtrace_index->entries[i];
760                         err = auxtrace_queues__process_index_entry(queues,
761                                                                    session,
762                                                                    ent);
763                         if (err)
764                                 return err;
765                 }
766         }
767         return 0;
768 }
769
770 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
771                                               struct auxtrace_buffer *buffer)
772 {
773         if (buffer) {
774                 if (list_is_last(&buffer->list, &queue->head))
775                         return NULL;
776                 return list_entry(buffer->list.next, struct auxtrace_buffer,
777                                   list);
778         } else {
779                 if (list_empty(&queue->head))
780                         return NULL;
781                 return list_entry(queue->head.next, struct auxtrace_buffer,
782                                   list);
783         }
784 }
785
786 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
787 {
788         size_t adj = buffer->data_offset & (page_size - 1);
789         size_t size = buffer->size + adj;
790         off_t file_offset = buffer->data_offset - adj;
791         void *addr;
792
793         if (buffer->data)
794                 return buffer->data;
795
796         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
797         if (addr == MAP_FAILED)
798                 return NULL;
799
800         buffer->mmap_addr = addr;
801         buffer->mmap_size = size;
802
803         buffer->data = addr + adj;
804
805         return buffer->data;
806 }
807
808 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
809 {
810         if (!buffer->data || !buffer->mmap_addr)
811                 return;
812         munmap(buffer->mmap_addr, buffer->mmap_size);
813         buffer->mmap_addr = NULL;
814         buffer->mmap_size = 0;
815         buffer->data = NULL;
816         buffer->use_data = NULL;
817 }
818
819 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
820 {
821         auxtrace_buffer__put_data(buffer);
822         if (buffer->data_needs_freeing) {
823                 buffer->data_needs_freeing = false;
824                 zfree(&buffer->data);
825                 buffer->use_data = NULL;
826                 buffer->size = 0;
827         }
828 }
829
830 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
831 {
832         auxtrace_buffer__drop_data(buffer);
833         free(buffer);
834 }
835
836 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
837                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
838                           const char *msg)
839 {
840         size_t size;
841
842         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
843
844         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
845         auxtrace_error->type = type;
846         auxtrace_error->code = code;
847         auxtrace_error->cpu = cpu;
848         auxtrace_error->pid = pid;
849         auxtrace_error->tid = tid;
850         auxtrace_error->ip = ip;
851         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
852
853         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
854                strlen(auxtrace_error->msg) + 1;
855         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
856 }
857
858 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
859                                          struct perf_tool *tool,
860                                          struct perf_session *session,
861                                          perf_event__handler_t process)
862 {
863         union perf_event *ev;
864         size_t priv_size;
865         int err;
866
867         pr_debug2("Synthesizing auxtrace information\n");
868         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
869         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
870         if (!ev)
871                 return -ENOMEM;
872
873         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
874         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
875                                         priv_size;
876         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
877                                          priv_size);
878         if (err)
879                 goto out_free;
880
881         err = process(tool, ev, NULL, NULL);
882 out_free:
883         free(ev);
884         return err;
885 }
886
887 static bool auxtrace__dont_decode(struct perf_session *session)
888 {
889         return !session->itrace_synth_opts ||
890                session->itrace_synth_opts->dont_decode;
891 }
892
893 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
894                                       union perf_event *event,
895                                       struct perf_session *session)
896 {
897         enum auxtrace_type type = event->auxtrace_info.type;
898
899         if (dump_trace)
900                 fprintf(stdout, " type: %u\n", type);
901
902         switch (type) {
903         case PERF_AUXTRACE_INTEL_PT:
904                 return intel_pt_process_auxtrace_info(event, session);
905         case PERF_AUXTRACE_INTEL_BTS:
906                 return intel_bts_process_auxtrace_info(event, session);
907         case PERF_AUXTRACE_CS_ETM:
908         case PERF_AUXTRACE_UNKNOWN:
909         default:
910                 return -EINVAL;
911         }
912 }
913
914 s64 perf_event__process_auxtrace(struct perf_tool *tool,
915                                  union perf_event *event,
916                                  struct perf_session *session)
917 {
918         s64 err;
919
920         if (dump_trace)
921                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
922                         event->auxtrace.size, event->auxtrace.offset,
923                         event->auxtrace.reference, event->auxtrace.idx,
924                         event->auxtrace.tid, event->auxtrace.cpu);
925
926         if (auxtrace__dont_decode(session))
927                 return event->auxtrace.size;
928
929         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
930                 return -EINVAL;
931
932         err = session->auxtrace->process_auxtrace_event(session, event, tool);
933         if (err < 0)
934                 return err;
935
936         return event->auxtrace.size;
937 }
938
939 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
940 #define PERF_ITRACE_DEFAULT_PERIOD              100000
941 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
942 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
943 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
944 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
945
946 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
947 {
948         synth_opts->instructions = true;
949         synth_opts->branches = true;
950         synth_opts->transactions = true;
951         synth_opts->errors = true;
952         synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
953         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
954         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
955         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
956         synth_opts->initial_skip = 0;
957 }
958
959 /*
960  * Please check tools/perf/Documentation/perf-script.txt for information
961  * about the options parsed here, which is introduced after this cset,
962  * when support in 'perf script' for these options is introduced.
963  */
964 int itrace_parse_synth_opts(const struct option *opt, const char *str,
965                             int unset)
966 {
967         struct itrace_synth_opts *synth_opts = opt->value;
968         const char *p;
969         char *endptr;
970         bool period_type_set = false;
971         bool period_set = false;
972
973         synth_opts->set = true;
974
975         if (unset) {
976                 synth_opts->dont_decode = true;
977                 return 0;
978         }
979
980         if (!str) {
981                 itrace_synth_opts__set_default(synth_opts);
982                 return 0;
983         }
984
985         for (p = str; *p;) {
986                 switch (*p++) {
987                 case 'i':
988                         synth_opts->instructions = true;
989                         while (*p == ' ' || *p == ',')
990                                 p += 1;
991                         if (isdigit(*p)) {
992                                 synth_opts->period = strtoull(p, &endptr, 10);
993                                 period_set = true;
994                                 p = endptr;
995                                 while (*p == ' ' || *p == ',')
996                                         p += 1;
997                                 switch (*p++) {
998                                 case 'i':
999                                         synth_opts->period_type =
1000                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1001                                         period_type_set = true;
1002                                         break;
1003                                 case 't':
1004                                         synth_opts->period_type =
1005                                                 PERF_ITRACE_PERIOD_TICKS;
1006                                         period_type_set = true;
1007                                         break;
1008                                 case 'm':
1009                                         synth_opts->period *= 1000;
1010                                         /* Fall through */
1011                                 case 'u':
1012                                         synth_opts->period *= 1000;
1013                                         /* Fall through */
1014                                 case 'n':
1015                                         if (*p++ != 's')
1016                                                 goto out_err;
1017                                         synth_opts->period_type =
1018                                                 PERF_ITRACE_PERIOD_NANOSECS;
1019                                         period_type_set = true;
1020                                         break;
1021                                 case '\0':
1022                                         goto out;
1023                                 default:
1024                                         goto out_err;
1025                                 }
1026                         }
1027                         break;
1028                 case 'b':
1029                         synth_opts->branches = true;
1030                         break;
1031                 case 'x':
1032                         synth_opts->transactions = true;
1033                         break;
1034                 case 'e':
1035                         synth_opts->errors = true;
1036                         break;
1037                 case 'd':
1038                         synth_opts->log = true;
1039                         break;
1040                 case 'c':
1041                         synth_opts->branches = true;
1042                         synth_opts->calls = true;
1043                         break;
1044                 case 'r':
1045                         synth_opts->branches = true;
1046                         synth_opts->returns = true;
1047                         break;
1048                 case 'g':
1049                         synth_opts->callchain = true;
1050                         synth_opts->callchain_sz =
1051                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1052                         while (*p == ' ' || *p == ',')
1053                                 p += 1;
1054                         if (isdigit(*p)) {
1055                                 unsigned int val;
1056
1057                                 val = strtoul(p, &endptr, 10);
1058                                 p = endptr;
1059                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1060                                         goto out_err;
1061                                 synth_opts->callchain_sz = val;
1062                         }
1063                         break;
1064                 case 'l':
1065                         synth_opts->last_branch = true;
1066                         synth_opts->last_branch_sz =
1067                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1068                         while (*p == ' ' || *p == ',')
1069                                 p += 1;
1070                         if (isdigit(*p)) {
1071                                 unsigned int val;
1072
1073                                 val = strtoul(p, &endptr, 10);
1074                                 p = endptr;
1075                                 if (!val ||
1076                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1077                                         goto out_err;
1078                                 synth_opts->last_branch_sz = val;
1079                         }
1080                         break;
1081                 case 's':
1082                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1083                         if (p == endptr)
1084                                 goto out_err;
1085                         p = endptr;
1086                         break;
1087                 case ' ':
1088                 case ',':
1089                         break;
1090                 default:
1091                         goto out_err;
1092                 }
1093         }
1094 out:
1095         if (synth_opts->instructions) {
1096                 if (!period_type_set)
1097                         synth_opts->period_type =
1098                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1099                 if (!period_set)
1100                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1101         }
1102
1103         return 0;
1104
1105 out_err:
1106         pr_err("Bad Instruction Tracing options '%s'\n", str);
1107         return -EINVAL;
1108 }
1109
1110 static const char * const auxtrace_error_type_name[] = {
1111         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1112 };
1113
1114 static const char *auxtrace_error_name(int type)
1115 {
1116         const char *error_type_name = NULL;
1117
1118         if (type < PERF_AUXTRACE_ERROR_MAX)
1119                 error_type_name = auxtrace_error_type_name[type];
1120         if (!error_type_name)
1121                 error_type_name = "unknown AUX";
1122         return error_type_name;
1123 }
1124
1125 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1126 {
1127         struct auxtrace_error_event *e = &event->auxtrace_error;
1128         int ret;
1129
1130         ret = fprintf(fp, " %s error type %u",
1131                       auxtrace_error_name(e->type), e->type);
1132         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1133                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1134         return ret;
1135 }
1136
1137 void perf_session__auxtrace_error_inc(struct perf_session *session,
1138                                       union perf_event *event)
1139 {
1140         struct auxtrace_error_event *e = &event->auxtrace_error;
1141
1142         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1143                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1144 }
1145
1146 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1147 {
1148         int i;
1149
1150         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1151                 if (!stats->nr_auxtrace_errors[i])
1152                         continue;
1153                 ui__warning("%u %s errors\n",
1154                             stats->nr_auxtrace_errors[i],
1155                             auxtrace_error_name(i));
1156         }
1157 }
1158
1159 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1160                                        union perf_event *event,
1161                                        struct perf_session *session)
1162 {
1163         if (auxtrace__dont_decode(session))
1164                 return 0;
1165
1166         perf_event__fprintf_auxtrace_error(event, stdout);
1167         return 0;
1168 }
1169
1170 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1171                                  struct auxtrace_record *itr,
1172                                  struct perf_tool *tool, process_auxtrace_t fn,
1173                                  bool snapshot, size_t snapshot_size)
1174 {
1175         u64 head, old = mm->prev, offset, ref;
1176         unsigned char *data = mm->base;
1177         size_t size, head_off, old_off, len1, len2, padding;
1178         union perf_event ev;
1179         void *data1, *data2;
1180
1181         if (snapshot) {
1182                 head = auxtrace_mmap__read_snapshot_head(mm);
1183                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1184                                                    &head, &old))
1185                         return -1;
1186         } else {
1187                 head = auxtrace_mmap__read_head(mm);
1188         }
1189
1190         if (old == head)
1191                 return 0;
1192
1193         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1194                   mm->idx, old, head, head - old);
1195
1196         if (mm->mask) {
1197                 head_off = head & mm->mask;
1198                 old_off = old & mm->mask;
1199         } else {
1200                 head_off = head % mm->len;
1201                 old_off = old % mm->len;
1202         }
1203
1204         if (head_off > old_off)
1205                 size = head_off - old_off;
1206         else
1207                 size = mm->len - (old_off - head_off);
1208
1209         if (snapshot && size > snapshot_size)
1210                 size = snapshot_size;
1211
1212         ref = auxtrace_record__reference(itr);
1213
1214         if (head > old || size <= head || mm->mask) {
1215                 offset = head - size;
1216         } else {
1217                 /*
1218                  * When the buffer size is not a power of 2, 'head' wraps at the
1219                  * highest multiple of the buffer size, so we have to subtract
1220                  * the remainder here.
1221                  */
1222                 u64 rem = (0ULL - mm->len) % mm->len;
1223
1224                 offset = head - size - rem;
1225         }
1226
1227         if (size > head_off) {
1228                 len1 = size - head_off;
1229                 data1 = &data[mm->len - len1];
1230                 len2 = head_off;
1231                 data2 = &data[0];
1232         } else {
1233                 len1 = size;
1234                 data1 = &data[head_off - len1];
1235                 len2 = 0;
1236                 data2 = NULL;
1237         }
1238
1239         if (itr->alignment) {
1240                 unsigned int unwanted = len1 % itr->alignment;
1241
1242                 len1 -= unwanted;
1243                 size -= unwanted;
1244         }
1245
1246         /* padding must be written by fn() e.g. record__process_auxtrace() */
1247         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1248         if (padding)
1249                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1250
1251         memset(&ev, 0, sizeof(ev));
1252         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1253         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1254         ev.auxtrace.size = size + padding;
1255         ev.auxtrace.offset = offset;
1256         ev.auxtrace.reference = ref;
1257         ev.auxtrace.idx = mm->idx;
1258         ev.auxtrace.tid = mm->tid;
1259         ev.auxtrace.cpu = mm->cpu;
1260
1261         if (fn(tool, &ev, data1, len1, data2, len2))
1262                 return -1;
1263
1264         mm->prev = head;
1265
1266         if (!snapshot) {
1267                 auxtrace_mmap__write_tail(mm, head);
1268                 if (itr->read_finish) {
1269                         int err;
1270
1271                         err = itr->read_finish(itr, mm->idx);
1272                         if (err < 0)
1273                                 return err;
1274                 }
1275         }
1276
1277         return 1;
1278 }
1279
1280 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1281                         struct perf_tool *tool, process_auxtrace_t fn)
1282 {
1283         return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1284 }
1285
1286 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1287                                  struct auxtrace_record *itr,
1288                                  struct perf_tool *tool, process_auxtrace_t fn,
1289                                  size_t snapshot_size)
1290 {
1291         return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1292 }
1293
1294 /**
1295  * struct auxtrace_cache - hash table to implement a cache
1296  * @hashtable: the hashtable
1297  * @sz: hashtable size (number of hlists)
1298  * @entry_size: size of an entry
1299  * @limit: limit the number of entries to this maximum, when reached the cache
1300  *         is dropped and caching begins again with an empty cache
1301  * @cnt: current number of entries
1302  * @bits: hashtable size (@sz = 2^@bits)
1303  */
1304 struct auxtrace_cache {
1305         struct hlist_head *hashtable;
1306         size_t sz;
1307         size_t entry_size;
1308         size_t limit;
1309         size_t cnt;
1310         unsigned int bits;
1311 };
1312
1313 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1314                                            unsigned int limit_percent)
1315 {
1316         struct auxtrace_cache *c;
1317         struct hlist_head *ht;
1318         size_t sz, i;
1319
1320         c = zalloc(sizeof(struct auxtrace_cache));
1321         if (!c)
1322                 return NULL;
1323
1324         sz = 1UL << bits;
1325
1326         ht = calloc(sz, sizeof(struct hlist_head));
1327         if (!ht)
1328                 goto out_free;
1329
1330         for (i = 0; i < sz; i++)
1331                 INIT_HLIST_HEAD(&ht[i]);
1332
1333         c->hashtable = ht;
1334         c->sz = sz;
1335         c->entry_size = entry_size;
1336         c->limit = (c->sz * limit_percent) / 100;
1337         c->bits = bits;
1338
1339         return c;
1340
1341 out_free:
1342         free(c);
1343         return NULL;
1344 }
1345
1346 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1347 {
1348         struct auxtrace_cache_entry *entry;
1349         struct hlist_node *tmp;
1350         size_t i;
1351
1352         if (!c)
1353                 return;
1354
1355         for (i = 0; i < c->sz; i++) {
1356                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1357                         hlist_del(&entry->hash);
1358                         auxtrace_cache__free_entry(c, entry);
1359                 }
1360         }
1361
1362         c->cnt = 0;
1363 }
1364
1365 void auxtrace_cache__free(struct auxtrace_cache *c)
1366 {
1367         if (!c)
1368                 return;
1369
1370         auxtrace_cache__drop(c);
1371         free(c->hashtable);
1372         free(c);
1373 }
1374
1375 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1376 {
1377         return malloc(c->entry_size);
1378 }
1379
1380 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1381                                 void *entry)
1382 {
1383         free(entry);
1384 }
1385
1386 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1387                         struct auxtrace_cache_entry *entry)
1388 {
1389         if (c->limit && ++c->cnt > c->limit)
1390                 auxtrace_cache__drop(c);
1391
1392         entry->key = key;
1393         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1394
1395         return 0;
1396 }
1397
1398 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1399 {
1400         struct auxtrace_cache_entry *entry;
1401         struct hlist_head *hlist;
1402
1403         if (!c)
1404                 return NULL;
1405
1406         hlist = &c->hashtable[hash_32(key, c->bits)];
1407         hlist_for_each_entry(entry, hlist, hash) {
1408                 if (entry->key == key)
1409                         return entry;
1410         }
1411
1412         return NULL;
1413 }
1414
1415 static void addr_filter__free_str(struct addr_filter *filt)
1416 {
1417         free(filt->str);
1418         filt->action   = NULL;
1419         filt->sym_from = NULL;
1420         filt->sym_to   = NULL;
1421         filt->filename = NULL;
1422         filt->str      = NULL;
1423 }
1424
1425 static struct addr_filter *addr_filter__new(void)
1426 {
1427         struct addr_filter *filt = zalloc(sizeof(*filt));
1428
1429         if (filt)
1430                 INIT_LIST_HEAD(&filt->list);
1431
1432         return filt;
1433 }
1434
1435 static void addr_filter__free(struct addr_filter *filt)
1436 {
1437         if (filt)
1438                 addr_filter__free_str(filt);
1439         free(filt);
1440 }
1441
1442 static void addr_filters__add(struct addr_filters *filts,
1443                               struct addr_filter *filt)
1444 {
1445         list_add_tail(&filt->list, &filts->head);
1446         filts->cnt += 1;
1447 }
1448
1449 static void addr_filters__del(struct addr_filters *filts,
1450                               struct addr_filter *filt)
1451 {
1452         list_del_init(&filt->list);
1453         filts->cnt -= 1;
1454 }
1455
1456 void addr_filters__init(struct addr_filters *filts)
1457 {
1458         INIT_LIST_HEAD(&filts->head);
1459         filts->cnt = 0;
1460 }
1461
1462 void addr_filters__exit(struct addr_filters *filts)
1463 {
1464         struct addr_filter *filt, *n;
1465
1466         list_for_each_entry_safe(filt, n, &filts->head, list) {
1467                 addr_filters__del(filts, filt);
1468                 addr_filter__free(filt);
1469         }
1470 }
1471
1472 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1473                             const char *str_delim)
1474 {
1475         *inp += strspn(*inp, " ");
1476
1477         if (isdigit(**inp)) {
1478                 char *endptr;
1479
1480                 if (!num)
1481                         return -EINVAL;
1482                 errno = 0;
1483                 *num = strtoull(*inp, &endptr, 0);
1484                 if (errno)
1485                         return -errno;
1486                 if (endptr == *inp)
1487                         return -EINVAL;
1488                 *inp = endptr;
1489         } else {
1490                 size_t n;
1491
1492                 if (!str)
1493                         return -EINVAL;
1494                 *inp += strspn(*inp, " ");
1495                 *str = *inp;
1496                 n = strcspn(*inp, str_delim);
1497                 if (!n)
1498                         return -EINVAL;
1499                 *inp += n;
1500                 if (**inp) {
1501                         **inp = '\0';
1502                         *inp += 1;
1503                 }
1504         }
1505         return 0;
1506 }
1507
1508 static int parse_action(struct addr_filter *filt)
1509 {
1510         if (!strcmp(filt->action, "filter")) {
1511                 filt->start = true;
1512                 filt->range = true;
1513         } else if (!strcmp(filt->action, "start")) {
1514                 filt->start = true;
1515         } else if (!strcmp(filt->action, "stop")) {
1516                 filt->start = false;
1517         } else if (!strcmp(filt->action, "tracestop")) {
1518                 filt->start = false;
1519                 filt->range = true;
1520                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1521         } else {
1522                 return -EINVAL;
1523         }
1524         return 0;
1525 }
1526
1527 static int parse_sym_idx(char **inp, int *idx)
1528 {
1529         *idx = -1;
1530
1531         *inp += strspn(*inp, " ");
1532
1533         if (**inp != '#')
1534                 return 0;
1535
1536         *inp += 1;
1537
1538         if (**inp == 'g' || **inp == 'G') {
1539                 *inp += 1;
1540                 *idx = 0;
1541         } else {
1542                 unsigned long num;
1543                 char *endptr;
1544
1545                 errno = 0;
1546                 num = strtoul(*inp, &endptr, 0);
1547                 if (errno)
1548                         return -errno;
1549                 if (endptr == *inp || num > INT_MAX)
1550                         return -EINVAL;
1551                 *inp = endptr;
1552                 *idx = num;
1553         }
1554
1555         return 0;
1556 }
1557
1558 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1559 {
1560         int err = parse_num_or_str(inp, num, str, " ");
1561
1562         if (!err && *str)
1563                 err = parse_sym_idx(inp, idx);
1564
1565         return err;
1566 }
1567
1568 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1569 {
1570         char *fstr;
1571         int err;
1572
1573         filt->str = fstr = strdup(*filter_inp);
1574         if (!fstr)
1575                 return -ENOMEM;
1576
1577         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1578         if (err)
1579                 goto out_err;
1580
1581         err = parse_action(filt);
1582         if (err)
1583                 goto out_err;
1584
1585         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1586                               &filt->sym_from_idx);
1587         if (err)
1588                 goto out_err;
1589
1590         fstr += strspn(fstr, " ");
1591
1592         if (*fstr == '/') {
1593                 fstr += 1;
1594                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1595                                       &filt->sym_to_idx);
1596                 if (err)
1597                         goto out_err;
1598                 filt->range = true;
1599         }
1600
1601         fstr += strspn(fstr, " ");
1602
1603         if (*fstr == '@') {
1604                 fstr += 1;
1605                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1606                 if (err)
1607                         goto out_err;
1608         }
1609
1610         fstr += strspn(fstr, " ,");
1611
1612         *filter_inp += fstr - filt->str;
1613
1614         return 0;
1615
1616 out_err:
1617         addr_filter__free_str(filt);
1618
1619         return err;
1620 }
1621
1622 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1623                                     const char *filter)
1624 {
1625         struct addr_filter *filt;
1626         const char *fstr = filter;
1627         int err;
1628
1629         while (*fstr) {
1630                 filt = addr_filter__new();
1631                 err = parse_one_filter(filt, &fstr);
1632                 if (err) {
1633                         addr_filter__free(filt);
1634                         addr_filters__exit(filts);
1635                         return err;
1636                 }
1637                 addr_filters__add(filts, filt);
1638         }
1639
1640         return 0;
1641 }
1642
1643 struct sym_args {
1644         const char      *name;
1645         u64             start;
1646         u64             size;
1647         int             idx;
1648         int             cnt;
1649         bool            started;
1650         bool            global;
1651         bool            selected;
1652         bool            duplicate;
1653         bool            near;
1654 };
1655
1656 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1657 {
1658         /* A function with the same name, and global or the n'th found or any */
1659         return symbol_type__is_a(type, MAP__FUNCTION) &&
1660                !strcmp(name, args->name) &&
1661                ((args->global && isupper(type)) ||
1662                 (args->selected && ++(args->cnt) == args->idx) ||
1663                 (!args->global && !args->selected));
1664 }
1665
1666 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1667 {
1668         struct sym_args *args = arg;
1669
1670         if (args->started) {
1671                 if (!args->size)
1672                         args->size = start - args->start;
1673                 if (args->selected) {
1674                         if (args->size)
1675                                 return 1;
1676                 } else if (kern_sym_match(args, name, type)) {
1677                         args->duplicate = true;
1678                         return 1;
1679                 }
1680         } else if (kern_sym_match(args, name, type)) {
1681                 args->started = true;
1682                 args->start = start;
1683         }
1684
1685         return 0;
1686 }
1687
1688 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1689 {
1690         struct sym_args *args = arg;
1691
1692         if (kern_sym_match(args, name, type)) {
1693                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1694                        ++args->cnt, start, type, name);
1695                 args->near = true;
1696         } else if (args->near) {
1697                 args->near = false;
1698                 pr_err("\t\twhich is near\t\t%s\n", name);
1699         }
1700
1701         return 0;
1702 }
1703
1704 static int sym_not_found_error(const char *sym_name, int idx)
1705 {
1706         if (idx > 0) {
1707                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1708                        idx, sym_name);
1709         } else if (!idx) {
1710                 pr_err("Global symbol '%s' not found.\n", sym_name);
1711         } else {
1712                 pr_err("Symbol '%s' not found.\n", sym_name);
1713         }
1714         pr_err("Note that symbols must be functions.\n");
1715
1716         return -EINVAL;
1717 }
1718
1719 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1720 {
1721         struct sym_args args = {
1722                 .name = sym_name,
1723                 .idx = idx,
1724                 .global = !idx,
1725                 .selected = idx > 0,
1726         };
1727         int err;
1728
1729         *start = 0;
1730         *size = 0;
1731
1732         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1733         if (err < 0) {
1734                 pr_err("Failed to parse /proc/kallsyms\n");
1735                 return err;
1736         }
1737
1738         if (args.duplicate) {
1739                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1740                 args.cnt = 0;
1741                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1742                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1743                        sym_name);
1744                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1745                 return -EINVAL;
1746         }
1747
1748         if (!args.started) {
1749                 pr_err("Kernel symbol lookup: ");
1750                 return sym_not_found_error(sym_name, idx);
1751         }
1752
1753         *start = args.start;
1754         *size = args.size;
1755
1756         return 0;
1757 }
1758
1759 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1760                                char type, u64 start)
1761 {
1762         struct sym_args *args = arg;
1763
1764         if (!symbol_type__is_a(type, MAP__FUNCTION))
1765                 return 0;
1766
1767         if (!args->started) {
1768                 args->started = true;
1769                 args->start = start;
1770         }
1771         /* Don't know exactly where the kernel ends, so we add a page */
1772         args->size = round_up(start, page_size) + page_size - args->start;
1773
1774         return 0;
1775 }
1776
1777 static int addr_filter__entire_kernel(struct addr_filter *filt)
1778 {
1779         struct sym_args args = { .started = false };
1780         int err;
1781
1782         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1783         if (err < 0 || !args.started) {
1784                 pr_err("Failed to parse /proc/kallsyms\n");
1785                 return err;
1786         }
1787
1788         filt->addr = args.start;
1789         filt->size = args.size;
1790
1791         return 0;
1792 }
1793
1794 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1795 {
1796         if (start + size >= filt->addr)
1797                 return 0;
1798
1799         if (filt->sym_from) {
1800                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1801                        filt->sym_to, start, filt->sym_from, filt->addr);
1802         } else {
1803                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1804                        filt->sym_to, start, filt->addr);
1805         }
1806
1807         return -EINVAL;
1808 }
1809
1810 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1811 {
1812         bool no_size = false;
1813         u64 start, size;
1814         int err;
1815
1816         if (symbol_conf.kptr_restrict) {
1817                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1818                 return -EINVAL;
1819         }
1820
1821         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1822                 return addr_filter__entire_kernel(filt);
1823
1824         if (filt->sym_from) {
1825                 err = find_kern_sym(filt->sym_from, &start, &size,
1826                                     filt->sym_from_idx);
1827                 if (err)
1828                         return err;
1829                 filt->addr = start;
1830                 if (filt->range && !filt->size && !filt->sym_to) {
1831                         filt->size = size;
1832                         no_size = !size;
1833                 }
1834         }
1835
1836         if (filt->sym_to) {
1837                 err = find_kern_sym(filt->sym_to, &start, &size,
1838                                     filt->sym_to_idx);
1839                 if (err)
1840                         return err;
1841
1842                 err = check_end_after_start(filt, start, size);
1843                 if (err)
1844                         return err;
1845                 filt->size = start + size - filt->addr;
1846                 no_size = !size;
1847         }
1848
1849         /* The very last symbol in kallsyms does not imply a particular size */
1850         if (no_size) {
1851                 pr_err("Cannot determine size of symbol '%s'\n",
1852                        filt->sym_to ? filt->sym_to : filt->sym_from);
1853                 return -EINVAL;
1854         }
1855
1856         return 0;
1857 }
1858
1859 static struct dso *load_dso(const char *name)
1860 {
1861         struct map *map;
1862         struct dso *dso;
1863
1864         map = dso__new_map(name);
1865         if (!map)
1866                 return NULL;
1867
1868         map__load(map);
1869
1870         dso = dso__get(map->dso);
1871
1872         map__put(map);
1873
1874         return dso;
1875 }
1876
1877 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1878                           int idx)
1879 {
1880         /* Same name, and global or the n'th found or any */
1881         return !arch__compare_symbol_names(name, sym->name) &&
1882                ((!idx && sym->binding == STB_GLOBAL) ||
1883                 (idx > 0 && ++*cnt == idx) ||
1884                 idx < 0);
1885 }
1886
1887 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1888 {
1889         struct symbol *sym;
1890         bool near = false;
1891         int cnt = 0;
1892
1893         pr_err("Multiple symbols with name '%s'\n", sym_name);
1894
1895         sym = dso__first_symbol(dso, MAP__FUNCTION);
1896         while (sym) {
1897                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1898                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1899                                ++cnt, sym->start,
1900                                sym->binding == STB_GLOBAL ? 'g' :
1901                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1902                                sym->name);
1903                         near = true;
1904                 } else if (near) {
1905                         near = false;
1906                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1907                 }
1908                 sym = dso__next_symbol(sym);
1909         }
1910
1911         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1912                sym_name);
1913         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1914 }
1915
1916 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1917                         u64 *size, int idx)
1918 {
1919         struct symbol *sym;
1920         int cnt = 0;
1921
1922         *start = 0;
1923         *size = 0;
1924
1925         sym = dso__first_symbol(dso, MAP__FUNCTION);
1926         while (sym) {
1927                 if (*start) {
1928                         if (!*size)
1929                                 *size = sym->start - *start;
1930                         if (idx > 0) {
1931                                 if (*size)
1932                                         return 1;
1933                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1934                                 print_duplicate_syms(dso, sym_name);
1935                                 return -EINVAL;
1936                         }
1937                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1938                         *start = sym->start;
1939                         *size = sym->end - sym->start;
1940                 }
1941                 sym = dso__next_symbol(sym);
1942         }
1943
1944         if (!*start)
1945                 return sym_not_found_error(sym_name, idx);
1946
1947         return 0;
1948 }
1949
1950 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1951 {
1952         struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1953         struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1954
1955         if (!first_sym || !last_sym) {
1956                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1957                        filt->filename);
1958                 return -EINVAL;
1959         }
1960
1961         filt->addr = first_sym->start;
1962         filt->size = last_sym->end - first_sym->start;
1963
1964         return 0;
1965 }
1966
1967 static int addr_filter__resolve_syms(struct addr_filter *filt)
1968 {
1969         u64 start, size;
1970         struct dso *dso;
1971         int err = 0;
1972
1973         if (!filt->sym_from && !filt->sym_to)
1974                 return 0;
1975
1976         if (!filt->filename)
1977                 return addr_filter__resolve_kernel_syms(filt);
1978
1979         dso = load_dso(filt->filename);
1980         if (!dso) {
1981                 pr_err("Failed to load symbols from: %s\n", filt->filename);
1982                 return -EINVAL;
1983         }
1984
1985         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1986                 err = addr_filter__entire_dso(filt, dso);
1987                 goto put_dso;
1988         }
1989
1990         if (filt->sym_from) {
1991                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
1992                                    filt->sym_from_idx);
1993                 if (err)
1994                         goto put_dso;
1995                 filt->addr = start;
1996                 if (filt->range && !filt->size && !filt->sym_to)
1997                         filt->size = size;
1998         }
1999
2000         if (filt->sym_to) {
2001                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2002                                    filt->sym_to_idx);
2003                 if (err)
2004                         goto put_dso;
2005
2006                 err = check_end_after_start(filt, start, size);
2007                 if (err)
2008                         return err;
2009
2010                 filt->size = start + size - filt->addr;
2011         }
2012
2013 put_dso:
2014         dso__put(dso);
2015
2016         return err;
2017 }
2018
2019 static char *addr_filter__to_str(struct addr_filter *filt)
2020 {
2021         char filename_buf[PATH_MAX];
2022         const char *at = "";
2023         const char *fn = "";
2024         char *filter;
2025         int err;
2026
2027         if (filt->filename) {
2028                 at = "@";
2029                 fn = realpath(filt->filename, filename_buf);
2030                 if (!fn)
2031                         return NULL;
2032         }
2033
2034         if (filt->range) {
2035                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2036                                filt->action, filt->addr, filt->size, at, fn);
2037         } else {
2038                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2039                                filt->action, filt->addr, at, fn);
2040         }
2041
2042         return err < 0 ? NULL : filter;
2043 }
2044
2045 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2046                              int max_nr)
2047 {
2048         struct addr_filters filts;
2049         struct addr_filter *filt;
2050         int err;
2051
2052         addr_filters__init(&filts);
2053
2054         err = addr_filters__parse_bare_filter(&filts, filter);
2055         if (err)
2056                 goto out_exit;
2057
2058         if (filts.cnt > max_nr) {
2059                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2060                        filts.cnt, max_nr);
2061                 err = -EINVAL;
2062                 goto out_exit;
2063         }
2064
2065         list_for_each_entry(filt, &filts.head, list) {
2066                 char *new_filter;
2067
2068                 err = addr_filter__resolve_syms(filt);
2069                 if (err)
2070                         goto out_exit;
2071
2072                 new_filter = addr_filter__to_str(filt);
2073                 if (!new_filter) {
2074                         err = -ENOMEM;
2075                         goto out_exit;
2076                 }
2077
2078                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2079                         err = -ENOMEM;
2080                         goto out_exit;
2081                 }
2082         }
2083
2084 out_exit:
2085         addr_filters__exit(&filts);
2086
2087         if (err) {
2088                 pr_err("Failed to parse address filter: '%s'\n", filter);
2089                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2090                 pr_err("Where multiple filters are separated by space or comma.\n");
2091         }
2092
2093         return err;
2094 }
2095
2096 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2097 {
2098         struct perf_pmu *pmu = NULL;
2099
2100         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2101                 if (pmu->type == evsel->attr.type)
2102                         break;
2103         }
2104
2105         return pmu;
2106 }
2107
2108 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2109 {
2110         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2111         int nr_addr_filters = 0;
2112
2113         if (!pmu)
2114                 return 0;
2115
2116         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2117
2118         return nr_addr_filters;
2119 }
2120
2121 int auxtrace_parse_filters(struct perf_evlist *evlist)
2122 {
2123         struct perf_evsel *evsel;
2124         char *filter;
2125         int err, max_nr;
2126
2127         evlist__for_each_entry(evlist, evsel) {
2128                 filter = evsel->filter;
2129                 max_nr = perf_evsel__nr_addr_filter(evsel);
2130                 if (!filter || !max_nr)
2131                         continue;
2132                 evsel->filter = NULL;
2133                 err = parse_addr_filter(evsel, filter, max_nr);
2134                 free(filter);
2135                 if (err)
2136                         return err;
2137                 pr_debug("Address filter: %s\n", evsel->filter);
2138         }
2139
2140         return 0;
2141 }