
NVIDIA CUDA GETTING STARTED GUIDE
FOR LINUX

DU-05347-001_v6.5 | August 2014

Installation and Verification on Linux Systems

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
1.1. System Requirements.. 1

1.1.1. x86 32-bit Support.. 2
1.2. About This Document.. 3

Chapter 2. Pre-installation Actions...4
2.1. Verify You Have a CUDA-Capable GPU.. 4
2.2. Verify You Have a Supported Version of Linux...4
2.3. Verify the System Has gcc Installed... 5
2.4. Choose an Installation Method... 5
2.5. Download the NVIDIA CUDA Toolkit..6
2.6. Handle Conflicting Installation Methods.. 6

Chapter 3. Package Manager Installation..8
3.1. Overview... 8
3.2. Redhat/CentOS.. 8
3.3. Fedora.. 9
3.4. SLES..10
3.5. OpenSUSE... 11
3.6. Ubuntu.. 12
3.7. L4T... 12
3.8. Additional Package Manager Capabilities..12

3.8.1. Available Packages... 13
3.8.2. Package Upgrades..13

Chapter 4. Runfile Installation...14
4.1. Pre-installation Setup...14
4.2. Prerequisites..14
4.3. Contents.. 14
4.4. Graphical Interface Shutdown...15
4.5. Installation..15
4.6. Interaction with Nouveau.. 15
4.7. Extra Libraries... 16
4.8. Verifications.. 16
4.9. Graphical Interface Restart..17
4.10. Post-installation Setup.. 17
4.11. Uninstallation... 17

Chapter 5. Cross-build Environment for ARM.. 18
5.1. Cross-build Installation for ARM.. 18
5.2. Cross Samples.. 19

TARGET_FS...19
Copying Libraries... 19
Ignore Symbol Detection.. 19

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | iii

5.3. Nsight Eclipse Edition.. 20
Chapter 6. Post-installation Actions.. 21

6.1. Environment Setup.. 21
6.2. (Optional) Install Writable Samples.. 21
6.3. Verify the Installation.. 22

6.3.1. Verify the Driver Version... 22
6.3.2. Compiling the Examples.. 22
6.3.3. Running the Binaries.. 22

Chapter 7. Frequently Asked Questions... 25
How do I install the Toolkit in a different location?.. 25
Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?........... 26
Why do I see "error while loading shared libraries: <lib name>: cannot open shared object file:

No such file or directory" when I try to run a CUDA application that uses a CUDA library?... 26
How can I extract the contents of the installers?...26
How can I tell X to ignore a GPU for compute-only use?.. 26
Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?.......................... 27

Chapter 8. Additional Considerations.. 28

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | iv

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 1

Chapter 1.
INTRODUCTION

CUDA® is a parallel computing platform and programming model invented by NVIDIA.
It enables dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

‣ Provide a small set of extensions to standard programming languages, like C, that
enable a straightforward implementation of parallel algorithms. With CUDA C/C++,
programmers can focus on the task of parallelization of the algorithms rather than
spending time on their implementation.

‣ Support heterogeneous computation where applications use both the CPU and
GPU. Serial portions of applications are run on the CPU, and parallel portions are
offloaded to the GPU. As such, CUDA can be incrementally applied to existing
applications. The CPU and GPU are treated as separate devices that have their own
memory spaces. This configuration also allows simultaneous computation on the
CPU and GPU without contention for memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of
computing threads. These cores have shared resources including a register file and a
shared memory. The on-chip shared memory allows parallel tasks running on these
cores to share data without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the CUDA
development tools.

1.1. System Requirements
To use CUDA on your system, you will need the following installed:

‣ CUDA-capable GPU
‣ A supported version of Linux with a gcc compiler and toolchain
‣ NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)

The CUDA development environment relies on tight integration with the host
development environment, including the host compiler and C runtime libraries, and

http://developer.nvidia.com/cuda-downloads

Introduction

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 2

is therefore only supported on distribution versions that have been qualified for this
CUDA Toolkit release.

Table 1 Native Linux Distribution Support in CUDA 6.5

Distribution x86_64 x86(*) ARMv7 Kernel GCC GLIBC ICC(**)

Fedora 20 YES NO NO 3.12.0 4.8.2 2.18

CentOS 6.x YES NO NO 2.6.32 4.4.7 2.12

CentOS 5.5+ DEPRECATED NO NO 2.6.18 4.1.2 2.5

OpenSUSE 13.1 YES NO NO 3.11.6 4.8 2.18

RHEL 6.x YES NO NO 2.6.32 4.4.7 2.12

RHEL 5.5+ DEPRECATED NO NO 2.6.18 4.1.2 2.5

SUSE SLES 11 SP3 YES NO NO 3.0.76 4.3.4 2.11.3

Ubuntu 14.04 YES DEPRECATED YES 3.13 4.8.2 2.19

Ubuntu 12.04 DEPRECATED DEPRECATED NO 3.2.0 4.6 2.15

SteamOS 1.0-beta YES NO NO 3.10.11 4.7.2 2.17

L4T r21.1 NO NO YES 3.10.24 4.8.2 2.19

14.0.1

Table 2 Cross-build Environment Linux Distribution Support in CUDA 6.5

Host Distribution (x86_64) Targeting x86(*) Targeting ARMv7

Ubuntu 14.04 DEPRECATED YES

Ubuntu 12.04 DEPRECATED DEPRECATED

SteamOS 1.0-beta YES NO

(*) x86 support is limited. See the x86 32-bit Support section for details.

(**) ICC support is limited to x86_64 only

1.1.1. x86 32-bit Support
Support for x86 32-bit applications on x86 and x86_64 Linux is limited to use with:

‣ GeForce GPUs with Kepler or higher architecture
‣ CUDA Driver
‣ CUDA Runtime (cudart)
‣ CUDA Math Library (math.h)
‣ CUDA C++ Compiler (nvcc)
‣ CUDA Development Tools

Support for this configuration is only available in the .run file installer.

Introduction

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 3

1.2. About This Document
This document is intended for readers familiar with the Linux environment and
the compilation of C programs from the command line. You do not need previous
experience with CUDA or experience with parallel computation. Note: This guide covers
installation only on systems with X Windows installed.

Many commands in this document might require superuser privileges. On most
distributions of Linux, this will require you to log in as root. For systems that have
enabled the sudo package, use the sudo prefix for all necessary commands.

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 4

Chapter 2.
PRE-INSTALLATION ACTIONS

Some actions must be taken before the CUDA Toolkit and Driver can be installed on
Linux:

‣ Verify the system has a CUDA-capable GPU.
‣ Verify the system is running a supported version of Linux.
‣ Verify the system has gcc installed.
‣ Download the NVIDIA CUDA Toolkit.
‣ Handle conflicting installation methods.

You can override the install-time prerequisite checks by running the installer with
the -override flag. Remember that the prerequisites will still be required to use the
NVIDIA CUDA Toolkit.

2.1. Verify You Have a CUDA-Capable GPU
To verify that your GPU is CUDA-capable, go to your distribution's equivalent of System
Properties, or, from the command line, enter:

$ lspci | grep -i nvidia

If you do not see any settings, update the PCI hardware database that Linux maintains
by entering update-pciids (generally found in /sbin) at the command line and rerun
the previous lspci command.

If your graphics card is from NVIDIA and it is listed in http://developer.nvidia.com/
cuda-gpus, your GPU is CUDA-capable.

The Release Notes for the CUDA Toolkit also contain a list of supported products.

2.2. Verify You Have a Supported Version of Linux
The CUDA Development Tools are only supported on some specific distributions of
Linux. These are listed in the CUDA Toolkit release notes.

http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 5

To determine which distribution and release number you're running, type the following
at the command line:

$ uname -m && cat /etc/*release

You should see output similar to the following, modified for your particular system:

x86_64
Red Hat Enterprise Linux Workstation release 6.0 (Santiago)

The x86_64 line indicates you are running on a 64-bit system. The remainder gives
information about your distribution.

2.3. Verify the System Has gcc Installed
The gcc compiler is required for development using the CUDA Toolkit. It is not
required for running CUDA applications. It is generally installed as part of the Linux
installation, and in most cases the version of gcc installed with a supported version of
Linux will work correctly.

To verify the version of gcc installed on your system, type the following on the
command line:

$ gcc --version

If an error message displays, you need to install the development tools from your Linux
distribution or obtain a version of gcc and its accompanying toolchain from the Web.

2.4. Choose an Installation Method
The CUDA Toolkit can be installed using either of two different installation mechanisms:
distribution-specific packages, or a distribution-independent package. The distribution-
independent package has the advantage of working across a wider set of Linux
distributions, but does not update the distribution's native package management system.
The distribution-specific packages interface with the distribution's native package
management system. It is recommended to use the distribution-specific packages, where
possible.

Distribution-specific packages and repositories are not provided for Redhat 5. For
Redhat 5, the stand-alone installer must be used.

Standalone installers are not provided for the ARMv7 release. For both native ARMv7
as well as cross development, the toolkit must be installed using the distribution-
specific installer. See the Cross-build Environment for ARM installation section for
more details.

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 6

2.5. Download the NVIDIA CUDA Toolkit
The NVIDIA CUDA Toolkit is available at http://developer.nvidia.com/cuda-downloads.

Choose the platform you are using and download the NVIDIA CUDA Toolkit

The CUDA Toolkit contains the CUDA driver and tools needed to create, build and run
a CUDA application as well as libraries, header files, CUDA samples source code, and
other resources.

Download Verification

The download can be verified by comparing the MD5 checksum posted at http://
developer.nvidia.com/cuda-downloads/checksums with that of the downloaded
file. If either of the checksums differ, the downloaded file is corrupt and needs to be
downloaded again.

To calculate the MD5 checksum of the downloaded file, run the following:

$ md5sum <file>

2.6. Handle Conflicting Installation Methods
Before installing CUDA, any previously installations that could conflict should be
uninstalled. This will not affect systems which have not had CUDA installed previously,
or systems where the installation method has been preserved (RPM/Deb vs. Runfile). See
the following charts for specifics.

Table 3 CUDA Toolkit Installation Compatibility Matrix

Installed Toolkit Version == X.Y Installed Toolkit Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action No ActionInstalling
Toolkit

Version X.Y run Uninstall
RPM/Deb

Uninstall Run No Action No Action

Table 4 NVIDIA Driver Installation Compatibility Matrix

Installed Driver Version == X.Y Installed Driver Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action Uninstall RunInstalling Driver
Version X.Y

run Uninstall RPM/
Deb

No Action Uninstall RPM/
Deb

No Action

Use the following command to uninstall a Toolkit runfile installation:

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads/checksums
http://developer.nvidia.com/cuda-downloads/checksums

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 7

$ sudo /usr/local/cuda-X.Y/bin/uninstall_cuda_X.Y.pl

Use the following command to uninstall a Driver runfile installation:

$ sudo /usr/bin/nvidia-uninstall

Use the following commands to uninstall a RPM/Deb installation:

$ sudo apt-get --purge remove <package_name> # Ubuntu
$ sudo yum remove <package_name> # Fedora/Redhat/CentOS
$ sudo zypper remove <package_name> # OpenSUSE/SLES

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 8

Chapter 3.
PACKAGE MANAGER INSTALLATION

3.1. Overview
The Package Manager installation interfaces with your system's package management
system. When using RPM or Deb, the downloaded package is a repository package.
Such a package only informs the package manager where to find the actual installation
packages, but will not install them.

If those packages are available in an online repository, they will be automatically
downloaded in a later step. Otherwise, the repository package also installs a local
repository containing the installation packages on the system. Whether the repository is
available online or installed locally, the installation procedure is identical and made of
several steps.

Distribution-specific instructions detail how to install CUDA:

‣ Redhat/CentOS
‣ Fedora
‣ SLES
‣ OpenSUSE
‣ Ubuntu
‣ L4T

Finally, some helpful package manager capabilities are detailed.

These instructions are for native development only. For cross development, see the
Cross-build environment for ARM section.

3.2. Redhat/CentOS
 1. Perform the pre-installation actions.
 2. Satisfy DKMS dependency

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 9

The NVIDIA driver RPM packages depend on other external packages, such as
DKMS and libvdpau. Those packages are only available on third-party repositories,
such as EPEL. Any such third-party repositories must be added to the package
manager repository database before installing the NVIDIA driver RPM packages, or
missing dependencies will prevent the installation from proceeding.

 3. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf.
If a custom-built xorg.conf file is present, this functionality will be disabled and the
driver may not work. You can try removing the existing xorg.conf file, or adding the
contents of /etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf
file will most likely need manual tweaking for systems with a non-trivial GPU
configuration.

 4. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 5. Clean Yum repository cache

$ sudo yum clean expire-cache

 6. Install CUDA

$ sudo yum install cuda

If the i686 libvdpau package dependency fails to install, try using the following
steps to fix the issue:

$ yumdownloader libvdpau.i686
$ sudo rpm -U --oldpackage libvdpau*.rpm

 7. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the post-installation actions.

3.3. Fedora
 1. Perform the pre-installation actions.
 2. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf.
If a custom-built xorg.conf file is present, this functionality will be disabled and the
driver may not work. You can try removing the existing xorg.conf file, or adding the
contents of /etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf
file will most likely need manual tweaking for systems with a non-trivial GPU
configuration.

 3. Satisfy Akmods dependency

The NVIDIA driver RPM packages depend on the Akmods framework which is
provided by the RPMFusion free repository. The RPMFusion free repository must
be added to the package manager repository database before installing the NVIDIA

http://fedoraproject.org/wiki/EPEL
http://rpmfusion.org/Configuration

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 10

driver RPM packages, or missing dependencies will prevent the installation from
proceeding.

 4. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 5. Clean Yum repository cache

$ sudo yum clean expire-cache

 6. Install CUDA

$ sudo yum install cuda

The CUDA driver installation may fail if the RPMFusion non-free repository is
enabled. In this case, CUDA installations should temporarily disable the RPMFusion
non-free repository:

$ sudo yum --disablerepo="rpmfusion-nonfree*" install cuda

If also installing the gpu-deployment-kit package, the cuda and gpu-
deployment-kit packages should be either installed using separate instances of
yum:

$ sudo yum install cuda
$ sudo yum install gpu-deployment-kit

Or, installed while also specifying the cuda-drivers package:

$ sudo yum install cuda cuda-drivers gpu-deployment-kit

If a system has installed both packages with the same instance of yum, some driver
components may be missing. Such an installation can be corrected by running:

$ sudo yum install cuda-drivers

If the i686 libvdpau package dependency fails to install, try using the following
steps to fix the issue:

$ yumdownloader libvdpau.i686
$ sudo rpm -U --oldpackage libvdpau*.rpm

 7. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the post-installation actions.

3.4. SLES
 1. Perform the pre-installation actions.
 2. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 3. Refresh Zypper repository cache

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 11

$ sudo zypper refresh

 4. Install CUDA

$ sudo zypper install cuda

The driver is provided in multiple packages, nvidia-gfxG03-kmp-desktop, nvidia-
gfxG03-kmp-default, nvidia-gfxG03-kmp-trace, and their Unified Memory variants.
When installing cuda, the correct driver packages should also be specified. Without
doing this, zypper will select packages that may not work on the system. Run the
following to detect the flavor of kernel and install cuda with the appropriate driver
packages:

$ uname -r
 3.4.6-2.10-<flavor>
$ sudo zypper install cuda nvidia-gfxG03-kmp-<flavor> \
 nvidia-uvm-gfxG03-kmp-<flavor>

 5. Add the user to the video group

$ sudo usermod -a -G video <username>

 6. Install CUDA Samples GL dependencies

The CUDA Samples package on SLES does not include dependencies on GL and X11
libraries as these are provided in the SLES SDK. These packages must be installed
separately, depending on which samples you want to use.

 7. Perform the post-installation actions.

3.5. OpenSUSE
 1. Perform the pre-installation actions.
 2. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 3. Refresh Zypper repository cache

$ sudo zypper refresh

 4. Install CUDA

$ sudo zypper install cuda

The driver is provided in multiple packages, nvidia-gfxG03-kmp-desktop, nvidia-
gfxG03-kmp-default, nvidia-gfxG03-kmp-trace, and their Unified Memory variants.
When installing cuda, the correct driver packages should also be specified. Without
doing this, zypper will select packages that may not work on the system. Run the
following to detect the flavor of kernel and install cuda with the appropriate driver
packages:

$ uname -r
 3.4.6-2.10-<flavor>
$ sudo zypper install cuda nvidia-gfxG03-kmp-<flavor> \
 nvidia-uvm-gfxG03-kmp-<flavor>

 5. Add the user to the video group

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 12

$ sudo usermod -a -G video <username>

 6. Perform the post-installation actions.

3.6. Ubuntu
 1. Perform the pre-installation actions.
 2. Install repository meta-data

When using a proxy server with aptitude, ensure that wget is set up to use the
same proxy settings before installing the cuda-repo package.

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

 3. Update the Apt repository cache

$ sudo apt-get update

 4. Install CUDA

$ sudo apt-get install cuda

 5. Perform the post-installation actions.

3.7. L4T
 1. Perform the pre-installation actions.
 2. Install repository meta-data

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

 3. Update the Apt repository cache

$ sudo apt-get update

 4. Install CUDA Toolkit

$ sudo apt-get install cuda-toolkit-6-5

 5. Add the user to the video group

$ sudo usermod -a -G video <username>

 6. Perform the post-installation actions.

3.8. Additional Package Manager Capabilities
Below are some additional capabilities of the package manager that users can take
advantage of.

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 13

3.8.1. Available Packages
The recommended installation package is the cuda package. This package will install the
full set of other CUDA packages required for native development and should cover most
scenarios.

The cuda package installs all the available packages for native developments. That
includes the compiler, the debugger, the profiler, the math libraries,... For x86_64
patforms, this also include NSight Eclipse Edition and the visual profiler It also includes
the NVIDIA driver package.

On supported platforms, the cuda-cross-armhf package installs all the packages
required for cross-platform development on ARMv7. The libraries and header files of
the ARMv7 display driver package are also installed to enable the cross compilation
of ARMv7 applications. The cuda-cross-armhf package does not install the native
display driver.

The packages installed by the packages above can also be installed individually by
specifying their names explicitly. The list of available packages be can obtained with:

$ yum --disablerepo="*" --enablerepo="cuda*" list available # RedHat & Fedora
$ zypper packages -r cuda # OpenSUSE & SLES
$ cat /var/lib/apt/lists/*cuda*Packages | grep "Package:" # Ubuntu

3.8.2. Package Upgrades
The cuda package points to the latest stable release of the CUDA Toolkit. When a new
version is available, use the following commands to upgrade the toolkit and driver:

$ sudo yum install cuda # RedHat & Fedora
$ sudo zypper install cuda # OpenSUSE & SLES
$ sudo apt-get install cuda # Ubuntu

The cuda-cross-armhf package can also be upgraded in the same manner.

The cuda-drivers package points to the latest driver release available in the CUDA
repository. When a new version is available, use the following commands to upgrade the
driver:

$ sudo yum install cuda-drivers # RedHat & Fedora
$ sudo zypper install cuda-drivers \
 nvidia-gfxG03-kmp-<flavor> \
 nvidia-uvm-gfxG03-kmp-<flavor> # OpenSUSE & SLES
$ sudo apt-get install cuda-drivers # Ubuntu

Some desktop environments, such as GNOME or KDE, will display an notification alert
when new packages are available.

To avoid any automatic upgrade, and lock down the toolkit installation to the X.Y
release, install the cuda-X-Y or cuda-cross-armhf-X-Y package.

Side-by-side installations are supported. For instance, to install both the X.Y CUDA
Toolkit and the X.Y+1 CUDA Toolkit, install the cuda-X.Y and cuda-X.Y+1 packages.

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 14

Chapter 4.
RUNFILE INSTALLATION

This section describes the installation and configuration of CUDA when using the
standalone installer.

4.1. Pre-installation Setup
Before the stand-alone installation can be run, perform the pre-installation actions.

4.2. Prerequisites
If you have already installed a standalone CUDA driver and desire to keep using it,
you need to make sure it meets the minimum version requirement for the toolkit. This
requirement can be found in the CUDA Toolkit release notes. With many distributions,
the driver version number can be found in the graphical interface menus under
Applications > System Tools > NVIDIA X Server Settings.. On the
command line, the driver version number can be found by running /usr/bin/nvidia-
settings.

4.3. Contents
The standalone installer can install any combination of the NVIDIA Driver (that includes
the CUDA Driver), the CUDA Toolkit, or the CUDA Samples. If needed, each individual
installer can be extracted by using the -extract=/absolute/path/to/extract/
location/. The extraction path must be an absolute path.

The CUDA Toolkit installation includes a read-only copy of the CUDA Samples. The
read-only copy is used to create a writable copy of the CUDA Samples at some other
location at any point in time. To create this writable copy, use the cuda-install-
samples-6.5.sh script provided with the toolkit. It is equivalent to installing the
CUDA Samples with the standalone installer.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Runfile Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 15

4.4. Graphical Interface Shutdown
Exit the GUI if you are in a GUI environment by pressing Ctrl-Alt-Backspace. Some
distributions require you to press this sequence twice in a row; others have disabled it
altogether in favor of a command such as sudo service lightdm stop. Still others
require changing the system runlevel using a command such as /sbin/init 3 Consult
your distribution's documentation to find out how to properly exit the GUI. This step is
only required in the event that you want to install the NVIDIA Display Driver included
in the standalone installer.

4.5. Installation
To install any combination of the driver, toolkit, and the samples, simply execute
the .run script. The installation of the driver requires the script to be run with root
privileges. Depending on the target location, the toolkit and samples installations may
also require root privileges.

By default, the toolkit and the samples will install under /usr/local/cuda-6.5 and
$(HOME)/NVIDIA_CUDA-6.5_Samples, respectively. In addition, a symbolic link
is created from /usr/local/cuda to /usr/local/cuda-6.5. The symbolic link is
created in order for existing projects to automatically make use of the newly installed
CUDA Toolkit.

If the target system includes both an integrated GPU (iGPU) and a discrete GPU
(dGPU), the --no-opengl-libs option must be used. Otherwise, the openGL library used
by the graphics driver of the iGPU will be overwritten and the GUI will not work. In
addition, the xorg.conf update at the end of the installation must be declined.

Installing Mesa may overwrite the /usr/lib/libGL.so that was previously installed
by the NVIDIA driver, so a reinstallation of the NVIDIA driver might be required after
installing these libraries.

4.6. Interaction with Nouveau
The Nouveau drivers may be installed into your root filesystem (initramfs) and may
cause the Display Driver installation to fail. To fix the situation, the initramfs image must
be rebuilt with:

$ sudo mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r)-
nouveau.img
$ sudo dracut /boot/initramfs-$(uname -r).img $(uname -r)

if Grub2 is used as the bootloader, the rdblacklist=nouveau nouveau.modeset=0
line must be added at the end of the GRUB_CMDLINE_LINUX entry in /etc/default/
grub. Then, the Grub configuration must be remade by running:

$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Runfile Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 16

Once this is done, the machine must be rebooted and the installation attempted again.

4.7. Extra Libraries
If you wish to build all the samples, including those with graphical rather than
command-line interfaces, additional system libraries or headers may be required.
While every Linux distribution is slightly different with respect to package names and
package installation procedures, the libraries and headers most likely to be necessary are
OpenGL (e.g., Mesa), GLU, GLUT, and X11 (including Xi, Xmu, and GLX).

On Ubuntu, those can be installed as follows:

$ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev
 libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

4.8. Verifications
Check that the device files/dev/nvidia* exist and have the correct (0666) file
permissions. These files are used by the CUDA Driver to communicate with the kernel-
mode portion of the NVIDIA Driver. Applications that use the NVIDIA driver, such as
a CUDA application or the X server (if any), will normally automatically create these
files if they are missing using the setuid nvidia-modprobe tool that is bundled with the
NVIDIA Driver. Some systems disallow setuid binaries, however, so if these files do not
exist, you can create them manually either by running the command nvidia-smi as
root at boot time or by using a startup script such as the one below:
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then
 # Count the number of NVIDIA controllers found.
 NVDEVS=`lspci | grep -i NVIDIA`
 N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l`
 NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1
fi

/sbin/modprobe nvidia-uvm

if ["$?" -eq 0]; then
 # Find out the major device number used by the nvidia-uvm driver
 D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`

 mknod -m 666 /dev/nvidia-uvm c $D 0
else
 exit 1
fi

Runfile Installation

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 17

4.9. Graphical Interface Restart
Restart the GUI environment using the command startx, init 5, sudo service
lightdm start, or the equivalent command on your system.

4.10. Post-installation Setup
Once the stand-alone installation is complete, be sure to perform the post-installation
actions.

4.11. Uninstallation
To uninstall the CUDA Toolkit, run the uninstallation script provided in the bin
directory of the toolkit. By default, it is located in /usr/local/cuda-6.5/bin:

$ sudo /usr/local/cuda-6.5/bin/uninstall_cuda_6.5.pl

To uninstall the NVIDIA Driver, run nvidia-uninstall:

$ sudo /usr/bin/nvidia-uninstall

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 18

Chapter 5.
CROSS-BUILD ENVIRONMENT FOR ARM

Cross-ARM development is only supported on Ubuntu systems, and is only provided
via the Package Manager installation process.

Due to the supported ARMv7 native platforms being Ubuntu 14.04 based, we
recommend selecting Ubuntu 14.04 as your cross development platform. This selection
helps prevent host/target incompatibilities, such as GCC or GLIBC version mismatches.

5.1. Cross-build Installation for ARM
Some of the following steps may have already been performed as part of the native
Ubuntu installation. Such steps can safely be skipped.

These steps should be performed on the x86_64 host system, rather than the ARMv7
target system. To install the native CUDA Toolkit on the target ARMv7 system, refer to
the native Ubuntu and L4T installation sections.

 1. Perform the pre-installation actions.
 2. Enable armhf foreign architecture

The armhf foreign architecture must be enabled in order to install the cross-armhf
toolkit. To enable armhf as a foreign architecture, the following commands must be
executed:

On Ubuntu 12.04,

$ sudo sh -c \
 'echo "foreign-architecture armhf" >> /etc/dpkg/dpkg.cfg.d/multiarch'
$ sudo apt-get update

On Ubuntu 14.04,

$ sudo dpkg --add-architecture armhf
$ sudo apt-get update

 3. Install repository meta-data

When using a proxy server with aptitude, ensure that wget is set up to use the
same proxy settings before installing the cuda-repo package.

Cross-build Environment for ARM

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 19

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

 4. Update the Apt repository cache

$ sudo apt-get update

 5. Install the cross-ARM CUDA Toolkit

$ sudo apt-get install cuda-cross-armhf

 6. Perform the post-installation actions.

5.2. Cross Samples
When cross-compiling an ARM CUDA application, nvcc must be able to find any
libraries used, or be told to ignore missing symbols. One of the following methods
should be chosen when cross-compiling the CUDA Samples. Regardless of which option
is chosen, ARMv7=1 should always be used.

TARGET_FS
The most reliable method to cross-compile the CUDA Samples is to use the TARGET_FS
variable. To do so, mount the target's filesystem on the host, say at /mnt/target. This is
typically done using exportfs. In cases where exportfs is unavailable, it is sufficient
to copy the target's filesystem to /mnt/target. To cross-compile a sample, execute:

$ make ARMv7=1 TARGET_FS=/mnt/target

Copying Libraries
If the TARGET_FS option is not available, the libraries used should be copied from the
target system to the host system, say at /opt/target/libs. If the sample uses GL, the
GL headers must also be copied, say at /opt/target/include. The linker must then
be told where the libraries are with the -rpath-link and/or -L options. For samples
which use GL, HEADER_SEARCH_PATH must be set. For example, to cross-compile a
sample which uses GL, execute:

$ make ARMv7=1 \
 EXTRA_LDFLAGS="-rpath-link=/opt/target/libs -L/opt/target/libs" \
 GLPATH=/opt/target/libs \
 HEADER_SEARCH_PATH=/opt/target/include

Ignore Symbol Detection
If neither of the above options are available, the linker can be told to ignore unresolved
symbols. The samples should be forced to build using SAMPLE_ENABLED, and any
library inclusion (-lfoo) should be removed from the Makefiles. To perform such a
build, execute:

$ make ARMv7=1 \
 EXTRA_LDFLAGS="--unresolved-symbols=ignore-in-object-files" \
 SAMPLE_ENABLED=1

Cross-build Environment for ARM

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 20

5.3. Nsight Eclipse Edition
Nsight Eclipse Edition supports cross-platform development. See the Nsight Eclipse
Edition Getting Started Guide for more details.

http://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-started-guide/index.html#remote-development
http://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-started-guide/index.html#remote-development

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 21

Chapter 6.
POST-INSTALLATION ACTIONS

Some actions must be taken after installing the CUDA Toolkit and Driver before they can
be completely used:

‣ Setup evironment variables.
‣ Install a writable copy of the CUDA Samples.
‣ Verify the installation.

6.1. Environment Setup
The PATH variable needs to include /usr/local/cuda-6.5/bin

The LD_LIBRARY_PATH variable needs to contain /usr/local/cuda-6.5/lib64 on a
64-bit system, and /usr/local/cuda-6.5/lib on a 32-bit ARM system

‣ To change the environment variables for 64-bit operating systems:

$ export PATH=/usr/local/cuda-6.5/bin:$PATH
$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH

‣ To change the environment variables for 32-bit ARM operating systems:

$ export PATH=/usr/local/cuda-6.5/bin:$PATH
$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib:$LD_LIBRARY_PATH

6.2. (Optional) Install Writable Samples
In order to modify, compile, and run the samples, the samples must be installed with
write permissions. A convenience installation script is provided:

$ cuda-install-samples-6.5.sh <dir>

This script is installed with the cuda-samples-6-5 package. The cuda-samples-6-5
package installs only a read-only copy in /usr/local/cuda-6.5/samples.

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 22

6.3. Verify the Installation
Before continuing, it is important to verify that the CUDA toolkit can find and
communicate correctly with the CUDA-capable hardware. To do this, you need to
compile and run some of the included sample programs.

Ensure the PATH and LD_LIBRARY_PATH variables are set correctly.

6.3.1. Verify the Driver Version
If you installed the driver, verify that the correct version of it is installed.

This can be done through your System Properties (or equivalent) or by executing the
command

$ cat /proc/driver/nvidia/version

Note that this command will not work on an iGPU/dGPU system.

6.3.2. Compiling the Examples
The version of the CUDA Toolkit can be checked by running nvcc -V in a terminal
window. The nvcc command runs the compiler driver that compiles CUDA programs. It
calls the gcc compiler for C code and the NVIDIA PTX compiler for the CUDA code.

The NVIDIA CUDA Toolkit includes sample programs in source form. You should
compile them by changing to ~/NVIDIA_CUDA-6.5_Samples and typing make. The
resulting binaries will be placed under ~/NVIDIA_CUDA-6.5_Samples/bin.

6.3.3. Running the Binaries
After compilation, find and run deviceQuery under ~/NVIDIA_CUDA-6.5_Samples.
If the CUDA software is installed and configured correctly, the output for deviceQuery
should look similar to that shown in Figure 1.

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 23

Figure 1 Valid Results from deviceQuery CUDA Sample

The exact appearance and the output lines might be different on your system. The
important outcomes are that a device was found (the first highlighted line), that the
device matches the one on your system (the second highlighted line), and that the test
passed (the final highlighted line).

If a CUDA-capable device and the CUDA Driver are installed but deviceQuery reports
that no CUDA-capable devices are present, this likely means that the /dev/nvidia*
files are missing or have the wrong permissions.

On systems where SELinux is enabled, you might need to temporarily disable this
security feature to run deviceQuery. To do this, type:

$ setenforce 0

from the command line as the superuser.

Running the bandwidthTest program ensures that the system and the CUDA-capable
device are able to communicate correctly. Its output is shown in Figure 2.

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 24

Figure 2 Valid Results from bandwidthTest CUDA Sample

Note that the measurements for your CUDA-capable device description will vary from
system to system. The important point is that you obtain measurements, and that the
second-to-last line (in Figure 2) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on your
system and make sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found), consult
the Linux Release Notes found in the doc folder in the CUDA Samples directory.

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 25

Chapter 7.
FREQUENTLY ASKED QUESTIONS

How do I install the Toolkit in a different location?
The Runfile installation asks where you wish to install the Toolkit and the Samples
during an interactive install. If installing using a non-interactive install, you can use the
--toolkitpath and --samplespath parameters to change the install location:

$./runfile.run --silent \
 --toolkit --toolkitpath=/my/new/toolkit \
 --samples --samplespath=/my/new/samples

The RPM packages don't support custom install locations though the package managers
(Yum and Zypper), but it is possible to install the RPM packages in custom locations
using rpm's --relocate parameter:

$ rpm --install --relocate /usr/local/cuda-6.5=/my/new/toolkit rpmpackage.rpm

The Deb packages don't support custom install locations through the package manager
(apt), but it is possible to install the Deb packages in custom locations using dpkg's --
instdir parameter:

$ dpkg --instdir=/my/new/toolkit --install debpackage.deb

For RPM and Deb packages, you will need to install the packages in the correct order
of dependency; normally the package managers take care of this automatically. For
example, if package "foo" has a dependency on package "bar", you should install
package "bar" first, and package "foo" second. You can check the dependencies of a RPM
or Deb package as follows:

$ rpm -qRp rpmpackage.rpm
$ dpkg -I debpackage.deb | grep Depends

Frequently Asked Questions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 26

Why do I see "nvcc: No such file or directory"
when I try to build a CUDA application?
Your PATH environment variable is not set up correctly. Ensure that your PATH includes
the bin directory where you installed the Toolkit, usually /usr/local/cuda-6.5/bin.

$ export PATH=/usr/local/cuda-6.5/bin:$PATH

Why do I see "error while loading shared libraries:
<lib name>: cannot open shared object file: No
such file or directory" when I try to run a CUDA
application that uses a CUDA library?
Your LD_LIBRARY_PATH environment variable is not set up correctly. Ensure that your
LD_LIBRARY_PATH includes the lib and/or lib64 directory where you installed the
Toolkit, usually /usr/local/cuda-6.5/lib{,64}:

$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib:$LD_LIBRARY_PATH

How can I extract the contents of the installers?
The Runfile can be extracted into the standalone Toolkit, Samples and Driver Runfiles
by using the --extract parameter. These standalone Runfiles can be further extracted by
running:

$./runfile.run --tar mxvf

The RPM packages can be extracted by running:

$ rpm2cpio rpm_package.rpm | cpio -idmv

The Deb packages can be extracted by running:

$ dpkg-deb -x deb_package.deb output_dir

How can I tell X to ignore a GPU for compute-only
use?
To make sure X doesn't use a certain GPU for display, you need to specify which other
GPU to use for display. This is done by editing the xorg.conf file located at /etc/xorg/
xorg.conf.

You will need to add a section that resembles the following to your xorg.conf file:

Frequently Asked Questions

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 27

Section "Device"
 Identifier "Device0"
 Driver "driver_name"
 VendorName "vendor_name"
 BusID "bus_id"
EndSection

The exact details of what you will need to add differ on a case-by-case basis. For
example, if you have two NVIDIA GPUs and you want the first GPU to be used for
display, you would replace "driver_name" with "nvidia", "vendor_name" with "NVIDIA
Corporation" and "bus_id" with the Bus ID of the GPU.

The Bus ID will resemble "PCI:00:02.0" and can be found by running lspci.

Why doesn't the cuda-repo package install the
CUDA Toolkit and Drivers?
When using RPM or Deb, the downloaded package is a repository package. Such
a package only informs the package manager where to find the actual installation
packages, but will not install them.

See the Package Manager Installation section for more details.

www.nvidia.com
NVIDIA CUDA Getting Started Guide for Linux DU-05347-001_v6.5 | 28

Chapter 8.
ADDITIONAL CONSIDERATIONS

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed,
you can examine and enjoy the numerous included programs. To begin using CUDA to
accelerate the performance of your own applications, consult the CUDA C Programming
Guide, located in /usr/local/cuda-6.5/doc.

A number of helpful development tools are included in the CUDA Toolkit to assist
you as you develop your CUDA programs, such as NVIDIA® Nsight™ Eclipse Edition,
NVIDIA Visual Profiler, cuda-gdb, and cuda-memcheck.

For technical support on programming questions, consult and participate in the
developer forums at http://developer.nvidia.com/cuda/.

http://developer.nvidia.com/cuda/

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2009-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	1.1. System Requirements
	1.1.1. x86 32-bit Support

	1.2. About This Document

	Pre-installation Actions
	2.1. Verify You Have a CUDA-Capable GPU
	2.2. Verify You Have a Supported Version of Linux
	2.3. Verify the System Has gcc Installed
	2.4. Choose an Installation Method
	2.5. Download the NVIDIA CUDA Toolkit
	2.6. Handle Conflicting Installation Methods

	Package Manager Installation
	3.1. Overview
	3.2. Redhat/CentOS
	3.3. Fedora
	3.4. SLES
	3.5. OpenSUSE
	3.6. Ubuntu
	3.7. L4T
	3.8. Additional Package Manager Capabilities
	3.8.1. Available Packages
	3.8.2. Package Upgrades

	Runfile Installation
	4.1. Pre-installation Setup
	4.2. Prerequisites
	4.3. Contents
	4.4. Graphical Interface Shutdown
	4.5. Installation
	4.6. Interaction with Nouveau
	4.7. Extra Libraries
	4.8. Verifications
	4.9. Graphical Interface Restart
	4.10. Post-installation Setup
	4.11. Uninstallation

	Cross-build Environment for ARM
	5.1. Cross-build Installation for ARM
	5.2. Cross Samples
	TARGET_FS
	Copying Libraries
	Ignore Symbol Detection

	5.3. Nsight Eclipse Edition

	Post-installation Actions
	6.1. Environment Setup
	6.2. (Optional) Install Writable Samples
	6.3. Verify the Installation
	6.3.1. Verify the Driver Version
	6.3.2. Compiling the Examples
	6.3.3. Running the Binaries

	Frequently Asked Questions
	How do I install the Toolkit in a different location?
	Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?
	Why do I see "error while loading shared libraries: <lib name>: cannot open shared object file: No such file or directory" when I try to run a CUDA application that uses a CUDA library?
	How can I extract the contents of the installers?
	How can I tell X to ignore a GPU for compute-only use?
	Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?

	Additional Considerations

