OSDN Git Service

Merge tag 'perf-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / tools / testing / selftests / kvm / kvm_page_table_test.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KVM page table test
4  *
5  * Copyright (C) 2021, Huawei, Inc.
6  *
7  * Make sure that THP has been enabled or enough HUGETLB pages with specific
8  * page size have been pre-allocated on your system, if you are planning to
9  * use hugepages to back the guest memory for testing.
10  */
11
12 #define _GNU_SOURCE /* for program_invocation_name */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <time.h>
17 #include <pthread.h>
18 #include <semaphore.h>
19
20 #include "test_util.h"
21 #include "kvm_util.h"
22 #include "processor.h"
23 #include "guest_modes.h"
24
25 #define TEST_MEM_SLOT_INDEX             1
26
27 /* Default size(1GB) of the memory for testing */
28 #define DEFAULT_TEST_MEM_SIZE           (1 << 30)
29
30 /* Default guest test virtual memory offset */
31 #define DEFAULT_GUEST_TEST_MEM          0xc0000000
32
33 /* Different guest memory accessing stages */
34 enum test_stage {
35         KVM_BEFORE_MAPPINGS,
36         KVM_CREATE_MAPPINGS,
37         KVM_UPDATE_MAPPINGS,
38         KVM_ADJUST_MAPPINGS,
39         NUM_TEST_STAGES,
40 };
41
42 static const char * const test_stage_string[] = {
43         "KVM_BEFORE_MAPPINGS",
44         "KVM_CREATE_MAPPINGS",
45         "KVM_UPDATE_MAPPINGS",
46         "KVM_ADJUST_MAPPINGS",
47 };
48
49 struct test_args {
50         struct kvm_vm *vm;
51         uint64_t guest_test_virt_mem;
52         uint64_t host_page_size;
53         uint64_t host_num_pages;
54         uint64_t large_page_size;
55         uint64_t large_num_pages;
56         uint64_t host_pages_per_lpage;
57         enum vm_mem_backing_src_type src_type;
58         struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
59 };
60
61 /*
62  * Guest variables. Use addr_gva2hva() if these variables need
63  * to be changed in host.
64  */
65 static enum test_stage guest_test_stage;
66
67 /* Host variables */
68 static uint32_t nr_vcpus = 1;
69 static struct test_args test_args;
70 static enum test_stage *current_stage;
71 static bool host_quit;
72
73 /* Whether the test stage is updated, or completed */
74 static sem_t test_stage_updated;
75 static sem_t test_stage_completed;
76
77 /*
78  * Guest physical memory offset of the testing memory slot.
79  * This will be set to the topmost valid physical address minus
80  * the test memory size.
81  */
82 static uint64_t guest_test_phys_mem;
83
84 /*
85  * Guest virtual memory offset of the testing memory slot.
86  * Must not conflict with identity mapped test code.
87  */
88 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
89
90 static void guest_code(bool do_write)
91 {
92         struct test_args *p = &test_args;
93         enum test_stage *current_stage = &guest_test_stage;
94         uint64_t addr;
95         int i, j;
96
97         while (true) {
98                 addr = p->guest_test_virt_mem;
99
100                 switch (READ_ONCE(*current_stage)) {
101                 /*
102                  * All vCPU threads will be started in this stage,
103                  * where guest code of each vCPU will do nothing.
104                  */
105                 case KVM_BEFORE_MAPPINGS:
106                         break;
107
108                 /*
109                  * Before dirty logging, vCPUs concurrently access the first
110                  * 8 bytes of each page (host page/large page) within the same
111                  * memory region with different accessing types (read/write).
112                  * Then KVM will create normal page mappings or huge block
113                  * mappings for them.
114                  */
115                 case KVM_CREATE_MAPPINGS:
116                         for (i = 0; i < p->large_num_pages; i++) {
117                                 if (do_write)
118                                         *(uint64_t *)addr = 0x0123456789ABCDEF;
119                                 else
120                                         READ_ONCE(*(uint64_t *)addr);
121
122                                 addr += p->large_page_size;
123                         }
124                         break;
125
126                 /*
127                  * During dirty logging, KVM will only update attributes of the
128                  * normal page mappings from RO to RW if memory backing src type
129                  * is anonymous. In other cases, KVM will split the huge block
130                  * mappings into normal page mappings if memory backing src type
131                  * is THP or HUGETLB.
132                  */
133                 case KVM_UPDATE_MAPPINGS:
134                         if (p->src_type == VM_MEM_SRC_ANONYMOUS) {
135                                 for (i = 0; i < p->host_num_pages; i++) {
136                                         *(uint64_t *)addr = 0x0123456789ABCDEF;
137                                         addr += p->host_page_size;
138                                 }
139                                 break;
140                         }
141
142                         for (i = 0; i < p->large_num_pages; i++) {
143                                 /*
144                                  * Write to the first host page in each large
145                                  * page region, and triger break of large pages.
146                                  */
147                                 *(uint64_t *)addr = 0x0123456789ABCDEF;
148
149                                 /*
150                                  * Access the middle host pages in each large
151                                  * page region. Since dirty logging is enabled,
152                                  * this will create new mappings at the smallest
153                                  * granularity.
154                                  */
155                                 addr += p->large_page_size / 2;
156                                 for (j = 0; j < p->host_pages_per_lpage / 2; j++) {
157                                         READ_ONCE(*(uint64_t *)addr);
158                                         addr += p->host_page_size;
159                                 }
160                         }
161                         break;
162
163                 /*
164                  * After dirty logging is stopped, vCPUs concurrently read
165                  * from every single host page. Then KVM will coalesce the
166                  * split page mappings back to block mappings. And a TLB
167                  * conflict abort could occur here if TLB entries of the
168                  * page mappings are not fully invalidated.
169                  */
170                 case KVM_ADJUST_MAPPINGS:
171                         for (i = 0; i < p->host_num_pages; i++) {
172                                 READ_ONCE(*(uint64_t *)addr);
173                                 addr += p->host_page_size;
174                         }
175                         break;
176
177                 default:
178                         GUEST_ASSERT(0);
179                 }
180
181                 GUEST_SYNC(1);
182         }
183 }
184
185 static void *vcpu_worker(void *data)
186 {
187         struct kvm_vcpu *vcpu = data;
188         bool do_write = !(vcpu->id % 2);
189         struct timespec start;
190         struct timespec ts_diff;
191         enum test_stage stage;
192         int ret;
193
194         vcpu_args_set(vcpu, 1, do_write);
195
196         while (!READ_ONCE(host_quit)) {
197                 ret = sem_wait(&test_stage_updated);
198                 TEST_ASSERT(ret == 0, "Error in sem_wait");
199
200                 if (READ_ONCE(host_quit))
201                         return NULL;
202
203                 clock_gettime(CLOCK_MONOTONIC, &start);
204                 ret = _vcpu_run(vcpu);
205                 ts_diff = timespec_elapsed(start);
206
207                 TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
208                 TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
209                             "Invalid guest sync status: exit_reason=%s\n",
210                             exit_reason_str(vcpu->run->exit_reason));
211
212                 pr_debug("Got sync event from vCPU %d\n", vcpu->id);
213                 stage = READ_ONCE(*current_stage);
214
215                 /*
216                  * Here we can know the execution time of every
217                  * single vcpu running in different test stages.
218                  */
219                 pr_debug("vCPU %d has completed stage %s\n"
220                          "execution time is: %ld.%.9lds\n\n",
221                          vcpu->id, test_stage_string[stage],
222                          ts_diff.tv_sec, ts_diff.tv_nsec);
223
224                 ret = sem_post(&test_stage_completed);
225                 TEST_ASSERT(ret == 0, "Error in sem_post");
226         }
227
228         return NULL;
229 }
230
231 struct test_params {
232         uint64_t phys_offset;
233         uint64_t test_mem_size;
234         enum vm_mem_backing_src_type src_type;
235 };
236
237 static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg)
238 {
239         int ret;
240         struct test_params *p = arg;
241         enum vm_mem_backing_src_type src_type = p->src_type;
242         uint64_t large_page_size = get_backing_src_pagesz(src_type);
243         uint64_t guest_page_size = vm_guest_mode_params[mode].page_size;
244         uint64_t host_page_size = getpagesize();
245         uint64_t test_mem_size = p->test_mem_size;
246         uint64_t guest_num_pages;
247         uint64_t alignment;
248         void *host_test_mem;
249         struct kvm_vm *vm;
250
251         /* Align up the test memory size */
252         alignment = max(large_page_size, guest_page_size);
253         test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1);
254
255         /* Create a VM with enough guest pages */
256         guest_num_pages = test_mem_size / guest_page_size;
257         vm = __vm_create_with_vcpus(mode, nr_vcpus, guest_num_pages,
258                                     guest_code, test_args.vcpus);
259
260         /* Align down GPA of the testing memslot */
261         if (!p->phys_offset)
262                 guest_test_phys_mem = (vm->max_gfn - guest_num_pages) *
263                                        guest_page_size;
264         else
265                 guest_test_phys_mem = p->phys_offset;
266 #ifdef __s390x__
267         alignment = max(0x100000UL, alignment);
268 #endif
269         guest_test_phys_mem = align_down(guest_test_phys_mem, alignment);
270
271         /* Set up the shared data structure test_args */
272         test_args.vm = vm;
273         test_args.guest_test_virt_mem = guest_test_virt_mem;
274         test_args.host_page_size = host_page_size;
275         test_args.host_num_pages = test_mem_size / host_page_size;
276         test_args.large_page_size = large_page_size;
277         test_args.large_num_pages = test_mem_size / large_page_size;
278         test_args.host_pages_per_lpage = large_page_size / host_page_size;
279         test_args.src_type = src_type;
280
281         /* Add an extra memory slot with specified backing src type */
282         vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem,
283                                     TEST_MEM_SLOT_INDEX, guest_num_pages, 0);
284
285         /* Do mapping(GVA->GPA) for the testing memory slot */
286         virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
287
288         /* Cache the HVA pointer of the region */
289         host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
290
291         /* Export shared structure test_args to guest */
292         sync_global_to_guest(vm, test_args);
293
294         ret = sem_init(&test_stage_updated, 0, 0);
295         TEST_ASSERT(ret == 0, "Error in sem_init");
296
297         ret = sem_init(&test_stage_completed, 0, 0);
298         TEST_ASSERT(ret == 0, "Error in sem_init");
299
300         current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage));
301         *current_stage = NUM_TEST_STAGES;
302
303         pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
304         pr_info("Testing memory backing src type: %s\n",
305                 vm_mem_backing_src_alias(src_type)->name);
306         pr_info("Testing memory backing src granularity: 0x%lx\n",
307                 large_page_size);
308         pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size);
309         pr_info("Guest physical test memory offset: 0x%lx\n",
310                 guest_test_phys_mem);
311         pr_info("Host  virtual  test memory offset: 0x%lx\n",
312                 (uint64_t)host_test_mem);
313         pr_info("Number of testing vCPUs: %d\n", nr_vcpus);
314
315         return vm;
316 }
317
318 static void vcpus_complete_new_stage(enum test_stage stage)
319 {
320         int ret;
321         int vcpus;
322
323         /* Wake up all the vcpus to run new test stage */
324         for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
325                 ret = sem_post(&test_stage_updated);
326                 TEST_ASSERT(ret == 0, "Error in sem_post");
327         }
328         pr_debug("All vcpus have been notified to continue\n");
329
330         /* Wait for all the vcpus to complete new test stage */
331         for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
332                 ret = sem_wait(&test_stage_completed);
333                 TEST_ASSERT(ret == 0, "Error in sem_wait");
334
335                 pr_debug("%d vcpus have completed stage %s\n",
336                          vcpus + 1, test_stage_string[stage]);
337         }
338
339         pr_debug("All vcpus have completed stage %s\n",
340                  test_stage_string[stage]);
341 }
342
343 static void run_test(enum vm_guest_mode mode, void *arg)
344 {
345         pthread_t *vcpu_threads;
346         struct kvm_vm *vm;
347         struct timespec start;
348         struct timespec ts_diff;
349         int ret, i;
350
351         /* Create VM with vCPUs and make some pre-initialization */
352         vm = pre_init_before_test(mode, arg);
353
354         vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads));
355         TEST_ASSERT(vcpu_threads, "Memory allocation failed");
356
357         host_quit = false;
358         *current_stage = KVM_BEFORE_MAPPINGS;
359
360         for (i = 0; i < nr_vcpus; i++)
361                 pthread_create(&vcpu_threads[i], NULL, vcpu_worker,
362                                test_args.vcpus[i]);
363
364         vcpus_complete_new_stage(*current_stage);
365         pr_info("Started all vCPUs successfully\n");
366
367         /* Test the stage of KVM creating mappings */
368         *current_stage = KVM_CREATE_MAPPINGS;
369
370         clock_gettime(CLOCK_MONOTONIC, &start);
371         vcpus_complete_new_stage(*current_stage);
372         ts_diff = timespec_elapsed(start);
373
374         pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
375                 ts_diff.tv_sec, ts_diff.tv_nsec);
376
377         /* Test the stage of KVM updating mappings */
378         vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX,
379                                 KVM_MEM_LOG_DIRTY_PAGES);
380
381         *current_stage = KVM_UPDATE_MAPPINGS;
382
383         clock_gettime(CLOCK_MONOTONIC, &start);
384         vcpus_complete_new_stage(*current_stage);
385         ts_diff = timespec_elapsed(start);
386
387         pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
388                 ts_diff.tv_sec, ts_diff.tv_nsec);
389
390         /* Test the stage of KVM adjusting mappings */
391         vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0);
392
393         *current_stage = KVM_ADJUST_MAPPINGS;
394
395         clock_gettime(CLOCK_MONOTONIC, &start);
396         vcpus_complete_new_stage(*current_stage);
397         ts_diff = timespec_elapsed(start);
398
399         pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n",
400                 ts_diff.tv_sec, ts_diff.tv_nsec);
401
402         /* Tell the vcpu thread to quit */
403         host_quit = true;
404         for (i = 0; i < nr_vcpus; i++) {
405                 ret = sem_post(&test_stage_updated);
406                 TEST_ASSERT(ret == 0, "Error in sem_post");
407         }
408
409         for (i = 0; i < nr_vcpus; i++)
410                 pthread_join(vcpu_threads[i], NULL);
411
412         ret = sem_destroy(&test_stage_updated);
413         TEST_ASSERT(ret == 0, "Error in sem_destroy");
414
415         ret = sem_destroy(&test_stage_completed);
416         TEST_ASSERT(ret == 0, "Error in sem_destroy");
417
418         free(vcpu_threads);
419         kvm_vm_free(vm);
420 }
421
422 static void help(char *name)
423 {
424         puts("");
425         printf("usage: %s [-h] [-p offset] [-m mode] "
426                "[-b mem-size] [-v vcpus] [-s mem-type]\n", name);
427         puts("");
428         printf(" -p: specify guest physical test memory offset\n"
429                "     Warning: a low offset can conflict with the loaded test code.\n");
430         guest_modes_help();
431         printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n"
432                "     (default: 1G)\n");
433         printf(" -v: specify the number of vCPUs to run\n"
434                "     (default: 1)\n");
435         backing_src_help("-s");
436         puts("");
437 }
438
439 int main(int argc, char *argv[])
440 {
441         int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
442         struct test_params p = {
443                 .test_mem_size = DEFAULT_TEST_MEM_SIZE,
444                 .src_type = DEFAULT_VM_MEM_SRC,
445         };
446         int opt;
447
448         guest_modes_append_default();
449
450         while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) {
451                 switch (opt) {
452                 case 'p':
453                         p.phys_offset = strtoull(optarg, NULL, 0);
454                         break;
455                 case 'm':
456                         guest_modes_cmdline(optarg);
457                         break;
458                 case 'b':
459                         p.test_mem_size = parse_size(optarg);
460                         break;
461                 case 'v':
462                         nr_vcpus = atoi_positive("Number of vCPUs", optarg);
463                         TEST_ASSERT(nr_vcpus <= max_vcpus,
464                                     "Invalid number of vcpus, must be between 1 and %d", max_vcpus);
465                         break;
466                 case 's':
467                         p.src_type = parse_backing_src_type(optarg);
468                         break;
469                 case 'h':
470                 default:
471                         help(argv[0]);
472                         exit(0);
473                 }
474         }
475
476         for_each_guest_mode(run_test, &p);
477
478         return 0;
479 }