OSDN Git Service

GMIN-3044: Implement a simple filtering routine for noisy sensors
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15
16 /*----------------------------------------------------------------------------*/
17
18 /* Macros related to Intel Sensor Hub */
19
20 #define GRAVITY 9.80665f
21
22 /* 720 LSG = 1G */
23 #define LSG                         (1024.0f)
24 #define NUMOFACCDATA                (8.0f)
25
26 /* conversion of acceleration data to SI units (m/s^2) */
27 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
28 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
29 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31
32 /* conversion of magnetic data to uT units */
33 #define CONVERT_M                   (1.0f/6.6f)
34 #define CONVERT_M_X                 (-CONVERT_M)
35 #define CONVERT_M_Y                 (-CONVERT_M)
36 #define CONVERT_M_Z                 (CONVERT_M)
37
38 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
39
40 /* conversion of orientation data to degree units */
41 #define CONVERT_O                   (1.0f/64.0f)
42 #define CONVERT_O_A                 (CONVERT_O)
43 #define CONVERT_O_P                 (CONVERT_O)
44 #define CONVERT_O_R                 (-CONVERT_O)
45
46 /*conversion of gyro data to SI units (radian/sec) */
47 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
48 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
51
52 #define BIT(x) (1 << (x))
53
54 inline unsigned int set_bit_range(int start, int end)
55 {
56     int i;
57     unsigned int value = 0;
58
59     for (i = start; i < end; ++i)
60         value |= BIT(i);
61     return value;
62 }
63
64 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
65 {
66     int divider=1;
67     int i;
68     float sample;
69     int mul = 1.0;
70
71     value = value & set_bit_range(0, size*8);
72     if (value & BIT(size*8-1)) {
73         value =  ((1LL << (size*8)) - value);
74         mul = -1.0;
75     }
76     sample = value * 1.0;
77     if (exponent < 0) {
78         exponent = abs(exponent);
79         for (i = 0; i < exponent; ++i) {
80             divider = divider*10;
81         }
82         return mul * sample/divider;
83     } else {
84         return mul * sample * pow(10.0, exponent);
85     }
86 }
87
88 // Platform sensor orientation
89 #define DEF_ORIENT_ACCEL_X                   -1
90 #define DEF_ORIENT_ACCEL_Y                   -1
91 #define DEF_ORIENT_ACCEL_Z                   -1
92
93 #define DEF_ORIENT_GYRO_X                   1
94 #define DEF_ORIENT_GYRO_Y                   1
95 #define DEF_ORIENT_GYRO_Z                   1
96
97 // G to m/s2
98 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
99 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
102                                         convert_from_vtf_format(s,d,x)*GRAVITY)
103 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
104                                         convert_from_vtf_format(s,d,x)*GRAVITY)
105
106 // Degree/sec to radian/sec
107 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
108                                         convert_from_vtf_format(s,d,x) * \
109                                         ((float)M_PI/180.0f))
110 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
111                                         convert_from_vtf_format(s,d,x) * \
112                                         ((float)M_PI/180.0f))
113 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
114                                         convert_from_vtf_format(s,d,x) * \
115                                         ((float)M_PI/180.0f))
116
117 // Milli gauss to micro tesla
118 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121
122
123 /*----------------------------------------------------------------------------*/
124
125 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
126 {
127         uint64_t u64;
128         int i;
129         int zeroed_bits = type->storagebits - type->realbits;
130         uint64_t sign_mask;
131         uint64_t value_mask;
132
133         u64 = 0;
134
135         if (type->endianness == 'b')
136                 for (i=0; i<type->storagebits/8; i++)
137                         u64 = (u64 << 8) | sample[i];
138         else
139                 for (i=type->storagebits/8 - 1; i>=0; i--)
140                         u64 = (u64 << 8) | sample[i];
141
142         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
143
144         if (type->sign == 'u')
145                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
146
147         /* Signed integer */
148
149         switch (type->realbits) {
150                 case 0 ... 1:
151                         return 0;
152
153                 case 8:
154                         return (int64_t) (int8_t) u64;
155
156                 case 16:
157                         return (int64_t) (int16_t) u64;
158
159                 case 32:
160                         return (int64_t) (int32_t) u64;
161
162                 case 64:
163                         return (int64_t) u64;
164
165                 default:
166                         sign_mask = 1 << (type->realbits-1);
167                         value_mask = sign_mask - 1;
168
169                         if (u64 & sign_mask)
170                                 /* Negative value: return 2-complement */
171                                 return - ((~u64 & value_mask) + 1);
172                         else
173                                 return (int64_t) u64; /* Positive value */
174         }
175 }
176
177
178 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
179 {
180         int i;
181         float temp[MAX_CHANNELS];
182
183         for (i=0; i<MAX_CHANNELS; i++)
184                 temp[i] = data[map[i]];
185
186         for (i=0; i<MAX_CHANNELS; i++)
187                 data[i] = temp[i];
188 }
189
190
191 static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
192                      int num_fields)
193 {
194         int i;
195         float total;
196         int f;
197         int sampling_rate = (int) si->sampling_rate;
198
199         /* We're recording 1s worth of samples ; need suitable sampling rate */
200         if (sampling_rate < 1)
201                 return;
202
203         /* Reset history if a new sampling rate is detected */
204         if (si->history_size != sampling_rate) {
205                 si->history_size = sampling_rate;
206                 si->history_entries = 0;
207                 si->history_index = 0;
208                 si->history = (float*) realloc(si->history,
209                                 si->history_size * num_fields * sizeof(float));
210         }
211
212         if (!si->history)
213                 return; /* Unlikely, but still... */
214
215         /* Populate beginning of array as we go */
216         if (si->history_entries < si->history_size) {
217                 for (f=0; f<num_fields; f++)
218                         si->history[si->history_entries * num_fields + f] =
219                                 data->data[f];
220
221                 si->history_entries++;
222         }
223
224         /* Once we get enough data, start filtering */
225         if (si->history_entries == si->history_size) {
226
227                 /* For now simply compute a mobile mean */
228                 for (f=0; f<num_fields; f++) {
229                         total = 0;
230
231                         for (i=0; i<si->history_size; i++)
232                                 total += si->history[i * num_fields + f];
233
234                         si->history[si->history_index * num_fields + f] =
235                                 data->data[f];
236
237                         /* Output filtered data */
238                         data->data[f] = total / si->history_size;
239                 }
240
241                 /* Update our rolling index (next evicted cell) */
242                 si->history_index = (si->history_index + 1) % si->history_size;
243         }
244 }
245
246
247 static int finalize_sample_default(int s, struct sensors_event_t* data)
248 {
249         int i           = sensor_info[s].catalog_index;
250         int sensor_type = sensor_catalog[i].type;
251
252         /* Swap fields if we have a custom channel ordering on this sensor */
253         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
254                 reorder_fields(data->data, sensor_info[s].order);
255
256         switch (sensor_type) {
257                 case SENSOR_TYPE_ACCELEROMETER:
258                         break;
259
260                 case SENSOR_TYPE_MAGNETIC_FIELD:
261                         calibrate_compass (data, &sensor_info[s], get_timestamp());
262                         if (sensor_info[s].quirks & QUIRK_NOISY)
263                                 denoise(&sensor_info[s], data, 3);
264                         break;
265
266                 case SENSOR_TYPE_GYROSCOPE:
267                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
268                         calibrate_gyro(data, &sensor_info[s]);
269                         break;
270
271                 case SENSOR_TYPE_LIGHT:
272                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
273                 case SENSOR_TYPE_TEMPERATURE:
274                         /* Only keep two decimals for these readings */
275                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
276
277                         /* ... fall through ... */
278
279                 case SENSOR_TYPE_PROXIMITY:
280                         /*
281                          * These are on change sensors ; drop the sample if it
282                          * has the same value as the previously reported one.
283                          */
284                         if (data->data[0] == sensor_info[s].prev_val)
285                                 return 0;
286
287                         sensor_info[s].prev_val = data->data[0];
288                         break;
289         }
290
291         return 1; /* Return sample to Android */
292 }
293
294
295 static float transform_sample_default(int s, int c, unsigned char* sample_data)
296 {
297         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
298         int64_t              s64 = sample_as_int64(sample_data, sample_type);
299         float scale = sensor_info[s].scale ?
300                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
301
302         /* In case correction has been requested using properties, apply it */
303         scale *= sensor_info[s].channel[c].opt_scale;
304
305         /* Apply default scaling rules */
306         return (sensor_info[s].offset + s64) * scale;
307 }
308
309
310 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
311 {
312         int i           = sensor_info[s].catalog_index;
313         int sensor_type = sensor_catalog[i].type;
314         float pitch, roll, yaw;
315
316         /* Swap fields if we have a custom channel ordering on this sensor */
317         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
318                 reorder_fields(data->data, sensor_info[s].order);
319
320         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
321
322                 pitch = data->data[0];
323                 roll = data->data[1];
324                 yaw = data->data[2];
325
326                 data->data[0] = 360.0 - yaw;
327                 data->data[1] = -pitch;
328                 data->data[2] = -roll;
329         }
330
331         return 1; /* Return sample to Android */
332 }
333
334
335 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
336 {
337         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
338         int val         = (int) sample_as_int64(sample_data, sample_type);
339         int i           = sensor_info[s].catalog_index;
340         int sensor_type = sensor_catalog[i].type;
341         float correction;
342         int data_bytes  = (sample_type->realbits)/8;
343         int exponent    = sensor_info[s].offset;
344
345         /* In case correction has been requested using properties, apply it */
346         correction = sensor_info[s].channel[c].opt_scale;
347
348         switch (sensor_type) {
349                 case SENSOR_TYPE_ACCELEROMETER:
350                         switch (c) {
351                                 case 0:
352                                         return  correction *
353                                                 CONVERT_A_G_VTF16E14_X(
354                                                 data_bytes, exponent, val);
355
356                                 case 1:
357                                         return  correction *
358                                                 CONVERT_A_G_VTF16E14_Y(
359                                                 data_bytes, exponent, val);
360
361                                 case 2:
362                                         return  correction *
363                                                 CONVERT_A_G_VTF16E14_Z(
364                                                 data_bytes, exponent, val);
365                         }
366                         break;
367
368
369                 case SENSOR_TYPE_GYROSCOPE:
370                         switch (c) {
371                                 case 0:
372                                         return  correction *
373                                                 CONVERT_G_D_VTF16E14_X(
374                                                 data_bytes, exponent, val);
375
376                                 case 1:
377                                         return  correction *
378                                                 CONVERT_G_D_VTF16E14_Y(
379                                                 data_bytes, exponent, val);
380
381                                 case 2:
382                                         return  correction *
383                                                 CONVERT_G_D_VTF16E14_Z(
384                                                 data_bytes, exponent, val);
385                         }
386                         break;
387
388                 case SENSOR_TYPE_MAGNETIC_FIELD:
389                         switch (c) {
390                                 case 0:
391                                         return  correction *
392                                                 CONVERT_M_MG_VTF16E14_X(
393                                                 data_bytes, exponent, val);
394
395                                 case 1:
396                                         return  correction *
397                                                 CONVERT_M_MG_VTF16E14_Y(
398                                                 data_bytes, exponent, val);
399
400                                 case 2:
401                                         return  correction *
402                                                 CONVERT_M_MG_VTF16E14_Z(
403                                                 data_bytes, exponent, val);
404                         }
405                         break;
406
407                 case SENSOR_TYPE_LIGHT:
408                                 return (float) val;
409
410                 case SENSOR_TYPE_ORIENTATION:
411                         return  correction * convert_from_vtf_format(
412                                                 data_bytes, exponent, val);
413
414                 case SENSOR_TYPE_ROTATION_VECTOR:
415                         return  correction * convert_from_vtf_format(
416                                                 data_bytes, exponent, val);
417         }
418
419         return 0;
420 }
421
422
423 void select_transform (int s)
424 {
425         char prop_name[PROP_NAME_MAX];
426         char prop_val[PROP_VALUE_MAX];
427         int i                   = sensor_info[s].catalog_index;
428         const char *prefix      = sensor_catalog[i].tag;
429
430         sprintf(prop_name, PROP_BASE, prefix, "transform");
431
432         if (property_get(prop_name, prop_val, "")) {
433                 if (!strcmp(prop_val, "ISH")) {
434                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
435                                 sensor_info[s].friendly_name);
436
437                         sensor_info[s].ops.transform = transform_sample_ISH;
438                         sensor_info[s].ops.finalize = finalize_sample_ISH;
439                         return;
440                 }
441         }
442
443         sensor_info[s].ops.transform = transform_sample_default;
444         sensor_info[s].ops.finalize = finalize_sample_default;
445 }
446
447
448 float acquire_immediate_value(int s, int c)
449 {
450         char sysfs_path[PATH_MAX];
451         float val;
452         int ret;
453         int dev_num = sensor_info[s].dev_num;
454         int i = sensor_info[s].catalog_index;
455         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
456         const char* input_path = sensor_catalog[i].channel[c].input_path;
457         float scale = sensor_info[s].scale ?
458                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
459         float offset = sensor_info[s].offset;
460         int sensor_type = sensor_catalog[i].type;
461         float correction;
462
463         /* In case correction has been requested using properties, apply it */
464         correction = sensor_info[s].channel[c].opt_scale;
465
466         /* Acquire a sample value for sensor s / channel c through sysfs */
467
468         if (input_path[0]) {
469                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
470                 ret = sysfs_read_float(sysfs_path, &val);
471
472                 if (!ret) {
473                         return val * correction;
474                 }
475         };
476
477         if (!raw_path[0])
478                 return 0;
479
480         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
481         ret = sysfs_read_float(sysfs_path, &val);
482
483         if (ret == -1)
484                 return 0;
485
486         /*
487         There is no transform ops defined yet for Raw sysfs values
488         Use this function to perform transformation as well.
489         */
490         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
491                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
492                         correction;
493
494         return (val + offset) * scale * correction;
495 }