OSDN Git Service

Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[uclinux-h8/linux.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32         INIT_LIST_HEAD(&dsos->head);
33         dsos->root = RB_ROOT;
34         init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39         int i;
40
41         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42                 struct threads *threads = &machine->threads[i];
43                 threads->entries = RB_ROOT;
44                 init_rwsem(&threads->lock);
45                 threads->nr = 0;
46                 INIT_LIST_HEAD(&threads->dead);
47                 threads->last_match = NULL;
48         }
49 }
50
51 static int machine__set_mmap_name(struct machine *machine)
52 {
53         if (machine__is_host(machine))
54                 machine->mmap_name = strdup("[kernel.kallsyms]");
55         else if (machine__is_default_guest(machine))
56                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
57         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
58                           machine->pid) < 0)
59                 machine->mmap_name = NULL;
60
61         return machine->mmap_name ? 0 : -ENOMEM;
62 }
63
64 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
65 {
66         int err = -ENOMEM;
67
68         memset(machine, 0, sizeof(*machine));
69         map_groups__init(&machine->kmaps, machine);
70         RB_CLEAR_NODE(&machine->rb_node);
71         dsos__init(&machine->dsos);
72
73         machine__threads_init(machine);
74
75         machine->vdso_info = NULL;
76         machine->env = NULL;
77
78         machine->pid = pid;
79
80         machine->id_hdr_size = 0;
81         machine->kptr_restrict_warned = false;
82         machine->comm_exec = false;
83         machine->kernel_start = 0;
84
85         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
86
87         machine->root_dir = strdup(root_dir);
88         if (machine->root_dir == NULL)
89                 return -ENOMEM;
90
91         if (machine__set_mmap_name(machine))
92                 goto out;
93
94         if (pid != HOST_KERNEL_ID) {
95                 struct thread *thread = machine__findnew_thread(machine, -1,
96                                                                 pid);
97                 char comm[64];
98
99                 if (thread == NULL)
100                         goto out;
101
102                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103                 thread__set_comm(thread, comm, 0);
104                 thread__put(thread);
105         }
106
107         machine->current_tid = NULL;
108         err = 0;
109
110 out:
111         if (err) {
112                 zfree(&machine->root_dir);
113                 zfree(&machine->mmap_name);
114         }
115         return 0;
116 }
117
118 struct machine *machine__new_host(void)
119 {
120         struct machine *machine = malloc(sizeof(*machine));
121
122         if (machine != NULL) {
123                 machine__init(machine, "", HOST_KERNEL_ID);
124
125                 if (machine__create_kernel_maps(machine) < 0)
126                         goto out_delete;
127         }
128
129         return machine;
130 out_delete:
131         free(machine);
132         return NULL;
133 }
134
135 struct machine *machine__new_kallsyms(void)
136 {
137         struct machine *machine = machine__new_host();
138         /*
139          * FIXME:
140          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
141          *    functions and data objects.
142          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
143          *    ask for not using the kcore parsing code, once this one is fixed
144          *    to create a map per module.
145          */
146         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147                 machine__delete(machine);
148                 machine = NULL;
149         }
150
151         return machine;
152 }
153
154 static void dsos__purge(struct dsos *dsos)
155 {
156         struct dso *pos, *n;
157
158         down_write(&dsos->lock);
159
160         list_for_each_entry_safe(pos, n, &dsos->head, node) {
161                 RB_CLEAR_NODE(&pos->rb_node);
162                 pos->root = NULL;
163                 list_del_init(&pos->node);
164                 dso__put(pos);
165         }
166
167         up_write(&dsos->lock);
168 }
169
170 static void dsos__exit(struct dsos *dsos)
171 {
172         dsos__purge(dsos);
173         exit_rwsem(&dsos->lock);
174 }
175
176 void machine__delete_threads(struct machine *machine)
177 {
178         struct rb_node *nd;
179         int i;
180
181         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182                 struct threads *threads = &machine->threads[i];
183                 down_write(&threads->lock);
184                 nd = rb_first(&threads->entries);
185                 while (nd) {
186                         struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188                         nd = rb_next(nd);
189                         __machine__remove_thread(machine, t, false);
190                 }
191                 up_write(&threads->lock);
192         }
193 }
194
195 void machine__exit(struct machine *machine)
196 {
197         int i;
198
199         if (machine == NULL)
200                 return;
201
202         machine__destroy_kernel_maps(machine);
203         map_groups__exit(&machine->kmaps);
204         dsos__exit(&machine->dsos);
205         machine__exit_vdso(machine);
206         zfree(&machine->root_dir);
207         zfree(&machine->mmap_name);
208         zfree(&machine->current_tid);
209
210         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211                 struct threads *threads = &machine->threads[i];
212                 exit_rwsem(&threads->lock);
213         }
214 }
215
216 void machine__delete(struct machine *machine)
217 {
218         if (machine) {
219                 machine__exit(machine);
220                 free(machine);
221         }
222 }
223
224 void machines__init(struct machines *machines)
225 {
226         machine__init(&machines->host, "", HOST_KERNEL_ID);
227         machines->guests = RB_ROOT;
228 }
229
230 void machines__exit(struct machines *machines)
231 {
232         machine__exit(&machines->host);
233         /* XXX exit guest */
234 }
235
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237                               const char *root_dir)
238 {
239         struct rb_node **p = &machines->guests.rb_node;
240         struct rb_node *parent = NULL;
241         struct machine *pos, *machine = malloc(sizeof(*machine));
242
243         if (machine == NULL)
244                 return NULL;
245
246         if (machine__init(machine, root_dir, pid) != 0) {
247                 free(machine);
248                 return NULL;
249         }
250
251         while (*p != NULL) {
252                 parent = *p;
253                 pos = rb_entry(parent, struct machine, rb_node);
254                 if (pid < pos->pid)
255                         p = &(*p)->rb_left;
256                 else
257                         p = &(*p)->rb_right;
258         }
259
260         rb_link_node(&machine->rb_node, parent, p);
261         rb_insert_color(&machine->rb_node, &machines->guests);
262
263         return machine;
264 }
265
266 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
267 {
268         struct rb_node *nd;
269
270         machines->host.comm_exec = comm_exec;
271
272         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
273                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
274
275                 machine->comm_exec = comm_exec;
276         }
277 }
278
279 struct machine *machines__find(struct machines *machines, pid_t pid)
280 {
281         struct rb_node **p = &machines->guests.rb_node;
282         struct rb_node *parent = NULL;
283         struct machine *machine;
284         struct machine *default_machine = NULL;
285
286         if (pid == HOST_KERNEL_ID)
287                 return &machines->host;
288
289         while (*p != NULL) {
290                 parent = *p;
291                 machine = rb_entry(parent, struct machine, rb_node);
292                 if (pid < machine->pid)
293                         p = &(*p)->rb_left;
294                 else if (pid > machine->pid)
295                         p = &(*p)->rb_right;
296                 else
297                         return machine;
298                 if (!machine->pid)
299                         default_machine = machine;
300         }
301
302         return default_machine;
303 }
304
305 struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 {
307         char path[PATH_MAX];
308         const char *root_dir = "";
309         struct machine *machine = machines__find(machines, pid);
310
311         if (machine && (machine->pid == pid))
312                 goto out;
313
314         if ((pid != HOST_KERNEL_ID) &&
315             (pid != DEFAULT_GUEST_KERNEL_ID) &&
316             (symbol_conf.guestmount)) {
317                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
318                 if (access(path, R_OK)) {
319                         static struct strlist *seen;
320
321                         if (!seen)
322                                 seen = strlist__new(NULL, NULL);
323
324                         if (!strlist__has_entry(seen, path)) {
325                                 pr_err("Can't access file %s\n", path);
326                                 strlist__add(seen, path);
327                         }
328                         machine = NULL;
329                         goto out;
330                 }
331                 root_dir = path;
332         }
333
334         machine = machines__add(machines, pid, root_dir);
335 out:
336         return machine;
337 }
338
339 void machines__process_guests(struct machines *machines,
340                               machine__process_t process, void *data)
341 {
342         struct rb_node *nd;
343
344         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
346                 process(pos, data);
347         }
348 }
349
350 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 {
352         struct rb_node *node;
353         struct machine *machine;
354
355         machines->host.id_hdr_size = id_hdr_size;
356
357         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358                 machine = rb_entry(node, struct machine, rb_node);
359                 machine->id_hdr_size = id_hdr_size;
360         }
361
362         return;
363 }
364
365 static void machine__update_thread_pid(struct machine *machine,
366                                        struct thread *th, pid_t pid)
367 {
368         struct thread *leader;
369
370         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
371                 return;
372
373         th->pid_ = pid;
374
375         if (th->pid_ == th->tid)
376                 return;
377
378         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379         if (!leader)
380                 goto out_err;
381
382         if (!leader->mg)
383                 leader->mg = map_groups__new(machine);
384
385         if (!leader->mg)
386                 goto out_err;
387
388         if (th->mg == leader->mg)
389                 return;
390
391         if (th->mg) {
392                 /*
393                  * Maps are created from MMAP events which provide the pid and
394                  * tid.  Consequently there never should be any maps on a thread
395                  * with an unknown pid.  Just print an error if there are.
396                  */
397                 if (!map_groups__empty(th->mg))
398                         pr_err("Discarding thread maps for %d:%d\n",
399                                th->pid_, th->tid);
400                 map_groups__put(th->mg);
401         }
402
403         th->mg = map_groups__get(leader->mg);
404 out_put:
405         thread__put(leader);
406         return;
407 out_err:
408         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409         goto out_put;
410 }
411
412 /*
413  * Caller must eventually drop thread->refcnt returned with a successful
414  * lookup/new thread inserted.
415  */
416 static struct thread *____machine__findnew_thread(struct machine *machine,
417                                                   struct threads *threads,
418                                                   pid_t pid, pid_t tid,
419                                                   bool create)
420 {
421         struct rb_node **p = &threads->entries.rb_node;
422         struct rb_node *parent = NULL;
423         struct thread *th;
424
425         /*
426          * Front-end cache - TID lookups come in blocks,
427          * so most of the time we dont have to look up
428          * the full rbtree:
429          */
430         th = threads->last_match;
431         if (th != NULL) {
432                 if (th->tid == tid) {
433                         machine__update_thread_pid(machine, th, pid);
434                         return thread__get(th);
435                 }
436
437                 threads->last_match = NULL;
438         }
439
440         while (*p != NULL) {
441                 parent = *p;
442                 th = rb_entry(parent, struct thread, rb_node);
443
444                 if (th->tid == tid) {
445                         threads->last_match = th;
446                         machine__update_thread_pid(machine, th, pid);
447                         return thread__get(th);
448                 }
449
450                 if (tid < th->tid)
451                         p = &(*p)->rb_left;
452                 else
453                         p = &(*p)->rb_right;
454         }
455
456         if (!create)
457                 return NULL;
458
459         th = thread__new(pid, tid);
460         if (th != NULL) {
461                 rb_link_node(&th->rb_node, parent, p);
462                 rb_insert_color(&th->rb_node, &threads->entries);
463
464                 /*
465                  * We have to initialize map_groups separately
466                  * after rb tree is updated.
467                  *
468                  * The reason is that we call machine__findnew_thread
469                  * within thread__init_map_groups to find the thread
470                  * leader and that would screwed the rb tree.
471                  */
472                 if (thread__init_map_groups(th, machine)) {
473                         rb_erase_init(&th->rb_node, &threads->entries);
474                         RB_CLEAR_NODE(&th->rb_node);
475                         thread__put(th);
476                         return NULL;
477                 }
478                 /*
479                  * It is now in the rbtree, get a ref
480                  */
481                 thread__get(th);
482                 threads->last_match = th;
483                 ++threads->nr;
484         }
485
486         return th;
487 }
488
489 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
490 {
491         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 }
493
494 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
495                                        pid_t tid)
496 {
497         struct threads *threads = machine__threads(machine, tid);
498         struct thread *th;
499
500         down_write(&threads->lock);
501         th = __machine__findnew_thread(machine, pid, tid);
502         up_write(&threads->lock);
503         return th;
504 }
505
506 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
507                                     pid_t tid)
508 {
509         struct threads *threads = machine__threads(machine, tid);
510         struct thread *th;
511
512         down_read(&threads->lock);
513         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514         up_read(&threads->lock);
515         return th;
516 }
517
518 struct comm *machine__thread_exec_comm(struct machine *machine,
519                                        struct thread *thread)
520 {
521         if (machine->comm_exec)
522                 return thread__exec_comm(thread);
523         else
524                 return thread__comm(thread);
525 }
526
527 int machine__process_comm_event(struct machine *machine, union perf_event *event,
528                                 struct perf_sample *sample)
529 {
530         struct thread *thread = machine__findnew_thread(machine,
531                                                         event->comm.pid,
532                                                         event->comm.tid);
533         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534         int err = 0;
535
536         if (exec)
537                 machine->comm_exec = true;
538
539         if (dump_trace)
540                 perf_event__fprintf_comm(event, stdout);
541
542         if (thread == NULL ||
543             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545                 err = -1;
546         }
547
548         thread__put(thread);
549
550         return err;
551 }
552
553 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
554                                       union perf_event *event,
555                                       struct perf_sample *sample __maybe_unused)
556 {
557         struct thread *thread = machine__findnew_thread(machine,
558                                                         event->namespaces.pid,
559                                                         event->namespaces.tid);
560         int err = 0;
561
562         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
563                   "\nWARNING: kernel seems to support more namespaces than perf"
564                   " tool.\nTry updating the perf tool..\n\n");
565
566         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
567                   "\nWARNING: perf tool seems to support more namespaces than"
568                   " the kernel.\nTry updating the kernel..\n\n");
569
570         if (dump_trace)
571                 perf_event__fprintf_namespaces(event, stdout);
572
573         if (thread == NULL ||
574             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
575                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
576                 err = -1;
577         }
578
579         thread__put(thread);
580
581         return err;
582 }
583
584 int machine__process_lost_event(struct machine *machine __maybe_unused,
585                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
586 {
587         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
588                     event->lost.id, event->lost.lost);
589         return 0;
590 }
591
592 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
593                                         union perf_event *event, struct perf_sample *sample)
594 {
595         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
596                     sample->id, event->lost_samples.lost);
597         return 0;
598 }
599
600 static struct dso *machine__findnew_module_dso(struct machine *machine,
601                                                struct kmod_path *m,
602                                                const char *filename)
603 {
604         struct dso *dso;
605
606         down_write(&machine->dsos.lock);
607
608         dso = __dsos__find(&machine->dsos, m->name, true);
609         if (!dso) {
610                 dso = __dsos__addnew(&machine->dsos, m->name);
611                 if (dso == NULL)
612                         goto out_unlock;
613
614                 dso__set_module_info(dso, m, machine);
615                 dso__set_long_name(dso, strdup(filename), true);
616         }
617
618         dso__get(dso);
619 out_unlock:
620         up_write(&machine->dsos.lock);
621         return dso;
622 }
623
624 int machine__process_aux_event(struct machine *machine __maybe_unused,
625                                union perf_event *event)
626 {
627         if (dump_trace)
628                 perf_event__fprintf_aux(event, stdout);
629         return 0;
630 }
631
632 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
633                                         union perf_event *event)
634 {
635         if (dump_trace)
636                 perf_event__fprintf_itrace_start(event, stdout);
637         return 0;
638 }
639
640 int machine__process_switch_event(struct machine *machine __maybe_unused,
641                                   union perf_event *event)
642 {
643         if (dump_trace)
644                 perf_event__fprintf_switch(event, stdout);
645         return 0;
646 }
647
648 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
649 {
650         const char *dup_filename;
651
652         if (!filename || !dso || !dso->long_name)
653                 return;
654         if (dso->long_name[0] != '[')
655                 return;
656         if (!strchr(filename, '/'))
657                 return;
658
659         dup_filename = strdup(filename);
660         if (!dup_filename)
661                 return;
662
663         dso__set_long_name(dso, dup_filename, true);
664 }
665
666 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
667                                         const char *filename)
668 {
669         struct map *map = NULL;
670         struct dso *dso = NULL;
671         struct kmod_path m;
672
673         if (kmod_path__parse_name(&m, filename))
674                 return NULL;
675
676         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
677                                        m.name);
678         if (map) {
679                 /*
680                  * If the map's dso is an offline module, give dso__load()
681                  * a chance to find the file path of that module by fixing
682                  * long_name.
683                  */
684                 dso__adjust_kmod_long_name(map->dso, filename);
685                 goto out;
686         }
687
688         dso = machine__findnew_module_dso(machine, &m, filename);
689         if (dso == NULL)
690                 goto out;
691
692         map = map__new2(start, dso, MAP__FUNCTION);
693         if (map == NULL)
694                 goto out;
695
696         map_groups__insert(&machine->kmaps, map);
697
698         /* Put the map here because map_groups__insert alread got it */
699         map__put(map);
700 out:
701         /* put the dso here, corresponding to  machine__findnew_module_dso */
702         dso__put(dso);
703         free(m.name);
704         return map;
705 }
706
707 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708 {
709         struct rb_node *nd;
710         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711
712         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
714                 ret += __dsos__fprintf(&pos->dsos.head, fp);
715         }
716
717         return ret;
718 }
719
720 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721                                      bool (skip)(struct dso *dso, int parm), int parm)
722 {
723         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724 }
725
726 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727                                      bool (skip)(struct dso *dso, int parm), int parm)
728 {
729         struct rb_node *nd;
730         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731
732         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
734                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
735         }
736         return ret;
737 }
738
739 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
740 {
741         int i;
742         size_t printed = 0;
743         struct dso *kdso = machine__kernel_map(machine)->dso;
744
745         if (kdso->has_build_id) {
746                 char filename[PATH_MAX];
747                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
748                                            false))
749                         printed += fprintf(fp, "[0] %s\n", filename);
750         }
751
752         for (i = 0; i < vmlinux_path__nr_entries; ++i)
753                 printed += fprintf(fp, "[%d] %s\n",
754                                    i + kdso->has_build_id, vmlinux_path[i]);
755
756         return printed;
757 }
758
759 size_t machine__fprintf(struct machine *machine, FILE *fp)
760 {
761         struct rb_node *nd;
762         size_t ret;
763         int i;
764
765         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
766                 struct threads *threads = &machine->threads[i];
767
768                 down_read(&threads->lock);
769
770                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
771
772                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
773                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
774
775                         ret += thread__fprintf(pos, fp);
776                 }
777
778                 up_read(&threads->lock);
779         }
780         return ret;
781 }
782
783 static struct dso *machine__get_kernel(struct machine *machine)
784 {
785         const char *vmlinux_name = machine->mmap_name;
786         struct dso *kernel;
787
788         if (machine__is_host(machine)) {
789                 if (symbol_conf.vmlinux_name)
790                         vmlinux_name = symbol_conf.vmlinux_name;
791
792                 kernel = machine__findnew_kernel(machine, vmlinux_name,
793                                                  "[kernel]", DSO_TYPE_KERNEL);
794         } else {
795                 if (symbol_conf.default_guest_vmlinux_name)
796                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
797
798                 kernel = machine__findnew_kernel(machine, vmlinux_name,
799                                                  "[guest.kernel]",
800                                                  DSO_TYPE_GUEST_KERNEL);
801         }
802
803         if (kernel != NULL && (!kernel->has_build_id))
804                 dso__read_running_kernel_build_id(kernel, machine);
805
806         return kernel;
807 }
808
809 struct process_args {
810         u64 start;
811 };
812
813 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
814                                            size_t bufsz)
815 {
816         if (machine__is_default_guest(machine))
817                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
818         else
819                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
820 }
821
822 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
823
824 /* Figure out the start address of kernel map from /proc/kallsyms.
825  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
826  * symbol_name if it's not that important.
827  */
828 static int machine__get_running_kernel_start(struct machine *machine,
829                                              const char **symbol_name, u64 *start)
830 {
831         char filename[PATH_MAX];
832         int i, err = -1;
833         const char *name;
834         u64 addr = 0;
835
836         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837
838         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
839                 return 0;
840
841         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842                 err = kallsyms__get_function_start(filename, name, &addr);
843                 if (!err)
844                         break;
845         }
846
847         if (err)
848                 return -1;
849
850         if (symbol_name)
851                 *symbol_name = name;
852
853         *start = addr;
854         return 0;
855 }
856
857 static int
858 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859 {
860         int type;
861
862         /* In case of renewal the kernel map, destroy previous one */
863         machine__destroy_kernel_maps(machine);
864
865         for (type = 0; type < MAP__NR_TYPES; ++type) {
866                 struct kmap *kmap;
867                 struct map *map;
868
869                 machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870                 if (machine->vmlinux_maps[type] == NULL)
871                         return -1;
872
873                 machine->vmlinux_maps[type]->map_ip =
874                         machine->vmlinux_maps[type]->unmap_ip =
875                                 identity__map_ip;
876                 map = __machine__kernel_map(machine, type);
877                 kmap = map__kmap(map);
878                 if (!kmap)
879                         return -1;
880
881                 kmap->kmaps = &machine->kmaps;
882                 map_groups__insert(&machine->kmaps, map);
883         }
884
885         return 0;
886 }
887
888 void machine__destroy_kernel_maps(struct machine *machine)
889 {
890         int type;
891
892         for (type = 0; type < MAP__NR_TYPES; ++type) {
893                 struct kmap *kmap;
894                 struct map *map = __machine__kernel_map(machine, type);
895
896                 if (map == NULL)
897                         continue;
898
899                 kmap = map__kmap(map);
900                 map_groups__remove(&machine->kmaps, map);
901                 if (kmap && kmap->ref_reloc_sym) {
902                         /*
903                          * ref_reloc_sym is shared among all maps, so free just
904                          * on one of them.
905                          */
906                         if (type == MAP__FUNCTION) {
907                                 zfree((char **)&kmap->ref_reloc_sym->name);
908                                 zfree(&kmap->ref_reloc_sym);
909                         } else
910                                 kmap->ref_reloc_sym = NULL;
911                 }
912
913                 map__put(machine->vmlinux_maps[type]);
914                 machine->vmlinux_maps[type] = NULL;
915         }
916 }
917
918 int machines__create_guest_kernel_maps(struct machines *machines)
919 {
920         int ret = 0;
921         struct dirent **namelist = NULL;
922         int i, items = 0;
923         char path[PATH_MAX];
924         pid_t pid;
925         char *endp;
926
927         if (symbol_conf.default_guest_vmlinux_name ||
928             symbol_conf.default_guest_modules ||
929             symbol_conf.default_guest_kallsyms) {
930                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
931         }
932
933         if (symbol_conf.guestmount) {
934                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
935                 if (items <= 0)
936                         return -ENOENT;
937                 for (i = 0; i < items; i++) {
938                         if (!isdigit(namelist[i]->d_name[0])) {
939                                 /* Filter out . and .. */
940                                 continue;
941                         }
942                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
943                         if ((*endp != '\0') ||
944                             (endp == namelist[i]->d_name) ||
945                             (errno == ERANGE)) {
946                                 pr_debug("invalid directory (%s). Skipping.\n",
947                                          namelist[i]->d_name);
948                                 continue;
949                         }
950                         sprintf(path, "%s/%s/proc/kallsyms",
951                                 symbol_conf.guestmount,
952                                 namelist[i]->d_name);
953                         ret = access(path, R_OK);
954                         if (ret) {
955                                 pr_debug("Can't access file %s\n", path);
956                                 goto failure;
957                         }
958                         machines__create_kernel_maps(machines, pid);
959                 }
960 failure:
961                 free(namelist);
962         }
963
964         return ret;
965 }
966
967 void machines__destroy_kernel_maps(struct machines *machines)
968 {
969         struct rb_node *next = rb_first(&machines->guests);
970
971         machine__destroy_kernel_maps(&machines->host);
972
973         while (next) {
974                 struct machine *pos = rb_entry(next, struct machine, rb_node);
975
976                 next = rb_next(&pos->rb_node);
977                 rb_erase(&pos->rb_node, &machines->guests);
978                 machine__delete(pos);
979         }
980 }
981
982 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983 {
984         struct machine *machine = machines__findnew(machines, pid);
985
986         if (machine == NULL)
987                 return -1;
988
989         return machine__create_kernel_maps(machine);
990 }
991
992 int machine__load_kallsyms(struct machine *machine, const char *filename,
993                              enum map_type type)
994 {
995         struct map *map = machine__kernel_map(machine);
996         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997
998         if (ret > 0) {
999                 dso__set_loaded(map->dso, type);
1000                 /*
1001                  * Since /proc/kallsyms will have multiple sessions for the
1002                  * kernel, with modules between them, fixup the end of all
1003                  * sections.
1004                  */
1005                 __map_groups__fixup_end(&machine->kmaps, type);
1006         }
1007
1008         return ret;
1009 }
1010
1011 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012 {
1013         struct map *map = machine__kernel_map(machine);
1014         int ret = dso__load_vmlinux_path(map->dso, map);
1015
1016         if (ret > 0)
1017                 dso__set_loaded(map->dso, type);
1018
1019         return ret;
1020 }
1021
1022 static void map_groups__fixup_end(struct map_groups *mg)
1023 {
1024         int i;
1025         for (i = 0; i < MAP__NR_TYPES; ++i)
1026                 __map_groups__fixup_end(mg, i);
1027 }
1028
1029 static char *get_kernel_version(const char *root_dir)
1030 {
1031         char version[PATH_MAX];
1032         FILE *file;
1033         char *name, *tmp;
1034         const char *prefix = "Linux version ";
1035
1036         sprintf(version, "%s/proc/version", root_dir);
1037         file = fopen(version, "r");
1038         if (!file)
1039                 return NULL;
1040
1041         version[0] = '\0';
1042         tmp = fgets(version, sizeof(version), file);
1043         fclose(file);
1044
1045         name = strstr(version, prefix);
1046         if (!name)
1047                 return NULL;
1048         name += strlen(prefix);
1049         tmp = strchr(name, ' ');
1050         if (tmp)
1051                 *tmp = '\0';
1052
1053         return strdup(name);
1054 }
1055
1056 static bool is_kmod_dso(struct dso *dso)
1057 {
1058         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1059                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1060 }
1061
1062 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1063                                        struct kmod_path *m)
1064 {
1065         struct map *map;
1066         char *long_name;
1067
1068         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1069         if (map == NULL)
1070                 return 0;
1071
1072         long_name = strdup(path);
1073         if (long_name == NULL)
1074                 return -ENOMEM;
1075
1076         dso__set_long_name(map->dso, long_name, true);
1077         dso__kernel_module_get_build_id(map->dso, "");
1078
1079         /*
1080          * Full name could reveal us kmod compression, so
1081          * we need to update the symtab_type if needed.
1082          */
1083         if (m->comp && is_kmod_dso(map->dso))
1084                 map->dso->symtab_type++;
1085
1086         return 0;
1087 }
1088
1089 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1090                                 const char *dir_name, int depth)
1091 {
1092         struct dirent *dent;
1093         DIR *dir = opendir(dir_name);
1094         int ret = 0;
1095
1096         if (!dir) {
1097                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1098                 return -1;
1099         }
1100
1101         while ((dent = readdir(dir)) != NULL) {
1102                 char path[PATH_MAX];
1103                 struct stat st;
1104
1105                 /*sshfs might return bad dent->d_type, so we have to stat*/
1106                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1107                 if (stat(path, &st))
1108                         continue;
1109
1110                 if (S_ISDIR(st.st_mode)) {
1111                         if (!strcmp(dent->d_name, ".") ||
1112                             !strcmp(dent->d_name, ".."))
1113                                 continue;
1114
1115                         /* Do not follow top-level source and build symlinks */
1116                         if (depth == 0) {
1117                                 if (!strcmp(dent->d_name, "source") ||
1118                                     !strcmp(dent->d_name, "build"))
1119                                         continue;
1120                         }
1121
1122                         ret = map_groups__set_modules_path_dir(mg, path,
1123                                                                depth + 1);
1124                         if (ret < 0)
1125                                 goto out;
1126                 } else {
1127                         struct kmod_path m;
1128
1129                         ret = kmod_path__parse_name(&m, dent->d_name);
1130                         if (ret)
1131                                 goto out;
1132
1133                         if (m.kmod)
1134                                 ret = map_groups__set_module_path(mg, path, &m);
1135
1136                         free(m.name);
1137
1138                         if (ret)
1139                                 goto out;
1140                 }
1141         }
1142
1143 out:
1144         closedir(dir);
1145         return ret;
1146 }
1147
1148 static int machine__set_modules_path(struct machine *machine)
1149 {
1150         char *version;
1151         char modules_path[PATH_MAX];
1152
1153         version = get_kernel_version(machine->root_dir);
1154         if (!version)
1155                 return -1;
1156
1157         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1158                  machine->root_dir, version);
1159         free(version);
1160
1161         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1162 }
1163 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1164                                 const char *name __maybe_unused)
1165 {
1166         return 0;
1167 }
1168
1169 static int machine__create_module(void *arg, const char *name, u64 start,
1170                                   u64 size)
1171 {
1172         struct machine *machine = arg;
1173         struct map *map;
1174
1175         if (arch__fix_module_text_start(&start, name) < 0)
1176                 return -1;
1177
1178         map = machine__findnew_module_map(machine, start, name);
1179         if (map == NULL)
1180                 return -1;
1181         map->end = start + size;
1182
1183         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1184
1185         return 0;
1186 }
1187
1188 static int machine__create_modules(struct machine *machine)
1189 {
1190         const char *modules;
1191         char path[PATH_MAX];
1192
1193         if (machine__is_default_guest(machine)) {
1194                 modules = symbol_conf.default_guest_modules;
1195         } else {
1196                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1197                 modules = path;
1198         }
1199
1200         if (symbol__restricted_filename(modules, "/proc/modules"))
1201                 return -1;
1202
1203         if (modules__parse(modules, machine, machine__create_module))
1204                 return -1;
1205
1206         if (!machine__set_modules_path(machine))
1207                 return 0;
1208
1209         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1210
1211         return 0;
1212 }
1213
1214 static void machine__set_kernel_mmap(struct machine *machine,
1215                                      u64 start, u64 end)
1216 {
1217         int i;
1218
1219         for (i = 0; i < MAP__NR_TYPES; i++) {
1220                 machine->vmlinux_maps[i]->start = start;
1221                 machine->vmlinux_maps[i]->end   = end;
1222
1223                 /*
1224                  * Be a bit paranoid here, some perf.data file came with
1225                  * a zero sized synthesized MMAP event for the kernel.
1226                  */
1227                 if (start == 0 && end == 0)
1228                         machine->vmlinux_maps[i]->end = ~0ULL;
1229         }
1230 }
1231
1232 int machine__create_kernel_maps(struct machine *machine)
1233 {
1234         struct dso *kernel = machine__get_kernel(machine);
1235         const char *name = NULL;
1236         u64 addr = 0;
1237         int ret;
1238
1239         if (kernel == NULL)
1240                 return -1;
1241
1242         ret = __machine__create_kernel_maps(machine, kernel);
1243         dso__put(kernel);
1244         if (ret < 0)
1245                 return -1;
1246
1247         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1248                 if (machine__is_host(machine))
1249                         pr_debug("Problems creating module maps, "
1250                                  "continuing anyway...\n");
1251                 else
1252                         pr_debug("Problems creating module maps for guest %d, "
1253                                  "continuing anyway...\n", machine->pid);
1254         }
1255
1256         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1257                 if (name &&
1258                     maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1259                         machine__destroy_kernel_maps(machine);
1260                         return -1;
1261                 }
1262                 machine__set_kernel_mmap(machine, addr, 0);
1263         }
1264
1265         /*
1266          * Now that we have all the maps created, just set the ->end of them:
1267          */
1268         map_groups__fixup_end(&machine->kmaps);
1269         return 0;
1270 }
1271
1272 static bool machine__uses_kcore(struct machine *machine)
1273 {
1274         struct dso *dso;
1275
1276         list_for_each_entry(dso, &machine->dsos.head, node) {
1277                 if (dso__is_kcore(dso))
1278                         return true;
1279         }
1280
1281         return false;
1282 }
1283
1284 static int machine__process_kernel_mmap_event(struct machine *machine,
1285                                               union perf_event *event)
1286 {
1287         struct map *map;
1288         enum dso_kernel_type kernel_type;
1289         bool is_kernel_mmap;
1290
1291         /* If we have maps from kcore then we do not need or want any others */
1292         if (machine__uses_kcore(machine))
1293                 return 0;
1294
1295         if (machine__is_host(machine))
1296                 kernel_type = DSO_TYPE_KERNEL;
1297         else
1298                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1299
1300         is_kernel_mmap = memcmp(event->mmap.filename,
1301                                 machine->mmap_name,
1302                                 strlen(machine->mmap_name) - 1) == 0;
1303         if (event->mmap.filename[0] == '/' ||
1304             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1305                 map = machine__findnew_module_map(machine, event->mmap.start,
1306                                                   event->mmap.filename);
1307                 if (map == NULL)
1308                         goto out_problem;
1309
1310                 map->end = map->start + event->mmap.len;
1311         } else if (is_kernel_mmap) {
1312                 const char *symbol_name = (event->mmap.filename +
1313                                 strlen(machine->mmap_name));
1314                 /*
1315                  * Should be there already, from the build-id table in
1316                  * the header.
1317                  */
1318                 struct dso *kernel = NULL;
1319                 struct dso *dso;
1320
1321                 down_read(&machine->dsos.lock);
1322
1323                 list_for_each_entry(dso, &machine->dsos.head, node) {
1324
1325                         /*
1326                          * The cpumode passed to is_kernel_module is not the
1327                          * cpumode of *this* event. If we insist on passing
1328                          * correct cpumode to is_kernel_module, we should
1329                          * record the cpumode when we adding this dso to the
1330                          * linked list.
1331                          *
1332                          * However we don't really need passing correct
1333                          * cpumode.  We know the correct cpumode must be kernel
1334                          * mode (if not, we should not link it onto kernel_dsos
1335                          * list).
1336                          *
1337                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1338                          * is_kernel_module() treats it as a kernel cpumode.
1339                          */
1340
1341                         if (!dso->kernel ||
1342                             is_kernel_module(dso->long_name,
1343                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1344                                 continue;
1345
1346
1347                         kernel = dso;
1348                         break;
1349                 }
1350
1351                 up_read(&machine->dsos.lock);
1352
1353                 if (kernel == NULL)
1354                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1355                 if (kernel == NULL)
1356                         goto out_problem;
1357
1358                 kernel->kernel = kernel_type;
1359                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1360                         dso__put(kernel);
1361                         goto out_problem;
1362                 }
1363
1364                 if (strstr(kernel->long_name, "vmlinux"))
1365                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1366
1367                 machine__set_kernel_mmap(machine, event->mmap.start,
1368                                          event->mmap.start + event->mmap.len);
1369
1370                 /*
1371                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1372                  * symbol. Effectively having zero here means that at record
1373                  * time /proc/sys/kernel/kptr_restrict was non zero.
1374                  */
1375                 if (event->mmap.pgoff != 0) {
1376                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1377                                                          symbol_name,
1378                                                          event->mmap.pgoff);
1379                 }
1380
1381                 if (machine__is_default_guest(machine)) {
1382                         /*
1383                          * preload dso of guest kernel and modules
1384                          */
1385                         dso__load(kernel, machine__kernel_map(machine));
1386                 }
1387         }
1388         return 0;
1389 out_problem:
1390         return -1;
1391 }
1392
1393 int machine__process_mmap2_event(struct machine *machine,
1394                                  union perf_event *event,
1395                                  struct perf_sample *sample)
1396 {
1397         struct thread *thread;
1398         struct map *map;
1399         enum map_type type;
1400         int ret = 0;
1401
1402         if (dump_trace)
1403                 perf_event__fprintf_mmap2(event, stdout);
1404
1405         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1406             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1407                 ret = machine__process_kernel_mmap_event(machine, event);
1408                 if (ret < 0)
1409                         goto out_problem;
1410                 return 0;
1411         }
1412
1413         thread = machine__findnew_thread(machine, event->mmap2.pid,
1414                                         event->mmap2.tid);
1415         if (thread == NULL)
1416                 goto out_problem;
1417
1418         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1419                 type = MAP__VARIABLE;
1420         else
1421                 type = MAP__FUNCTION;
1422
1423         map = map__new(machine, event->mmap2.start,
1424                         event->mmap2.len, event->mmap2.pgoff,
1425                         event->mmap2.maj,
1426                         event->mmap2.min, event->mmap2.ino,
1427                         event->mmap2.ino_generation,
1428                         event->mmap2.prot,
1429                         event->mmap2.flags,
1430                         event->mmap2.filename, type, thread);
1431
1432         if (map == NULL)
1433                 goto out_problem_map;
1434
1435         ret = thread__insert_map(thread, map);
1436         if (ret)
1437                 goto out_problem_insert;
1438
1439         thread__put(thread);
1440         map__put(map);
1441         return 0;
1442
1443 out_problem_insert:
1444         map__put(map);
1445 out_problem_map:
1446         thread__put(thread);
1447 out_problem:
1448         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1449         return 0;
1450 }
1451
1452 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1453                                 struct perf_sample *sample)
1454 {
1455         struct thread *thread;
1456         struct map *map;
1457         enum map_type type;
1458         int ret = 0;
1459
1460         if (dump_trace)
1461                 perf_event__fprintf_mmap(event, stdout);
1462
1463         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1464             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1465                 ret = machine__process_kernel_mmap_event(machine, event);
1466                 if (ret < 0)
1467                         goto out_problem;
1468                 return 0;
1469         }
1470
1471         thread = machine__findnew_thread(machine, event->mmap.pid,
1472                                          event->mmap.tid);
1473         if (thread == NULL)
1474                 goto out_problem;
1475
1476         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1477                 type = MAP__VARIABLE;
1478         else
1479                 type = MAP__FUNCTION;
1480
1481         map = map__new(machine, event->mmap.start,
1482                         event->mmap.len, event->mmap.pgoff,
1483                         0, 0, 0, 0, 0, 0,
1484                         event->mmap.filename,
1485                         type, thread);
1486
1487         if (map == NULL)
1488                 goto out_problem_map;
1489
1490         ret = thread__insert_map(thread, map);
1491         if (ret)
1492                 goto out_problem_insert;
1493
1494         thread__put(thread);
1495         map__put(map);
1496         return 0;
1497
1498 out_problem_insert:
1499         map__put(map);
1500 out_problem_map:
1501         thread__put(thread);
1502 out_problem:
1503         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1504         return 0;
1505 }
1506
1507 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1508 {
1509         struct threads *threads = machine__threads(machine, th->tid);
1510
1511         if (threads->last_match == th)
1512                 threads->last_match = NULL;
1513
1514         BUG_ON(refcount_read(&th->refcnt) == 0);
1515         if (lock)
1516                 down_write(&threads->lock);
1517         rb_erase_init(&th->rb_node, &threads->entries);
1518         RB_CLEAR_NODE(&th->rb_node);
1519         --threads->nr;
1520         /*
1521          * Move it first to the dead_threads list, then drop the reference,
1522          * if this is the last reference, then the thread__delete destructor
1523          * will be called and we will remove it from the dead_threads list.
1524          */
1525         list_add_tail(&th->node, &threads->dead);
1526         if (lock)
1527                 up_write(&threads->lock);
1528         thread__put(th);
1529 }
1530
1531 void machine__remove_thread(struct machine *machine, struct thread *th)
1532 {
1533         return __machine__remove_thread(machine, th, true);
1534 }
1535
1536 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1537                                 struct perf_sample *sample)
1538 {
1539         struct thread *thread = machine__find_thread(machine,
1540                                                      event->fork.pid,
1541                                                      event->fork.tid);
1542         struct thread *parent = machine__findnew_thread(machine,
1543                                                         event->fork.ppid,
1544                                                         event->fork.ptid);
1545         int err = 0;
1546
1547         if (dump_trace)
1548                 perf_event__fprintf_task(event, stdout);
1549
1550         /*
1551          * There may be an existing thread that is not actually the parent,
1552          * either because we are processing events out of order, or because the
1553          * (fork) event that would have removed the thread was lost. Assume the
1554          * latter case and continue on as best we can.
1555          */
1556         if (parent->pid_ != (pid_t)event->fork.ppid) {
1557                 dump_printf("removing erroneous parent thread %d/%d\n",
1558                             parent->pid_, parent->tid);
1559                 machine__remove_thread(machine, parent);
1560                 thread__put(parent);
1561                 parent = machine__findnew_thread(machine, event->fork.ppid,
1562                                                  event->fork.ptid);
1563         }
1564
1565         /* if a thread currently exists for the thread id remove it */
1566         if (thread != NULL) {
1567                 machine__remove_thread(machine, thread);
1568                 thread__put(thread);
1569         }
1570
1571         thread = machine__findnew_thread(machine, event->fork.pid,
1572                                          event->fork.tid);
1573
1574         if (thread == NULL || parent == NULL ||
1575             thread__fork(thread, parent, sample->time) < 0) {
1576                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1577                 err = -1;
1578         }
1579         thread__put(thread);
1580         thread__put(parent);
1581
1582         return err;
1583 }
1584
1585 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1586                                 struct perf_sample *sample __maybe_unused)
1587 {
1588         struct thread *thread = machine__find_thread(machine,
1589                                                      event->fork.pid,
1590                                                      event->fork.tid);
1591
1592         if (dump_trace)
1593                 perf_event__fprintf_task(event, stdout);
1594
1595         if (thread != NULL) {
1596                 thread__exited(thread);
1597                 thread__put(thread);
1598         }
1599
1600         return 0;
1601 }
1602
1603 int machine__process_event(struct machine *machine, union perf_event *event,
1604                            struct perf_sample *sample)
1605 {
1606         int ret;
1607
1608         switch (event->header.type) {
1609         case PERF_RECORD_COMM:
1610                 ret = machine__process_comm_event(machine, event, sample); break;
1611         case PERF_RECORD_MMAP:
1612                 ret = machine__process_mmap_event(machine, event, sample); break;
1613         case PERF_RECORD_NAMESPACES:
1614                 ret = machine__process_namespaces_event(machine, event, sample); break;
1615         case PERF_RECORD_MMAP2:
1616                 ret = machine__process_mmap2_event(machine, event, sample); break;
1617         case PERF_RECORD_FORK:
1618                 ret = machine__process_fork_event(machine, event, sample); break;
1619         case PERF_RECORD_EXIT:
1620                 ret = machine__process_exit_event(machine, event, sample); break;
1621         case PERF_RECORD_LOST:
1622                 ret = machine__process_lost_event(machine, event, sample); break;
1623         case PERF_RECORD_AUX:
1624                 ret = machine__process_aux_event(machine, event); break;
1625         case PERF_RECORD_ITRACE_START:
1626                 ret = machine__process_itrace_start_event(machine, event); break;
1627         case PERF_RECORD_LOST_SAMPLES:
1628                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1629         case PERF_RECORD_SWITCH:
1630         case PERF_RECORD_SWITCH_CPU_WIDE:
1631                 ret = machine__process_switch_event(machine, event); break;
1632         default:
1633                 ret = -1;
1634                 break;
1635         }
1636
1637         return ret;
1638 }
1639
1640 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1641 {
1642         if (!regexec(regex, sym->name, 0, NULL, 0))
1643                 return 1;
1644         return 0;
1645 }
1646
1647 static void ip__resolve_ams(struct thread *thread,
1648                             struct addr_map_symbol *ams,
1649                             u64 ip)
1650 {
1651         struct addr_location al;
1652
1653         memset(&al, 0, sizeof(al));
1654         /*
1655          * We cannot use the header.misc hint to determine whether a
1656          * branch stack address is user, kernel, guest, hypervisor.
1657          * Branches may straddle the kernel/user/hypervisor boundaries.
1658          * Thus, we have to try consecutively until we find a match
1659          * or else, the symbol is unknown
1660          */
1661         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1662
1663         ams->addr = ip;
1664         ams->al_addr = al.addr;
1665         ams->sym = al.sym;
1666         ams->map = al.map;
1667         ams->phys_addr = 0;
1668 }
1669
1670 static void ip__resolve_data(struct thread *thread,
1671                              u8 m, struct addr_map_symbol *ams,
1672                              u64 addr, u64 phys_addr)
1673 {
1674         struct addr_location al;
1675
1676         memset(&al, 0, sizeof(al));
1677
1678         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1679         if (al.map == NULL) {
1680                 /*
1681                  * some shared data regions have execute bit set which puts
1682                  * their mapping in the MAP__FUNCTION type array.
1683                  * Check there as a fallback option before dropping the sample.
1684                  */
1685                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1686         }
1687
1688         ams->addr = addr;
1689         ams->al_addr = al.addr;
1690         ams->sym = al.sym;
1691         ams->map = al.map;
1692         ams->phys_addr = phys_addr;
1693 }
1694
1695 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1696                                      struct addr_location *al)
1697 {
1698         struct mem_info *mi = mem_info__new();
1699
1700         if (!mi)
1701                 return NULL;
1702
1703         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1704         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1705                          sample->addr, sample->phys_addr);
1706         mi->data_src.val = sample->data_src;
1707
1708         return mi;
1709 }
1710
1711 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1712 {
1713         char *srcline = NULL;
1714
1715         if (!map || callchain_param.key == CCKEY_FUNCTION)
1716                 return srcline;
1717
1718         srcline = srcline__tree_find(&map->dso->srclines, ip);
1719         if (!srcline) {
1720                 bool show_sym = false;
1721                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1722
1723                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1724                                       sym, show_sym, show_addr, ip);
1725                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1726         }
1727
1728         return srcline;
1729 }
1730
1731 struct iterations {
1732         int nr_loop_iter;
1733         u64 cycles;
1734 };
1735
1736 static int add_callchain_ip(struct thread *thread,
1737                             struct callchain_cursor *cursor,
1738                             struct symbol **parent,
1739                             struct addr_location *root_al,
1740                             u8 *cpumode,
1741                             u64 ip,
1742                             bool branch,
1743                             struct branch_flags *flags,
1744                             struct iterations *iter,
1745                             u64 branch_from)
1746 {
1747         struct addr_location al;
1748         int nr_loop_iter = 0;
1749         u64 iter_cycles = 0;
1750         const char *srcline = NULL;
1751
1752         al.filtered = 0;
1753         al.sym = NULL;
1754         if (!cpumode) {
1755                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1756                                                    ip, &al);
1757         } else {
1758                 if (ip >= PERF_CONTEXT_MAX) {
1759                         switch (ip) {
1760                         case PERF_CONTEXT_HV:
1761                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1762                                 break;
1763                         case PERF_CONTEXT_KERNEL:
1764                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1765                                 break;
1766                         case PERF_CONTEXT_USER:
1767                                 *cpumode = PERF_RECORD_MISC_USER;
1768                                 break;
1769                         default:
1770                                 pr_debug("invalid callchain context: "
1771                                          "%"PRId64"\n", (s64) ip);
1772                                 /*
1773                                  * It seems the callchain is corrupted.
1774                                  * Discard all.
1775                                  */
1776                                 callchain_cursor_reset(cursor);
1777                                 return 1;
1778                         }
1779                         return 0;
1780                 }
1781                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1782                                            ip, &al);
1783         }
1784
1785         if (al.sym != NULL) {
1786                 if (perf_hpp_list.parent && !*parent &&
1787                     symbol__match_regex(al.sym, &parent_regex))
1788                         *parent = al.sym;
1789                 else if (have_ignore_callees && root_al &&
1790                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1791                         /* Treat this symbol as the root,
1792                            forgetting its callees. */
1793                         *root_al = al;
1794                         callchain_cursor_reset(cursor);
1795                 }
1796         }
1797
1798         if (symbol_conf.hide_unresolved && al.sym == NULL)
1799                 return 0;
1800
1801         if (iter) {
1802                 nr_loop_iter = iter->nr_loop_iter;
1803                 iter_cycles = iter->cycles;
1804         }
1805
1806         srcline = callchain_srcline(al.map, al.sym, al.addr);
1807         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1808                                        branch, flags, nr_loop_iter,
1809                                        iter_cycles, branch_from, srcline);
1810 }
1811
1812 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1813                                            struct addr_location *al)
1814 {
1815         unsigned int i;
1816         const struct branch_stack *bs = sample->branch_stack;
1817         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1818
1819         if (!bi)
1820                 return NULL;
1821
1822         for (i = 0; i < bs->nr; i++) {
1823                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1824                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1825                 bi[i].flags = bs->entries[i].flags;
1826         }
1827         return bi;
1828 }
1829
1830 static void save_iterations(struct iterations *iter,
1831                             struct branch_entry *be, int nr)
1832 {
1833         int i;
1834
1835         iter->nr_loop_iter = nr;
1836         iter->cycles = 0;
1837
1838         for (i = 0; i < nr; i++)
1839                 iter->cycles += be[i].flags.cycles;
1840 }
1841
1842 #define CHASHSZ 127
1843 #define CHASHBITS 7
1844 #define NO_ENTRY 0xff
1845
1846 #define PERF_MAX_BRANCH_DEPTH 127
1847
1848 /* Remove loops. */
1849 static int remove_loops(struct branch_entry *l, int nr,
1850                         struct iterations *iter)
1851 {
1852         int i, j, off;
1853         unsigned char chash[CHASHSZ];
1854
1855         memset(chash, NO_ENTRY, sizeof(chash));
1856
1857         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1858
1859         for (i = 0; i < nr; i++) {
1860                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1861
1862                 /* no collision handling for now */
1863                 if (chash[h] == NO_ENTRY) {
1864                         chash[h] = i;
1865                 } else if (l[chash[h]].from == l[i].from) {
1866                         bool is_loop = true;
1867                         /* check if it is a real loop */
1868                         off = 0;
1869                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1870                                 if (l[j].from != l[i + off].from) {
1871                                         is_loop = false;
1872                                         break;
1873                                 }
1874                         if (is_loop) {
1875                                 j = nr - (i + off);
1876                                 if (j > 0) {
1877                                         save_iterations(iter + i + off,
1878                                                 l + i, off);
1879
1880                                         memmove(iter + i, iter + i + off,
1881                                                 j * sizeof(*iter));
1882
1883                                         memmove(l + i, l + i + off,
1884                                                 j * sizeof(*l));
1885                                 }
1886
1887                                 nr -= off;
1888                         }
1889                 }
1890         }
1891         return nr;
1892 }
1893
1894 /*
1895  * Recolve LBR callstack chain sample
1896  * Return:
1897  * 1 on success get LBR callchain information
1898  * 0 no available LBR callchain information, should try fp
1899  * negative error code on other errors.
1900  */
1901 static int resolve_lbr_callchain_sample(struct thread *thread,
1902                                         struct callchain_cursor *cursor,
1903                                         struct perf_sample *sample,
1904                                         struct symbol **parent,
1905                                         struct addr_location *root_al,
1906                                         int max_stack)
1907 {
1908         struct ip_callchain *chain = sample->callchain;
1909         int chain_nr = min(max_stack, (int)chain->nr), i;
1910         u8 cpumode = PERF_RECORD_MISC_USER;
1911         u64 ip, branch_from = 0;
1912
1913         for (i = 0; i < chain_nr; i++) {
1914                 if (chain->ips[i] == PERF_CONTEXT_USER)
1915                         break;
1916         }
1917
1918         /* LBR only affects the user callchain */
1919         if (i != chain_nr) {
1920                 struct branch_stack *lbr_stack = sample->branch_stack;
1921                 int lbr_nr = lbr_stack->nr, j, k;
1922                 bool branch;
1923                 struct branch_flags *flags;
1924                 /*
1925                  * LBR callstack can only get user call chain.
1926                  * The mix_chain_nr is kernel call chain
1927                  * number plus LBR user call chain number.
1928                  * i is kernel call chain number,
1929                  * 1 is PERF_CONTEXT_USER,
1930                  * lbr_nr + 1 is the user call chain number.
1931                  * For details, please refer to the comments
1932                  * in callchain__printf
1933                  */
1934                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1935
1936                 for (j = 0; j < mix_chain_nr; j++) {
1937                         int err;
1938                         branch = false;
1939                         flags = NULL;
1940
1941                         if (callchain_param.order == ORDER_CALLEE) {
1942                                 if (j < i + 1)
1943                                         ip = chain->ips[j];
1944                                 else if (j > i + 1) {
1945                                         k = j - i - 2;
1946                                         ip = lbr_stack->entries[k].from;
1947                                         branch = true;
1948                                         flags = &lbr_stack->entries[k].flags;
1949                                 } else {
1950                                         ip = lbr_stack->entries[0].to;
1951                                         branch = true;
1952                                         flags = &lbr_stack->entries[0].flags;
1953                                         branch_from =
1954                                                 lbr_stack->entries[0].from;
1955                                 }
1956                         } else {
1957                                 if (j < lbr_nr) {
1958                                         k = lbr_nr - j - 1;
1959                                         ip = lbr_stack->entries[k].from;
1960                                         branch = true;
1961                                         flags = &lbr_stack->entries[k].flags;
1962                                 }
1963                                 else if (j > lbr_nr)
1964                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1965                                 else {
1966                                         ip = lbr_stack->entries[0].to;
1967                                         branch = true;
1968                                         flags = &lbr_stack->entries[0].flags;
1969                                         branch_from =
1970                                                 lbr_stack->entries[0].from;
1971                                 }
1972                         }
1973
1974                         err = add_callchain_ip(thread, cursor, parent,
1975                                                root_al, &cpumode, ip,
1976                                                branch, flags, NULL,
1977                                                branch_from);
1978                         if (err)
1979                                 return (err < 0) ? err : 0;
1980                 }
1981                 return 1;
1982         }
1983
1984         return 0;
1985 }
1986
1987 static int thread__resolve_callchain_sample(struct thread *thread,
1988                                             struct callchain_cursor *cursor,
1989                                             struct perf_evsel *evsel,
1990                                             struct perf_sample *sample,
1991                                             struct symbol **parent,
1992                                             struct addr_location *root_al,
1993                                             int max_stack)
1994 {
1995         struct branch_stack *branch = sample->branch_stack;
1996         struct ip_callchain *chain = sample->callchain;
1997         int chain_nr = 0;
1998         u8 cpumode = PERF_RECORD_MISC_USER;
1999         int i, j, err, nr_entries;
2000         int skip_idx = -1;
2001         int first_call = 0;
2002
2003         if (chain)
2004                 chain_nr = chain->nr;
2005
2006         if (perf_evsel__has_branch_callstack(evsel)) {
2007                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2008                                                    root_al, max_stack);
2009                 if (err)
2010                         return (err < 0) ? err : 0;
2011         }
2012
2013         /*
2014          * Based on DWARF debug information, some architectures skip
2015          * a callchain entry saved by the kernel.
2016          */
2017         skip_idx = arch_skip_callchain_idx(thread, chain);
2018
2019         /*
2020          * Add branches to call stack for easier browsing. This gives
2021          * more context for a sample than just the callers.
2022          *
2023          * This uses individual histograms of paths compared to the
2024          * aggregated histograms the normal LBR mode uses.
2025          *
2026          * Limitations for now:
2027          * - No extra filters
2028          * - No annotations (should annotate somehow)
2029          */
2030
2031         if (branch && callchain_param.branch_callstack) {
2032                 int nr = min(max_stack, (int)branch->nr);
2033                 struct branch_entry be[nr];
2034                 struct iterations iter[nr];
2035
2036                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2037                         pr_warning("corrupted branch chain. skipping...\n");
2038                         goto check_calls;
2039                 }
2040
2041                 for (i = 0; i < nr; i++) {
2042                         if (callchain_param.order == ORDER_CALLEE) {
2043                                 be[i] = branch->entries[i];
2044
2045                                 if (chain == NULL)
2046                                         continue;
2047
2048                                 /*
2049                                  * Check for overlap into the callchain.
2050                                  * The return address is one off compared to
2051                                  * the branch entry. To adjust for this
2052                                  * assume the calling instruction is not longer
2053                                  * than 8 bytes.
2054                                  */
2055                                 if (i == skip_idx ||
2056                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2057                                         first_call++;
2058                                 else if (be[i].from < chain->ips[first_call] &&
2059                                     be[i].from >= chain->ips[first_call] - 8)
2060                                         first_call++;
2061                         } else
2062                                 be[i] = branch->entries[branch->nr - i - 1];
2063                 }
2064
2065                 memset(iter, 0, sizeof(struct iterations) * nr);
2066                 nr = remove_loops(be, nr, iter);
2067
2068                 for (i = 0; i < nr; i++) {
2069                         err = add_callchain_ip(thread, cursor, parent,
2070                                                root_al,
2071                                                NULL, be[i].to,
2072                                                true, &be[i].flags,
2073                                                NULL, be[i].from);
2074
2075                         if (!err)
2076                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2077                                                        NULL, be[i].from,
2078                                                        true, &be[i].flags,
2079                                                        &iter[i], 0);
2080                         if (err == -EINVAL)
2081                                 break;
2082                         if (err)
2083                                 return err;
2084                 }
2085
2086                 if (chain_nr == 0)
2087                         return 0;
2088
2089                 chain_nr -= nr;
2090         }
2091
2092 check_calls:
2093         for (i = first_call, nr_entries = 0;
2094              i < chain_nr && nr_entries < max_stack; i++) {
2095                 u64 ip;
2096
2097                 if (callchain_param.order == ORDER_CALLEE)
2098                         j = i;
2099                 else
2100                         j = chain->nr - i - 1;
2101
2102 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2103                 if (j == skip_idx)
2104                         continue;
2105 #endif
2106                 ip = chain->ips[j];
2107
2108                 if (ip < PERF_CONTEXT_MAX)
2109                        ++nr_entries;
2110
2111                 err = add_callchain_ip(thread, cursor, parent,
2112                                        root_al, &cpumode, ip,
2113                                        false, NULL, NULL, 0);
2114
2115                 if (err)
2116                         return (err < 0) ? err : 0;
2117         }
2118
2119         return 0;
2120 }
2121
2122 static int append_inlines(struct callchain_cursor *cursor,
2123                           struct map *map, struct symbol *sym, u64 ip)
2124 {
2125         struct inline_node *inline_node;
2126         struct inline_list *ilist;
2127         u64 addr;
2128         int ret = 1;
2129
2130         if (!symbol_conf.inline_name || !map || !sym)
2131                 return ret;
2132
2133         addr = map__rip_2objdump(map, ip);
2134
2135         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2136         if (!inline_node) {
2137                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2138                 if (!inline_node)
2139                         return ret;
2140                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2141         }
2142
2143         list_for_each_entry(ilist, &inline_node->val, list) {
2144                 ret = callchain_cursor_append(cursor, ip, map,
2145                                               ilist->symbol, false,
2146                                               NULL, 0, 0, 0, ilist->srcline);
2147
2148                 if (ret != 0)
2149                         return ret;
2150         }
2151
2152         return ret;
2153 }
2154
2155 static int unwind_entry(struct unwind_entry *entry, void *arg)
2156 {
2157         struct callchain_cursor *cursor = arg;
2158         const char *srcline = NULL;
2159
2160         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2161                 return 0;
2162
2163         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2164                 return 0;
2165
2166         srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2167         return callchain_cursor_append(cursor, entry->ip,
2168                                        entry->map, entry->sym,
2169                                        false, NULL, 0, 0, 0, srcline);
2170 }
2171
2172 static int thread__resolve_callchain_unwind(struct thread *thread,
2173                                             struct callchain_cursor *cursor,
2174                                             struct perf_evsel *evsel,
2175                                             struct perf_sample *sample,
2176                                             int max_stack)
2177 {
2178         /* Can we do dwarf post unwind? */
2179         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2180               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2181                 return 0;
2182
2183         /* Bail out if nothing was captured. */
2184         if ((!sample->user_regs.regs) ||
2185             (!sample->user_stack.size))
2186                 return 0;
2187
2188         return unwind__get_entries(unwind_entry, cursor,
2189                                    thread, sample, max_stack);
2190 }
2191
2192 int thread__resolve_callchain(struct thread *thread,
2193                               struct callchain_cursor *cursor,
2194                               struct perf_evsel *evsel,
2195                               struct perf_sample *sample,
2196                               struct symbol **parent,
2197                               struct addr_location *root_al,
2198                               int max_stack)
2199 {
2200         int ret = 0;
2201
2202         callchain_cursor_reset(cursor);
2203
2204         if (callchain_param.order == ORDER_CALLEE) {
2205                 ret = thread__resolve_callchain_sample(thread, cursor,
2206                                                        evsel, sample,
2207                                                        parent, root_al,
2208                                                        max_stack);
2209                 if (ret)
2210                         return ret;
2211                 ret = thread__resolve_callchain_unwind(thread, cursor,
2212                                                        evsel, sample,
2213                                                        max_stack);
2214         } else {
2215                 ret = thread__resolve_callchain_unwind(thread, cursor,
2216                                                        evsel, sample,
2217                                                        max_stack);
2218                 if (ret)
2219                         return ret;
2220                 ret = thread__resolve_callchain_sample(thread, cursor,
2221                                                        evsel, sample,
2222                                                        parent, root_al,
2223                                                        max_stack);
2224         }
2225
2226         return ret;
2227 }
2228
2229 int machine__for_each_thread(struct machine *machine,
2230                              int (*fn)(struct thread *thread, void *p),
2231                              void *priv)
2232 {
2233         struct threads *threads;
2234         struct rb_node *nd;
2235         struct thread *thread;
2236         int rc = 0;
2237         int i;
2238
2239         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2240                 threads = &machine->threads[i];
2241                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2242                         thread = rb_entry(nd, struct thread, rb_node);
2243                         rc = fn(thread, priv);
2244                         if (rc != 0)
2245                                 return rc;
2246                 }
2247
2248                 list_for_each_entry(thread, &threads->dead, node) {
2249                         rc = fn(thread, priv);
2250                         if (rc != 0)
2251                                 return rc;
2252                 }
2253         }
2254         return rc;
2255 }
2256
2257 int machines__for_each_thread(struct machines *machines,
2258                               int (*fn)(struct thread *thread, void *p),
2259                               void *priv)
2260 {
2261         struct rb_node *nd;
2262         int rc = 0;
2263
2264         rc = machine__for_each_thread(&machines->host, fn, priv);
2265         if (rc != 0)
2266                 return rc;
2267
2268         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2269                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2270
2271                 rc = machine__for_each_thread(machine, fn, priv);
2272                 if (rc != 0)
2273                         return rc;
2274         }
2275         return rc;
2276 }
2277
2278 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2279                                   struct target *target, struct thread_map *threads,
2280                                   perf_event__handler_t process, bool data_mmap,
2281                                   unsigned int proc_map_timeout,
2282                                   unsigned int nr_threads_synthesize)
2283 {
2284         if (target__has_task(target))
2285                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2286         else if (target__has_cpu(target))
2287                 return perf_event__synthesize_threads(tool, process,
2288                                                       machine, data_mmap,
2289                                                       proc_map_timeout,
2290                                                       nr_threads_synthesize);
2291         /* command specified */
2292         return 0;
2293 }
2294
2295 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2296 {
2297         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2298                 return -1;
2299
2300         return machine->current_tid[cpu];
2301 }
2302
2303 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2304                              pid_t tid)
2305 {
2306         struct thread *thread;
2307
2308         if (cpu < 0)
2309                 return -EINVAL;
2310
2311         if (!machine->current_tid) {
2312                 int i;
2313
2314                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2315                 if (!machine->current_tid)
2316                         return -ENOMEM;
2317                 for (i = 0; i < MAX_NR_CPUS; i++)
2318                         machine->current_tid[i] = -1;
2319         }
2320
2321         if (cpu >= MAX_NR_CPUS) {
2322                 pr_err("Requested CPU %d too large. ", cpu);
2323                 pr_err("Consider raising MAX_NR_CPUS\n");
2324                 return -EINVAL;
2325         }
2326
2327         machine->current_tid[cpu] = tid;
2328
2329         thread = machine__findnew_thread(machine, pid, tid);
2330         if (!thread)
2331                 return -ENOMEM;
2332
2333         thread->cpu = cpu;
2334         thread__put(thread);
2335
2336         return 0;
2337 }
2338
2339 int machine__get_kernel_start(struct machine *machine)
2340 {
2341         struct map *map = machine__kernel_map(machine);
2342         int err = 0;
2343
2344         /*
2345          * The only addresses above 2^63 are kernel addresses of a 64-bit
2346          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2347          * all addresses including kernel addresses are less than 2^32.  In
2348          * that case (32-bit system), if the kernel mapping is unknown, all
2349          * addresses will be assumed to be in user space - see
2350          * machine__kernel_ip().
2351          */
2352         machine->kernel_start = 1ULL << 63;
2353         if (map) {
2354                 err = map__load(map);
2355                 if (!err)
2356                         machine->kernel_start = map->start;
2357         }
2358         return err;
2359 }
2360
2361 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2362 {
2363         return dsos__findnew(&machine->dsos, filename);
2364 }
2365
2366 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2367 {
2368         struct machine *machine = vmachine;
2369         struct map *map;
2370         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2371
2372         if (sym == NULL)
2373                 return NULL;
2374
2375         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2376         *addrp = map->unmap_ip(map, sym->start);
2377         return sym->name;
2378 }