OSDN Git Service

STPK-1429 Add Intel Sensor Hub conversion routines
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12
13
14 /*----------------------------------------------------------------------------*/
15
16 /* Macros related to Intel Sensor Hub */
17
18 #define GRAVITY 9.80665f
19
20 /* 720 LSG = 1G */
21 #define LSG                         (1024.0f)
22 #define NUMOFACCDATA                (8.0f)
23
24 /* conversion of acceleration data to SI units (m/s^2) */
25 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
26 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
27 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
28 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29
30 /* conversion of magnetic data to uT units */
31 #define CONVERT_M                   (1.0f/6.6f)
32 #define CONVERT_M_X                 (-CONVERT_M)
33 #define CONVERT_M_Y                 (-CONVERT_M)
34 #define CONVERT_M_Z                 (CONVERT_M)
35
36 /* conversion of orientation data to degree units */
37 #define CONVERT_O                   (1.0f/64.0f)
38 #define CONVERT_O_A                 (CONVERT_O)
39 #define CONVERT_O_P                 (CONVERT_O)
40 #define CONVERT_O_R                 (-CONVERT_O)
41
42 /*conversion of gyro data to SI units (radian/sec) */
43 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
44 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
45 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
46 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
47
48 #define BIT(x) (1 << (x))
49
50 inline unsigned int set_bit_range(int start, int end)
51 {
52     int i;
53     unsigned int value = 0;
54
55     for (i = start; i < end; ++i)
56         value |= BIT(i);
57     return value;
58 }
59
60 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
61 {
62     int divider=1;
63     int i;
64     float sample;
65     int mul = 1.0;
66
67     value = value & set_bit_range(0, size*8);
68     if (value & BIT(size*8-1)) {
69         value =  ((1LL << (size*8)) - value);
70         mul = -1.0;
71     }
72     sample = value * 1.0;
73     if (exponent < 0) {
74         exponent = abs(exponent);
75         for (i = 0; i < exponent; ++i) {
76             divider = divider*10;
77         }
78         return mul * sample/divider;
79     } else {
80         return mul * sample * pow(10.0, exponent);
81     }
82 }
83
84 // Platform sensor orientation
85 #define DEF_ORIENT_ACCEL_X                   -1
86 #define DEF_ORIENT_ACCEL_Y                   -1
87 #define DEF_ORIENT_ACCEL_Z                   -1
88
89 #define DEF_ORIENT_GYRO_X                   1
90 #define DEF_ORIENT_GYRO_Y                   1
91 #define DEF_ORIENT_GYRO_Z                   1
92
93 // G to m/s2
94 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
95 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
96                                         convert_from_vtf_format(s,d,x)*GRAVITY)
97 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
98                                         convert_from_vtf_format(s,d,x)*GRAVITY)
99 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101
102 // Degree/sec to radian/sec
103 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
104                                         convert_from_vtf_format(s,d,x) * \
105                                         ((float)M_PI/180.0f))
106 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112
113 // Milli gauss to micro tesla
114 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
115 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
116 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
117
118 #define DATA_BYTES      2
119 #define ACC_EXPONENT    -2
120 #define GYRO_EXPONENT   -1
121 #define MAGN_EXPONENT   0
122 #define INC_EXPONENT    -1
123 #define ROT_EXPONENT    -8
124
125 /*----------------------------------------------------------------------------*/
126
127 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
128 {
129         uint16_t u16;
130         uint32_t u32;
131         uint64_t u64;
132         int i;
133
134         switch (type->storagebits) {
135                 case 64:
136                         u64 = 0;
137
138                         if (type->endianness == 'b')
139                                 for (i=0; i<8; i++)
140                                         u64 = (u64 << 8) | sample[i];
141                         else
142                                 for (i=7; i>=0; i--)
143                                         u64 = (u64 << 8) | sample[i];
144
145                         if (type->sign == 'u')
146                                 return (int64_t) (u64 >> type->shift);
147
148                         return ((int64_t) u64) >> type->shift;
149
150                 case 32:
151                         if (type->endianness == 'b')
152                                 u32 = (sample[0] << 24) | (sample[1] << 16) |
153                                         (sample[2] << 8) | sample[3];
154                         else
155                                 u32 = (sample[3] << 24) | (sample[2] << 16) |
156                                         (sample[1] << 8) | sample[0];
157
158                         if (type->sign == 'u')
159                                 return u32 >> type->shift;
160
161                         return ((int32_t) u32) >> type->shift;
162
163                 case 16:
164                         if (type->endianness == 'b')
165                                 u16 = (sample[0] << 8) | sample[1];
166                         else
167                                 u16 = (sample[1] << 8) | sample[0];
168
169                         if (type->sign == 'u')
170                                 return u16 >> type->shift;
171
172                         return  ((int16_t) u16) >> type->shift;
173         }
174
175         ALOGE("Unhandled sample storage size\n");
176         return 0;
177 }
178
179
180 static void finalize_sample_default(int s, struct sensors_event_t* data)
181 {
182         int i           = sensor_info[s].catalog_index;
183         int sensor_type = sensor_catalog[i].type;
184
185         switch (sensor_type) {
186                 case SENSOR_TYPE_ACCELEROMETER:
187                         /*
188                          * Invert x axis orientation from SI units - see
189                          * /hardware/libhardware/include/hardware/sensors.h
190                          * for a discussion of what Android expects
191                          */
192                         data->data[0] = -data->data[0];
193                         break;
194
195                 case SENSOR_TYPE_GYROSCOPE:
196                         /* Limit drift */
197                         if (abs(data->data[0]) < .05 && abs(data->data[1]) < .05
198                                 && abs(data->data[2]) < .05) {
199                                         data->data[0] = 0;
200                                         data->data[1] = 0;
201                                         data->data[2] = 0;
202                                 }
203                         break;
204         }
205 }
206
207
208 static float transform_sample_default(int s, int c, unsigned char* sample_data)
209 {
210         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
211         int64_t              s64 = sample_as_int64(sample_data, sample_type);
212
213         /* Apply default scaling rules */
214         return (sensor_info[s].offset + s64) * sensor_info[s].scale;
215 }
216
217
218 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
219 {
220         int i           = sensor_info[s].catalog_index;
221         int sensor_type = sensor_catalog[i].type;
222         float pitch, roll, yaw;
223
224         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
225
226                 pitch = data->data[0];
227                 roll = data->data[1];
228                 yaw = data->data[2];
229
230                 data->data[0] = 360.0 - yaw;
231                 data->data[1] = -pitch;
232                 data->data[2] = -roll;
233         }
234 }
235
236
237 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
238 {
239         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
240         int val         = (int) sample_as_int64(sample_data, sample_type);
241         int i           = sensor_info[s].catalog_index;
242         int sensor_type = sensor_catalog[i].type;
243
244         switch (sensor_type) {
245                 case SENSOR_TYPE_ACCELEROMETER:
246                         switch (c) {
247                                 case 0:
248                                         return CONVERT_A_G_VTF16E14_X(
249                                                 DATA_BYTES, ACC_EXPONENT, val);
250
251                                 case 1:
252                                         return CONVERT_A_G_VTF16E14_Y(
253                                                 DATA_BYTES, ACC_EXPONENT, val);
254
255                                 case 2:
256                                         return CONVERT_A_G_VTF16E14_Z(
257                                                 DATA_BYTES, ACC_EXPONENT, val);
258                         }
259                         break;
260
261
262                 case SENSOR_TYPE_GYROSCOPE:
263                         switch (c) {
264                                 case 0:
265                                         return CONVERT_G_D_VTF16E14_X(
266                                                 DATA_BYTES, GYRO_EXPONENT, val);
267
268                                 case 1:
269                                         return CONVERT_G_D_VTF16E14_Y(
270                                                 DATA_BYTES, GYRO_EXPONENT, val);
271
272                                 case 2:
273                                         return CONVERT_G_D_VTF16E14_Z(
274                                                 DATA_BYTES, GYRO_EXPONENT, val);
275                         }
276                         break;
277
278                 case SENSOR_TYPE_MAGNETIC_FIELD:
279                         switch (c) {
280                                 case 0:
281                                         return CONVERT_M_MG_VTF16E14_X(
282                                                 DATA_BYTES, MAGN_EXPONENT, val);
283
284                                 case 1:
285                                         return CONVERT_M_MG_VTF16E14_Y(
286                                                 DATA_BYTES, MAGN_EXPONENT, val);
287
288                                 case 2:
289                                         return CONVERT_M_MG_VTF16E14_Z(
290                                                 DATA_BYTES, MAGN_EXPONENT, val);
291                         }
292                         break;
293
294                 case SENSOR_TYPE_ORIENTATION:
295                         return convert_from_vtf_format(DATA_BYTES, INC_EXPONENT,
296                                 val);
297
298                 case SENSOR_TYPE_ROTATION_VECTOR:
299                         return convert_from_vtf_format(DATA_BYTES, ROT_EXPONENT,
300                                 val);
301         }
302
303         return 0;
304 }
305
306
307 void select_transform (int s)
308 {
309         char prop_name[PROP_NAME_MAX];
310         char prop_val[PROP_VALUE_MAX];
311         int i                   = sensor_info[s].catalog_index;
312         const char *prefix      = sensor_catalog[i].tag;
313
314         sprintf(prop_name, PROP_BASE, prefix, "transform");
315
316         if (property_get(prop_name, prop_val, "")) {
317                 if (!strcmp(prop_val, "ISH")) {
318                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
319                                 sensor_info[s].friendly_name);
320
321                         sensor_info[s].ops.transform = transform_sample_ISH;
322                         sensor_info[s].ops.finalize = finalize_sample_ISH;
323                         return;
324                 }
325         }
326
327         sensor_info[s].ops.transform = transform_sample_default;
328         sensor_info[s].ops.finalize = finalize_sample_default;
329 }