IIIIIII

CUPTI contains a number of enhancements as part of the CUDA Toolkit 6.5 release.

» Instruction classification is done for source-correlated Instruction
Execution activity CUpti ActivityInstructionExecution. See
CUpti ActivityInstructionClass for instruction classes.

» Two new device attributes are added to the activity CUpti DeviceAttribute:

» CUPTI DEVICE ATTR FLOP SP PER CYCLE gives peak single precision flop
per cycle for the GPU.
» CUPTI DEVICE ATTR FLOP DP PER CYCLE gives peak double precision flop
per cycle for the GPU.
» Two new metric properties are added:

» CUPTI METRIC_PROPERTY FLOP SP PER CYCLE gives peak single precision
flop per cycle for the GPU.

» CUPTI_METRIC PROPERTY FLOP_DP_PER CYCLE gives peak double
precision flop per cycle for the GPU.

> Activity record CUpti ActivityGlobalAccess for source level global
access information has been deprecated and replaced by new activity record
CUpti ActivityGlobalAccess2.New record additionally gives information
needed to map SASS assembly instructions to CUDA C source code. And it also
provides ideal L2 transactions count based on the access pattern.

» Activity record CUpti ActivityBranch for source level branch information has
been deprecated and replaced by new activity record CUpti ActivityBranch2.
New record additionally gives information needed to map SASS assembly
instructions to CUDA C source code.

» Sample sass source map is added to demonstrate the mapping of SASS assembly
instructions to CUDA C source code.

» Default event collection mode is changed to Kernel
(CUPTI_EVENT COLLECTION MODE_KERNEL) from Continuous
(CUPTI_EVENT COLLECTION MODE CONTINUOUS). Also Continuous mode is now
supported only on Tesla devices.

» Profiling results might be inconsistent when auto boost is enabled. Profiler tries to
disable auto boost by default, it might fail to do so in some conditions, but profiling
will continue. A new API cuptiGetAutoBoostState is added to query the auto
boost state of the device. This API returns error CUPTI ERROR NOT SUPPORTED
on devices that don't support auto boost. Note that auto boost is supported only on
certain Tesla devices from the Kepler+ family.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | ii

(61101 =] i IR U7 1= L PPN 1

1.1. CUPTI Compatibility and Requirements.oviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeneeeaeees 1
1.2, CUPTI INitialiZation. ..o eeeiee it ettt e e e e et e e et e eeeateeaaeeaaneenans 1
1.3 CUPTIE ACHIVILY APl ettt ettt ettt et e et e et eataeaneeenaeatennsennaeanaenns 1
1.3.1. Context ACtiVity RECOId....cuiiiiiiiiiiiiiiii ettt ee ettt eeeeennneeeeresannnnessaennns 2
1.3.2. Legacy ACHiVIEY RECOIAS. . ..uuuetttiiiiiittiiiiiii e ettt teeeiieeeeeeeeiiseeeseeennsnaeeenn 3
1.4, CUPTIE CallbDACK APL.....eeiiniiiiiiieiee et tit ettt et eeteenteanteeneeenseenteonseonssonssnns 3
1.4.1. Driver and Runtime APl Callbacks.......couviiieiiiiiiiiiiiiiiiiiiieiieeeieeeeneeeannens 4
1.4.2. ReSOUrCE CallbacKs. ...ouueinuiitiiit ittt e et e e rieesneeenaeennenns 5
1.4.3. Synchronization Callbacks.coviiiiiiiiiiiiiiiii it it ce e e e eeinaaaeeas 6
1.4.4. NVIDIA Tools Extension CallDacks........cuveueeiiiiitiiiiiiiiiiiiiiiiiieiieenieenneeaneenns 6
1.5, CUPTI EVENE APl . eenitiitiiitiii ittt eit ettt et eeneeeaeseneeaneensasnesnesnessnsesnnssnesennens 7
1.5.1. Collecting Kernel EXecution EVENtS........coiiiuiiiiiiiiiiiiiiiiiiiieiiteiiteeeeenenes 9
1.5.2. SaMPUING EVENES. ..ttt ittt teeeeeeeeeaennneeesesnnesessessnnnneess 10
1.6, CUPTL MELIiC APl ettt ittt et e ettt e et ettt eeeeeaeaneeaneeaneeasaenneennas 10
LR Y T 1] 5] U P 36
Chapter 2. MOAUIES. . cciireeeieiiiiaeeteteeerneeeeeeeessnneteeeessnassecesessanssccsesssnsseccessssssscccannns 37
2 T O U = £ [o P 37
(o(8 0] 0 €1 AY/=1 53 (o) PP PPN 37
CUPTI_APILVERSION. . . ettt teiiteeit ittt ettt et e et et eeteenteenesenesenesanssanssnnesnnesnnes 38
2.2, CUPTI RESULL COAES. . etnnnternteeeteeeeteeeteeaeereaneeeanneeeanaeseannesennnessnnsssennesennnes 38
CUP LI RESULE . 1ttt ettt et e e ettt ettt et e e etaeeeenaeeenneeeanseeeaneeeannsessnneeesnneenns 38
CUPTIGETRESULE ST IING. ettt tiiiii et ettt ettt et eeeeraeeeeeessnnnneeeessnnnneesssannnes 40
2.3, CUPTI ACEIVILY APl ..ttt ittt ettt e et eeateeteentseneeanaaaaaanns 40
(O o) 4 Yot 1Y 1 S P 41
Lol o) A Yot 6 1Y 1472 o P PP PPN 41
(O(U]o] 4 Yot 0 1Y) 077 V01 (0] {o o]] - | £ PP PPN 41
U)o) n I Yet a1V 121 - 1o el | O PP 41
(O(W]o] 4 Yot 0 VA1 1Y/ 2] =12 Uel 1 1 2 P 41
CUPLI _ACHIVIEYCAPKEINEL. . ettt i ettt ettt ittt eeieaeeeeeanaaaaeans 41
(O(U]o] 4 I Yot 0141 47/ 000 1 | £ 4 SO PP 41
(U] o] 4 Yot 6 1% 107 D=3 (ol - T P PP PP 41
CUPti_AcCtivityDeViCeAtIrIDULE. ...v i i i e e e e e i eenaeeaaaees 41
CUPL _ACTIVIEYENVIFONMENE. . .ttt et e et et e it e e eeeeneeeeeaaannasesssannnnes 41
(G180 4 I Yot 0 V41 1Y Y= o | 41
CUPt _ACTIVItYEVENtINSTANCE. . e et et e e it e e it e e eeennnneeeesannnnaneenns 41
CUPLI_ACHIVItYFUNCHION. ..ttt e e aees 41
CUPLI _ACTIVItYGlODALACCESS. . vttt ettt teeiiieteteiieeeereeanaeeeeessnnnesessessnnnneesssannnns 42
CUPLI_ACtIVItYGLlODALACCESSZ. . e eeniiiiiitiit ittt e et e e eeaeaaaes 42
CUpti_ActivitylInstruCtionEXeCULION. ...viiiieiiii e i e e eiiee e eeeenrnaeeeeaaannnnes 42
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | iii

(@8]0 4 Yot 0 1% 107/ (Gl 1 1= S PP 42

O o Y A Yt 8 1 1Y (T o 1= 2 PPN 42
(O(¥] o] 4 Vet 0 VA1 071 T4] PP 42
CUPLI_ACHIVItYMArKerData. .. coutieiitt i eei et e ettt e et eeeeeeenneeeeneeeaaneeeanneeann 42
(@180 4 I Yot 0 1V 1 0/ 1= 12T o) V2 PP PP 42
CUPE _ACHIVIEYMEMCPY 2. .« tttteie ittt ettt e eeeiatteeeeeeaneeessaaanansesssesanneessessnnnnes 42
(@180 4 I Yot 0 V41 07/ L= 1) T PP 42
CUPLI_ACHVITYMELIIC. ettt e et ae e e 42
CUPL _ACTIVItYMEtrICINSTANCE. ettt ie e i e ettt et eiaeeeeeeennneeessennnnneeesesnnnnnes 42
CUPLI_ACHVItYMOAULE. . . ettt ettt e ettt e et eeeneeeenneeeaneeeannnesanneennn 43
(@180 4 I Yot 0 V21 07/ 1 =T 1 < PPN 43
CUpti_ActivityObjectKindld. ...co i it et ettt e e e i e eanaaaaas 43
CUPLI_ACHIVItYOVErhead. ... et ettt e e ieeeeseesnnnneessannnnes 43
(O(V]o] 4 Yot 01V 1 07 2 (=TT 19] 01 6 (o] o FER PP PP 43
CUP L _ACHIVItYSNAr@AACCESS. .ottt ittt eii et ettt e et eeeieeeanaeeeanaeeaanaeeannesesnnees 43
(U] o] 4 Yot 01V 1 YA o 1U] (ol o o= 1 o) SR PP PP PP 43
CUpti_ActivityUnifiedMemoryCOUNTEr. ..ottt it e e i ee i eeieeeeeeeenneeaenaeenanens 43
CUpti_ActivityUnifiedMemoryCounterConfig.....ovviiueiiiiiiiiiteeiiiiiieeeeeiinneeeeresnnnnneess 43
CUPLI _ACHVITYALIIIDULE. ..o ettt eaeeaens 43
CUpti_ActivityComputeAPIKING. ..ot iiiiiii ettt eeriee et eeeninneeeeeesnnnenessaennnnes 44
CUpti_ActivityEnvironmentKind.ccoouiiiuiiiiiiiii e 44
(G180 4 I Yot 0 1741 1Y/ o -V R P 45
CUPL_ACHVItYINSTIUCTIONCLASS. vt teeteeett et eeiteeereteeeteeennteeaeeeeaneerennnesenneesanneenns 46
(00 o) 4 1Yt 8 1Y 1Y/ (13 e PO PPN 48
CUPLI_ACTiVItYMEMCPYKING. . ..ttt et ettt et ettt eeeeaeeeeeaeannaaaeeeanns 51
CUPLI_ActivityMemoryKind.cueiiiiiiiii i et e i e et ee it e eeeeeesaeeaanaens 52
(@(W]o] 4 I Yot 011 87(0 o} [=Tot {141 4T P PP PP 52
CUpti_ActivityOverheadKind.........coiiiuiiiiiiiiiiii it ri e i eee e eeeeeenaeeanneeeanns 53
CUpti_ActivityPreemptionKind.cciiiiiiiiiiiiiiiiiiii it eeeiieeeeeeaaineeeesesnnnneaeens 53
CUpti_ActivityUnifiedMemoryCounterKind........coiieiiiiiiiiiiiiiiiiiiieiieeieeeeneeeanneens 53
CUpti_ActivityUnifiedMemoryCoUNterSCOPE. . vttt i ieeiiieteeteeeneeeeeaennnneeeeeanns 54
CUpti_EnvironmentClocksThrottleReason........ccvveiiieiiiiiiiiiiiiiiiiii e 54
CUpti_BuffersCallbackCompleteFUNC. ... vuiiiiiiiiii it ieeeiieeeeeeeereeeeeeaennnneeeeaanns 55
CUpti_BuffersCallbackReqUESTFUNC.iiueiriiiiii it ei i et eeieeeeeeeeenneeaaneans 55
cuptiActivityConfigureUnifiedMemoryCouNter. .. .coviiiiieeiiiiiiiiiiieieiiieereeinneeeeeaannnnes 55
CUPT ACHIVITY DISADLE. 1 et ettt i et ettt et e iieeeeeeearneaeeeanannaaas 56
(o(8] o]0V Vet a1 10V DI - 1] (=] 6o]]) PPN 57
fo(8 o] 0 7AYot 1Y 1 0] = g T=1 o] (= T PP 57
CUPLIACEIVILYENADLECONTEXE. ..ttt i e i e e e et e e e e eaaaaes 58
CUPTIACHIVITYFIUSI. . e i et et et eeiaee e e eeesinaaaeeannnes 59
CUPLIACEIVIEYFIUSNALL .. et e e e e e e e et e e e e eeneeeenneeaaaeaannes 60
CUPT ACHIVITY GOt AL I DU . .ot i e e e ettt eeeiaaeeeeaanneaeeeeannnes 60
CUPHIACHIVILYGEINEXERECOId. . v ettt ettt et e e eaes 61
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | iv

cuptiActivityGetNUmMDroppedReCOrdS.cviiiiii i e e ee i aeaaas 62

CUPtiACtiVItYReGISTErCallbacks. . ..uv ettt i e e e e e e 63
CUPTI ACHIVITY SOt AL DU . et it et eeeiaee e e eeeenaaeeeannnns 64
(o(8]] 0 [€1<1 7:XT1 o] 2 ToTo 1 03] - | £ - 64
(o(8] 0] 0 [€1<] { 6e] 31 (=) 4 d [« PP PP 65
CUPLIGELDEVICEIA. . ettt ettt et ettt ettt e et eenaeeeeaeeaaneeennneeeanneeannes 66
(o(8] o] (€1 S d (=T 11 1] [« PP 66
Lo o €Ty o I 0 =3 =T o o N 67
CUPTI_AUTO_BOOST_INVALID_CLIENT_PID. . uutttttiteeteeteentraneeaneeneeraeerneesessneeenneenes 67
CUPTI_CORRELATION_ID_UNKNOWN. ... tttittiittiittiiteeeteeiteenteeieeaneeaneeaneesneesnaesnaeanaens 68
CUPTI_GRID_ID_UNKNOWN. tttitttittttteetereeneeenteeneeenteenteanteeneeanesanssanesnnesnneennes 68
CUPTI_SOURCE_LOCATOR _ID_UNKNOWN. ...\t ttitteitieiteeiteaitenneeaeeeneeeneenneesneesneeaneeanens 68
CUPTI_TIMESTAMP_UNKNOWN. tttiiiiiitieiietiteeeteerteenteenteeneeenesaassanesnnesnneannens 68
2.4, CUPTI Callback APl ...eeiitiiitiiitieitieieeenteriteeeeeeeaneeereeaneeaneeseeeseesnsesnessneesneennes 68
CUPLI_CallbaCKData. . e eeueeieiteeeittieit ettt eer e eeteeenaeeeaeetanneeeanneeenneeeenneeesnneeannes 68
CUPLi_MOdULERESOUICEDATA. .. v v tttiiiitttteieiiiteeteeiieeeeteeeeteeeeesnnseesessssnseseesennnnanes 68
(G180 4 I N2 0T D - L - 68
CUPLI _RESOUICEDATA. .. vttt eiiiiiittteiiiieeee ettt teeenaeeeeeeennnaeessessnnaseesessnnnsseseennn 68
CUPLI _SYNChIONIZEDAtA. ... e ettt ettt ettt e et eenteeteeeseneaeanaans 68
CUPL _APICallbaCK STttt ettt it e ittt e it e et eeeeineeeeresannaneesessnnnnsessesnnnnnes 68
(O8] o] 0 111 oT- Vel {0 1o]11 1=} [FO A O 69
CUPti_CallbacKIARESOUICE. ... ettt tteeiiteteteeiieeeereeernaeeeeeesnnnneessessnnnneesessnnnnseseenns 69
S0 o) n IO 111 o T Vel {14 1} o TP P 70
CUPLI _CallbaCKFUNC. ..ttt ittt it eeieee e eeeeeaaeeeesennnnaesssennnneesssannnnneeens 70
(@10 o] 4 0= 1 11 o Y- Vel { [« I PP 71
CUP LI _DOMaAINTAD L. vttt et e e et et ettt ee et e eetaeeeenaeeaaneeeanneeeaneeeannaeenn 71
CUpti_SubscriberHandle.coiiiiiiii i ittt ettt e e iieee et eeeeneaeeeaaannaes 71
CUPLIENGDLEAIDOMATNS. . vttt tttieit e i e e e ettt et eeaaeeranaeeeaneeeanneeeannesanneens 71
fo(] o]0 2 g F-1 o] (T0F: 11 o - Tol /S PP 72
Lol s1 a1 =4 F=1o] (10 1o]1 o F- U PO PP PP PP 73
fo(8] o]0 (€11 (01 {{oF: Vel 4N - 11 1 [T P PPN 74
CUPTIGEtCallbaCKSTAtE. .ottt et ae e 74
({8 0] 0] 01T of 1 o 1= 2 PPN 75
CUPLISUPPOItEADOMATNS. . v et tttteetteeetteeeeereneeeenneeeenaeeeaneeeenneesenaeeesnnesenaeesenneesnnes 76
({8010 1V 0 1] o1 of o 1 o T PPN 77
2.5, CUPTIL EVENt APl . enttiiiitiitii ittt eit ettt eaeeeteeaaeaneeanaeaneeoneesneesneenneennanns 77
CUPE _EVENTGIOUPSEL. . .. etetttiiiiieeeii e teeeieteeeeeennneesseannnnnesssssnnnneesssssnnnneesns 78
CUP _EVENT G OUDP S LS.« t ittt ttiiiii et ettt teeeieteeeeeanaeeeeeesnnsesessessnnnsessesennnes 78
CUPti_DeVICEALIIIDULE. et e et e e e e et e e raeeaenaaeaas 78
CUpti_DeVviceAttribULEDEVICECLASS. o vttt i ieiiietiieiiieeeeeiieeeeeeeainaeeeeeesenseseesaeannnes 79
CUPt _EVENTA LI DULE. .ot i et et e e et e et eeeeeeenaeeaanaaenns 79
(@10 o] 4 I =] g (O =T o] Y PP PP 79
CUpti_EventCollectionMethod.vinuiieiiiiii i e eaeeaes 80
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | v

CUPti_EventColleCtionMOde. ... uueiii it et ettt et et e e eeeeiiaeeeeeeeannaaaeeannn 80

CUpti_EventDomainAtEribute.o e 81
CUPL _EVeNntGroUp At i DULE. . it it et e e e e e eeeeaaeeeeaaannaeaeen 81
CUPti_REAAEVENTFLAGS. . et tieiiiit ittt ettt et e et teneeeeeeeeeraeeeanaeeenneeeenneeeaneens 82
CUPLI _EVENTDOMAINID. ... tetttiiiiiii e i et e ittt eeeeetnaeeeeeeennaseeeeesnnnseeeessnnnneneens 82
(G180 0 I A= 41 (€] 0T o J 82
(@18 o =] o1 o | D TS P PPN 82
cuptiDeviceENUMEVENTDOMAINS.ttt ettt eeeeieeeeseaaneeessaannnnns 83
fo(8]] 0 DJ=3Y (el 1<) i N d] 10| PPN 84
cuptiDeviceGetEventDomainAttribULE. ...ovei it e e eeeeeeaaees 84
cuptiDeviceGetNUMEVENTDOMAINS. ..vuiiieiiri i eeeeiieeeereeenneneeeeennneeeeresonnnneess 86
CUPLIDEVICEGE TIME S AMI . ettt iiiiiieeeeeeeeeeeeeeeeeeeseeeeeseeeeseessessesseassssannns 86
cuptiDisableKernelReplayMode.cciiiiiieiiiiiiiiiiiiiieiiiieteereeenereeeeennnneeeeressnnnneess 87
cuptiEnableKernelReplayMode.coiiiiiiiii ittt et i e e ettt eeeeaiaaaaeaanns 87
CUPTIENUMEVENTDOMAINS. . et ittt ietee it reeiiteeeeeenaneeeeseennannesssesnnnneesses 88
CUPLIEVENtDOMaiNENUMEVENES. ..t i i et eiiee e eeeiaaeeeenennaaees 89
CUPtIEVENtDOMaAINGEALLIIDULE. ..t ittt i e e e e e eeenaeeaaneeeanneans 89
CUPtIEVENtDOMainGEtNUMEVENTS. . vvviiiiiiii it eeeiiit et eeeaineeeeeeennnneeeesesnnnaneeens 91
CUPHIEVENTGETALIITDULE. ..ot et e ree e e eens 91
CUPLIEVENtGetIAFrOMNAME. ...ttt et ettt eeeeneeeeeaennnaeessesnnnaneesannnes 92
CUPHLIEVENtGroUPAdAEVENT. ...uuiiiiiiiiiii ittt ettt ee e et eeaeeaes 93
CUPTIEVENEGrOUP I At . ittt it eeeiiite e eeeeniereeeeaennaeeeesesnnnneeessssnnnneesssonnes 94
CUPLIEVENTGrOUPDESTIOY . o ettt ettt ettt ettt et e eeeeaeeeeeeannaneaeeaanns 95
CUPLIEVENtGroUPDISable. . v vttt et e i ettt e eeerneeeeseeannnneessennnnneeenns 96
CUPLIEVENtGrOUPENGDLE. .ot ittt ettt eeeiaeeeeeaneinaaeeeaannns 96
CUPtIEVENtGroupGetALErIDULE. ... e et e 97
CUPLIEVENtGroUpREAdAIEVENTS.veiiiiii i i et ettt eeeiineeeeeeannnaaaeens 98
CUPLIEVENtGrOUPREAAEVENT. ... vttt ittt et ettt ee et e eeiaeeeeneeeaaneeeanneeeanneens 100
CUPLiIEVENtGroupREMOVEALIEVENTS. ... uveeiiiiiiii i it iiii e eeiiieteeeeaenneaeeaaannnes 101
CUPLIEVENtGroUPREMOVEEVENT. ettt ettt eeeianteeseeenneeesseannnnnes 102
CUPLIEVENtGroUPRESELAIIEVENTS. .. uvviiiiiiii it eeeeiieeeereeaneeeeeaesnnneeeesesennnneees 103
CUPHIEVENtGroupSetALEriDULE. ..ottt 103
CUPLIEVENtGroupSetDisable. . .uueiiiiii i i e e et eeeeeeeeeaaennnneesasannnns 104
CUPLIEVENtGroupSetENable.vi i e et e e 105
CUPLIEVENtGroUPSetSCrEate. vttt i it iiii et eiiie et reeraeeeeeaenrnneeessesnnnnnessaennns 106
CUPTIEVENtGrOUPSEtSDEStIOY . .t vttt ittt iiiii ettt eeeiieeeeeeeeanaaeeeeeennsseseeanns 107
CUPLIGETNUMEVENTDOMATNS. ... tttetieeiitetteiiieteeteeennneeeeeeesnnenesssssnnnneessssnnnnnessenns 107
CUptiSetEventCollectioNMOde.coiiiiiii i it et i i ee e it e e eeennaaaeeas 108
CUPTI_EVENT_OVERFLOW. ...ttt ettt ettt ettt s e it et eneesenaaesenas 109
2 T LUl 8 I T oY 109
CUP L _MEIIICValUE. ettt ettt ettt ettt e et eeeaaeeeanaeeaanaeenaneeeennees 109
CUPL _MetriC AL DULE. e i e ettt e e it e eeeiaeeeeeeaennnaaaens 109
@100 T T o o 00 U= {28 109
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | vi

CUpti_MetricEvaluationMOde.viiiiiiiii it et ittt eeeieeeeeaeannaaeeeann 110

CUPti_MetricPropertyDeViCEClass. . .uueeuteretieeittieieeeiteeerteeeneeeeiaeeeaneeeennseesnnaens 110
(O(U]o] 4 0 1{1C] o o (of o o) o 1= Y | D J PP PP PP 111
CUPLI_MetricValueKind.v et et et i e e e et eetaeeeenaeeaaaeeannees 111
CUpti_MetricValueUtilizationLeVel.c.c.uuiiiiiiiiiii it e eeii e eeinneeeeeanns 112
(G180 1T o o Cof | 112
CUPTI DEVICEENUMMETIICS .t ttttiiiiiitttteeeiieeeeeeenneeeeeeeernaseeeesennnsasessesnnnsaeeessnnnnes 112
CUPtiDEVICEGEINUMMELIICS. ottt e 113
CUP T E UMM EEIICS .t ettt teiiii e te ittt eeeeiaeeeeeaannnneeeesennnnneessssnnnnnesessnnnnneeenns 114
CUPTIGEINUMMETIICS. . et ettt ettt ettt ettt ettt e eeaaaeeeseeennanaaeenas 114
CUPLIMEtricCreateEVeNtGrOUPSEtS. ..vi it teiiiieteeeeeiteeeeeenaneeeeeennneeessennnnneeens 115
CUPLIMEtHICENUMEVENES. vttt it i e eeeeaeeaeeeeeeeaeeaessnnnnnnnnnnnnnnnnns 116
CUPTIMEtriCENUMPIOPEItIES. . et ettt et ettt e eeenneeeeeeennnneessessnnnneess 116
CUPTIMEtrICGEtALIIIDULE. ..ottt ettt e e e e e e e eaaaaees 117
CUPtiMetricGetIdFrOmMNAME.t i et e e e et eere e eesaeeeanaeeaanaans 118
CUPTIMEtIICGEINUMEY NS, ¢ttt ittt iiiiii ettt et eeeeineeeeeeenaaeeeeeesnseeeesesnnneneens 119
CUPLIMEtriCGEINUMPIOPEITIES. ... ettt et re e et e eeennnneessanannnneess 119
cuptiMetricGetRequiredEVENtGroUPSEtS. ...uuuuei ittt ieiiii i eeiiie et eeeieeeeeeannnnanes 120
CUPLIMELIICGEEVALUE. .. ettt et et e et e eeeeeanaeeeanaeeaanaaennneens 121
CUPTIMELIICGEIVAlUEZ. ..ttt it ettt e eetinaeeeeeenrnneeessesnnnnnesseannnnes 122
Chapter 3. Data StrUCTUMES. .. vveeeieiiiieiteieeiernneeterersnneseeeesessnseseccssssssscccsessassscccnnns 125
(O o) 4 Yot 1Y | S P 127
13T« P PP P RPN 127
L0 o) Vet 8 1Y 17 o] PO PP 128
Tolo] [« PO PP PP PP 128
(oo 4 (<1 E-Tu (o131 [« OO PP 128
2T 128
4T PN 128
9]0 Tel <13 Ue 1R PP PP 128
FEEUMNVALUE. ...ttt ettt ettt ettt e et e et eeteenteeneeensseassanns 128

] - 1o 128

L] (= T | 128
CUPtI _ACTIVItY AUTOBOOSE S ate. vttt tiiii i e et e e it eeerneeeeseennneneeesannnnes 129
£ T 1] (T 1R PP 129
9] 1« 1R PP 129
(¥]o] 4 Yot 0141 07/ 2] =12 Lol s O P PPN 129
(o g1 =1 - 11 o o] I 1N 129

Lo 1171 ¢~ =T PO P PP TP 129
L) o1 (=« O PP 129
31T 1O PPN 129
[91e(0 1 11 PP PP 130

£ 10T ol = o= o] o I N 130
thrEadSEXECULEA. .. ue ittt ittt et ettt eeneeeeaeeeaneesanneeeanaeeenneesanns 130

www.nvidia.com

CUPTI DA-05679-001 _v6.5 | vii

(O(U]o] 4 Yot 014107 2] =13 Lol o V2 PP 130

(oo 4 (<1 E-Ta (o131 [« RO PP 130
Lo 111 ¢~ LT P P PP TP 130
L) oL =« PP 130
L8 LTt T] e O 130
4T N 130
9= Lo 1S P PPN 130
91000 55T v 131
o]0 fel=] Moo=\ o] o [« FAN N 131
LR] =T T S T ol UL =T O P 131
(O(W]o] 4 Yot 0 V41 0 Y{ 00 [o] (] o 1 1= F PPN 131
5] Vol 0. R PP PP P 131
0] (ool £ (PN PP 131
(0] VoY ol 728 PP PPN 131
fo(o]01] 0] (=1 ¥=Te F PP 131
Lo 1= 4 o N 131
(oo 4 (<=1 (o]0 [« RO PP 131
L6 1= ol I e 132
dynamiCShar@dMEMOIY....cuuiiii ittt ettt e e ettt teaeraeesaneeneeenaenns 132
2T PP 132
1) (L1 | =T 1R 132
T | P 132
<] e) OO PP 132
o] 1 e I O 132
<] e A P PP PP PP PP 132
4T PPN 132
CoT et V1=l 00Te] oY =Tl I | (=T Ve P PP PP 132
CoTat= 111100 o] VA o) - | FO O PP 133
= 031 133
1= 811 2] (ool o G PP 133
1=l 1421 (ool QPP 133
PArENEBLOCKZ. .. ettt ettt ettt ettt ettt eeeeeeaaeeranaeeaaneeeanneesanneesnneens 133
92 1t=] 1 4 €] [« |« PPN 133
QUEUER. ..t eteteteteeeeeetenaeeeeneesenneeeenaeeeaneesenneesoneesennnssennesssnessssnessonnesssnnsssnness 133
(T I] € T ol I] = T PO PN 133
=T o (811 =T P PP PPN 133
SHArEdMeEmMOrYCONTIg. v ettt iiiiii ettt eeeeeernaeeeeeeannaneeessennnneessessnnnnesssennns 133
1] - |t PP PP 134
SEALICSNArEAMEMIONY . . ettt e e e e et ettt eeeeeeenaeeaaeeeanneeeannaeaannenns 134
£ <= 0] 134
£0 0] 111 =T« [N 134
(U] o] 4 Yot 0 V41 07000] 4| £ ¢ SO PP PP 134
COMPUEEAPTKING. ...ttt e it et et e e eeaeeaens 134
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | viii

o SV el e R PN 134
31T« T PP PPN 134
AT U == 1 1] o O 135
(8]0 4 Yot 0 V41 07 D=3 (ol T PP PPt 135
COMPULECAPADTlItYMa O . ettt i e e e e et eeeeeeenneeeaneeeaanaaanns 135
COMPULECAPADT Y MINOT . . ettt ittt e ee ittt eeeeiaeeeeeeernneeeesesnnnseeeesennnneneens 135
CONSTANEMEIMOINYSIZE. . it e e e naae e 135
Lo(o] £ =] O (ool 4 - | o < 135
L5 P PP 135
globalMemoryBandWidth.oii i it e i e et e e e r e e e e nraaaeeas 135
GlODAlM IO Y S IZE. o ettt ettt ettt ittt et e tae e et eeeaiaaaeeeaaatraaeeeeaaaaaaeeas 135
o PP 136
12T« P PP PPN 136
08 T 1=} (= P 136
MAXBLOCKDIMX. . . .ttt ttei ittt ettt ettt e e e eenteeeaeeeenaesaaneesannneeannessannesennnns 136
MAXBLOCKDIMY ...ttt e ettt ettt e et eereeeneeeeeeneeenaaans 136
MAXBLOCKDIMZ. .. .ttt ettt ettt e et e e e e seeneesanaeeeenaeseannesannnasannens 136
MaXBLlOCKSPEIrMULLIPIOCESSOr ettt ittt et reaeraneeneeanees 136
LA T= €T a1 S 136
0T D] e | 1 o PPN 136
(10T D €T e] 1 VA 136
10T Dd 1 PP PPPPPP 136
MAXREGISTEISPEIBlOCK. . ettt ittt e e eerreeeeeenrnaeeeesannnnnnesssannnnes 137
MaxSharedMemoryPerBlOCK.uueeiiiiiii it it et et et eeeenaaaeeans 137
MaXThreadsPerBLlOCK.viuiiiiii et e e e eeeeaeens 137
MAXWaAr PSP eI MU PIOCESSOT . .ttt tii ittt tiiiiiteeteiiiieteeteeeieeeeeeeeasasessesennaseseesnnnnes 137
T2 00T 137
21801t 0 g 0) Y g T [1 PP PP 137
NUMMUL T PIOCESS OIS, v vt ttteeentteetteeeeeeeaneeeennteeenaeeesnseeenneeeenseeesnsesennseesnsesesnseens 137
NUM TREEAAS PEI WA D. .. v et itiiiiii ittt ettt teeeiraeeeeeeeannaeeeeessnnnseseessnnnnneseennn 137
CUPLi_ActivityDeViCeAttribDULE. .. .cuiiiii i e 137
Lt 0T = 138
Lo 1374 (=] 1R PP P 138
L1651 PP 138
13T« P T PP PP PPN 138
1772 LT P 138
CUPL _ACTIVIEYENVIFONMENE. . ettt ettt et et eeeeiiaeeeeeeanaeaeeeenannnees 138
ClOCKSTRIOtELEREASONS. .. vvete ettt et ettt et e et eeteeneeeneeaneanaennnanns 139
fto To1 1 1< S PP PP 139
L4 Y ol ' 1R PN 139
ENVIFONMENTKING. ..ttt ettt r e e e et e eeeereaneesanaeaaannesaannasannnns 139
LI L] 51« 1S P 139
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | ix

12T P PP PP 139
MEMOIYCLOCK. 1 ettt ettt ettt et e iieeeeeeaeansaeeeeeeannaeessesennnssaseennn 139
[o1a =T 1] (=] P PPN 139
o Te =] I 1A e | PP 139
POW T < ettt ettt eeeeenaeeeseannaneesesannnneesssasnnnsessssssnnsessssssnnesssssssnnsessssssnnnasssnns 140
DOW BT 1 ettt tteaeeeeeeennaeeeeesnnaseseesonnnsesesssnnsnseseessnnnsesssssnsnsesesssnnnsesesssnnnnsaseenens 140
910107 10 4o 140
1] 1110 o ol - PP 140
£ 0=« O PPN 140
L2000 1] = L = PPN 140
10150 1=5] =101 o TP PP 140
L0180 I Yot 0 V41 07 2= 1 | 140
foto) g ¢ t= 1 o] 11 I« F PP PP 141
o (o] 1.4 T=1 [O PP PP 141
1o P 141
13T« P P PP PP 141
1= L8 [PP PP 141
CUPLI _ACHIVItYEVENtINSTANCE. .ottt ettt ettt eeeeeeeeeeeannaeaasanns 141
foto] 4 =] b= o] 11 [« FOP P PP 141
T [0 32T 11 o 1S PP 141
1 e PO PP 142
1111 - 1 [l PP 142
13T P PP 142
9= Lo 1R P PP PPN 142
177 1 L0 LT P OO 142
(W] o] 4 Yot 0 1Y 1 07/ 0 [a Vot {o] DO PP PP 142
To(o] 21 =>4 o [« PO PPN 142
L8 [aTeta o] 3] (3o [G P PP 142
1« PO PP PP 142
41T PP 142
1970 o 111 1= e S 143
=10 0 = PP PP 143
CUPLI_ACHVItYGLODALACCESS. . . vttt ettt e ee et eeeeeeenaeeeeneeenanneeanneesennens 143
foto] =] b= o] 11 [« FOP P 143
1o (o1] =T R P PP 143
L6 T P 143
13T PR 143
A - 19 1Y Vet o] o [PP 143
[91e] i 7= P PP 143
e N[el=] Mo Tot-1 o] o [« PP 143
L] =T T S T ol UL =T« F PP 144
CUPLI_ACHIVItYGLODALACCESSZ. . vttt ieeitteit e e et ettt eeiteeeeeeaaneeeanneeeaneesenneeenn 144
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | x

13 Lol U 1 =T« R PP 144
L 6= T PP PP 144
L8 La Tt T]] [« F PP 144
ST PP 144
WA - 1 1Y Vet 4 o] o S PP 144
9= Lo 1S P PPN 144
91000 55T v 144
1o]8] o(=] e Tat- | o] [« R PP 145
theoreticall2TranSaCtioNs. ... it ettt ittt ettt e eeieee et eeeaaeeeeeenannaaas 145
threadsEXECULEd.viiiiiii i et e ettt eeeeianeeeeeeesnneeessessnnnnesssennnnes 145
CUpti_ActivitylInstructionEXeCULION. ...uiiiiiiii i i i e e i e e e ieaeees 145
foto] =] b= {0 31 e FOP PP 145
12 oLl =T P PP 145
LT £ PP PP 145
L83 Tet o] 31 e P P PP PP 146
13T« P P PP PP 146
NOtPredOffThreadsEXECULEAd. ...viiiiii i i et e eeeiieeeeeeeenineeeeaaannnns 146
92T 1 146
9T e{ @ 7= P 146
YW o(=] o Te- 1 o] f [« 1R 146
LR =T T L =T ol UL '« PP 146
CUPL_ACHVITYKEINEL. . . ettt et ettt e ettt ee et eeraeeeenaeeeaneesennneeanneseannennn 146
2] (ool o PP 147
5] Vool R P PP PP 147
5] (o ol 1972 PPN 147
fot=Tel g (=1 00101 A] o Lol T | =L« PP PSPPSR 147
CaCheCONfiGREQUESTEA. .. i ettt i et et e et ee it eeiaeeaeeeeanneeeanaeeeanaeennnes 147
(o)] €= [« PO PP PPN 147
(o] (=1 F- L o] 3] [« FOR P PP 147
(o 1374 ot~ [« 1R PP 147
dynamiCShar@dMEMOIY.....uuiiiiiiii ittt ettt ettt ettt teaetaeesnaeeneeanaenns 147
=13 e S P PP 147
<] e) PO 148
1 148
=1 o 7228 148
13T P PP PP 148
CoT et V1=l 00T] oY =T I | (=T Ve P PP PP 148
CoTet= 11 1T0 3 o] VA o) - | FO PP 148
LAITI . et ttteeeeeeanaeeeeeeennaaeeeeennneeseeesnnsseesesennssesesessnnsseesssesnnsessseesnnneneseesannnes 148
9= o P PPN 148
ET] o T o I] (=T T P PPN 148
LETY =T Y= [0 148
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xi

] - o 149
Y - La (o) T =Ta Tl 1 1 To) o P PP 149
£ 1 1= 12 0] [« 1S 149
G804 Yot 6 V41 07 (Gl 1= P PP 149
0] (ool 10, P 149
0] U o1 2 149
(0] Vo ol 078 S 149
fote) 1] 1= {=e FAR PP 149
(o)] =)' [« PO PPN 150
(o g1 =1 - 11 o o] I 1N 150
Lo 1374 (=] [« 1R PP PP 150
AYNamMiCSNarEdMEMOIY . ..ttt ittt ettt e reeraneeeeeesanaenesssesnnnneessessnnnnesss 150
113 L« DO PP PP PP 150
L) o1 (=« I PP 150
<] [| T PP 150
] T) PN 150
=] [« P PP 150
o] o 72 PP 150
41T PN 151
CoT et 111 =TaaTeT oY =T o I 1 (=T Ve PO PP 151
Ut 1111 1= 33T] VA [] - 1 S PP 151
LAY et eaaaaaeeaseeaaaeeanaeaseasesssseseeeseeseeseeceeeeeeasesannnnnnnnnnnnnnnnnnnnnnes 151
(T] g T ol I] =T T PN 151
=T o (8121 (=T PO PP PPN 151
ST =T [0 PN 151
SHArEAMEMONY CONTIg. .ttt ittt ittt ettt et teiieeeeeeeanaeeeeeennnaeeessesnnneseseennnns 151
] - o 151
3 - La (o) s F- Ta=Ta 10T 1 1 To) Y PP 151
£ 11T 12 0] [« 1S 152
G804 I Yot 0 VA1 0/ T =] P 152
LT £ P PP 152
o PPN 152
12T« P PP P PPN 152
= 03T 152
Fo] o3 =Tt [o 1R0S PP 152
Lo o35 =T ot f 1412 Ve PP P 152
10130 1=5] =101 o T PP 153
CUPLI_ACHIVItYMArkerData. .. oot iiet i e e e ettt e et eeaeeeaneeeanneeaanaeeanns 153
Tot- 1 (=1 (o) oY 2 PPN 153
o] Lo) 153
L= T P PP 153
1« P PO PP 153
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xii

9121/ (o T- Us 1SN PP 153
[T 1Y (o= Ta |14 14T PO P PP PP 153
(018 o 4 Yot V41 0771 T= 01 Tl o) V2SO PP 154
01 =T P PP PPN 154
To(o] 31 (=>4 o [« PO PP PPN 154
(o])Y/ 141 Lo 1R PP 154
Foto] =] t= 1 o] o1 e PO 154
Lo 1374 ot o 1R PP P 154
T 1 W14 T PP 154
=13 e O PP 155
L1651 P PP 155
12T P PP PP 155
EETY =] =T [P P PPN 155
rUNEIMECOITElation]d.cooui i e e et ettt et eeeeeeanneeeanaeeannes 155
1 (el 1 [T« PO P PP PPt 155
L] - o 155
L3 == 11] (o 1R P PP PP 155
CUPL _ACTIVIEYMEMCPY 2. .« e etteieiiii ettt eee et eeeeeaaeeeseaenaneesssennnneesssesnnnneesss 156
01 =2 PPN 156
(o) 1] €= [« P PPN 156
(o])Y/ 11 2 Ue 1S 156
foto) 4 =] t=1 o] 31 e FOR PP 156
(o 1= o= o 1R PP 156
Ta 3 (00T 11 (=) 4 [« 1R P PPN 156
L 002V Tl =] o 1R PP PP 156
Ta 13 114 T« T PP PP 156
=121 PO PP PP PPPP 157
L= T PP 157
11T« P PP PP PP 157
9= Lo 1S PPN 157
LTY =T Y= [P 157
£ el @031 =>4 [« 1 PPN 157
1 (el 153V [l =] [« PO PPN 157
1] ef 11T PPt 157
1] - Lt PP 158
L == 10] o 1S PP 158
G100 4 Yot 0 VA1 0771 1= 11 < PP 158
0] A= PP 158
(o) 1] €= (4 [« PO PP PPN 158
(o] (=1 - L o] 3] [« FO O PP PP 158
(o 13V (ot~ [« 1R PP PP 158
T3 T S 158
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xiii

ST] V=T a [0 PPN 159
FUNEIMECOITElatioNId. .o i it it e et eeeiiaaeeeeaaannaaas 159
1] 7 Lt o O 159
L3 =T 11] (o 1R P PP PP 159
177 1L LT PP PP 159
G180 4 - Yot 6141 07/ 1 1= o o Lo PP 159
Foto] =] t= 1 o] o1 e PO 159
L= PP 159
1 160
41T P PP PP 160
9= Lo 1S P PPN 160
1772 1L = P PP 160
CUPL _ACTIVIEYMEtIICINSTANCE. . ettt et et e it e e eiaee et eaeeiaeeeeeeennnaneenns 160
(o] (=] - L o131 I« FO P PP 160
L= T PP 160
1« P PP PP 161
1111] =13 Lol T PPN 161
13T« PO P PP PP PP 161
9= Lo 1S PPN 161
12 LU 1 PPN 161
CUPLI_ACTIVIEYMOAULE. . . e et eeiii et e it e e ieeeeeeeeanaaeeeeaennnneeessesnnnnnessaonnns 161
(o)] €= [« PO PPN 161
(oL] 1 PP 161
To(8 011 1] =T PP 161
1 PO PP 161
ST P 162
0= o P PPN 162
L8]0 4 Yot 6 1V 1 07/ 1 F= T 1 < PPN 162
11T« P PP PP PP 162
1= 10 0 L= PP PP 162
o] o) = ot o [« 1R P 162
o o3 =T ot f 1412 Ve PP PP 162
CUpti_ActivityObjectKindld.c.veiiniiiii i et e eereeeeeeeenneeeanneaaanaeans 162
[t P 163
9 P PP 163
CUPLI_ACHIVItYOVErhEad. ... ettt e ettt eenneeeseeennneeesesnnnnnes 163
111 L« DO PP PP 163
12T P P PP PP 163
(o]0 = ot d [« [P PP PP 163
o] o) [=Tet 1 1413 e F PP 163
OVEINEAAKING. ...ttt ettt ettt ittt eeeineeeeeeeanaeeeeeesnnnneeeessnnnnssssessnnnees 164
13 1= PP 164
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xiv

(U]o] 4 Yot 6 VA1 0¥ (=TT 1 0] 0] 6 [0) o P PP PPN 164

2] (ool 1o O PP 164
5] VoYl A PP PP PP 164
5] (o ol 1074 PPN 164
=] T | T R PP PP 164
11T« P PP PP PP 164
9= Lo 1S P PPN 164
PreemptionKind.......o.viiiiiiiii e ee s 165
L]0 0151 =11 1] o JSP PP 165
CUP L _ACHIVItYSNAr@AACCESS. . ettt teinteeetteeet ettt eetteeeneereaneeeanaeeaaneesennnesoneesenneeens 165
foto] =] b= o] 11 [« FOP P 165
1o (oL 1] =T P PP 165
L1651 P 165
L1813 et o] 31 e P P PP PP 165
13T P P PP PP 165
9= Lo 1S P PP PPN 165
[91e(0 11 PP PP 166
SHArEATrANSACTIONS. .. ttttttiiiii it teiiit et teiiieeeeteeenneeeeeeesnseseesessnnseeesessnnnesessanns 166
1Y 18] (=] I et e] [« 1R 166
theoreticalSharedTranSaCtioNS. . cc..ueeiiiriiii i eiiiieeeriieeeeeeearnaeeeeeessnneeeeresnnnnnes 166
LR] =T Vo N T ol U =T P 166
(U] o] 4 I Yot 0 %1 YA o 1H] of=] o o= | o) S PP 166
11 EE N 1 1T T PP 166
1 e PO PP 166
13T PP 166
a1 N[00 o] =] PP 167
CUpti_ActivityUnifiedMemoryCOUN el . ..ot iiiiii it eiiiie et eeiiieteeeeeeiiaeeeeeeennnaaeeens 167
(o010 =] 13T O PO PP 167
(o 1374 (ot~ [« 1R P PP PP 167
11T« P PP PP PP 167
9= Lo 1S PPN 167
9] 0oL 13 [« 1R 167
£ o] o1 P 168
L] 01251 = 10] o O 168
1772 1L = TP 168
CUpti_ActivityUnifiedMemoryCounterConfig.....civiiiieiiiiiiiiiiiiiiiiiiiie it eeeeinaaaeens 168
(a3 o= o R P 168
(=1 pT: 1] (T PP PP 168
12T P P PP PP 168
LYol] o 1T P PP PP 169
CUP LI _CallbaCKData. . e e euueeeeenteeeiteeeitteeeteeeieteeeieeeeaneeeenneeeeneeeeeneeesneeesnneessneeeennes 169
fot= 11 - el 6] 1 (P PP PP 169
(a0} 21 = q S N 169
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xv

Lole] 1= < 1 U [« PR 169

folo (=1 - La o101 D | - VO PP 169
foto) g ¢ t=1 o] 11 I« P PP PP 169
FUNCHIONNAIMIE. Lot i et et ettt e et e eeeeeasaeerennaeeanaeeannaeeanns 170
FUNCE 0N P AMS. ettt e ittt ettt teeeieeeeeeeannaeeeeeesnnnasessesannnsessssnnnnes 170
fUNCHIONRETUINVAIUE. ...t e e e e e e reeeeee e eeeneeeenaaeaanaaaanns 170
SYMIDOINAMIE. L.ttt ittt ettt ittt e et ettt eeeanaeeeeeesnnnneseessnnnneseessnnnnsaseennn 170
CUPLI_EVENEGIOUPSEL. ..ttt ettt et et seaeeanas 170
V=11] o 18 o3-S PP 170
NUMEVENTGIOUPS. « ettt ettt ettt ettt ettt eeeeaaeeeseeenneeeseeaanneessessanneassenns 170
(@18 o I =] 01 (€] o100 1]] - 171
4180 0 1= S PP PPN 171
£ - PPt 171
CUPL _MErICValUE. e i et ettt et ettt e et eeeaaaaeeeaennnaaaeeennns 171
CUPti_MOdULERESOUICEDALA. . . vt ettt ittt e et it eeneeeaeeeeanaeeeanaeeanneeeennees 171
To(8 011 1 1] =T PP 171
(1070 Ta 18] 1= Uo PO PP PP 171
91 OLE o) {3 FOP PPt 172
L0100 0 L2 07 D L - U P 172
L8 a et o] 31\ F= 10 1 U= PP 172
L8 a ot o) a1 =T .41 PP 172
G180 4 =T o1 ol <] D - L - PO PPN 172
L] 1 1=) 7 TP PP PPPPP 172
(FI 010 al=] D=2 ol 0] o] N P 173
L3 =T 1 1S PP 173
CUP LI _SYNCNIONIZEDAtA. . et tttiiett it eei e e ettt e it ee et e eeeateeetaeeeaneeeanneeeanneeesneeenn 173
[o(0)] €)W PP 173
Lo = o 1S N 173
Chapter 4. Data Fields...cceeeeiieiiineeiieierenneeeeeeeenneeeceeesnnescecesennssecesssnnnsssecessnnsssccns 174
www.nvidia.com

CUPTI DA-05679-001 _v6.5 | xvi

LIST OF TABLES

Table 1 Capability 1.X METIICS vueeirriitttiiiiiit et teeiieteeeeearneeeeesessnneeessessnnnnesesesnnnneeeens 12
Table 2 Capability 2.X METIICS vueeieiiittttiiiiiiteeteiiieteeeeeaineeeeeeesanneseeeessnnseeseesennsneseens 12
Table 3 Capability 3.X METIICS «ueeiiiiitt ittt ittt eeeeiieeeeeeeeaaeeeeeeeannssesessennseeseenn 20

Table 4 Capability 5.x Metrics

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | xvii

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | xviii

Chapter 1.
USAGE

The CUDA Profiling Tools Interface (CUPTI) enables the creation of profiling and tracing
tools that target CUDA applications. CUPTI provides four APIs: the Activity API, the
Callback API, the Event API, and the Metric API. Using these APIs, you can develop
profiling tools that give insight into the CPU and GPU behavior of CUDA applications.
CUPTTI is delivered as a dynamic library on all platforms supported by CUDA.

1.1. CUPTI Compatibility and Requirements

New versions of the CUDA driver are backwards compatible with older versions

of CUPTI. For example, a developer using a profiling tool based on CUPTI 4.1 can
update to a more recently released CUDA driver. However, new versions of CUPTI

are not backwards compatible with older versions of the CUDA driver. For example, a
developer using a profiling tool based on CUPTI 4.1 must have a version of the CUDA
driver released with CUDA Toolkit 4.1 (or later) installed as well. CUPTI calls will fail
with CUPTI ERROR NOT INITIALIZED if the CUDA driver version is not compatible
with the CUPTI version.

1.2. CUPTI Initialization

CUPTI initialization occurs lazily the first time you invoke any CUPTI function. For
the Activity, Event, Metric, and Callback APIs there are no requirements on when this
initialization must occur (i.e. you can invoke the first CUPTI function at any point).
See the CUPTI Activity API section for more information on CUPTI initialization
requirements for the activity APL

1.3. CUPTI Activity API

The CUPTI Activity API allows you to asynchronously collect a trace of an application's
CPU and GPU CUDA activity. The following terminology is used by the activity APL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 1

Usage

Activity Record
CPU and GPU activity is reported in C data structures called activity records. There
is a different C structure type for each activity kind (e.g. CUpti ActivityMemcpy).
Records are generically referred to using the CUpti Activity type. This type
contains only a kind field that indicates the kind of the activity record. Using
this kind, the object can be cast from the generic CUpti Activity type to the
specific type representing the activity. See the printActivity function in the
activity_trace_async sample for an example.

Activity Buffer
An activity buffer is used to transfer one or more activity records from CUPTI to the
client. CUPTI fills activity buffers with activity records as the corresponding activities
occur on the CPU and GPU. The CUPTI client is responsible for providing empty
activity buffers as necessary to ensure that no records are dropped.

An asynchronous buffering API is implemented by
cuptiActivityRegisterCallbacks and cuptiActivityFlushAll.

It is not required that the activity API be initalized before CUDA, but if the activity

APl is not initialized before CUDA some activity records may not be collected. You

can force initialization of the activity API by enabling one or more activity kinds using
cuptiActivityEnable or cuptiActivityEnableContext, as shown in the
initTrace function of the activity_trace_async sample. Some activity kinds cannot be
directly enabled, see the API documentation for for CUpti ActivityKind for details.
Functions cuptiActivityEnable and cuptiActivityEnableContext will return
CUPTI ERROR NOT COMPATIBLE if the requested activity kind cannot be enabled.

The activity buffer API uses callbacks to request and return buffers of activity records.
To use the asynchronous buffering API you must first register two callbacks using
cuptiActivityRegisterCallbacks. One of these callbacks will be invoked
whenever CUPTI needs an empty activity buffer. The other callback is used to deliver
a buffer containing one or more activity records to the client. To minimize profiling
overhead the client should return as quickly as possible from these callbacks. Function
cuptiActivityFlushAll can be used to force CUPTI to deliver any activity buffers
that contain completed activity records. Functions cuptiActivityGetAttribute
and cuptiActivitySetAttribute can be used to read and write attributes

that control how the buffering API behaves. See the API documentation for more
information.

The activity_trace_async sample shows how to use the activity buffer API to collect a
trace of CPU and GPU activity for a simple application.

1.3.1. Context Activity Record

In 6.0 the context activity record, CUpti ActivityContext, was changed in a manner
that introduced a new field into the structure. This new field was introduced in a way
that preserves backward compatibility with any persisted versions of this structure.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 2

Usage

The 32-bit computeApiKind field was replaced with two 16 bit fields,
computeApiKind and defaultStreamId. Because all valid computeApiKind
values fit within 16 bits, and because all supported CUDA platforms are little-endian,
persisted context record data read with the new structure will have the correct value
for computeApiKind and have a value of zero for defaultStreamId. The CUPTI
client is responsible for versioning the persisted context data to recognize when the
defaultStreamId field is valid.

1.3.2. Legacy Activity Records

In CUPTI 5.5 the CUpti ActivityKernel?2 structure

replaced CUpti ActivityKernel as the activity record

used for the CUPTI_ACTIVITY_KIND_KERNEL and
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL activity kinds. The

CUpti ActivityKernel definition is retained in CUPTI to enable newer versions of
CUPTI to work with presisted activity record data.

The CUPTI client is responsible for versioning the persisted activity record data to
recognize when the persisted data is stored using CUpti ActivityKernel or
CUpti ActivityKernel?Z.

1.4. CUPTI Callback API

The CUPTI Callback API allows you to register a callback into your own code. Your
callback will be invoked when the application being profiled calls a CUDA runtime
or driver function, or when certain events occur in the CUDA driver. The following
terminology is used by the callback API.

Callback Domain
Callbacks are grouped into domains to make it easier to associate your callback
functions with groups of related CUDA functions or events. There are currently
four callback domains, as defined by CUpti CallbackDomain: a domain for
CUDA runtime functions, a domain for CUDA driver functions, a domain for CUDA
resource tracking, and a domain for CUDA synchronization notification.

Callback ID
Each callback is given a unique ID within the corresponding callback domain
so that you can identify it within your callback function. The CUDA driver API
IDs are defined in cupti driver cbid.h and the CUDA runtime APIIDs are
defined in cupti runtime cbid.h. Both of these headers are included for you
when you include cupti . h. The CUDA resource callback IDs are defined by
CUpti CallbackIdResource and the CUDA synchronization callback IDs are
defined by CUpti CallbackIdSync.

Callback Function
Your callback function must be of type CUpti CallbackFunc. This function type
has two arguments that specify the callback domain and ID so that you know why

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 3

Usage

the callback is occurring. The type also has a cbdata argument that is used to pass
data specific to the callback.

Subscriber
A subscriber is used to associate each of your callback functions with one or
more CUDA API functions. There can be at most one subscriber initialized with
cuptiSubscribe () at any time. Before initializing a new subscriber, the existing
subscriber must be finalized with cuptiUnsubscribe ().

Each callback domain is described in detail below. Unless explicitly stated, it is not
supported to call any CUDA runtime or driver API from within a callback function.
Doing so may cause the application to hang.

1.4.1. Driver and Runtime API Callbacks

Using the callback API with the CUPTI CB DOMAIN DRIVER API or

CUPTI CB DOMAIN RUNTIME API domains, you can associate a callback function
with one or more CUDA API functions. When those CUDA functions are invoked in the
application, your callback function is invoked as well. For these domains, the cbdata
argument to your callback function will be of the type CUpti CallbackData.

It is legal to call cudaThreadSynchronize (), cudaDeviceSynchronize (),
cudaStreamSynchronize (), cuCtxSynchronize (), and
cuStreamSynchronize () from within a driver or runtime API callback function.

The following code shows a typical sequence used to associate a callback function with
one or more CUDA API functions. To simplify the presentation error checking code has
been removed.

CUpti SubscriberHandle subscriber;

MyDataStruct *my data = ...;

él.l};tiSubscribe (&subscriber,
(CUpti CallbackFunc)my callback , my data);
cuptiEnableDomain (1, subscriber,
CUPTI_CB_DOMAIN RUNTIME API);

First, cuptiSubscribe is used to initialize a subscriber with the my callback
callback function. Next, cuptiEnableDomain is used to associate that callback with all
the CUDA runtime API functions. Using this code sequence will cause my callback to
be called twice each time any of the CUDA runtime API functions are invoked, once on
entry to the CUDA function and once just before exit from the CUDA function. CUPTI
callback API functions cuptiEnableCallback and cuptiEnableAllDomains can
also be used to associate CUDA API functions with a callback (see reference below for
more information).

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 4

Usage

The following code shows a typical callback function.

void CUPTIAPI
my callback(void *userdata, CUpti CallbackDomain domain,
CUpti CallbackId cbid, const void *cbdata)

{
const CUpti CallbackData *cbInfo = (CUpti CallbackData *)cbdata;
MyDataStruct *my data = (MyDataStruct *)userdata;

if ((domain == CUPTI CB DOMAIN RUNTIME API) &&
(cbid == CUPTI RUNTIME TRACE CBID cudaMemcpy v3020)) {
if (cbInfo->callbackSite == CUPTI API ENTER) {
cudaMemcpy v3020 params *funcParams =
(cudaMemcpy v3020 params *) (cbInfo->
functionParams) ;

size_t count = funcParams->count;
enum cudaMemcpyKind kind = funcParams->kind;

In your callback function, you use the CUpti CallbackDomain and

CUpti CallbackID parameters to determine which CUDA API function invocation
is causing this callback. In the example above, we are checking for the CUDA runtime
cudaMemcpy function. The cbdata parameter holds a structure of useful information
that can be used within the callback. In this case we use the callbackSite member

of the structure to detect that the callback is occurring on entry to cudaMemcpy, and

we use the functionParams member to access the parameters that were passed to
cudaMemcpy. To access the parameters we first cast functionParams to a structure
type corresponding to the cudaMemcpy function. These parameter structures are
contained in generated cuda runtime api meta.h, generated cuda meta.h,
and a number of other files. When possible these files are included for you by cupti.h.

The callback_event and callback_timestamp samples described on the samples page
both show how to use the callback API for the driver and runtime API domains.

1.4.2. Resource Callbacks

Using the callback API with the CUPTI CB DOMAIN RESOURCE domain, you can
associate a callback function with some CUDA resource creation and destruction
events. For example, when a CUDA context is created, your callback function will be
invoked with a callback ID equal to CUPTI_CBID RESOURCE CONTEXT CREATED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti ResourceData.

Note that, APIs cuptiActivityFlush and cuptiActivityFlushAll will resultin
deadlock when called from stream destroy starting callback identified using callback ID
CUPTI_CBID RESOURCE STREAM DESTROY STARTING

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 5

Usage

1.4.3. Synchronization Callbacks

Using the callback API with the CUPTI CB DOMAIN SYNCHRONIZE domain, you can
associate a callback function with CUDA context and stream synchronizations. For
example, when a CUDA context is synchronized, your callback function will be invoked
with a callback ID equal to CUPTI CBID SYNCHRONIZE CONTEXT SYNCHRONIZED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti SynchronizeData.

1.4.4. NVIDIA Tools Extension Callbacks

Using the callback API with the CUPTI CB DOMAIN NVTX domain, you can associate
a callback function with NVIDIA Tools Extension (NVTX) API functions. When an
NVTX function is invoked in the application, your callback function is invoked as well.
For these domains, the cbdata argument to your callback function will be of the type
CUpti NvtxData.

The NVTX library has its own convention for discovering the profiling library that will
provide the implementation of the NVTX callbacks. To receive callbacks you must set the
NVTX environment variables appropriately so that when the application calls an NVTX
function, your profiling library recieve the callbacks. The following code sequence
shows a typical initialization sequence to enable NVTX callbacks and activity records.

/* Set env so CUPTI-based profiling library loads on first nvtx call. */

char *inj32 path = "/path/to/32-bit/version/of/cupti/based/profiling/library";
char *inj64 path = "/path/to/64-bit/version/of/cupti/based/profiling/library";
setenv ("NVTX INJECTION32 PATH", inj32 path, 1);

setenv ("NVTX INJECTION64 PATH", inj64 path, 1);

The following code shows a typical sequence used to associate a callback function with
one or more NVTX functions. To simplify the presentation error checking code has been
removed.

CUpti SubscriberHandle subscriber;

MyDataStruct *my data = ...;

éliq:)tiSubscribe (&subscriber,

(CUpti CallbackFunc)my callback , my data);
cuptiEnableDomain (1, subscriber,

CUPTI_CB_DOMAIN NVTX) ;

First, cuptiSubscribe is used to initialize a subscriber with the my callback
callback function. Next, cuptiEnableDomain is used to associate that callback with
all the NVTX functions. Using this code sequence will cause my callback to be called
once each time any of the NVTX functions are invoked. CUPTI callback API functions
cuptiEnableCallback and cuptiEnableAllDomains can also be used to associate
NVTX API functions with a callback (see reference below for more information).

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 6

Usage

The following code shows a typical callback function.

void CUPTIAPI
my callback(void *userdata, CUpti CallbackDomain domain,
CUpti CallbackId cbid, const void *cbdata)

{
const CUpti NvtxData *nvtxInfo = (CUpti NvtxData *)cbdata;
MyDataStruct *my data = (MyDataStruct *)userdata;

if ((domain == CUPTI CB DOMAIN NVTX) &&
(cbid == NVTX CBID CORE NameOsThreadA)) {
nvtxNameOsThreadA params *params = (nvtxNameOsThreadA params *)nvtxInfo->
functionParams;

In your callback function, you use the CUpti CallbackDomain and

CUpti_ CallbackID parameters to determine which NVTX API function

invocation is causing this callback. In the example above, we are checking for

the nvtxNameOsThreadA function. The cbdata parameter holds a structure

of useful information that can be used within the callback. In this case, we use

the functionParams member to access the parameters that were passed to
nvtxNameOsThreadA. To access the parameters we first cast functionParams to a
structure type corresponding to the nvtxNameOsThreadA function. These parameter
structures are contained in generated nvtx meta.h.

1.5. CUPTI Event API

The CUPTI Event API allows you to query, configure, start, stop, and read the event
counters on a CUDA-enabled device. The following terminology is used by the event
APL

Event
An event is a countable activity, action, or occurrence on a device.

Event ID
Each event is assigned a unique identifier. A named event will represent the same
activity, action, or occurrence on all device types. But the named event may have
different IDs on different device families. Use cuptiEventGetIdFromName to get
the ID for a named event on a particular device.

Event Category
Each event is placed in one of the categories defined by CUpti EventCategory.
The category indicates the general type of activity, action, or occurrence measured by
the event.

Event Domain
A device exposes one or more event domains. Each event domain represents a group
of related events available on that device. A device may have multiple instances of a
domain, indicating that the device can simultaneously record multiple instances of
each event within that domain.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 7

Usage

Event Group
An event group is a collection of events that are managed together. The number and
type of events that can be added to an event group are subject to device-specific
limits. At any given time, a device may be configured to count events from a limited
number of event groups. All events in an event group must belong to the same event
domain.

Event Group Set
An event group set is a collection of event groups that can be enabled at the same
time. Event group sets are created by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets.

You can determine the events available on a device using the
cuptiDeviceEnumEventDomains and cuptiEventDomainEnumEvents functions.
The cupti_query sample described on the samples page shows how to use these
functions. You can also enumerate all the CUPTI events available on any device using
the cuptiEnumEventDomains function.

Configuring and reading event counts requires the following steps. First, select
your event collection mode. If you want to count events that occur during the
execution of a kernel, use cuptiSetEventCollectionMode to set mode

CUPTI EVENT COLLECTION MODE KERNEL. If you want to continuously sample
the event counts, use mode CUPTI_EVENT COLLECTION MODE CONTINUOUS.
Next determine the names of the events that you want to count, and then

use the cuptiEventGroupCreate, cuptiEventGetIdFromName, and
cuptiEventGroupAddEvent functions to create and initialize an event group
with those events. If you are unable to add all the events to a single event group
then you will need to create multiple event groups. Alternatively, you can use the
cuptiEventGroupSetsCreate function to automatically create the event group(s)
required for a set of events.

To begin counting a set of events, enable the event group or groups that contain those
events by using the cuptiEventGroupEnable function. If your events are contained
in multiple event groups you may be unable to enable all of the event groups at the same
time, due to device limitations. In this case, you can gather the events across multiple
executions of the application or you can enable kernel replay. If you enable kernel replay
using cuptiEnableKernelReplayMode you will be able to enabled any number of
event groups and all the contained events will be collect.

Use the cuptiEventGroupReadEvent and/or cuptiEventGroupReadAllEvents
functions to read the event values. When you are done collecting events, use the
cuptiEventGroupDisable function to stop counting of the events contained in an
event group. The callback_event sample described on the samples page shows how to
use these functions to create, enable, and disable event groups, and how to read event
counts.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 8

Usage

1.5.1. Collecting Kernel Execution Events

A common use of the event API is to count a set of events during the execution

of a kernel (as demonstrated by the callback_event sample). The following

code shows a typical callback used for this purpose. Assume that the callback

was enabled only for a kernel launch using the CUDA runtime (i.e. by
cuptiEnableCallback (1, subscriber, CUPTI CB DOMAIN RUNTIME API,
CUPTI RUNTIME TRACE CBID cudaLaunch v3020). To simplify the presentation
error checking code has been removed.

static void CUPTIAPI

getEventValueCallback (void *userdata,
CUpti CallbackDomain domain,
CUpti CallbackId cbid,
const void *cbdata)

const CUpti CallbackData *cbData =
(CUpti CallbackData *)cbdata;

if (cbData->callbackSite == CUPTI API ENTER) ({
cudaDeviceSynchronize () ;
cuptiSetEventCollectionMode (cbInfo->context,
CUPTI EVENT COLLECTION MODE KERNEL) ;
cuptiEventGroupEnable (eventGroup) ;

}

if (cbData->callbackSite == CUPTI API EXIT) {
cudaDeviceSynchronize () ;
cuptiEventGroupReadEvent (eventGroup,
CUPTI EVENT READ FLAG NONE,
eventIld,
&bytesRead, &eventVval);

cuptiEventGroupDisable (eventGroup) ;
: }
Two synchronization points are used to ensure that events are counted only for the
execution of the kernel. If the application contains other threads that launch kernels,
then additional thread-level synchronization must also be introduced to ensure that
those threads do not launch kernels while the callback is collecting events. When the
cudaLaunch APl is entered (that is, before the kernel is actually launched on the device),
cudaDeviceSynchronize is used to wait until the GPU is idle. The event collection
mode is set to CUPTI EVENT COLLECTION MODE KERNEL so that the event counters
are automatically started and stopped just before and after the kernel executes. Then
event collection is enabled with cuptiEventGroupEnable.

When the cudaLaunch APl is exited (that is, after the kernel is queued for execution
on the GPU) another cudaDeviceSynchronize is used to cause the CPU thread
to wait for the kernel to finish execution. Finally, the event counts are read with
cuptikEventGroupReadEvent.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 9

Usage

1.5.2. Sampling Events

The event API can also be used to sample event values while a kernel or kernels

are executing (as demonstrated by the event_sampling sample). The sample shows

one possible way to perform the sampling. The event collection mode is set to

CUPTI EVENT COLLECTION MODE CONTINUOUS so that the event counters run
continuously. Two threads are used in event_sampling: one thread schedules the kernels
and memcpys that perform the computation, while another thread wakes periodically

to sample an event counter. In this sample there is no correlation of the event samples
with what is happening on the GPU. To get some coarse correlation, you can use
cuptiDeviceGetTimestamp to collect the GPU timestamp at the time of the sample
and also at other interesting points in your application.

1.6. CUPTI Metric API

The CUPTI Metric API allows you to collect application metrics calculated from one or
more event values. The following terminology is used by the metric API.

Metric
An characteristic of an application that is calculated from one or more event values.
Metric ID
Each metric is assigned a unique identifier. A named metric will represent the same
characteristic on all device types. But the named metric may have different IDs on
different device families. Use cuptiMetricGetIdFromName to get the ID for a
named metric on a particular device.
Metric Category
Each metric is placed in one of the categories defined by CUpti MetricCategory.
The category indicates the general type of the characteristic measured by the metric.
Metric Property
Each metric is calculated from input values. These input values can be events
or properties of the device or system. The available properties are defined by
CUpti MetricPropertyID.
Metric Value
Each metric has a value that represents one of the kinds defined by
CUpti MetricValueKind. For each value kind, there is a corresponding member
of the CUpti MetricValue union thatis used to hold the metric's value.

The tables included in this section list the metrics available for each device, as
determined by the device's compute capability. You can also determine the metrics
available on a device using the cuptiDeviceEnumMetrics function. The cupti_query
sample described on the samples page shows how to use this function. You can also
enumerate all the CUPTI metrics available on any device using the cuptiEnumMetrics
function.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 10

Usage

CUPTI provides two functions for calculating a metric value. cuptiMetricGetValue2
can be used to calculate a metric value when the device is not available. All

required event values and metric properties must be provided by the caller.
cuptiMetricGetValue can be used to calculate a metric value when the device is
available (as a CUdevice object). All required event values must be provided by the
caller but CUPTI will determine the appropriate property values from the CUdevice
object.

Configuring and calculating metric values requires the following steps. First,

determine the name of the metric that you want to collect, and then use the
cuptiMetricGetIdFromName to get the metric ID. Use cuptiMetricEnumEvents
to get the events required to calculate the metric and follow instructions in

the CUPTI Event API section to create the event groups for those events.

When creating event groups in this manner it is important to use the result of
cuptiMetricGetRequiredEventGroupSets to properly group together events that
must be collected in the same pass to ensure proper metric calculation.

Alternatively, you can use the cuptiMetricCreateEventGroupSets function to
automatically create the event group(s) required for metric's events. When using this
function events will be grouped as required to most accurately calculate the metric, as a
result it is not necessary to use cuptiMetricGetRequiredEventGroupSets.

If you are using cuptiMetricGetValue?2 the you must also collect the required metric
property values using cuptiMetricEnumProperties.

Collect event counts as described in the CUPTI Event API section, and then use either
cuptiMetricGetValue or cuptiMetricGetValue?2 to calculate the metric value
from the collected event and property values. The callback_metric sample described on
the samples page shows how to use the functions to calculate event values and calculate
a metric using cuptiMetricGetValue. Note that, as shown in the example, you
should collect event counts from all domain instances and normalize the counts to get
the most accurate metric values. It is necessary to normalize the event counts because the
number of event counter instances varies by device and by the event being counted.

For example, a device might have 8 multiprocessors but only have event counters

for 4 of the multiprocessors, and might have 3 memory units and only have events
counters for one memory unit. When calculating a metric that requires a multiprocessor
event and a memory unit event, the 4 multiprocessor counters should be summed and
multiplied by 2 to normalize the event count across the entire device. Similarly, the one
memory unit counter should be multiplied by 3 to normalize the event count across the
entire device. The normalized values can then be passed to cuptiMetricGetValue or
cuptiMetricGetValue?2 to calculate the metric value.

As described, the normalization assumes the kernel executes a sufficient number of
blocks to completely load the device. If the kernel has only a small number of blocks,
normalizing across the entire device may skew the result.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 11

Metric Reference - Compute Capability 1.x

Usage

Devices with compute capability less than 2.0 implement the metrics shown in the
following table. A scope value of single-context indicates that the metric can only be
accurately collected when a single context (CUDA or graphic) is executing on the GPU.
A scope value of multi-context indicates that the metric can be accurately collected when

multiple contexts are executing on the GPU.

Table 1 Capability 1.x Metrics

Metric Name Description Scope

branches expressed as percentage

branch_efficiency Ratio of non-divergent branches to total Single-context

transactions to actual global memory load
transactions expressed as percentage

gld_efficiency Ratio of requested global memory load Single-context

transactions to actual global memory store
transactions expressed as percentage

gst_efficiency Ratio of requested global memory store Single-context

gld_requested_throughput Requested global memory load throughput Single-context

gst_requested_throughput Requested global memory store throughput Single-context

Metric Reference - Compute Capability 2.x

Devices with compute capability between 2.0, inclusive, and 3.0 implement the metrics
shown in the following table. A scope value of single-context indicates that the metric
can only be accurately collected when a single context (CUDA or graphic) is executing
on the GPU. A scope value of multi-context indicates that the metric can be accurately

collected when multiple contexts are executing on the GPU.

Table 2 Capability 2.x Metrics

Metric Name Description

Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

alu_fu_utilization The utilization level of the multiprocessor
function units that execute integer and
floating-point arithmetic instructions on a
scale of 0 to 10

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 12

Usage

Metric Name

Description

Scope

atomic_replay_overhead

Average number of replays due to atomic and
reduction bank conflicts for each instruction
executed

Multi-context

atomic_throughput

Global memory atomic and reduction
throughput

Multi-context

atomic_transactions

Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request

Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency

Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed

Number of executed control-flow instructions

Multi-context

cf_fu_utilization

The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued

Number of issued control-flow instructions

Multi-context

dram_read_throughput

Device memory read throughput

Single-context

dram_read_transactions

Device memory read transactions

Single-context

dram_utilization

The utilization level of the device memory
relative to the peak utilization on a scale of 0
to 10

Single-context

dram_write_throughput

Device memory write throughput

Single-context

dram_write_transactions

Device memory write transactions

Single-context

ecc_throughput

ECC throughput from L2 to DRAM

Single-context

ecc_transactions

Number of ECC transactions between L2 and
DRAM

Single-context

eligible_warps_per_cycle

Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp

Number of double-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 13

Usage

Metric Name

Description

Scope

flop_count_dp_add

Number of double-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_dp_fma

Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul

Number of double-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp

Number of single-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

flop_count_sp_add

Number of single-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_sp_fma

Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul

Number of single-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp_special

Number of single-precision floating-point
special operations executed by non-
predicated threads

Multi-context

flop_dp_efficiency

Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_sp_efficiency

Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency

Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 14

Usage

Metric Name

Description

Scope

gld_requested_throughput

Requested global memory load throughput

Multi-context

gld_throughput

Global memory load throughput

Single-context

gld_transactions

Number of global memory load transactions

Single-context

gld_transactions_per_request

Average number of global memory load
transactions performed for each global
memory load

Single-context

global_cache_replay_overhead

Average number of replays due to global
memory cache misses for each instruction
executed

Single-context

gst_efficiency

Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage

Single-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

gst_throughput

Global memory store throughput

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gst_transactions_per_request

Average number of global memory store
transactions performed for each global
memory store

Single-context

inst_bit_convert

Number of bit-conversion instructions
executed by non-predicated threads

Multi-context

inst_compute_ld_st

Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control

Number of control-flow instructions executed
by non-predicated threads (jump, branch,
etc.)

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_fp_32

Number of single-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by
non-predicated threads

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 15

Usage

Metric Name

Description

Scope

inst_inter_thread_communication

Number of inter-thread communication
instructions executed by non-predicated

Multi-context

executed by non-predicated threads

threads
inst_issued The number of instructions issued Multi-context
inst_misc Number of miscellaneous instructions Multi-context

inst_per_warp

Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead

Average number of replays for each
instruction executed

Multi-context

ipc

Instructions executed per cycle

Multi-context

ipc_instance

Instructions executed per cycle for a single
multiprocessor

Multi-context

issue_slot_utilization

Percentage of issue slots that issued at least
one instruction, averaged across all cycles

Multi-context

issue_slots

The number of issue slots used

Multi-context

issued_ipc

Instructions issued per cycle

Multi-context

l1_cache_global_hit_rate

Hit rate in L1 cache for global loads

Single-context

l1_cache_local_hit_rate

Hit rate in L1 cache for local loads and stores

Single-context

11_shared_utilization

The utilization level of the L1/shared memory
relative to peak utilization on a scale of 0 to
10

Single-context

12_atomic_throughput

Memory read throughput seen at L2 cache for
atomic and reduction requests

Sinlge-context

[2_atomic_transactions

Memory read transactions seen at L2 cache
for atomic and reduction requests

Single-context

12_l1_read_hit_rate

Hit rate at L2 cache for all read requests from
L1 cache

Sinlge-context

12_l1_read_throughput

Memory read throughput seen at L2 cache for
read requests from L1 cache

Single-context

12_l1_read_transactions

Memory read transactions seen at L2 cache
for all read requests from L1 cache

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 16

Usage

Metric Name

Description

Scope

12_U1_write_throughput

Memory write throughput seen at L2 cache for
write requests from L1 cache

Single-context

[2_l1_write_transactions

Memory write transactions seen at L2 cache
for all write requests from L1 cache

Single-context

12_read_throughput

Memory read throughput seen at L2 cache for
all read requests

Single-context

|2_read_transactions

Memory read transactions seen at L2 cache
for all read requests

Single-context

|2_tex_read_transactions

Memory read transactions seen at L2 cache
for read requests from the texture cache

Single-context

12_texture_read_hit_rate

Hit rate at L2 cache for all read requests from
texture cache

Single-context

12_texure_read_throughput

Memory read throughput seen at L2 cache for
read requests from the texture cache

Sinlge-context

12_utilization

The utilization level of the L2 cache relative
to the peak utilization on a scale of 0 to 10

Single-context

12_write_throughput

Memory write throughput seen at L2 cache for
all write requests

Single-context

|2_write_transactions

Memory write transactions seen at L2 cache
for all write requests

Single-context

ldst_executed

Number of executed load and store
instructions

Multi-context

ldst_fu_utilization

The utilization level of the multiprocessor
function units that execute global, local and
shared memory instructions on a scale of 0 to
10

Multi-context

ldst_issued

Number of issued load and store instructions

Multi-context

local_load_throughput

Local memory load throughput

Single-context

local_load_transactions

Number of local memory load transactions

Single-context

local_load_transactions_per_request

Average number of local memory load
transactions performed for each local memory
load

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 17

Usage

Metric Name

Description

Scope

local_memory_overhead

Ratio of local memory traffic to total
memory traffic between the L1 and L2 caches
expressed as percentage

Single-context

local_replay_overhead

Average number of replays due to local
memory accesses for each instruction
executed

Single-context

local_store_throughput

Local memory store throughput

Single-context

local_store_transactions

Number of local memory store transactions

Single-context

local_store_transactions_per_request

Average number of local memory store
transactions performed for each local memory
store

Single-context

shared_efficiency

Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_load_transactions_per_reques

k Average number of shared memory load
transactions performed for each shared
memory load

Single-context

shared_replay_overhead

Average number of replays due to shared
memory conflicts for each instruction
executed

Single-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_store_transactions_per_reque

stAverage number of shared memory store
transactions performed for each shared
memory store

Single-context

sm_efficiency

The percentage of time at least one warp is
active on a multiprocessor averaged over all
multiprocessors on the GPU

Single-context

sm_efficiency_instance

The percentage of time at least one warp is
active on a specific multiprocessor

Single-context

stall_data_request

Percentage of stalls occurring because a
memory operation cannot be performed

www.nvidia.com
CUPTI

due to the required resources not being

DA-05679-001 _v6.5 | 18

Multi-context

Usage

Metric Name

Description

Scope

available or fully utilized, or because too
many requests of a given type are outstanding

stall_exec_dependency

Percentage of stalls occurring because an
input required by the instruction is not yet
available

Multi-context

stall_inst_fetch

Percentage of stalls occurring because the
next assembly instruction has not yet been
fetched

Multi-context

stall_other

Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_sync

Percentage of stalls occurring because the
warp is blocked at a __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

sysmem_read_throughput

System memory read throughput

Single-context

sysmem_read_transactions

System memory read transactions

Single-context

sysmem_utilization

The utilization level of the system memory
relative to the peak utilization on a scale of 0
to 10

Single-context

sysmem_write_throughput

System memory write throughput

Single-context

sysmem_write_transactions

System memory write transactions

Single-context

tex_cache_hit_rate

Texture cache hit rate

Single-context

tex_cache_throughput

Texture cache throughput

Single-context

tex_cache_transactions

Texture cache read transactions

Single-context

tex_fu_utilization

The utilization level of the multiprocessor
function units that execute texture
instructions on a scale of 0 to 10

Multi-context

tex_utilization

The utilization level of the texture cache
relative to the peak utilization on a scale of 0
to 10

Single-context

warp_execution_efficiency

www.nvidia.com
CUPTI

Ratio of the average active threads per warp
to the maximum number of threads per warp

DA-05679-001 _v6.5 | 19

Multi-context

Usage

Metric Name Description

Scope

supported on a multiprocessor expressed as
percentage

Metric Reference - Compute Capability 3.x

Devices with compute capability between 3.0, inclusive, and 4.0 implement the metrics
shown in the following table. A scope value of single-context indicates that the metric
can only be accurately collected when a single context (CUDA or graphic) is executing
on the GPU. A scope value of multi-context indicates that the metric can be accurately

collected when multiple contexts are executing on the GPU.

Table 3 Capability 3.x Metrics

Metric Name Description

Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

alu_fu_utilization The utilization level of the multiprocessor
function units that execute integer and
floating-point arithmetic instructions on a
scale of 0 to 10

Multi-context

atomic_replay_overhead Average number of replays due to atomic and
reduction bank conflicts for each instruction

Multi-context

transactions

executed

atomic_throughput Global memory atomic and reduction Multi-context
throughput

atomic_transactions Global memory atomic and reduction Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage. This is
available for compute capability 3.0.

Multi-context

cf_executed Number of executed control-flow instructions

Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

www.nvidia.com

CUPTI DA-05679-001 _v6.5 | 20

Usage

Metric Name

Description

Scope

cf_issued

Number of issued control-flow instructions

Multi-context

dram_read_throughput

Device memory read throughput

Single-context

dram_read_transactions

Device memory read transactions

Single-context

dram_utilization

The utilization level of the device memory
relative to the peak utilization on a scale of 0
to 10

Single-context

dram_write_throughput

Device memory write throughput

Single-context

dram_write_transactions

Device memory write transactions

Single-context

ecc_throughput

ECC throughput from L2 to DRAM

Single-context

ecc_transactions

Number of ECC transactions between L2 and
DRAM

Single-context

eligible_warps_per_cycle

Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp

Number of double-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

flop_count_dp_add

Number of double-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_dp_fma

Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul

Number of double-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp

Number of single-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 21

Usage

Metric Name

Description

Scope

flop_count_sp_add

Number of single-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_sp_fma

Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul

Number of single-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp_special

Number of single-precision floating-point
special operations executed by non-
predicated threads

Multi-context

flop_dp_efficiency

Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_sp_efficiency

Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency

Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage

Single-context

gld_requested_throughput

Requested global memory load throughput

Multi-context

gld_throughput

Global memory load throughput

Single-context

gld_transactions

Number of global memory load transactions
expressed as percentage

Single-context

gld_transactions_per_request

Average number of global memory load
transactions performed for each global
memory load

Single-context

global_cache_replay_overhead

Average number of replays due to global
memory cache misses for each instruction
executed

Multi-context

global_replay_overhead

Average number of replays due to global
memory cache misses

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 22

Usage

Metric Name

Description

Scope

gst_efficiency

Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage

Single-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

gst_throughput

Global memory store throughput

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gst_transactions_per_request

Average number of global memory store
transactions performed for each global

memory store

Single-context

inst_bit_convert

Number of bit-conversion instructions
executed by non-predicated threads

Multi-context

inst_compute_ld_st

Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control

Number of control-flow instructions executed
by non-predicated threads (jump, branch,
etc.)

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_fp_32

Number of single-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by
non-predicated threads

Multi-context

inst_inter_thread_communication

Number of inter-thread communication
instructions executed by non-predicated

Multi-context

executed by non-predicated threads

threads
inst_issued The number of instructions issued Multi-context
inst_misc Number of miscellaneous instructions Multi-context

inst_per_warp

Average number of instructions executed by

each warp

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 23

Usage

Metric Name

Description

Scope

inst_replay_overhead

Average number of replays for each
instruction executed

Multi-context

ipc

Instructions executed per cycle

Multi-context

ipc_instance

Instructions executed per cycle for a single
multiprocessor

Multi-context

issue_slot_utilization

Percentage of issue slots that issued at least
one instruction, averaged across all cycles

Multi-context

issue_slots

The number of issue slots used

Multi-context

issued_ipc

Instructions issued per cycle

Multi-context

l1_cache_global_hit_rate

Hit rate in L1 cache for global loads

Single-context

l1_cache_local_hit_rate

Hit rate in L1 cache for local loads and stores

Single-context

11_shared_utilization

The utilization level of the L1/shared memory
relative to peak utilization on a scale of 0 to
10. This is available for compute capability
3.0 and 3.5.

Single-context

12_atomic_throughput

Memory read throughput seen at L2 cache for
atomic and reduction requests

Sinlge-context

[2_atomic_transactions

Memory read transactions seen at L2 cache
for atomic and reduction requests

Single-context

12_l1_read_hit_rate

Hit rate at L2 cache for all read requests
from L1 cache. This is available for compute
capability 3.0 and 3.5.

Sinlge-context

12_U1_read_throughput

Memory read throughput seen at L2 cache for
read requests from L1 cache. This is available
for compute capability 3.0 and 3.5.

Single-context

12_l1_read_transactions

Memory read transactions seen at L2 cache
for all read requests from L1 cache

Single-context

12_U1_write_throughput

Memory write throughput seen at L2 cache for
write requests from L1 cache

Single-context

12_l1_write_transactions

Memory write transactions seen at L2 cache
for all write requests from L1 cache

Single-context

2_read_throughput

Memory read throughput seen at L2 cache for
all read requests

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 24

Usage

Metric Name

Description

Scope

|2_read_transactions

Memory read transactions seen at L2 cache
for all read requests

Single-context

|2_tex_read_transactions

Memory read transactions seen at L2 cache
for read requests from the texture cache

Single-context

12_texture_read_hit_rate

Hit rate at L2 cache for all read requests from
texture cache

Single-context

|2_texture_read_throughput

Memory read throughput seen at L2 cache for
read requests from the texture cache

Sinlge-context

[2_utilization

The utilization level of the L2 cache relative
to the peak utilization on a scale of 0 to 10

Single-context

12_write_throughput

Memory write throughput seen at L2 cache for
all write requests

Single-context

|2_write_transactions

Memory write transactions seen at L2 cache
for all write requests

Single-context

ldst_executed

Number of executed load and store
instructions

Multi-context

ldst_fu_utilization

The utilization level of the multiprocessor
function units that execute global, local and
shared memory instructions on a scale of 0 to
10

Multi-context

ldst_issued

Number of issued load and store instructions

Multi-context

local_load_throughput

Local memory load throughput

Single-context

local_load_transactions

Number of local memory load transactions

Single-context

local_load_transactions_per_request

Average number of local memory load
transactions performed for each local memory
load

Single-context

local_memory_overhead

Ratio of local memory traffic to total
memory traffic between the L1 and L2 caches
expressed as percentage. This is available for
compute capability 3.0 and 3.5.

Single-context

local_replay_overhead

Average number of replays due to local
memory accesses for each instruction
executed

Multi-context

local_store_throughput

Local memory store throughput

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 25

Usage

Metric Name

Description

Scope

local_store_transactions

Number of local memory store transactions

Single-context

local_store_transactions_per_request

Average number of local memory store
transactions performed for each local memory
store

Single-context

nc_cache_global_hit_rate

Hit rate in non coherent cache for global
loads

Single-context

nc_gld_efficiency

Ratio of requested non coherent global
memory load throughput to required non
coherent global memory load throughput
expressed as percentage

Single-context

nc_gld_requested_throughput

Requested throughput for global memory
loaded via non-coherent cache

Multi-context

nc_gld_throughput

Non coherent global memory load throughput

Single-context

nc_l2_read_throughput

Memory read throughput for non coherent
global read requests seen at L2 cache

Single-context

nc_l2_read_transactions

Memory read transactions seen at L2 cache
for non coherent global read requests

Single-context

shared_efficiency

Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_load_transactions_per_reques

k Average number of shared memory load
transactions performed for each shared
memory load

Single-context

shared_replay_overhead

Average number of replays due to shared
memory conflicts for each instruction
executed

Multi-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_store_transactions_per_reque

stAverage number of shared memory store
transactions performed for each shared
memory store

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 26

Usage

Metric Name

Description

Scope

sm_efficiency

The percentage of time at least one warp is
active on a multiprocessor averaged over all
multiprocessors on the GPU

Single-context

sm_efficiency_instance

The percentage of time at least one warp is
active on a specific multiprocessor

Single-context

stall_compute

Percentage of stalls occurring because a
compute operation cannot be performed due
to the required resources not being available

Multi-context

stall_data_request

Percentage of stalls occurring because a
memory operation cannot be performed

due to the required resources not being
available or fully utilized, or because too
many requests of a given type are outstanding

Multi-context

stall_exec_dependency

Percentage of stalls occurring because an
input required by the instruction is not yet
available

Multi-context

stall_imc

Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_inst_fetch

Percentage of stalls occurring because the
next assembly instruction has not yet been
fetched

Multi-context

stall_other

Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_sync

Percentage of stalls occurring because the
warp is blocked at a __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

sysmem_read_throughput

System memory read throughput. This is
available for compute capability 3.0 and 3.5.

Single-context

sysmem_read_transactions

System memory read transactions. This is
available for compute capability 3.0 and 3.5.

Single-context

sysmem_utilization

The utilization level of the system memory
relative to the peak utilization on a scale of 0
to 10. This is available for compute capability
3.0 and 3.5.

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 27

Usage

Metric Name Description Scope

sysmem_write_throughput System memory write throughput. This is Single-context
available for compute capability 3.0 and 3.5.

sysmem_write_transactions System memory write transactions. This is Single-context
available for compute capability 3.0 and 3.5.

tex_cache_hit_rate Texture cache hit rate Single-context
tex_cache_throughput Texture cache throughput Single-context
tex_cache_transactions Texture cache read transactions Single-context
tex_fu_utilization The utilization level of the multiprocessor Multi-context

function units that execute texture
instructions on a scale of 0 to 10

tex_utilization The utilization level of the texture cache Single-context
relative to the peak utilization on a scale of 0
to 10

warp_execution_efficiency Ratio of the average active threads per warp | Multi-context
to the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

warp_nonpred_execution_efficiency | Ratio of the average active threads per warp | Multi-context
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Metric Reference - Compute Capability 5.x

Devices with compute capability greater than or equal to 5.0 implement the metrics
shown in the following table. A scope value of single-context indicates that the metric
can only be accurately collected when a single context (CUDA or graphic) is executing
on the GPU. A scope value of multi-context indicates that the metric can be accurately
collected when multiple contexts are executing on the GPU.

Table 4 Capability 5.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active Multi-context
cycle to the maximum number of warps

supported on a multiprocessor

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 28

Usage

Metric Name

Description

Scope

atomic_transactions

Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request

Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency

Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed

Number of executed control-flow instructions

Multi-context

cf_fu_utilization

The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued

Number of issued control-flow instructions

Multi-context

double_precision_fu_utilization

The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

dram_read_throughput

Device memory read throughput

Single-context

dram_read_transactions

Device memory read transactions

Single-context

dram_utilization

The utilization level of the device memory
relative to the peak utilization on a scale of 0
to 10

Single-context

dram_write_throughput

Device memory write throughput

Single-context

dram_write_transactions

Device memory write transactions

Single-context

ecc_throughput

ECC throughput from L2 to DRAM

Single-context

ecc_transactions

Number of ECC transactions between L2 and
DRAM

Single-context

eligible_warps_per_cycle

Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp

Number of double-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 29

Usage

Metric Name

Description

Scope

flop_count_dp_add

Number of double-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_dp_fma

Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul

Number of double-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp

Number of single-precision floating-point
operations executed by non-predicated
threads (add, multiply, multiply-accumulate
and special). Each multiply-accumulate
operation contributes 2 to the count.

Multi-context

flop_count_sp_add

Number of single-precision floating-point
add operations executed by non-predicated
threads

Multi-context

flop_count_sp_fma

Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul

Number of single-precision floating-point
multiply operations executed by non-
predicated threads

Multi-context

flop_count_sp_special

Number of single-precision floating-point
special operations executed by non-
predicated threads

Multi-context

flop_dp_efficiency

Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_sp_efficiency

Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency

Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 30

Usage

Metric Name

Description

Scope

gld_requested_throughput

Requested global memory load throughput

Multi-context

gld_throughput

Global memory load throughput

Single-context

gld_transactions

Number of global memory load transactions

Single-context

gld_transactions_per_request

Average number of global memory load
transactions performed for each global
memory load

Single-context

global_hit_rate

Hit rate for global loads

Single-context

gst_efficiency

Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage

Single-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

gst_throughput

Global memory store throughput

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gst_transactions_per_request

Average number of global memory store
transactions performed for each global
memory store

Single-context

inst_bit_convert

Number of bit-conversion instructions
executed by non-predicated threads

Multi-context

inst_compute_ld_st

Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control

Number of control-flow instructions executed
by non-predicated threads (jump, branch,
etc.)

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_fp_32

Number of single-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point
instructions executed by non-predicated
threads (arithmetric, compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by
non-predicated threads

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 31

Usage

Metric Name Description Scope

inst_inter_thread_communication Number of inter-thread communication Multi-context
instructions executed by non-predicated

threads
inst_issued The number of instructions issued Multi-context
inst_misc Number of miscellaneous instructions Multi-context

executed by non-predicated threads

inst_per_warp Average number of instructions executed by Multi-context
each warp
inst_replay_overhead Average number of replays for each Multi-context

instruction executed

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least Multi-context
one instruction, averaged across all cycles

issue_slots The number of issue slots used Multi-context
issued_ipc Instructions issued per cycle Multi-context
12_atomic_throughput Memory read throughput seen at L2 cache for | Multi-context

atomic and reduction requests

12_atomic_transactions Memory read transactions seen at L2 cache Single-context
for atomic and reduction requests

12_read_throughput Memory read throughput seen at L2 cache for | Single-context
all read requests

|2_read_transactions Memory read transactions seen at L2 cache Single-context
for all read requests

|2_tex_read_hit_rate Hit rate at L2 cache for all read requests from | Single-context
texture cache

2_tex_read_throughput Memory read throughput seen at L2 cache for | Sinlge-context
read requests from the texture cache

|2_tex_read_transactions Memory read transactions seen at L2 cache Single-context
for read requests from the texture cache

|2_tex_write_hit_rate Hit Rate at L2 cache for all write requests Single-context
from texture cache

2_tex_write_throughput Memory write throughput seen at L2 cache for | Sinlge-context
write requests from the texture cache

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 32

Usage

Metric Name

Description

Scope

12_tex_write_transactions

Memory write transactions seen at L2 cache
for write requests from the texture cache

Single-context

2_utilization

The utilization level of the L2 cache relative
to the peak utilization on a scale of 0 to 10

Single-context

12_write_throughput

Memory write throughput seen at L2 cache for
all write requests

Single-context

|2_write_transactions

Memory write transactions seen at L2 cache
for all write requests

Single-context

ldst_executed

Number of executed load and store
instructions

Multi-context

ldst_fu_utilization

The utilization level of the multiprocessor
function units that execute global, local and
shared memory instructions on a scale of 0 to
10

Multi-context

ldst_issued

Number of issued load and store instructions

Multi-context

local_hit_rate

Hit rate for local loads and stores

Single-context

local_load_throughput

Local memory load throughput

Single-context

local_load_transactions

Number of local memory load transactions

Single-context

local_load_transactions_per_request

Average number of local memory load
transactions performed for each local memory
load

Single-context

local_memory_overhead

Ratio of local memory traffic to total
memory traffic between the L1 and L2 caches
expressed as percentage

Single-context

local_store_throughput

Local memory store throughput

Single-context

local_store_transactions

Number of local memory store transactions

Single-context

local_store_transactions_per_request

Average number of local memory store
transactions performed for each local memory
store

Single-context

shared_efficiency

Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 33

Usage

Metric Name

Description

Scope

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_load_transactions_per_reques

k Average number of shared memory load
transactions performed for each shared
memory load

Single-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_store_transactions_per_reque

stAverage number of shared memory store
transactions performed for each shared
memory store

Single-context

shared_utilization

The utilization level of the shared memory
relative to peak utilization on a scale of 0 to
10

Single-context

single_precision_fu_utilization

The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

sm_efficiency

The percentage of time at least one warp is
active on a multiprocessor

Single-context

special_fu_utilization

The utilization level of the multiprocessor
function units that execute sin, cos, ex2,
popc, flo, and similar instructions on a scale
of 0 to 10

Multi-context

stall_compute

Percentage of stalls occurring because a
compute operation cannot be performed due
to the required resources not being available

Multi-context

stall_data_request

Percentage of stalls occurring because a
memory operation cannot be performed

due to the required resources not being
available or fully utilized, or because too
many requests of a given type are outstanding

Multi-context

stall_exec_dependency

Percentage of stalls occurring because an
input required by the instruction is not yet
available

Multi-context

stall_imc

Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 34

Usage

Metric Name

Description

Scope

stall_inst_fetch

Percentage of stalls occurring because the
next assembly instruction has not yet been
fetched

Multi-context

stall_other

Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_sync

Percentage of stalls occurring because the
warp is blocked at a __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

sysmem_read_throughput

System memory read throughput

Single-context

sysmem_read_transactions

System memory read transactions

Single-context

sysmem_utilization

The utilization level of the system memory
relative to the peak utilization on a scale of 0
to 10

Single-context

sysmem_write_throughput

System memory write throughput

Single-context

sysmem_write_transactions

System memory write transactions

Single-context

tex_cache_hit_rate

Texture cache hit rate

Single-context

tex_cache_throughput

Texture cache throughput

Single-context

tex_cache_transactions

Texture cache read transactions

Single-context

tex_fu_utilization

The utilization level of the multiprocessor
function units that execute texture
instructions on a scale of 0 to 10

Multi-context

tex_utilization

The utilization level of the texture cache
relative to the peak utilization on a scale of 0
to 10

Single-context

warp_execution_efficiency

Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Multi-context

warp_nonpred_execution_efficiency

Ratio of the average active threads per warp
executing non-predicated instructions to

the maximum number of threads per warp
supported on a multiprocessor

Multi-context

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 35

Usage

1.7. Samples

The CUPTI installation includes several samples that demonstrate the use of the CUPTI

APIs. The samples are:

activity_trace_async
This sample shows how to collect a trace of CPU and GPU activity using the new
asynchronous activity buffer APIs.

callback_event
This sample shows how to use both the callback and event APIs to record the events
that occur during the execution of a simple kernel. The sample shows the required
ordering for synchronization, and for event group enabling, disabling and reading.

callback_metric
This sample shows how to use both the callback and metric APIs to record the
metric's events during the execution of a simple kernel, and then use those events to
calculate the metric value.

callback_timestamp
This sample shows how to use the callback API to record a trace of API start and stop
times.

cupti_query
This sample shows how to query CUDA-enabled devices for their event domains,
events, and metrics.

event_sampling
This sample shows how to use the event API to sample events using a separate host
thread.

sass_source_map
This sample shows how to generate CUpti_ActivityIlnstructionExecution records and
how to map SASS assembly instructions to CUDA C source.

unified_memory
This sample shows how to collect various counters like page faults and page transfers
for unified memory.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 36

Chapter 2.
MODULES

Here is a list of all modules:

» CUPTI Version

» CUPTI Result Codes
» CUPTI Activity API
» CUPTI Callback API
» CUPTI Event API

» CUPTI Metric API

2.1. CUPTI Version

Function and macro to determine the CUPTI version.

CUptiResult cuptiGetVersion (uint32_t *version)
Get the CUPTI API version.

Parameters
version
Returns the version
Returns
» CUPTI_SUCCESS

on success
» CUPTI_ERROR_INVALID_PARAMETER

if versionis NULL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 37

Modules

Description

Return the API version in *version.

See also:

CUPTI_API_VERSION

#define CUPTI_API_VERSION 6

The API version for this implementation of CUPTI.

The API version for this implementation of CUPTI. This define along with
cuptiGetVersion can be used to dynamically detect if the version of CUPTI compiled
against matches the version of the loaded CUPTI library.

vl : CUDATo0lsSDK 4.0 v2 : CUDATo0lsSDK 4.1 v3 : CUDA Toolkit 5.0 v4 : CUDA
Toolkit 5.5 v5 : CUDA Toolkit 6.0 v6 : CUDA Toolkit 6.5

2.2. CUPTI Result Codes

Error and result codes returned by CUPTI functions.

enum CUptiResult
CUPTI result codes.

Error and result codes returned by CUPTI functions.

Values

CUPTI_SUCCESS =0

No error.
CUPTI_ERROR_INVALID_PARAMETER =1

One or more of the parameters is invalid.
CUPTI_ERROR_INVALID_DEVICE =2

The device does not correspond to a valid CUDA device.
CUPTI_ERROR_INVALID_CONTEXT =3

The context is NULL or not valid.
CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID =4

The event domain id is invalid.
CUPTI_ERROR_INVALID_EVENT_ID =5

The event id is invalid.
CUPTI_ERROR_INVALID_EVENT_NAME = 6

The event name is invalid.
CUPTI_ERROR_INVALID_OPERATION =7

The current operation cannot be performed due to dependency on other factors.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 38

CUPTI_ERROR_OUT_OF_MEMORY =8

Unable to allocate enough memory to perform the requested operation.
CUPTI_ERROR_HARDWARE =9

An error occurred on the performance monitoring hardware.
CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT =10

The output buffer size is not sufficient to return all requested data.
CUPTI_ERROR_API_NOT_IMPLEMENTED =11

APl is not implemented.
CUPTI_ERROR_MAX_LIMIT_REACHED =12

The maximum limit is reached.
CUPTI_ERROR_NOT_READY =13

The object is not yet ready to perform the requested operation.
CUPTI_ERROR_NOT_COMPATIBLE = 14

The current operation is not compatible with the current state of the object
CUPTI_ERROR_NOT_INITIALIZED =15

CUPTTI is unable to initialize its connection to the CUDA driver.
CUPTI_ERROR_INVALID_METRIC_ID =16

The metric id is invalid.
CUPTI_ERROR_INVALID_METRIC_NAME =17

The metric name is invalid.
CUPTI_ERROR_QUEUE_EMPTY =18

The queue is empty.
CUPTI_ERROR_INVALID_HANDLE =19

Invalid handle (internal?).
CUPTI_ERROR_INVALID_STREAM =20

Invalid stream.
CUPTI_ERROR_INVALID_KIND =21

Invalid kind.
CUPTI_ERROR_INVALID_EVENT_VALUE =22

Invalid event value.
CUPTI_ERROR_DISABLED = 23

CUPTI is disabled due to conflicts with other enabled profilers
CUPTI_ERROR_INVALID_MODULE = 24

Invalid module.
CUPTI_ERROR_INVALID_METRIC_VALUE =25

Invalid metric value.
CUPTI_ERROR_HARDWARE_BUSY =26

The performance monitoring hardware is in use by other client.
CUPTI_ERROR_NOT_SUPPORTED = 27

The attempted operation is not supported on the current system or device.
CUPTI_ERROR_UNKNOWN =999

An unknown internal error has occurred.
CUPTI_ERROR_FORCE_INT = 0x7fffffff

www.nvidia.com

Modules

CUPTI DA-05679-001 _v6.5 | 39

Modules

CUptiResult cuptiGetResultString (CUptiResult result,

const char **str)
Get the descriptive string for a CUptiResult.

Parameters

result

The result to get the string for
str

Returns the string

Returns
» CUPTI_SUCCESS

on success
» CUPTI_ERROR_INVALID_PARAMETER

if stris NULL or result is not a valid CUptiResult

Description

Return the descriptive string for a CUptiResult in *str.

n Thread-safety: this function is thread safe.

2.3. CUPTI Activity API

Functions, types, and enums that implement the CUPTI Activity APL

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 40

struct CUpti_Activity

The base activity record.

struct CUpti_ActivityAPI

The activity record for a driver or runtime API invocation.

struct CUpti_ActivityAutoBoostState

Device auto boost state structure.

struct CUpti_ActivityBranch

The activity record for source level result branch. (deprecated).

struct CUpti_ActivityBranch2

The activity record for source level result branch.

struct CUpti_ActivityCdpKernel

The activity record for CDP (CUDA Dynamic Parallelism) kernel.

struct CUpti_ActivityContext

The activity record for a context.

struct CUpti_ActivityDevice

The activity record for a device.

struct CUpti_ActivityDeviceAttribute

The activity record for a device attribute.

struct CUpti_ActivityEnvironment

The activity record for CUPTI environmental data.

struct CUpti_ActivityEvent

The activity record for a CUPTI event.

struct CUpti_ActivityEventinstance

The activity record for a CUPTI event with instance information.

struct CUpti_ActivityFunction

The activity record for global/device functions.

www.nvidia.com
CUPTI

Modules

DA-05679-001 _v6.5 | 41

Modules

struct CUpti_ActivityGlobalAccess

The activity record for source-level global access. (deprecated).

struct CUpti_ActivityGlobalAccess2

The activity record for source-level global access.

struct CUpti_ActivitylnstructionExecution

The activity record for source-level sass/source line-by-line correlation.

struct CUpti_ActivityKernel

The activity record for kernel. (deprecated).

struct CUpti_ActivityKernel2
The activity record for a kernel (CUDA 5.5 onwards).

struct CUpti_ActivityMarker

The activity record providing a marker which is an instantaneous point in time.

struct CUpti_ActivityMarkerData

The activity record providing detailed information for a marker.

struct CUpti_ActivityMemcpy

The activity record for memory copies.

struct CUpti_ActivityMemcpy?2

The activity record for peer-to-peer memory copies.

struct CUpti_ActivityMemset

The activity record for memset.

struct CUpti_ActivityMetric

The activity record for a CUPTI metric.

struct CUpti_ActivityMetriclnstance

The activity record for a CUPTI metric with instance information. This activity

record represents a CUPTI metric value for a specific metric domain instance
(CUPTI_ACTIVITY_KIND_METRIC_INSTANCE). This activity record kind is not
produced by the activity API but is included for completeness and ease-of-use. Profile
frameworks built on top of CUPTI that collect metric data may choose to use this type to

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 42

Modules

store the collected metric data. This activity record should be used when metric domain
instance information needs to be associated with the metric.

struct CUpti_ActivityModule

The activity record for a CUDA module.

struct CUpti_ActivityName

The activity record providing a name.

union CUpti_ActivityObjectKindld

Identifiers for object kinds as specified by CUpti_ActivityObjectKind.

struct CUpti_ActivityOverhead

The activity record for CUPTI and driver overheads.

struct CUpti_ActivityPreemption

The activity record for a preemption of a CDP kernel.

struct CUpti_ActivitySharedAccess

The activity record for source-level shared access.

struct CUpti_ActivitySourcelLocator

The activity record for source locator.

struct CUpti_ActivityUnifiedMemoryCounter

The activity record for Unified Memory counters.

struct CUpti_ActivityUnifiedMemoryCounterConfig

Unified Memory counters configuration structure.

enum CUpti_ActivityAttribute

Activity attributes.

These attributes are used to control the behavior of the activity API

Values

CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE =0
The device memory size (in bytes) reserved for storing profiling data for non-CDP
operations for each buffer on a context. The value is a size_t.Having larger buffer
size means less flush operations but consumes more device memory. Having smaller
buffer size increases the risk of dropping timestamps for kernel records if too many
kernels are launched/replayed at one time. This value only applies to new buffer

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 43

Modules

allocations.Set this value before initializing CUDA or before creating a context to
ensure it is considered for the following allocations.The default value is 4194304
(4MB).Note: The actual amount of device memory per buffer reserved by CUPTI
might be larger.

CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP =1
The device memory size (in bytes) reserved for storing profiling data for CDP
operations for each buffer on a context. The value is a size_t.Having larger buffer
size means less flush operations but consumes more device memory. This value only
applies to new allocations.Set this value before initializing CUDA or before creating
a context to ensure it is considered for the following allocations.The default value is
8388608 (8MB).Note: The actual amount of device memory per context reserved by
CUPTI might be larger.

CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_POOL_LIMIT =2
The maximum number of memory buffers per context. The value is a size_t.Buffers
can be reused by the context. Increasing this value reduces the times CUPTI needs to
flush the buffers. Setting this value will not modify the number of memory buffers
currently stored.Set this value before initializing CUDA to ensure the limit is not
exceeded.The default value is 4.

CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_FORCE_INT = 0x7fffffff

enum CUpti_ActivityComputeApiKind

The kind of a compute APL

Values

CUPTI_ACTIVITY_COMPUTE_API_UNKNOWN =0
The compute APl is not known.
CUPTI_ACTIVITY_COMPUTE_API_CUDA =1
The compute APIs are for CUDA.
CUPTI_ACTIVITY_COMPUTE_API_CUDA_MPS =2
The compute APIs are for CUDA running in MPS (Multi-Process Service)
environment.
CUPTI_ACTIVITY_COMPUTE_API_FORCE_INT = 0x7fffffff

enum CUpti_ActivityEnvironmentKind

The kind of environment data. Used to indicate what type of data is being reported by
an environment activity record.

Values

CUPTI_ACTIVITY_ENVIRONMENT UNKNOWN =0
Unknown data.
CUPTI_ACTIVITY_ENVIRONMENT _SPEED =1

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 44

Modules

The environment data is related to speed.
CUPTI_ACTIVITY_ENVIRONMENT_TEMPERATURE =2

The environment data is related to temperature.
CUPTI_ACTIVITY_ENVIRONMENT_POWER =3

The environment data is related to power.
CUPTI_ACTIVITY_ENVIRONMENT_COOLING =4

The environment data is related to cooling.
CUPTI_ACTIVITY_ENVIRONMENT_COUNT
CUPTI_ACTIVITY_ENVIRONMENT_KIND_FORCE_INT = 0x7fffffff

enum CUpti_ActivityFlag

Flags associated with activity records.

Activity record flags. Flags can be combined by bitwise OR to associated multiple flags
with an activity record. Each flag is specific to a certain activity kind, as noted below.

Values

CUPTI_ACTIVITY_FLAG_NONE =0

Indicates the activity record has no flags.
CUPTI_ACTIVITY_FLAG_DEVICE_CONCURRENT_KERNELS = 1<<0

Indicates the activity represents a device that supports concurrent kernel execution.

Valid for CUPTI_ACTIVITY_KIND_DEVICE.
CUPTI_ACTIVITY_FLAG_DEVICE_ATTRIBUTE_CUDEVICE = 1<<0

Indicates if the activity represents a CUdevice_attribute

value or a CUpti_DeviceAttribute value. Valid for

CUPTI_ACTIVITY_KIND_DEVICE_ATTRIBUTE.
CUPTI_ACTIVITY_FLAG_MEMCPY_ASYNC =1<<0

Indicates the activity represents an asynchronous memcpy operation. Valid for

CUPTI_ACTIVITY_KIND_MEMCPY.
CUPTI_ACTIVITY_FLAG_MARKER_INSTANTANEOUS = 1<<0

Indicates the activity represents an instantaneous marker. Valid for

CUPTI_ACTIVITY_KIND_MARKER.
CUPTI_ACTIVITY_FLAG_MARKER_START =1<<1

Indicates the activity represents a region start marker. Valid for

CUPTI_ACTIVITY_KIND_MARKER.
CUPTI_ACTIVITY_FLAG_MARKER_END = 1<<2

Indicates the activity represents a region end marker. Valid for

CUPTI_ACTIVITY_KIND_MARKER.
CUPTI_ACTIVITY_FLAG_MARKER_COLOR_NONE = 1<<0

Indicates the activity represents a marker that does not specify a color. Valid for

CUPTI_ACTIVITY_KIND_MARKER_DATA.
CUPTI_ACTIVITY_FLAG_MARKER_COLOR_ARGB =1<<1

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 45

Modules

Indicates the activity represents a marker that specifies a color in alpha-red-green-

blue format. Valid for CUPTI_ACTIVITY_KIND MARKER_DATA.
CUPTI_ACTIVITY_FLAG_GLOBAL_ACCESS_KIND_SIZE_MASK = 0xFF<<0

The number of bytes requested by each thread Valid for

CUpti_ActivityGlobal Access?2.
CUPTI_ACTIVITY_FLAG_GLOBAL_ACCESS_KIND_LOAD = 1<<8

If bit in this flag is set, the access was load, else it is a store access. Valid for

CUpti_ActivityGlobal Access2.
CUPTI_ACTIVITY_FLAG_GLOBAL_ACCESS_KIND_CACHED = 1<<9

If this bit in flag is set, the load access was cached else it is uncached. Valid for

CUpti_ActivityGlobal Access?2.
CUPTI_ACTIVITY_FLAG_METRIC_OVERFLOWED = 1<<0

If this bit in flag is set, the metric value overflowed. Valid for CUpti_ActivityMetric

and CUpti_ActivityMetricInstance.
CUPTI_ACTIVITY_FLAG_METRIC_VALUE_INVALID = 1<<1

If this bit in flag is set, the metric value couldn't be calculated. This occurs when a

value(s) required to calculate the metric is missing. Valid for CUpti_ActivityMetric

and CUpti_ActivityMetricInstance.
CUPTI_ACTIVITY_FLAG_INSTRUCTION_VALUE_INVALID = 1<<0

If this bit in flag is set, the source level metric value couldn't be calculated. This occurs

when a value(s) required to calculate the source level metric cannot be evaluated.

Valid for CUpti_ActivityInstructionExecution.
CUPTI_ACTIVITY_FLAG_INSTRUCTION_CLASS_MASK = 0xFF<<1

The mask for the instruction class, CUpti_ActivityInstructionClass Valid for

CUpti_ActivityInstructionExecution.
CUPTI_ACTIVITY_FLAG_FLUSH_FORCED = 1<<0

When calling cuptiActivityFlushAll, this flag can be set to force CUPTI to flush all

records in the buffer, whether finished or not
CUPTI_ACTIVITY_FLAG_SHARED_ACCESS_KIND_SIZE_MASK = 0xFF<<0

The number of bytes requested by each thread Valid for CUpti_ActivityShared Access.
CUPTI_ACTIVITY_FLAG_SHARED_ACCESS_KIND_LOAD =1<<8

If bit in this flag is set, the access was load, else it is a store access. Valid for

CUpti_ActivityShared Access.
CUPTI_ACTIVITY_FLAG_FORCE_INT = 0x7fffffff

enum CUpti_ActivitylnstructionClass

SASS instruction classification.

The sass instruction are broadly divided into different class. Each enum represents a
classification.

Values
CUPTI_ACTIVITY_INSTRUCTION_CLASS UNKNOWN =0

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 46

Modules

The instruction class is not known.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_FP_32=1

Represents a 32 bit floating point operation.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_FP_64 =2

Represents a 64 bit floating point operation.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_INTEGER =3

Represents an integer operation.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_BIT_CONVERSION =4

Represents a bit conversion operation.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_CONTROL_FLOW =5

Represents a control flow instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_GLOBAL =6

Represents a global load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_SHARED =7

Represents a shared load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_LOCAL =8

Represents a local load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_GENERIC =9

Represents a generic load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_SURFACE =10

Represents a surface load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_CONSTANT =11

Represents a constant load instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_TEXTURE =12

Represents a texture load-store instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_GLOBAL_ATOMIC =13

Represents a global atomic instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_SHARED_ATOMIC =14

Represents a shared atomic instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_SURFACE_ATOMIC =15

Represents a surface atomic instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_INTER_THREAD_COMMUNICATION
=16

Represents a inter-thread communication instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_BARRIER =17

Represents a barrier instruction.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_MISCELLANEOUS =18

Represents some miscellaneous instructions which do not fit in the above

classification.
CUPTI_ACTIVITY_INSTRUCTION_CLASS_KIND_FORCE_INT = 0x7fffffff

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 47

enum CUpti_ActivityKind

The kinds of activity records.

Modules

Each activity record kind represents information about a GPU or an activity occurring
on a CPU or GPU. Each kind is associated with a activity record structure that holds the

information associated with the kind.

See also:

CUpti_Activity
CUpti_Activity API
CUpti_ActivityContext
CUpti_ActivityDevice
CUpti_ActivityDeviceAttribute
CUpti_ActivityEvent
CUpti_ActivityEventInstance
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityPreemption
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2
CUpti_ActivityMemset
CUpti_ActivityMetric
CUpti_ActivityMetricInstance
CUpti_ActivityName
CUpti_ActivityMarker
CUpti_ActivityMarkerData
CUpti_ActivitySourceLocator
CUpti_ActivityGlobal Access
CUpti_ActivityGlobal Access2
CUpti_ActivityBranch
CUpti_ActivityBranch2

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 48

Modules

CUpti_ActivityOverhead
CUpti_ActivityEnvironment
CUpti_ActivityInstructionExecution
CUpti_ActivityUnifiedMemoryCounter
CUpti_ActivityFunction
CUpti_ActivityModule
CUpti_ActivityShared Access

Values

CUPTI_ACTIVITY_KIND_INVALID =0
The activity record is invalid.
CUPTI_ACTIVITY_KIND_MEMCPY =1
A host<->host, host<->device, or device<->device memory copy. The corresponding
activity record structure is CUpti_ActivityMemcpy.
CUPTI_ACTIVITY_KIND_MEMSET =2
A memory set executing on the GPU. The corresponding activity record structure is
CUpti_ActivityMemset.
CUPTI_ACTIVITY_KIND_KERNEL =3
A kernel executing on the GPU. The corresponding activity record structure is
CUpti_ActivityKernel2.
CUPTI_ACTIVITY_KIND_DRIVER =4
A CUDA driver API function execution. The corresponding activity record structure
is CUpti_Activity APL.
CUPTI_ACTIVITY_KIND_RUNTIME =5
A CUDA runtime API function execution. The corresponding activity record
structure is CUpti_Activity APL
CUPTI_ACTIVITY_KIND_EVENT = 6
An event value. The corresponding activity record structure is CUpti_ActivityEvent.
CUPTI_ACTIVITY_KIND_METRIC =7
A metric value. The corresponding activity record structure is CUpti_ActivityMetric.
CUPTI_ACTIVITY_KIND_DEVICE =8
Information about a device. The corresponding activity record structure is
CUpti_ActivityDevice.
CUPTI_ACTIVITY_KIND_CONTEXT =9
Information about a context. The corresponding activity record structure is
CUpti_ActivityContext.
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL =10
A (potentially concurrent) kernel executing on the GPU. The corresponding activity
record structure is CUpti_ActivityKernel2.
CUPTI_ACTIVITY_KIND_NAME =11

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 49

Modules

Thread, device, context, etc. name. The corresponding activity record structure is
CUpti_ActivityName.
CUPTI_ACTIVITY_KIND_MARKER =12
Instantaneous, start, or end marker. The corresponding activity record structure is
CUpti_ActivityMarker.
CUPTI_ACTIVITY_KIND_MARKER_DATA =13
Extended, optional, data about a marker. The corresponding activity record structure
is CUpti_ActivityMarkerData.
CUPTI_ACTIVITY_KIND_SOURCE_LOCATOR =14
Source information about source level result. The corresponding activity record
structure is CUpti_ActivitySourcelLocator.
CUPTI_ACTIVITY_KIND_GLOBAL_ACCESS =15
Results for source-level global acccess. The corresponding activity record structure is
CUpti_ActivityGlobal Access2.
CUPTI_ACTIVITY_KIND_BRANCH =16
Results for source-level branch. The corresponding activity record structure is
CUpti_ActivityBranch?2.
CUPTI_ACTIVITY_KIND_OVERHEAD =17
Overhead activity records. The corresponding activity record structure is
CUpti_ActivityOverhead.
CUPTI_ACTIVITY_KIND_CDP_KERNEL =18
A CDP (CUDA Dynamic Parallel) kernel executing on the GPU. The corresponding
activity record structure is CUpti_ActivityCdpKernel. This activity can not be directly
enabled or disabled. It is enabled and disabled through concurrent kernel activity
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL
CUPTI_ACTIVITY_KIND_PREEMPTION =19
Preemption activity record indicating a preemption of a CDP (CUDA Dynamic
Parallel) kernel executing on the GPU. The corresponding activity record structure is
CUpti_ActivityPreemption.
CUPTI_ACTIVITY_KIND_ENVIRONMENT = 20
Environment activity records indicating power, clock, thermal, etc. levels of the GPU.
The corresponding activity record structure is CUpti_ActivityEnvironment.
CUPTI_ACTIVITY_KIND_EVENT_INSTANCE =21
An event value associated with a specific event domain instance. The corresponding
activity record structure is CUpti_ActivityEventInstance.
CUPTI_ACTIVITY_KIND_MEMCPY2 = 22
A peer to peer memory copy. The corresponding activity record structure is
CUpti_ActivityMemcpy?2.
CUPTI_ACTIVITY_KIND_METRIC_INSTANCE = 23
A metric value associated with a specific metric domain instance. The corresponding
activity record structure is CUpti_ActivityMetricInstance.
CUPTI_ACTIVITY_KIND_INSTRUCTION_EXECUTION = 24

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 50

Modules

SASS/Source line-by-line correlation record. The corresponding activity record
structure is CUpti_ActivityInstructionExecution.
CUPTI_ACTIVITY_KIND_UNIFIED_MEMORY_COUNTER = 25
Unified Memory counter record. The corresponding activity record structure is
CUpti_ActivityUnifiedMemoryCounter.
CUPTI_ACTIVITY_KIND_FUNCTION = 26
Device global/function record. The corresponding activity record structure is
CUpti_ActivityFunction.
CUPTI_ACTIVITY_KIND_MODULE = 27
CUDA Module record. The corresponding activity record structure is
CUpti_ActivityModule.
CUPTI_ACTIVITY_KIND_DEVICE_ATTRIBUTE = 28
A device attribute value. The corresponding activity record structure is
CUpti_ActivityDeviceAttribute.
CUPTI_ACTIVITY_KIND_SHARED_ACCESS =29
Results for source-level shared acccess. The corresponding activity record structure is
CUpti_ActivityShared Access.
CUPTI_ACTIVITY_KIND_FORCE_INT = 0x7fffffff

enum CUpti_ActivityMemcpyKind

The kind of a memory copy, indicating the source and destination targets of the copy.

Each kind represents the source and destination targets of a memory copy. Targets are
host, device, and array.

Values

CUPTI_ACTIVITY_MEMCPY_KIND_UNKNOWN =0
The memory copy kind is not known.
CUPTI_ACTIVITY_MEMCPY_KIND_HTOD =1
A host to device memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_DTOH =2
A device to host memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_HTOA =3
A host to device array memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_ATOH =4
A device array to host memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_ATOA =5
A device array to device array memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_ATOD =6
A device array to device memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_DTOA =7
A device to device array memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_DTOD =8

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 51

A device to device memory copy on the same device.
CUPTI_ACTIVITY_MEMCPY_KIND_HTOH =9

A host to host memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_PTOP =10

A peer to peer memory copy across different devices.
CUPTI_ACTIVITY_MEMCPY_KIND_FORCE_INT = 0x7fffffff

enum CUpti_ActivityMemoryKind

The kinds of memory accessed by a memory copy.

Each kind represents the type of the source or destination memory accessed by a
memory copy.

Values

CUPTI_ACTIVITY_MEMORY_KIND_UNKNOWN =0

The source or destination memory kind is unknown.
CUPTI_ACTIVITY_MEMORY_KIND_PAGEABLE =1

The source or destination memory is pageable.
CUPTI_ACTIVITY_MEMORY_KIND_PINNED =2

The source or destination memory is pinned.
CUPTI_ACTIVITY_MEMORY_KIND_DEVICE =3

The source or destination memory is on the device.
CUPTI_ACTIVITY_MEMORY_KIND_ARRAY =4

The source or destination memory is an array.
CUPTI_ACTIVITY_MEMORY_KIND_FORCE_INT = 0x7fffffff

enum CUpti_ActivityObjectKind

The kinds of activity objects.
See also:

CUpti_ActivityObjectKindId

Values

CUPTI_ACTIVITY_OBJECT_UNKNOWN =0

The object kind is not known.
CUPTI_ACTIVITY_OBJECT_PROCESS =1

A process.
CUPTI_ACTIVITY_OBJECT_THREAD =2

A thread.
CUPTI_ACTIVITY_OBJECT_DEVICE =3

A device.
CUPTI_ACTIVITY_OBJECT_CONTEXT =4

www.nvidia.com

Modules

CUPTI DA-05679-001 _v6.5 | 52

Modules

A context.
CUPTI_ACTIVITY_OBJECT_STREAM =5

A stream.
CUPTI_ACTIVITY_OBJECT_FORCE_INT = 0x7{ffffff

enum CUpti_ActivityOverheadKind

The kinds of activity overhead.

Values

CUPTI_ACTIVITY_OVERHEAD_UNKNOWN =0
The overhead kind is not known.
CUPTI_ACTIVITY_OVERHEAD_DRIVER_COMPILER =1
Compiler(JIT) overhead.
CUPTI_ACTIVITY_OVERHEAD_CUPTI_BUFFER_FLUSH = 1<<16
Activity buffer flush overhead.
CUPTI_ACTIVITY_OVERHEAD_CUPTI_INSTRUMENTATION = 2<<16
CUPTI instrumentation overhead.
CUPTI_ACTIVITY_OVERHEAD_CUPTI_RESOURCE = 3<<16
CUPTI resource creation and destruction overhead.
CUPTI_ACTIVITY_OVERHEAD_FORCE_INT = 0x7fffffff

enum CUpti_ActivityPreemptionKind

The kind of a preemption activity.

Values

CUPTI_ACTIVITY_PREEMPTION_KIND_UNKNOWN =0

The preemption kind is not known.
CUPTI_ACTIVITY_PREEMPTION_KIND_SAVE =1

Preemption to save CDP block.
CUPTI_ACTIVITY_PREEMPTION_KIND_RESTORE =2

Preemption to restore CDP block.
CUPTI_ACTIVITY_PREEMPTION_KIND_FORCE_INT = 0x7fffffff

enum CUpti_ActivityUnifiedMemoryCounterKind

Kind of the Unified Memory counter.

Many activities are associated with Unified Memory mechanism; among them are
tranfer from host to device, device to host, page fault at host side.

Values
CUPTI_ACTIVITY _UNIFIED MEMORY_COUNTER_KIND UNKNOWN =0

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 53

Modules

The unified memory counter kind is not known.
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_HTOD
=1

Number of bytes transfered from host to device
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_BYTES_TRANSFER_DTOH
=2

Number of bytes transfered from device to host
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_CPU_PAGE_FAULT_COUNT
=3

Number of CPU page faults
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_COUNT
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_KIND_FORCE_INT =
Ox7fffffff

enum CUpti_ActivityUnifiedMemoryCounterScope

Scope of the unified memory counter.

Values

CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_SCOPE_UNKNOWN =0

The unified memory counter scope is not known.
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_SCOPE_PROCESS_SINGLE_DEVICE
=1

Collect unified memory counter for single process on one device
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_SCOPE_PROCESS_ALL_DEVICES
=2

Collect unified memory counter for single process across all devices
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_SCOPE_COUNT
CUPTI_ACTIVITY_UNIFIED_MEMORY_COUNTER_SCOPE_FORCE_INT =
Ox7fffffff

enum CUpti_EnvironmentClocksThrottleReason
Reasons for clock throttling.
The possible reasons that a clock can be throttled. There can be more than one reason

that a clock is being throttled so these types can be combined by bitwise OR. These are
used in the clocksThrottleReason field in the Environment Activity Record.

Values

CUPTI_CLOCKS_THROTTLE_REASON_GPU_IDLE = 0x00000001
Nothing is running on the GPU and the clocks are dropping to idle state.
CUPTI_CLOCKS_THROTTLE_REASON_USER_DEFINED_CLOCKS = 0x00000002
The GPU clocks are limited by a user specified limit.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 54

Modules

CUPTI_CLOCKS_THROTTLE_REASON_SW_POWER_CAP = 0x00000004
A software power scaling algorithm is reducing the clocks below requested clocks.
CUPTI_CLOCKS_THROTTLE_REASON_HW_SLOWDOWN = 0x00000008
Hardware slowdown to reduce the clock by a factor of two or more is engaged. This
is an indicator of one of the following: 1) Temperature is too high, 2) External power
brake assertion is being triggered (e.g. by the system power supply), 3) Change in
power state.
CUPTI_CLOCKS_THROTTLE_REASON_UNKNOWN = 0x80000000
Some unspecified factor is reducing the clocks.
CUPTI_CLOCKS_THROTTLE_REASON_UNSUPPORTED = 0x40000000
Throttle reason is not supported for this GPU.
CUPTI_CLOCKS_THROTTLE_REASON_NONE = 0x00000000
No clock throttling.
CUPTI_CLOCKS_THROTTLE_REASON_FORCE_INT = 0x7fffffff

typedef (*CUpti_BuffersCallbackCompleteFunc)
(CUcontext context, uint32_t streamld, uint8_t* buffer,

size_t size, size_t validSize)
Function type for callback used by CUPTI to return a buffer of activity records.

This callback function returns to the CUPTI client a buffer containing activity records.
The buffer contains validsSize bytes of activity records which should be read using
cuptiActivityGetNextRecord. The number of dropped records can be read using
cuptiActivityGetNumDroppedRecords. After this call CUPTI relinquished ownership

of the buffer and will not use it anymore. The client may return the buffer to CUPTI
using the CUpti_BuffersCallbackRequestFunc callback. Note: CUDA 6.0 onwards, all
buffers returned by this callback are global buffers i.e. there is no context/stream specific
buffer. User needs to parse the global buffer to extract the context/stream specific activity
records.

typedef (*CUpti_BuffersCallbackRequestFunc) (uint8_t*

buffer, size_t size, size_t* maxNumRecords)

Function type for callback used by CUPTI to request an empty buffer for storing activity
records.

This callback function signals the CUPTI client that an activity buffer is needed by
CUPTI. The activity buffer is used by CUPTI to store activity records. The callback
function can decline the request by setting *buffer to NULL. In this case CUPTI may
drop activity records.

CUptiResult
cuptiActivityConfigureUnifiedMemoryCounter

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 55

Modules

(CUpti_ActivityUnifiedMemoryCounterConfig *config,
uint32_t count)

Set Unified Memory Counter configuration.

Parameters

config
A pointer to CUpti_ActivityUnifiedMemoryCounterConfig structures containing
Unified Memory counter configuration.

count
Number of Unified Memory counter configuration structures

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTIL_ERROR_INVALID_PARAMETER

if configis NULL or any parameter in the config structures is not a valid value
» CUPTI_ERROR_NOT_SUPPORTED

Indicates that the system/device does not support the unified memory counters

CUptiResult cuptiActivityDisable (CUpti_ActivityKind
kind)

Disable collection of a specific kind of activity record.

Parameters

kind
The kind of activity record to stop collecting

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_KIND

if the activity kind is not supported

Description

Disable collection of a specific kind of activity record. Multiple kinds can be disabled
by calling this function multiple times. By default all activity kinds are disabled for
collection.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 56

Modules

CUptiResult cuptiActivityDisableContext (CUcontext
context, CUpti_ActivityKind kind)

Disable collection of a specific kind of activity record for a context.

Parameters

context

The context for which activity is to be disabled
kind

The kind of activity record to stop collecting
Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_KIND

if the activity kind is not supported

Description

Disable collection of a specific kind of activity record for a context. This setting done by
this API will supersede the global settings for activity records. Multiple kinds can be
enabled by calling this function multiple times.

CUptiResult cuptiActivityEnable (CUpti_ActivityKind
kind)

Enable collection of a specific kind of activity record.

Parameters

kind
The kind of activity record to collect

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_NOT_COMPATIBLE

if the activity kind cannot be enabled
» CUPTI_ERROR_INVALID_KIND

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 57

Modules

if the activity kind is not supported

Description

Enable collection of a specific kind of activity record. Multiple kinds can be enabled
by calling this function multiple times. By default all activity kinds are disabled for
collection.

CUptiResult cuptiActivityEnableContext (CUcontext
context, CUpti_ActivityKind kind)

Enable collection of a specific kind of activity record for a context.

Parameters

context

The context for which activity is to be enabled
kind

The kind of activity record to collect

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_NOT_COMPATIBLE

if the activity kind cannot be enabled
» CUPTI_ERROR_INVALID_KIND

if the activity kind is not supported

Description

Enable collection of a specific kind of activity record for a context. This setting

done by this API will supersede the global settings for activity records enabled by
cuptiActivityEnable. Multiple kinds can be enabled by calling this function multiple
times.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 58

Modules

CUptiResult cuptiActivityFlush (CUcontext context,
uint32_t streamld, uint32_t flag)

Wait for all activity records are delivered via the completion callback.

Parameters

context
A valid CUcontext or NULL.
streamld
The stream ID.
flag
The flag can be set to indicate a forced flush. See CUpti_ActivityFlag

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_CUPTI_ERROR_INVALID_OPERATION

if not preceeded by a successful call to cuptiActivityRegisterCallbacks
» CUPTI_ERROR_UNKNOWN

an internal error occurred

Description

This function does not return until all activity records associated with the specified
context/stream are returned to the CUPTI client using the callback registered in
cuptiActivityRegisterCallbacks. To ensure that all activity records are complete, the
requested stream(s), if any, are synchronized.

If context is NULL, the global activity records (i.e. those not associated with a
particular stream) are flushed (in this case no streams are synchonized). If context is a
valid CUcontext and streamId is 0, the buffers of all streams of this context are flushed.
Otherwise, the buffers of the specified stream in this context is flushed.

Before calling this function, the buffer handling callback api must be activated by calling
cuptiActivityRegisterCallbacks.

*DEPRECATED** This method is deprecated CONTEXT and STREAMID will be
ignored. Use cuptiActivityFlushAll to flush all data.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 59

Modules

CUptiResult cuptiActivityFlushAll (uint32_t flag)

Wait for all activity records are delivered via the completion callback.

Parameters

flag
The flag can be set to indicate a forced flush. See CUpti_ActivityFlag

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_OPERATION

if not preceeded by a successful call to cuptiActivityRegisterCallbacks
» CUPTI_ERROR_UNKNOWN

an internal error occurred

Description

This function does not return until all activity records associated with all contexts/
streams (and the global buffers not associated with any stream) are returned to the
CUPTI client using the callback registered in cuptiActivityRegisterCallbacks. To ensure
that all activity records are complete, the requested stream(s), if any, are synchronized.

Before calling this function, the buffer handling callback api must be activated by calling
cuptiActivityRegisterCallbacks.

CUptiResult cuptiActivityGetAttribute
(CUpti_ActivityAttribute attr, size_t *valueSize, void

*value)
Read an activity API attribute.

Parameters

attr

The attribute to read
valueSize

Size of buffer pointed by the value, and returns the number of bytes written to value
value

Returns the value of the attribute

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 60

Modules

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attr is not an activity attribute
» CUPTI_ERROR_PARAMETER_SIZE NOT_SUFFICIENT

Indicates that the value buffer is too small to hold the attribute value.

Description

Read an activity API attribute and return it in *value.

CUptiResult cuptiActivityGetNextRecord (uint8_t
*puffer, size_t validBufferSizeBytes, CUpti_Activity
**record)

Iterate over the activity records in a buffer.

Parameters

buffer
The buffer containing activity records

validBufferSizeBytes
The number of valid bytes in the buffer.

record
Inputs the previous record returned by cuptiActivityGetNextRecord
and returns the next activity record from the buffer. If input value is
NULL, returns the first activity record in the buffer. Records of kind
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL may contain invalid (0)
timestamps, indicating that no timing information could be collected for lack of
device memory.

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_MAX_LIMIT_REACHED

if no more records in the buffer
» CUPTI_ERROR_INVALID PARAMETER

if buffer is NULL.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 61

Modules

Description

This is a helper function to iterate over the activity records in a buffer. A buffer of
activity records is typically obtained by using the cuptiActivityDequeueBuffer() function
or by receiving a CUpti_BuffersCallbackCompleteFunc callback.

An example of typical usage:

[CUpti Activity *record = NULL;
CUptiResult status = CUPTI SUCCESS;

do {
status = cuptiActivityGetNextRecord (buffer, validSize, &record);
if (status == CUPTI SUCCESS) {
// Use record here...
}
else if (status == CUPTI ERROR MAX LIMIT REACHED)
break;
else {
goto Error;
}
} while (1);

CUptiResult cuptiActivityGetNumDroppedRecords
(CUcontext context, uint32_t streamld, size_t *dropped)

Get the number of activity records that were dropped of insufficient buffer space.

Parameters

context
The context, or NULL to get dropped count from global queue
streamld
The stream ID
dropped
The number of records that were dropped since the last call to this function.

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_PARAMETER

if dropped is NULL

Description

Get the number of records that were dropped because of insufficient buffer

space. The dropped count includes records that could not be recorded because

CUPTI did not have activity buffer space available for the record (because the
CUpti_BuffersCallbackRequestFunc callback did not return an empty buffer of sufficient
size) and also CDP records that could not be record because the device-size buffer was

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 62

Modules

full (size is controlled by the CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP
attribute). The dropped count maintained for the queue is reset to zero when this
function is called.

CUptiResult cuptiActivityRegisterCallbacks
(CUpti_BuffersCallbackRequestFunc
funcBufferRequested,
CUpti_BuffersCallbackCompleteFunc
funcBufferCompleted)

Registers callback functions with CUPTI for activity buffer handling.

Parameters

funcBufferRequested
callback which is invoked when an empty buffer is requested by CUPTI
funcBufferCompleted
callback which is invoked when a buffer containing activity records is available from
CUPTI

Returns
» CUPTI_SUCCESS

» CUPTI_ERROR_INVALID_PARAMETER

if either funcBufferRequested or funcBufferCompletedis NULL

Description

This function registers two callback functions to be used in asynchronous buffer
handling. If registered, activity record buffers are handled using asynchronous
requested/completed callbacks from CUPTL

Registering these callbacks prevents the client from using CUPTI's blocking enqueue/
dequeue functions.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 63

Modules

CUptiResult cuptiActivitySetAttribute
(CUpti_ActivityAttribute attr, size_t *valueSize, void

*value)
Write an activity API attribute.

Parameters

attr

The attribute to write
valueSize

The size, in bytes, of the value
value

The attribute value to write

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attr is not an activity attribute
» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

Indicates that the value buffer is too small to hold the attribute value.

Description

Write an activity API attribute.

CUptiResult cuptiGetAutoBoostState (CUcontext
context, CUpti_ActivityAutoBoostState *state)

Get auto boost state.

Parameters

context
A valid CUcontext.

state
A pointer to CUpti_ActivityAutoBoostState structure which contains the current state
and the id of the process that has requested the current state

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 64

Modules

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_INVALID_PARAMETER

if CUcontext or state is NULL
» CUPTI_ERROR_NOT_SUPPORTED

Indicates that the device does not support auto boost
» CUPTI_ERROR_UNKNOWN

an internal error occurred

Description

The profiling results can be inconsistent in case auto boost is enabled. CUPTI tries to
disable auto boost while profiling. It can fail to disable in cases where user does not have
the permissions or CUDA_AUTO_BOOST env variable is set. The function can be used
to query whether auto boost is enabled.

CUptiResult cuptiGetContextld (CUcontext context,
uint32_t *contextld)

Get the ID of a context.

Parameters
context
The context
contextld
Returns a process-unique ID for the context
Returns
» CUPTI_SUCCESS
» CUPTI_ERROR_NOT _INITIALIZED
» CUPTI_ERROR_INVALID CONTEXT

The context is NULL or not valid.
» CUPTI_ERROR_INVALID PARAMETER

if contextIdis NULL

Description

Get the ID of a context.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 65

Modules

CUptiResult cuptiGetDeviceld (CUcontext context,
uint32_t *deviceld)

Get the ID of a device.

Parameters

context
The context, or NULL to indicate the current context.
deviceld
Returns the ID of the device that is current for the calling thread.

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_DEVICE

if unable to get device ID
» CUPTI_ERROR_INVALID_PARAMETER

if deviceIdis NULL

Description

If context is NULL, returns the ID of the device that contains the currently active
context. If context is non-NULL, returns the ID of the device which contains that
context. Operates in a similar manner to cudaGetDevice() or cuCtxGetDevice() but may
be called from within callback functions.

CUptiResult cuptiGetStreamld (CUcontext context,

CUstream stream, uint32_t *streamid)
Get the ID of a stream.

Parameters

context
If non-NULL then the stream is checked to ensure that it belongs to this context.
Typically this parameter should be null.
stream
The stream
streamld
Returns a context-unique ID for the stream

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 66

Modules

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_STREAM

if unable to get stream ID, or if context is non-NULL and stream does not belong
to the context

» CUPTI_ERROR_INVALID PARAMETER
if streamIdis NULL

Description

Get the ID of a stream. The stream ID is unique within a context (i.e. all streams within a
context will have unique stream IDs).

See also:

cuptiActivityEnqueueBuffer

cuptiActivityDequeueBuffer

CUptiResult cuptiGetTimestamp (uinté4_t *timestamp)
Get the CUPTI timestamp.

Parameters

timestamp
Returns the CUPTI timestamp

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_INVALID_PARAMETER

if timestamp is NULL

Description

Returns a timestamp normalized to correspond with the start and end timestamps
reported in the CUPTI activity records. The timestamp is reported in nanoseconds.

#define CUPTI_AUTO_BOOST_INVALID_CLIENT_PID O

An invalid/unknown process id.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 67

Modules

#define CUPTI_CORRELATION_ID_UNKNOWN 0

An invalid/unknown correlation ID. A correlation ID of this value indicates that there is
no correlation for the activity record.

#define CUPTI_GRID_ID_UNKNOWN OLL

An invalid/unknown grid ID.

#define CUPTI_SOURCE_LOCATOR_ID_UNKNOWN 0

The source-locator ID that indicates an unknown source location. There is not an actual
CUpti_ActivitySourceLocator object corresponding to this value.

#define CUPTI_TIMESTAMP_UNKNOWN OLL

An invalid/unknown timestamp for a start, end, queued, submitted, or completed time.

2.4. CUPTI Callback API

Functions, types, and enums that implement the CUPTI Callback API.

struct CUpti_CallbackData

Data passed into a runtime or driver API callback function.

struct CUpti_ModuleResourceData

Module data passed into a resource callback function.

struct CUpti_NvtxData

Data passed into a NVTX callback function.

struct CUpti_ResourceData

Data passed into a resource callback function.

struct CUpti_SynchronizeData

Data passed into a synchronize callback function.

enum CUpti_ApiCallbackSite

Specifies the point in an API call that a callback is issued.

Specifies the point in an API call that a callback is issued. This value is communicated to
the callback function via CUpti_CallbackData::callbackSite.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 68

Modules

Values

CUPTI_API_ENTER =0

The callback is at the entry of the API call.
CUPTI_API_EXIT=1

The callback is at the exit of the API call.
CUPTI_API_CBSITE_FORCE_INT = 0x7fffffff

enum CUpti_CallbackDomain

Callback domains.

Callback domains. Each domain represents callback points for a group of related API
functions or CUDA driver activity.

Values

CUPTI_CB_DOMAIN_INVALID =0

Invalid domain.
CUPTI_CB_DOMAIN_DRIVER_API=1

Domain containing callback points for all driver API functions.
CUPTI_CB_DOMAIN_RUNTIME_API =2

Domain containing callback points for all runtime API functions.
CUPTI_CB_DOMAIN_RESOURCE =3

Domain containing callback points for CUDA resource tracking.
CUPTI_CB_DOMAIN_SYNCHRONIZE = 4

Domain containing callback points for CUDA synchronization.
CUPTI_CB_DOMAIN_NVTX =5

Domain containing callback points for NVTX API functions.
CUPTI_CB_DOMAIN_SIZE =6
CUPTI_CB_DOMAIN_FORCE_INT = 0x7{ffffff

enum CUpti_CallbackldResource
Callback IDs for resource domain.

Callback IDs for resource domain, CUPTI_CB_DOMAIN_RESOURCE. This value is
communicated to the callback function via the cbid parameter.

Values

CUPTI_CBID_RESOURCE_INVALID =0

Invalid resource callback ID.
CUPTI_CBID_RESOURCE_CONTEXT_CREATED =1

A new context has been created.
CUPTI_CBID_RESOURCE_CONTEXT_DESTROY_STARTING =2

A context is about to be destroyed.
CUPTI_CBID_RESOURCE_STREAM_CREATED =3

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 69

Modules

A new stream has been created.
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING =4

A stream is about to be destroyed.
CUPTI_CBID_RESOURCE_CU_INIT_FINISHED =5

The driver has finished initializing.
CUPTI_CBID_RESOURCE_MODULE_LOADED = 6

A module has been loaded.
CUPTI_CBID_RESOURCE_MODULE_UNLOAD_STARTING =7

A module is about to be unloaded.
CUPTI_CBID_RESOURCE_MODULE_PROFILED =8

The current module which is being profiled.
CUPTI_CBID_RESOURCE_SIZE
CUPTI_CBID_RESOURCE_FORCE_INT = 0x7fffffff

enum CUpti_CallbackldSync

Callback IDs for synchronization domain.

Callback IDs for synchronization domain, CUPTI_CB_DOMAIN_SYNCHRONIZE. This
value is communicated to the callback function via the cbid parameter.

Values

CUPTI_CBID_SYNCHRONIZE_INVALID =0
Invalid synchronize callback ID.
CUPTI_CBID_SYNCHRONIZE_STREAM_SYNCHRONIZED =1
Stream synchronization has completed for the stream.
CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED =2
Context synchronization has completed for the context.
CUPTI_CBID_SYNCHRONIZE_SIZE
CUPTI_CBID_SYNCHRONIZE_FORCE_INT = 0x7{ffffff

typedef (*CUpti_CallbackFunc) (void* userdata,
CUpti_CallbackDomain domain, CUpti_Callbackld cbid,
const void* cbdata)

Function type for a callback.

Function type for a callback. The type of the data passed to the callback in cbdata
depends on the domain. If domain is CUPTI_CB_DOMAIN_DRIVER_API or
CUPTI_CB_DOMAIN_RUNTIME_API the type of cbdata will be CUpti_CallbackData.
If domain is CUPTI_CB_DOMAIN_RESOURCE the type of cbdata will be
CUpti_ResourceData. If domain is CUPTI_CB_DOMAIN_SYNCHRONIZE the type of
cbdata will be CUpti_SynchronizeData. If domain is CUPTI_CB_DOMAIN_NVTX the
type of cbdata will be CUpti_NvtxData.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 70

Modules

typedef uint32_t CUpti_Callbackld

An ID for a driver API, runtime AP resource or synchronization callback.

An ID for a driver API, runtime API, resource or synchronization callback. Within

a driver API callback this should be interpreted as a CUpti_driver_api_trace_cbid
value (these values are defined in cupti_driver_cbid.h). Within a runtime API callback
this should be interpreted as a CUpti_runtime_api_trace_cbid value (these values

are defined in cupti_runtime_cbid.h). Within a resource API callback this should be
interpreted as a CUpti_CallbackldResource value. Within a synchronize API callback
this should be interpreted as a CUpti_CallbackIdSync value.

typedef CUpti_DomainTable

Pointer to an array of callback domains.

typedef struct CUpti_Subscriber_st
*CUpti_SubscriberHandle

A callback subscriber.

CUptiResult cuptiEnableAllDomains (uint32_t enable,
CUpti_SubscriberHandle subscriber)

Enable or disable all callbacks in all domains.

Parameters

enable
New enable state for all callbacks in all domain. Zero disables all callbacks, non-zero
enables all callbacks.

subscriber
- Handle to callback subscription

Returns

» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialized CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if subscriber is invalid

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 71

Modules

Description

Enable or disable all callbacks in all domains.

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackState(sub, d, *) and cuptiEnableAllDomains(sub) are called
concurrently, the results are undefined.

CUptiResult cuptiEnableCallback (uint32_t
enable, CUpti_SubscriberHandle subscriber,
CUpti_CallbackDomain domain, CUpti_Callbackld cbid)

Enable or disabled callbacks for a specific domain and callback ID.

Parameters

enable
New enable state for the callback. Zero disables the callback, non-zero enables the
callback.
subscriber
- Handle to callback subscription
domain
The domain of the callback
cbid
The ID of the callback

Returns

» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialized CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if subscriber, domain or cbid is invalid.

Description

Enable or disabled callbacks for a subscriber for a specific domain and callback ID.

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 72

Modules

if cuptiGetCallbackState(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

CUptiResult cuptiEnableDomain (uint32_t
enable, CUpti_SubscriberHandle subscriber,
CUpti_CallbackDomain domain)

Enable or disabled all callbacks for a specific domain.

Parameters

enable
New enable state for all callbacks in the domain. Zero disables all callbacks, non-zero
enables all callbacks.
subscriber
- Handle to callback subscription
domain
The domain of the callback

Returns
» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialized CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if subscriber or domain is invalid

Description

Enable or disabled all callbacks for a specific domain.

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackEnabled(sub, d, *) and cuptiEnableDomain(sub, d) are called
concurrently, the results are undefined.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 73

Modules

CUptiResult cuptiGetCallbackName
(CUpti_CallbackDomain domain, uint32_t cbid, const
char **name)

Get the name of a callback for a specific domain and callback ID.

Parameters

domain
The domain of the callback
cbid
The ID of the callback
name
Returns pointer to the name string on success, NULL otherwise

Returns
» CUPTI_SUCCESS

on success
» CUPTI_ERROR_INVALID_PARAMETER

if name is NULL, or if domain or cbid is invalid.

Description

Returns a pointer to the name c_string in * *name.

n Names are available only for the DRIVER and RUNTIME domains.

CUptiResult cuptiGetCallbackState (uint32_t
*enable, CUpti_SubscriberHandle subscriber,
CUpti_CallbackDomain domain, CUpti_Callbackld cbid)

Get the current enabled/disabled state of a callback for a specific domain and function
ID.

Parameters

enable

Returns non-zero if callback enabled, zero if not enabled
subscriber

Handle to the initialize subscriber
domain

The domain of the callback

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 74

Modules

cbid
The ID of the callback

Returns

» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialized CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if enabledis NULL, or if subscriber, domain or cbid is invalid.

Description

Returns non-zero in *enable if the callback for a domain and callback ID is enabled,
and zero if not enabled.

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackState(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

CUptiResult cuptiSubscribe (CUpti_SubscriberHandle
*subscriber, CUpti_CallbackFunc callback, void
*userdata)

Initialize a callback subscriber with a callback function and user data.

Parameters

subscriber
Returns handle to initialize subscriber
callback
The callback function
userdata
A pointer to user data. This data will be passed to the callback function via the
userdata paramater.

Returns
» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 75

Modules

if unable to initialize CUPTI
» CUPTI_ERROR_MAX_LIMIT REACHED

if there is already a CUPTI subscriber
» CUPTI_ERROR_INVALID_PARAMETER

if subscriber is NULL

Description

Initializes a callback subscriber with a callback function and (optionally) a pointer to
user data. The returned subscriber handle can be used to enable and disable the callback
for specific domains and callback IDs.

» Only a single subscriber can be registered at a time.
» This function does not enable any callbacks.
» Thread-safety: this function is thread safe.

CUptiResult cuptiSupportedDomains (size_t
*domainCount, CUpti_DomainTable *domainTable)

Get the available callback domains.

Parameters

domainCount
Returns number of callback domains
domainTable
Returns pointer to array of available callback domains

Returns

» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialize CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if domainCount or domainTable are NULL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 76

Modules

Description

Returns in *domainTable an array of size *domainCount of all the available callback
domains.

n Thread-safety: this function is thread safe.

CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle
subscriber)

Unregister a callback subscriber.

Parameters

subscriber
Handle to the initialize subscriber

Returns

» CUPTI_SUCCESS

on success
» CUPTI_ERROR_NOT_INITIALIZED

if unable to initialized CUPTI
» CUPTI_ERROR_INVALID PARAMETER

if subscriber is NULL or not initialized

Description

Removes a callback subscriber so that no future callbacks will be issued to that
subscriber.

n Thread-safety: this function is thread safe.

2.5. CUPTI Event API

Functions, types, and enums that implement the CUPTI Event APL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 77

Modules

struct CUpti_EventGroupSet

A set of event groups.

struct CUpti_EventGroupSets

A set of event group sets.

enum CUpti_DeviceAttribute

Device attributes.

CUPTI device attributes. These attributes can be read using cuptiDeviceGetAttribute.

Values

CUPTI_DEVICE_ATTR_MAX_EVENT_ID =1

Number of event IDs for a device. Value is a uint32_t.
CUPTI_DEVICE_ATTR_MAX_EVENT_DOMAIN_ID =2

Number of event domain IDs for a device. Value is a uint32_t.
CUPTI_DEVICE_ATTR_GLOBAL_MEMORY_BANDWIDTH =3

Get global memory bandwidth in Kbytes/sec. Value is a uint64_t.
CUPTI_DEVICE_ATTR_INSTRUCTION_PER_CYCLE =4

Get theoretical maximum number of instructions per cycle. Value is a uint32_t.
CUPTI_DEVICE_ATTR_INSTRUCTION_THROUGHPUT_SINGLE_PRECISION =5

Get theoretical maximum number of single precision instructions that can be

executed per second. Value is a uint64_t.
CUPTI_DEVICE_ATTR_MAX_FRAME_BUFFERS =6

Get number of frame buffers for device. Value is a uint64_t.
CUPTI_DEVICE_ATTR_PCIE_LINK_RATE =7

Get PCIE link rate in Mega bits/sec for device. Return 0 if bus-type is non-PCIE. Value

is a uint64 _t.
CUPTI_DEVICE_ATTR_PCIE_LINK_WIDTH =8

Get PCIE link width for device. Return 0 if bus-type is non-PCIE. Value is a uint64_t.
CUPTI_DEVICE_ATTR_PCIE_GEN =9

Get PCIE generation for device. Return 0 if bus-type is non-PCIE. Value is a uint64_t.
CUPTI_DEVICE_ATTR_DEVICE_CLASS =10

Get the class for the device. Value is a CUpti_DeviceAttributeDeviceClass.
CUPTI_DEVICE_ATTR_FLOP_SP_PER_CYCLE =11

Get the peak single precision flop per cycle. Value is a uint64_t.
CUPTI_DEVICE_ATTR_FLOP_DP_PER_CYCLE =12

Get the peak double precision flop per cycle. Value is a uint64_t.
CUPTI_DEVICE_ATTR_MAX_L2_UNITS =13

Get number of L2 units. Value is a uint64_t.
CUPTI_DEVICE_ATTR_FORCE_INT = 0x7fffffff

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 78

enum CUpti_DeviceAttributeDeviceClass
Device class.

Enumeration of device classes for device attribute
CUPTI_DEVICE_ATTR_DEVICE_CLASS.

Values

CUPTI_DEVICE_ATTR_DEVICE_CLASS_TESLA =0
CUPTI_DEVICE_ATTR_DEVICE_CLASS_QUADRO =1
CUPTI_DEVICE_ATTR_DEVICE_CLASS_GEFORCE =2

enum CUpti_EventAttribute

Event attributes.

Event attributes. These attributes can be read using cuptiEventGetAttribute.

Values

CUPTI_EVENT_ATTR_NAME =0

Event name. Value is a null terminated const c-string.
CUPTI_EVENT_ATTR_SHORT_DESCRIPTION =1

Short description of event. Value is a null terminated const c-string.
CUPTI_EVENT_ATTR_LONG_DESCRIPTION =2

Long description of event. Value is a null terminated const c-string.
CUPTI_EVENT_ATTR_CATEGORY =3

Category of event. Value is CUpti_EventCategory.
CUPTI_EVENT_ATTR_FORCE_INT = 0x7fffffff

enum CUpti_EventCategory
An event category.
Each event is assigned to a category that represents the general type of the

event. A event's category is accessed using cuptiEventGetAttribute and the
CUPTI_EVENT_ATTR_CATEGORY attribute.

Values

CUPTI_EVENT_CATEGORY_INSTRUCTION =0

An instruction related event.
CUPTI_EVENT_CATEGORY_MEMORY =1

A memory related event.
CUPTI_EVENT_CATEGORY_CACHE =2

A cache related event.
CUPTI_EVENT_CATEGORY_PROFILE_TRIGGER =3

www.nvidia.com

Modules

CUPTI DA-05679-001 _v6.5 | 79

Modules

A profile-trigger event.
CUPTI_EVENT_CATEGORY_FORCE_INT = 0x7fffffff

enum CUpti_EventCollectionMethod

The collection method used for an event.

The collection method indicates how an event is collected.

Values

CUPTI_EVENT_COLLECTION_METHOD_PM =0

Event is collected using a hardware global performance monitor.
CUPTI_EVENT_COLLECTION_METHOD_SM =1

Event is collected using a hardware SM performance monitor.
CUPTI_EVENT_COLLECTION_METHOD_INSTRUMENTED = 2

Event is collected using software instrumentation.
CUPTI_EVENT_COLLECTION_METHOD_FORCE_INT = Ox7fffffff

enum CUpti_EventCollectionMode

Event collection modes.

The event collection mode determines the period over which the events within the
enabled event groups will be collected.

Values

CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS =0
Events are collected for the entire duration between the cuptiEventGroupEnable and
cuptiEventGroupDisable calls. For devices with compute capability less than 2.0,
event values are reset when a kernel is launched. For all other devices event values
are only reset when the events are read. For CUDA toolkit v6.0 and older this was the
default mode. From CUDA toolkit v6.5 this mode is supported on Tesla devices only.

CUPTI_EVENT_COLLECTION_MODE_KERNEL =1
Events are collected only for the durations of kernel executions that occur between
the cuptiEventGroupEnable and cuptiEventGroupDisable calls. Event collection
begins when a kernel execution begins, and stops when kernel execution completes.
Event values are reset to zero when each kernel execution begins. If multiple kernel
executions occur between the cuptiEventGroupEnable and cuptiEventGroupDisable
calls then the event values must be read after each kernel launch if those events need
to be associated with the specific kernel launch. This is the default mode from CUDA
toolkit v6.5, and it is the only supported mode for non-Tesla (Quadro, GeForce etc.)
devices.

CUPTI_EVENT_COLLECTION_MODE_FORCE_INT = 0x7fffffff

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 80

Modules

enum CUpti_EventDomainAttribute

Event domain attributes.

Event domain attributes. Except where noted, all the attributes can be read using either
cuptiDeviceGetEventDomainAttribute or cuptiEventDomainGetAttribute.

Values

CUPTI_EVENT_DOMAIN_ATTR_NAME =0

Event domain name. Value is a null terminated const c-string.
CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT =1

Number of instances of the domain for which event counts will be collected.

The domain may have additional instances that cannot be profiled (see

CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT). Can be read only

with cuptiDeviceGetEventDomainAttribute. Value is a uint32_t.
CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT =3

Total number of instances of the domain, including instances that cannot

be profiled. Use CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT

to get the number of instances that can be profiled. Can be read only with

cuptiDeviceGetEventDomainAttribute. Value is a uint32_t.
CUPTI_EVENT_DOMAIN_ATTR_COLLECTION_METHOD =4

Collection method used for events contained in the event domain. Value is a

CUpti_EventCollectionMethod.
CUPTI_EVENT_DOMAIN_ATTR_FORCE_INT = 0x7fffffff

enum CUpti_EventGroupAttribute

Event group attributes.

Event group attributes. These attributes can be read using
cuptiEventGroupGetAttribute. Attributes marked [rw] can also be written using
cuptiEventGroupSetAttribute.

Values

CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID =0
The domain to which the event group is bound. This attribute is set when the first
event is added to the group. Value is a CUpti_EventDomainID.
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES =1
[rw] Profile all the instances of the domain for this eventgroup. This feature can be
used to get load balancing across all instances of a domain. Value is an integer.
CUPTI_EVENT_GROUP_ATTR_USER_DATA =2
[rw] Reserved for user data.
CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS =3
Number of events in the group. Value is a uint32_t.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 81

Modules

CUPTI_EVENT_GROUP_ATTR_EVENTS =4
Enumerates events in the group. Value is a pointer to buffer of size
sizeof(CUpti_EventID) * num_of_events in the eventgroup. num_of_events can be
queried using CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS.
CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT =5
Number of instances of the domain bound to this event group that will be counted.
Value is a uint32_t.
CUPTI_EVENT_GROUP_ATTR_FORCE_INT = 0x7fffffff

enum CUpti_ReadEventFlags

Flags for cuptiEventGroupReadEvent an cuptiEventGroupRead AllEvents.
Flags for cuptiEventGroupReadEvent an cuptiEventGroupRead AllEvents.

Values

CUPTI_EVENT_READ_FLAG_NONE=0
No flags.
CUPTI_EVENT_READ_FLAG_FORCE_INT = Ox7fffffff

typedef uint32_t CUpti_EventDomainlID

ID for an event domain.

ID for an event domain. An event domain represents a group of related events. A device
may have multiple instances of a domain, indicating that the device can simultaneously
record multiple instances of each event within that domain.

typedef void *CUpti_EventGroup

A group of events.

An event group is a collection of events that are managed together. All events in an
event group must belong to the same domain.

typedef uint32_t CUpti_EventID

ID for an event.

An event represents a countable activity, action, or occurrence on the device.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 82

Modules

CUptiResult cuptiDeviceEnumEventDomains (CUdevice
device, size_t *arraySizeBytes, CUpti_EventDomainID
*domainArray)

Get the event domains for a device.

Parameters

device
The CUDA device
arraySizeBytes
The size of domainArray in bytes, and returns the number of bytes written to
domainArray
domainArray
Returns the IDs of the event domains for the device

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITTIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_PARAMETER

if arraySizeBytes or domainArray are NULL

Description

Returns the event domains IDs in domainArray for a device. The size of the
domainArray buffer is given by *arraySizeBytes. The size of the domainArray
buffer must be at least numdomains * sizeof(CUpti_EventDomainID) or else all domains
will not be returned. The value returned in *arraySizeBytes contains the number of
bytes returned in domainArray.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 83

Modules

CUptiResult cuptiDeviceGetAttribute (CUdevice device,
CUpti_DeviceAttribute attrib, size_t *valueSize, void
*value)

Read a device attribute.

Parameters

device
The CUDA device
attrib
The attribute to read
valueSize
Size of buffer pointed by the value, and returns the number of bytes written to value
value
Returns the value of the attribute

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not a device attribute
» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Read a device attribute and return it in *value.

n Thread-safety: this function is thread safe.

CUptiResult cuptiDeviceGetEventDomainAttribute
(CUdevice device, CUpti_EventDomainID eventDomain,

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 84

Modules

CUpti_EventDomainAttribute attrib, size_t *valueSize,
void *value)

Read an event domain attribute.

Parameters

device
The CUDA device
eventDomain
ID of the event domain
attrib
The event domain attribute to read
valueSize
The size of the value buffer in bytes, and returns the number of bytes written to
value
value
Returns the attribute's value

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not an event domain attribute
» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Returns an event domain attribute in *value. The size of the value buffer is given
by *valueSize. The value returned in *valueSize contains the number of bytes
returned in value.

If the attribute value is a c-string that is longer than *valueSize, then only the first
*valueSize characters will be returned and there will be no terminating null byte.

Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 85

Modules

CUptiResult cuptiDeviceGetNumEventDomains
(CUdevice device, uint32_t *numDomains)

Get the number of domains for a device.

Parameters

device

The CUDA device
numDomains

Returns the number of domains

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_PARAMETER

if numDomains is NULL

Description

Returns the number of domains in numDomains for a device.

n Thread-safety: this function is thread safe.

CUptiResult cuptiDeviceGetTimestamp (CUcontext
context, uint64_t *timestamp)

Read a device timestamp.

Parameters

context

A context on the device from which to get the timestamp
timestamp

Returns the device timestamp

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 86

Modules

» CUPTI_ERROR_INVALID_CONTEXT
» CUPTI_ERROR_INVALID_PARAMETER

is timestamp is NULL

Description

Returns the device timestamp in *timestamp. The timestamp is reported in
nanoseconds and indicates the time since the device was last reset.

n Thread-safety: this function is thread safe.

CUptiResult cuptiDisableKernelReplayMode (CUcontext
context)

Disable kernel replay mode.

Parameters

context
The context

Returns

» CUPTI_SUCCESS

Description

Set profiling mode for the context to non-replay (default) mode. Event collection mode
will be set to CUPTI_EVENT_COLLECTION_MODE_KERNEL. All previously enabled
event groups and event group sets will be disabled.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEnableKernelReplayMode (CUcontext
context)

Enable kernel replay mode.

Parameters

context
The context

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 87

Modules

Returns

» CUPTI_SUCCESS

Description

Set profiling mode for the context to replay mode. In this mode, any number of

events can be collected in one run of the kernel. The event collection mode will
automatically switch to CUPTI_EVENT_COLLECTION_MODE_KERNEL. In this mode,
cuptiSetEventCollectionMode will return CUPTI_ERROR_INVALID_OPERATION.

» Kernels might take longer to run if many events are enabled.
» Thread-safety: this function is thread safe.

CUptiResult cuptiEnumEventDomains (size_t
*arraySizeBytes, CUpti_EventDomainID *domainArray)

Get the event domains available on any device.

Parameters

arraySizeBytes
The size of domainArray in bytes, and returns the number of bytes written to
domainArray

domainArray
Returns all the event domains

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_INVALID_PARAMETER

if arraySizeBytes or domainArray are NULL

Description

Returns all the event domains available on any CUDA-capable device. Event domain
IDs are returned in domainArray. The size of the domainArray buffer is given by
*arraySizeBytes. The size of the domainArray buffer must be at least numDomains
* sizeof(CUpti_EventDomainID) or all domains will not be returned. The value returned
in *arraySizeBytes contains the number of bytes returned in domainArray.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 88

Modules

CUptiResult cuptiEventDomainEnumEvents
(CUpti_EventDomainID eventDomain, size_t
*arraySizeBytes, CUpti_EventID *eventArray)

Get the events in a domain.

Parameters

eventDomain
ID of the event domain
arraySizeBytes
The size of eventArray in bytes, and returns the number of bytes written to
eventArray
eventArray
Returns the IDs of the events in the domain

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID
» CUPTI_ERROR_INVALID_PARAMETER

if arraySizeBytes or eventArray are NULL

Description

Returns the event IDs in eventArray for a domain. The size of the eventArray buffer
is given by *arraySizeBytes. The size of the eventArray buffer must be at least
numdomainevents * sizeof(CUpti_EventID) or else all events will not be returned.

The value returned in *arraySizeBytes contains the number of bytes returned in
eventArray.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventDomainGetAttribute
(CUpti_EventDomainID eventDomain,

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 89

Modules

CUpti_EventDomainAttribute attrib, size_t *valueSize,
void *value)

Read an event domain attribute.

Parameters

eventDomain
ID of the event domain
attrib
The event domain attribute to read
valueSize
The size of the value buffer in bytes, and returns the number of bytes written to
value
value
Returns the attribute's value

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not an event domain attribute
» CUPTI_ERROR_PARAMETER_SIZE NOT_SUFFICIENT

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Returns an event domain attribute in *value. The size of the value buffer is given
by *valueSize. The value returned in *valueSize contains the number of bytes
returned in value.

If the attribute value is a c-string that is longer than *valueSize, then only the first
*valueSize characters will be returned and there will be no terminating null byte.

Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 90

Modules

CUptiResult cuptiEventDomainGetNumEvents
(CUpti_EventDomainID eventDomain, uint32_t
*numEvents)

Get number of events in a domain.

Parameters

eventDomain
ID of the event domain
numEvents
Returns the number of events in the domain

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITTALIZED

» CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID
» CUPTI_ERROR_INVALID_PARAMETER

if numEvents is NULL

Description

Returns the number of events in numEvents for a domain.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGetAttribute (CUpti_EventID
event, CUpti_EventAttribute attrib, size_t *valueSize,
void *value)

Get an event attribute.

Parameters

event
ID of the event
attrib
The event attribute to read

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 91

Modules

valueSize
The size of the value buffer in bytes, and returns the number of bytes written to
value

value
Returns the attribute's value

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_ID

» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not an event attribute
» CUPTI_ERROR_PARAMETER_SIZE NOT_SUFFICIENT

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Returns an event attribute in *value. The size of the value buffer is given by
*valueSize. The value returned in *valueSize contains the number of bytes
returned in value.

If the attribute value is a c-string that is longer than *valueSize, then only the first
*valueSize characters will be returned and there will be no terminating null byte.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGetldFromName (CUdevice
device, const char *eventName, CUpti_EventID *event)

Find an event by name.

Parameters

device
The CUDA device
eventName
The name of the event to find
event
Returns the ID of the found event or undefined if unable to find the event

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 92

Modules

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_EVENT_NAME

if unable to find an event with name eventName. In this case *event is undefined
» CUPTI_ERROR_INVALID PARAMETER

if eventName or event are NULL

Description

Find an event by name and return the event ID in *event.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupAddEvent
(CUpti_EventGroup eventGroup, CUpti_EventID event)

Add an event to an event group.

Parameters

eventGroup
The event group
event
The event to add to the group

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_ID

» CUPTI_ERROR_OUT_OF_MEMORY

» CUPTI_ERROR_INVALID_OPERATION

if eventGroup is enabled
» CUPTI_ERROR_NOT_COMPATIBLE

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 93

Modules

if event belongs to a different event domain than the events already in
eventGroup, or if a device limitation prevents event from being collected at the
same time as the events already in eventGroup

CUPTI_ERROR_MAX_LIMIT_REACHED

if eventGroup is full
CUPTI_ERROR_INVALID_PARAMETER

if eventGroup is NULL

Description

Add an event to an event group. The event add can fail for a number of reasons:

>

>

The event group is enabled

The event does not belong to the same event domain as the events that are already in
the event group

Device limitations on the events that can belong to the same group

The event group is full

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupCreate (CUcontext
context, CUpti_EventGroup *eventGroup, uint32_t flags)

Create a new event group for a context.

Parameters

context

The context for the event group

eventGroup

Returns the new event group

flags

Reserved - must be zero

Returns

>

>

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_CONTEXT
CUPTI_ERROR_OUT_OF_MEMORY
CUPTI_ERROR_INVALID_PARAMETER

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 94

Modules

if eventGroup is NULL

Description

Creates a new event group for context and returns the new group in *eventGroup.

» flags are reserved for future use and should be set to zero.
» Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup
eventGroup)

Destroy an event group.

Parameters

eventGroup
The event group to destroy

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_OPERATION

if the event group is enabled
» CUPTIL_ERROR_INVALID_PARAMETER

if eventGroup is NULL

Description

Destroy an eventGroup and free its resources. An event group cannot be destroyed if it
is enabled.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 95

Modules

CUptiResult cuptiEventGroupDisable (CUpti_EventGroup
eventGroup)

Disable an event group.

Parameters

eventGroup

The event group

Returns

>

>

>

>

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_HARDWARE
CUPTI_ERROR_INVALID_PARAMETER

if eventGroup is NULL

Description

Disable an event group. Disabling an event group stops collection of events contained in
the group.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupEnable (CUpti_EventGroup
eventGroup)

Enable an event group.

Parameters

eventGroup

The event group

Returns

>

>

>

>

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_HARDWARE
CUPTI_ERROR_NOT_READY

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 96

Modules

if eventGroup does not contain any events
» CUPTI_ERROR_NOT_COMPATIBLE

if eventGroup cannot be enabled due to other already enabled event groups
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroup is NULL
» CUPTI_ERROR_HARDWARE_BUSY

if another client is profiling and hardware is busy

Description

Enable an event group. Enabling an event group zeros the value of all the events in the
group and then starts collection of those events.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupGetAttribute
(CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, size_t *valueSize,
void *value)

Read an event group attribute.

Parameters

eventGroup
The event group
attrib
The attribute to read
valueSize
Size of buffer pointed by the value, and returns the number of bytes written to value
value
Returns the value of the attribute

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not an eventgroup attribute
» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 97

Modules

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Read an event group attribute and return it in *value.

Thread-safety: this function is thread safe but client must guard against simultaneous
destruction or modification of eventGroup (for example, client must guard

against simultaneous calls to cuptiEventGroupDestroy, cuptiEventGroupAddEvent,
etc.), and must guard against simultaneous destruction of the context in which
eventGroup was created (for example, client must guard against simultaneous calls
to cudaDeviceReset, cuCtxDestroy, etc.).

CUptiResult cuptiEventGroupReadAllEvents
(CUpti_EventGroup eventGroup, CUpti_ReadEventFlags
flags, size_t *eventValueBufferSizeBytes, uinté64_t
*eventValueBuffer, size_t *eventldArraySizeBytes,
CUpti_EventID *eventldArray, size_t *numEventldsRead)

Read the values for all the events in an event group.

Parameters

eventGroup
The event group
flags
Flags controlling the reading mode
eventValueBufferSizeBytes
The size of eventValueBuffer in bytes, and returns the number of bytes written to
eventValueBuffer
eventValueBuffer
Returns the event values
eventldArraySizeBytes
The size of eventIdArray in bytes, and returns the number of bytes written to
eventIdArray
eventldArray
Returns the IDs of the events in the same order as the values return in
eventValueBuffer.
numEventIdsRead
Returns the number of event IDs returned in eventIdArray

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 98

Modules

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_HARDWARE

» CUPTI_ERROR_INVALID_OPERATION

if eventGroup is disabled
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroup, eventValueBufferSizeBytes, eventValueBuffer,
eventIdArraySizeBytes, eventIdArray or numEventIdsRead is NULL

Description

Read the values for all the events in an event group. The event values are returned in
the eventValueBuffer buffer. eventValueBufferSizeBytes indicates the size
of eventValueBuf fer. The buffer must be at least (sizeof(uint64) * number of events
in group) if CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
is not set on the group containing the events. The buffer must be at least
(sizeof(uint64) * number of domain instances * number of events in group) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on the

group.
The data format returned in eventvValueBufferis:

» domain instance 0: event0 event] ... eventN
» domain instance 1: event0O eventl ... eventN

>

» domain instance M: event(eventl ... eventN

The event order in eventValueBuffer is returned in eventIdArray. The size of
eventIdArray is specified in eventIdArraySizeBytes. The size should be at least
(sizeof(CUpti_EventID) * number of events in group).

If any instance of any event counter overflows, the value returned for that event instance
will be CUPTI_EVENT_OVERFLOW.

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading events from a disabled event group is not allowed. After being read, an event's
value is reset to zero.

Thread-safety: this function is thread safe but client must guard against simultaneous
destruction or modification of eventGroup (for example, client must guard

against simultaneous calls to cuptiEventGroupDestroy, cuptiEventGroupAddEvent,
etc.), and must guard against simultaneous destruction of the context in which

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 99

Modules

eventGroup was created (for example, client must guard against simultaneous calls
to cudaDeviceReset, cuCtxDestroy, etc.). If cuptiEventGroupResetAllEvents is called
simultaneously with this function, then returned event values are undefined.

CUptiResult cuptiEventGroupReadEvent
(CUpti_EventGroup eventGroup, CUpti_ReadEventFlags
flags, CUpti_EventID event, size_t
*eventValueBufferSizeBytes, uinté4_t
*eventValueBuffer)

Read the value for an event in an event group.

Parameters

eventGroup

The event group
flags

Flags controlling the reading mode
event

The event to read
eventValueBufferSizeBytes

The size of eventValueBuffer in bytes, and returns the number of bytes written to

eventValueBuffer
eventValueBuffer

Returns the event value(s)

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_ID

» CUPTI_ERROR_HARDWARE

» CUPTI_ERROR_INVALID_OPERATION

if eventGroup is disabled
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroup, eventValueBufferSizeBytes or eventValueBufferis
NULL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 100

Modules

Description

Read the value for an event in an event group. The event value is returned in

the eventValueBuffer buffer. eventValueBufferSizeBytes indicates the

size of the eventValueBuf fer buffer. The buffer must be at least sizeof(uint64)

if CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES

is not set on the group containing the event. The buffer must

be at least (sizeof(uint64) * number of domain instances) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on the

group.

If any instance of an event counter overflows, the value returned for that event instance
will be CUPTI_EVENT_OVERFLOW.

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading an event from a disabled event group is not allowed. After being read, an
event's value is reset to zero.

Thread-safety: this function is thread safe but client must guard against simultaneous
destruction or modification of eventGroup (for example, client must guard

against simultaneous calls to cuptiEventGroupDestroy, cuptiEventGroupAddEvent,
etc.), and must guard against simultaneous destruction of the context in which
eventGroup was created (for example, client must guard against simultaneous calls
to cudaDeviceReset, cuCtxDestroy, etc.). If cuptiEventGroupResetAllEvents is called
simultaneously with this function, then returned event values are undefined.

CUptiResult cuptiEventGroupRemoveAllEvents
(CUpti_EventGroup eventGroup)

Remove all events from an event group.

Parameters

eventGroup
The event group

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_OPERATION

if eventGroup is enabled
» CUPTI_ERROR_INVALID_PARAMETER

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 101

Modules

if eventGroup is NULL

Description

Remove all events from an event group. Events cannot be removed if the event group is
enabled.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupRemoveEvent
(CUpti_EventGroup eventGroup, CUpti_EventID event)

Remove an event from an event group.

Parameters

eventGroup
The event group
event
The event to remove from the group

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_EVENT_ID

» CUPTI_ERROR_INVALID_OPERATION

if eventGroup is enabled
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroup is NULL

Description

Remove event from the an event group. The event cannot be removed if the event
group is enabled.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 102

Modules

CUptiResult cuptiEventGroupResetAllEvents
(CUpti_EventGroup eventGroup)

Zero all the event counts in an event group.

Parameters

eventGroup
The event group

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_HARDWARE

» CUPTI_ERROR_INVALID_PARAMETER

if eventGroup is NULL

Description

Zero all the event counts in an event group.

Thread-safety: this function is thread safe but client must guard against simultaneous
destruction or modification of eventGroup (for example, client must guard

against simultaneous calls to cuptiEventGroupDestroy, cuptiEventGroupAddEvent,
etc.), and must guard against simultaneous destruction of the context in which
eventGroup was created (for example, client must guard against simultaneous calls
to cudaDeviceReset, cuCtxDestroy, etc.).

CUptiResult cuptiEventGroupSetAttribute
(CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, size_t valueSize,
void *value)

Write an event group attribute.

Parameters

eventGroup

The event group
attrib

The attribute to write

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 103

Modules

valueSize

The size, in bytes, of the value
value

The attribute value to write

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not an event group attribute, or if
attrib is not a writable attribute

» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

Indicates that the value buffer is too small to hold the attribute value.

Description

Write an event group attribute.

n Thread-safety: this function is thread safe.

CUptiResult cuptiEventGroupSetDisable
(CUpti_EventGroupSet *eventGroupSet)

Disable an event group set.

Parameters

eventGroupSet
The pointer to the event group set

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_HARDWARE

» CUPTI_ERROR_INVALID_PARAMETER

if eventGroupSet is NULL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 104

Modules

Description

Disable a set of event groups. Disabling a set of event groups stops collection of events
contained in the groups.

» Thread-safety: this function is thread safe.
» If this call fails, some of the event groups in the set may be disabled and other
event groups may remain enabled.

CUptiResult cuptiEventGroupSetEnable
(CUpti_EventGroupSet *eventGroupSet)

Enable an event group set.

Parameters
eventGroupSet
The pointer to the event group set
Returns
» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_HARDWARE
» CUPTI_ERROR_NOT_READY

if eventGroup does not contain any events
» CUPTI_ERROR_NOT_COMPATIBLE

if eventGroup cannot be enabled due to other already enabled event groups
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroupSet is NULL
» CUPTI_ERROR_HARDWARE_BUSY

if other client is profiling and hardware is busy

Description

Enable a set of event groups. Enabling a set of event groups zeros the value of all the
events in all the groups and then starts collection of those events.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 105

Modules

CUptiResult cuptiEventGroupSetsCreate

(CUcontext context, size_t eventldArraySizeBytes,
CUpti_EventID *eventldArray, CUpti_EventGroupSets
**eventGroupPasses)

For a set of events, get the grouping that indicates the number of passes and the event
groups necessary to collect the events.

Parameters

context
The context for event collection
eventldArraySizeBytes
Size of eventIdArray in bytes
eventldArray
Array of event IDs that need to be grouped
eventGroupPasses
Returns a CUpti_EventGroupSets object that indicates the number of passes required
to collect the events and the events to collect on each pass

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_CONTEXT

» CUPTI_ERROR_INVALID_EVENT_ID

» CUPTI_ERROR_INVALID_PARAMETER

if eventIdArray or eventGroupPasses is NULL

Description

The number of events that can be collected simultaneously varies by device and by the
type of the events. When events can be collected simultaneously, they may need to be
grouped into multiple event groups because they are from different event domains. This
function takes a set of events and determines how many passes are required to collect all
those events, and which events can be collected simultaneously in each pass.

The CUpti_EventGroupSets returned in eventGroupPasses indicates how many
passes are required to collect the events with the numSets field. Within each event

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 106

Modules

group set, the sets array indicates the event groups that should be collected on each
pass.

Thread-safety: this function is thread safe, but client must guard against another
thread simultaneously destroying context.

CUptiResult cuptiEventGroupSetsDestroy

(CUpti_EventGroupSets *eventGroupSets)

Destroy a CUpti_EventGroupSets object.

Parameters

eventGroupSets
The object to destroy

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_OPERATION

if any of the event groups contained in the sets is enabled
» CUPTI_ERROR_INVALID_PARAMETER

if eventGroupSets is NULL

Description

Destroy a CUpti_EventGroupSets object.

n Thread-safety: this function is thread safe.

CUptiResult cuptiGetNumEventDomains (uint32_t
*numDomains)

Get the number of event domains available on any device.

Parameters

numDomains
Returns the number of domains

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 107

Modules

Returns
» CUPTI_SUCCESS
» CUPTI_ERROR_INVALID PARAMETER

if numDomains is NULL

Description

Returns the total number of event domains available on any CUDA-capable device.

n Thread-safety: this function is thread safe.

CUptiResult cuptiSetEventCollectionMode (CUcontext
context, CUpti_EventCollectionMode mode)

Set the event collection mode.

Parameters
context
The context
mode
The event collection mode
Returns
» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID CONTEXT
» CUPTI_ERROR_INVALID OPERATION

if called when replay mode is enabled
» CUPTI_ERROR_NOT_SUPPORTED

if mode is not supported on the device

Description

Set the event collection mode for a context. The mode controls the event collection
behavior of all events in event groups created in the context. This API is invalid in
kernel replay mode.

n Thread-safety: this function is thread safe.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 108

Modules

#define CUPTI_EVENT_OVERFLOW
((uint64_t)OxFFFFFFFFFFFFFFFFULL)

The overflow value for a CUPTI event.

The CUPTI event value that indicates an overflow.

2.6. CUPTI Metric API

Functions, types, and enums that implement the CUPTI Metric API.

union CUpti_MetricValue

A metric value.

enum CUpti_MetricAttribute

Metric attributes.

Metric attributes describe properties of a metric. These attributes can be read using
cuptiMetricGetAttribute.

Values

CUPTI_METRIC_ATTR_NAME =0

Metric name. Value is a null terminated const c-string.
CUPTI_METRIC_ATTR_SHORT_DESCRIPTION =1

Short description of metric. Value is a null terminated const c-string.
CUPTI_METRIC_ATTR_LONG_DESCRIPTION =2

Long description of metric. Value is a null terminated const c-string.
CUPTI_METRIC_ATTR_CATEGORY =3

Category of the metric. Value is of type CUpti_MetricCategory.
CUPTI_METRIC_ATTR_VALUE_KIND =4

Value type of the metric. Value is of type CUpti_MetricValueKind.
CUPTI_METRIC_ATTR_EVALUATION_MODE =5

Metric evaluation mode. Value is of type CUpti_MetricEvaluationMode.
CUPTI_METRIC_ATTR_FORCE_INT = 0x7{ffffff

enum CUpti_MetricCategory
A metric category.
Each metric is assigned to a category that represents the general type of the

metric. A metric's category is accessed using cuptiMetricGetAttribute and the
CUPTI_METRIC_ATTR_CATEGORY attribute.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 109

Modules

Values

CUPTI_METRIC_CATEGORY_MEMORY =0

A memory related metric.
CUPTI_METRIC_CATEGORY_INSTRUCTION =1

An instruction related metric.
CUPTI_METRIC_CATEGORY_MULTIPROCESSOR =2

A multiprocessor related metric.
CUPTI_METRIC_CATEGORY_CACHE =3

A cache related metric.
CUPTI_METRIC_CATEGORY_TEXTURE =4

A texture related metric.
CUPTI_METRIC_CATEGORY_FORCE_INT = Ox7fffffff

enum CUpti_MetricEvaluationMode

A metric evaluation mode.

A metric can be evaluated per hardware instance to know the load balancing
across instances of a domain or the metric can be evaluated in aggregate mode
when the events involved in metric evaluation are from different event domains.
It might be possible to evaluate some metrics in both modes for convenience. A
metric's evaluation mode is accessed using CUpti_MetricEvaluationMode and the
CUPTI_METRIC_ATTR_EVALUATION_MODE attribute.

Values

CUPTI_METRIC_EVALUATION_MODE_PER_INSTANCE =1
If this bit is set, the metric can be profiled for each instance of the domain. The event
values passed to cuptiMetricGetValue can contain values for one instance of the
domain. And cuptiMetricGetValue can be called for each instance.

CUPTI_METRIC_EVALUATION_MODE_AGGREGATE = 1<<1
If this bit is set, the metric can be profiled over all instances. The event values passed
to cuptiMetricGetValue can be aggregated values of events for all instances of the
domain.

CUPTI_METRIC_EVALUATION_MODE_FORCE_INT = 0x7fffffff

enum CUpti_MetricPropertyDeviceClass

Device class.

Enumeration of device classes for metric property
CUPTI_METRIC_PROPERTY_DEVICE_CLASS.

Values

CUPTI_METRIC_PROPERTY_DEVICE_CLASS_TESLA =0
CUPTI_METRIC_PROPERTY_DEVICE_CLASS_QUADRO =1

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 110

Modules

CUPTI_METRIC_PROPERTY_DEVICE_CLASS_GEFORCE =2

enum CUpti_MetricPropertylD

Metric device properties.

Metric device properties describe device properties which are needed for a metric. Some
of these properties can be collected using cuDeviceGetAttribute.

Values

CUPTI_METRIC_PROPERTY_MULTIPROCESSOR_COUNT
CUPTI_METRIC_PROPERTY_WARPS_PER_MULTIPROCESSOR
CUPTI_METRIC_PROPERTY_KERNEL_GPU_TIME
CUPTI_METRIC_PROPERTY_CLOCK_RATE
CUPTI_METRIC_PROPERTY_FRAME_BUFFER_COUNT
CUPTI_METRIC_PROPERTY_GLOBAL_MEMORY_BANDWIDTH
CUPTI_METRIC_PROPERTY_PCIE_LINK_RATE
CUPTI_METRIC_PROPERTY_PCIE_LINK_WIDTH
CUPTI_METRIC_PROPERTY_PCIE_GEN
CUPTI_METRIC_PROPERTY_DEVICE_CLASS
CUPTI_METRIC_PROPERTY_FLOP_SP_PER_CYCLE
CUPTI_METRIC_PROPERTY_FLOP_DP_PER_CYCLE
CUPTI_METRIC_PROPERTY_L2_UNITS

enum CUpti_MetricValueKind

Kinds of metric values.

Metric values can be one of several different kinds. Corresponding to each kind

is a member of the CUpti_MetricValue union. The metric value returned by
cuptiMetricGetValue should be accessed using the appropriate member of that union
based on its value kind.

Values

CUPTI_METRIC_VALUE_KIND_DOUBLE =0

The metric value is a 64-bit double.
CUPTI_METRIC_VALUE_KIND_UINT64 =1

The metric value is a 64-bit unsigned integer.
CUPTI_METRIC_VALUE_KIND_PERCENT =2

The metric value is a percentage represented by a 64-bit double. For example, 57.5% is

represented by the value 57.5.
CUPTI_METRIC_VALUE_KIND_THROUGHPUT =3

The metric value is a throughput represented by a 64-bit integer. The unit for

throughput values is bytes/second.
CUPTI_METRIC_VALUE_KIND_INT64 =4

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 111

Modules

The metric value is a 64-bit signed integer.
CUPTI_METRIC_VALUE_KIND_UTILIZATION_LEVEL =5

The metric value is a utilization level, as represented by

CUpti_MetricValueUtilizationLevel.
CUPTI_METRIC_VALUE_KIND_FORCE_INT = 0x7fffffff

enum CUpti_MetricValueUtilizationLevel

Enumeration of utilization levels for metrics values of kind
CUPTI_METRIC_VALUE_KIND_UTILIZATION_LEVEL. Utilization values can vary
from IDLE (0) to MAX (10) but the enumeration only provides specific names for a few
values.

Values

CUPTI_METRIC_VALUE_UTILIZATION_IDLE =0
CUPTI_METRIC_VALUE_UTILIZATION_LOW =2
CUPTI_METRIC_VALUE_UTILIZATION_MID =5
CUPTI_METRIC_VALUE_UTILIZATION_HIGH =8
CUPTI_METRIC_VALUE_UTILIZATION_MAX =10
CUPTI_METRIC_VALUE_UTILIZATION_FORCE_INT = 0x7{ffffff

typedef uint32_t CUpti_MetriclD

ID for a metric.

A metric provides a measure of some aspect of the device.

CUptiResult cuptiDeviceEnumMetrics (CUdevice device,
size_t *arraySizeBytes, CUpti_MetriclD *metricArray)

Get the metrics for a device.

Parameters

device
The CUDA device
arraySizeBytes
The size of metricArray in bytes, and returns the number of bytes written to
metricArray
metricArray
Returns the IDs of the metrics for the device

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 112

Modules

» CUPTI_ERROR_INVALID_DEVICE
» CUPTI_ERROR_INVALID_PARAMETER

if arraySizeBytes ormetricArray are NULL

Description

Returns the metric IDs in metricArray for a device. The size of the metricArray
buffer is given by *arraySizeBytes. The size of the metricArray buffer must be at
least numMetrics * sizeof(CUpti_MetricID) or else all metric IDs will not be returned.
The value returned in *arraySizeBytes contains the number of bytes returned in
metricArray.

CUptiResult cuptiDeviceGetNumMetrics (CUdevice
device, uint32_t *numMetrics)

Get the number of metrics for a device.

Parameters

device
The CUDA device
numMetrics
Returns the number of metrics available for the device

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_PARAMETER

if numMetrics is NULL

Description

Returns the number of metrics available for a device.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 113

Modules

CUptiResult cuptiEnumMetrics (size_t *arraySizeBytes,
CUpti_MetricID *metricArray)

Get all the metrics available on any device.

Parameters

arraySizeBytes
The size of metricArray in bytes, and returns the number of bytes written to
metricArray

metricArray
Returns the IDs of the metrics

Returns
» CUPTI_SUCCESS

» CUPTI_ERROR_INVALID_PARAMETER

if arraySizeBytes ormetricArray are NULL

Description

Returns the metric IDs in metricArray for all CUDA-capable devices. The size of the
metricArray bufferis given by *arraySizeBytes. The size of the metricArray
buffer must be at least numMetrics * sizeof(CUpti_MetricID) or all metric IDs will not
be returned. The value returned in *arraySizeBytes contains the number of bytes
returned in metricArray.

CUptiResult cuptiGetNumMetrics (uint32_t *numMetrics)

Get the total number of metrics available on any device.

Parameters

numMetrics
Returns the number of metrics

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_INVALID_PARAMETER

if numMetrics is NULL

Description

Returns the total number of metrics available on any CUDA-capable devices.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 114

Modules

CUptiResult cuptiMetricCreateEventGroupSets
(CUcontext context, size_t metricldArraySizeBytes,
CUpti_MetriclD *metricldArray, CUpti_EventGroupSets
**eventGroupPasses)

For a set of metrics, get the grouping that indicates the number of passes and the event
groups necessary to collect the events required for those metrics.
Parameters

context
The context for event collection
metricldArraySizeBytes
Size of the metricldArray in bytes
metricldArray
Array of metric IDs
eventGroupPasses
Returns a CUpti_EventGroupSets object that indicates the number of passes required
to collect the events and the events to collect on each pass

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_CONTEXT

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_PARAMETER

if metricIdArray or eventGroupPasses is NULL

Description

For a set of metrics, get the grouping that indicates the number of passes and the event
groups necessary to collect the events required for those metrics.

See also:

cuptiEventGroupSetsCreate for details on event group set creation.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 115

Modules

CUptiResult cuptiMetricEnumEvents (CUpti_MetriclD
metric, size_t *eventldArraySizeBytes, CUpti_EventID
*eventidArray)

Get the events required to calculating a metric.

Parameters

metric
ID of the metric
eventldArraySizeBytes
The size of eventIdArray in bytes, and returns the number of bytes written to
eventIdArray
eventldArray
Returns the IDs of the events required to calculate metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_PARAMETER

if eventIdArraySizeBytes or eventIdArray are NULL.

Description

Gets the event IDs in eventIdArray required to calculate a metric. The size of the
eventIdArray buffer is given by *eventIdArraySizeBytes and must be at least
numEvents * sizeof(CUpti_EventID) or all events will not be returned. The value
returned in *eventIdArraySizeBytes contains the number of bytes returned in
eventIdArray.

CUptiResult cuptiMetricEnumProperties
(CUpti_MetriclD metric, size_t *propldArraySizeBytes,
CUpti_MetricPropertylD *propldArray)

Get the properties required to calculating a metric.

Parameters

metric
ID of the metric

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 116

Modules

propldArraySizeBytes
The size of propIdArray in bytes, and returns the number of bytes written to
propldArray

propldArray
Returns the IDs of the properties required to calculate metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_PARAMETER

if propIdArraySizeBytes or propIdArray are NULL.

Description

Gets the property IDs in propIdArray required to calculate a metric. The size of

the propIdArray buffer is given by *propIdArraySizeBytes and must be at least
numProp * sizeof(CUpti_DeviceAttribute) or all properties will not be returned. The
value returned in *propIdArraySizeBytes contains the number of bytes returned in
propldArray

CUptiResult cuptiMetricGetAttribute (CUpti_MetriclD
metric, CUpti_MetricAttribute attrib, size_t *valueSize,
void *value)

Get a metric attribute.

Parameters

metric
ID of the metric
attrib
The metric attribute to read
valueSize
The size of the value buffer in bytes, and returns the number of bytes written to
value
value
Returns the attribute's value

Returns

» CUPTI_SUCCESS

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 117

Modules

» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_METRIC_ID
» CUPTI_ERROR_INVALID_PARAMETER

if valueSize or value is NULL, or if attrib is not a metric attribute
» CUPTI_ERROR_PARAMETER_SIZE_NOT _SUFFICIENT

For non-c-string attribute values, indicates that the value buffer is too small to hold
the attribute value.

Description

Returns a metric attribute in *value. The size of the value buffer is given by
*valueSize. The value returned in *valueSize contains the number of bytes
returned in value.

If the attribute value is a c-string that is longer than *valueSize, then only the first
*valueSize characters will be returned and there will be no terminating null byte.

CUptiResult cuptiMetricGetldFromName (CUdevice
device, const char *metricName, CUpti_MetriclD
*metric)

Find an metric by name.

Parameters

device
The CUDA device
metricName
The name of metric to find
metric
Returns the ID of the found metric or undefined if unable to find the metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_DEVICE

» CUPTI_ERROR_INVALID_METRIC_NAME

if unable to find a metric with name metricName. In this case *metricis
undefined
» CUPTI_ERROR_INVALID PARAMETER

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 118

Modules

if metricName or metric are NULL.

Description

Find a metric by name and return the metric ID in *metric.

CUptiResult cuptiMetricGetNumEvents (CUpti_MetricID
metric, uint32_t *numEvents)

Get number of events required to calculate a metric.

Parameters

metric
ID of the metric
numEvents
Returns the number of events required for the metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_PARAMETER

if numEvents is NULL

Description

Returns the number of events in numEvents that are required to calculate a metric.

CUptiResult cuptiMetricGetNumProperties
(CUpti_MetriclD metric, uint32_t *numProp)

Get number of properties required to calculate a metric.

Parameters

metric
ID of the metric
numProp
Returns the number of properties required for the metric

Returns

» CUPTI_SUCCESS

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 119

Modules

» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_PARAMETER
if numProp is NULL

Description

Returns the number of properties in numProp that are required to calculate a metric.

CUptiResult cuptiMetricGetRequiredEventGroupSets
(CUcontext context, CUpti_MetriclD metric,
CUpti_EventGroupSets **eventGroupSets)

For a metric get the groups of events that must be collected in the same pass.

Parameters

context
The context for event collection

metric
The metric ID

eventGroupSets
Returns a CUpti_EventGroupSets object that indicates the events that must be
collected in the same pass to ensure the metric is calculated correctly. Returns NULL
if no grouping is required for metric

Returns

» CUPTI_SUCCESS
» CUPTI_ERROR_NOT_INITIALIZED
» CUPTI_ERROR_INVALID_METRIC_ID

Description

For a metric get the groups of events that must be collected in the same pass to ensure
that the metric is calculated correctly. If the events are not collected as specified then the
metric value may be inaccurate.

The function returns NULL if a metric does not have any required event group. In this
case the events needed for the metric can be grouped in any manner for collection.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 120

Modules

CUptiResult cuptiMetricGetValue (CUdevice

device, CUpti_MetricID metric, size_t
eventldArraySizeBytes, CUpti_EventID *eventldArray,
size_t eventValueArraySizeBytes, uint64_t
*eventValueArray, uinté64_t timeDuration,
CUpti_MetricValue *metricValue)

Calculate the value for a metric.

Parameters

device

The CUDA device that the metric is being calculated for
metric

The metric ID
eventldArraySizeBytes

The size of eventIdArray in bytes
eventldArray

The event IDs required to calculate metric
eventValueArraySizeBytes

The size of eventValueArray in bytes
eventValueArray

The normalized event values required to calculate metric. The values must be order

to match the order of events in eventIdArray
timeDuration

The duration over which the events were collected, in ns
metricValue

Returns the value for the metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITIALIZED

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_OPERATION

» CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

if the eventld Array does not contain all the events needed for metric
» CUPTI_ERROR_INVALID_EVENT_VALUE

if any of the event values required for the metric is CUPTI_EVENT_OVERFLOW

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 121

Modules

» CUPTI_ERROR_INVALID_METRIC_VALUE

if the computed metric value cannot be represented in the metric's value type. For
example, if the metric value type is unsigned and the computed metric value is
negative

» CUPTI_ERROR_INVALID_PARAMETER

if metricvValue, eventIdArray or eventValueArray is NULL

Description

Use the events collected for a metric to calculate the metric value. Metric value
evaluation depends on the evaluation mode CUpti_MetricEvaluationMode

that the metric supports. If a metric has evaluation mode as
CUPTI_METRIC_EVALUATION_MODE_PER_INSTANCE, then it assumes that

the input event value is for one domain instance. If a metric has evaluation mode

as CUPTI_METRIC_EVALUATION_MODE_AGGREGATE, it assumes that input
event values are normalized to represent all domain instances on a device. For the
most accurate metric collection, the events required for the metric should be collected
for all profiled domain instances. For example, to collect all instances of an event,

set the CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
attribute on the group containing the event to 1. The normalized value for the event
is then: (sum_event values * totalInstanceCount)/instanceCount,

where sum_event values is the summation of the event values across all

profiled domain instances, totalInstanceCount is obtained from querying
CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT and instanceCount
is obtained from querying CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT (or
CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT).

CUptiResult cuptiMetricGetValue2 (CUpti_MetriclD
metric, size_t eventldArraySizeBytes, CUpti_EventID
*eventldArray, size_t eventValueArraySizeBytes,
uinté4_t *eventValueArray, size_t propldArraySizeBytes,
CUpti_MetricPropertylD *propldArray, size_t
propValueArraySizeBytes, uint64_t *propValueArray,
CUpti_MetricValue *metricValue)

Calculate the value for a metric.

Parameters

metric
The metric ID

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 122

Modules

eventldArraySizeBytes
The size of eventIdArray in bytes
eventldArray
The event IDs required to calculate metric
eventValueArraySizeBytes
The size of eventValueArray in bytes
eventValueArray
The normalized event values required to calculate metric. The values must be order
to match the order of events in eventIdArray
propldArraySizeBytes
The size of propIdArray in bytes
propldArray
The metric property IDs required to calculate metric
propValueArraySizeBytes
The size of propValueArray in bytes
prop ValueArray
The metric property values required to calculate metric. The values must be order to
match the order of metric properties in propIdArray
metricValue
Returns the value for the metric

Returns

» CUPTI_SUCCESS

» CUPTI_ERROR_NOT_INITTALIZED

» CUPTI_ERROR_INVALID_METRIC_ID

» CUPTI_ERROR_INVALID_OPERATION

» CUPTIL_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT

if the eventld Array does not contain all the events needed for metric
» CUPTI_ERROR_INVALID_EVENT_VALUE

if any of the event values required for the metric is CUPTI_EVENT_OVERFLOW
» CUPTI_ERROR_NOT_COMPATIBLE

if the computed metric value cannot be represented in the metric's value type. For
example, if the metric value type is unsigned and the computed metric value is
negative

» CUPTI_ERROR_INVALID_PARAMETER

if metricvValue, eventIdArray or eventValueArray is NULL

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 123

Modules

Description

Use the events and properties collected for a metric to calculate the

metric value. Metric value evaluation depends on the evaluation mode
CUpti_MetricEvaluationMode that the metric supports. If a metric has evaluation
mode as CUPTI_METRIC_EVALUATION_MODE_PER_INSTANCE, then it assumes
that the input event value is for one domain instance. If a metric has evaluation mode
as CUPTI_METRIC_EVALUATION_MODE_AGGREGATE, it assumes that input
event values are normalized to represent all domain instances on a device. For the
most accurate metric collection, the events required for the metric should be collected
for all profiled domain instances. For example, to collect all instances of an event,

set the CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
attribute on the group containing the event to 1. The normalized value for the event
is then: (sum_event values * totalInstanceCount)/instanceCount,

where sum event values is the summation of the event values across all

profiled domain instances, totalInstanceCount is obtained from querying
CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT and instanceCount
is obtained from querying CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT (or
CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT).

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 124

Chapter 3.
DATA STRUCTURES

Here are the data structures with brief descriptions:
CUpti_Activity

The base activity record
CUpti_ActivityAPI

The activity record for a driver or runtime API invocation
CUpti_ActivityAutoBoostState

Device auto boost state structure
CUpti_ActivityBranch

The activity record for source level result branch. (deprecated)
CUpti_ActivityBranch2

The activity record for source level result branch
CUpti_ActivityCdpKernel

The activity record for CDP (CUDA Dynamic Parallelism) kernel
CUpti_ActivityContext

The activity record for a context
CUpti_ActivityDevice

The activity record for a device
CUpti_ActivityDeviceAttribute

The activity record for a device attribute
CUpti_ActivityEnvironment

The activity record for CUPTI environmental data
CUpti_ActivityEvent

The activity record for a CUPTI event
CUpti_ActivityEventInstance

The activity record for a CUPTI event with instance information
CUpti_ActivityFunction

The activity record for global/device functions
CUpti_ActivityGlobalAccess

The activity record for source-level global access. (deprecated)

www.nvidia.com
CUPTI

DA-05679-001 _v6.5 | 125

Data Structures

CUpti_ActivityGlobalAccess2
The activity record for source-level global access
CUpti_ActivityInstructionExecution
The activity record for source-level sass/source line-by-line correlation
CUpti_ActivityKernel
The activity record for kernel. (deprecated)
CUpti_ActivityKernel2
The activity record for a kernel (CUDA 5.5 onwards)
CUpti_ActivityMarker
The activity record providing a marker which is an instantaneous point in time
CUpti_ActivityMarkerData
The activity record providing detailed information for a marker
CUpti_ActivityMemcpy
The activity record for memory copies
CUpti_ActivityMemcpy2
The activity record for peer-to-peer memory copies
CUpti_ActivityMemset
The activity record for memset
CUpti_ActivityMetric
The activity record for a CUPTI metric
CUpti_ActivityMetricInstance
The activity record for a CUPTI metric with instance information. This activity
record represents a CUPTI metric value for a specific metric domain instance
(CUPTI_ACTIVITY_KIND_METRIC_INSTANCE). This activity record kind is not
produced by the activity API but is included for completeness and ease-of-use. Profile
frameworks built on top of CUPTI that collect metric data may choose to use this type
to store the collected metric data. This activity record should be used when metric
domain instance information needs to be associated with the metric
CUpti_ActivityModule
The activity record for a CUDA module
CUpti_ActivityName
The activity record providing a name
CUpti_ActivityObjectKindId
Identifiers for object kinds as specified by CUpti_ActivityObjectKind
CUpti_ActivityOverhead
The activity record for CUPTI and driver overheads
CUpti_ActivityPreemption
The activity record for a preemption of a CDP kernel
CUpti_ActivitySharedAccess
The activity record for source-level shared access
CUpti_ActivitySourceLocator
The activity record for source locator

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 126

Data Structures

CUpti_ActivityUnifiedMemoryCounter

The activity record for Unified Memory counters
CUpti_ActivityUnifiedMemoryCounterConfig

Unified Memory counters configuration structure
CUpti_CallbackData

Data passed into a runtime or driver API callback function
CUpti_EventGroupSet

A set of event groups
CUpti_EventGroupSets

A set of event group sets
CUpti_MetricValue

A metric value
CUpti_ModuleResourceData

Module data passed into a resource callback function
CUpti_NvtxData

Data passed into a NVTX callback function
CUpti_ResourceData

Data passed into a resource callback function
CUpti_SynchronizeData

Data passed into a synchronize callback function

3.1. CUpti_Activity Struct Reference
The base activity record.

The activity API uses a CUpti_Activity as a generic representation for any activity.

The 'kind' field is used to determine the specific activity kind, and from that the
CUpti_Activity object can be cast to the specific activity record type appropriate for that
kind.

Note that all activity record types are padded and aligned to ensure that each member of
the record is naturally aligned.

See also:

CUpti_ActivityKind

CUpti_ActivityKind CUpti_Activity::kind

The kind of this activity.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 127

Data Structures

3.2. CUpti_ActivityAPI Struct Reference

The activity record for a driver or runtime API invocation.

This activity record represents an invocation of a driver or runtime API
(CUPTI_ACTIVITY_KIND_DRIVER and CUPTI_ACTIVITY_KIND_RUNTIME).

CUpti_Callbackld CUpti_ActivityAPI::cbid

The ID of the driver or runtime function.

uint32_t CUpti_ActivityAPI::correlationld

The correlation ID of the driver or runtime CUDA function. Each function invocation is
assigned a unique correlation ID that is identical to the correlation ID in the memcpy,
memset, or kernel activity record that is associated with this function.

uinté4_t CUpti_ActivityAPI::end

The end timestamp for the function, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the function.

CUpti_ActivityKind CUpti_ActivityAPI::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_DRIVER or
CUPTI_ACTIVITY_KIND_RUNTIME.

uint32_t CUpti_ActivityAPI::processid

The ID of the process where the driver or runtime CUDA function is executing.

uint32_t CUpti_ActivityAPI::returnValue

The return value for the function. For a CUDA driver function with will be a CUresult
value, and for a CUDA runtime function this will be a cudaError_t value.

uint64_t CUpti_ActivityAPI::start

The start timestamp for the function, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the function.

uint32_t CUpti_ActivityAPI::threadld

The ID of the thread where the driver or runtime CUDA function is executing.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 128

Data Structures

3.3. CUpti_ActivityAutoBoostState Struct
Reference

Device auto boost state structure.

This structure defines auto boost state for a device. See function /ref
cuptiGetAutoBoostState

uint32_t CUpti_ActivityAutoBoostState::enabled

Returned auto boost state. 1 is returned in case auto boost is enabled, 0 otherwise

uint32_t CUpti_ActivityAutoBoostState::pid

Id of process that has set the current boost state. The value will be
CUPTI_AUTO_BOOST_INVALID_CLIENT_PID if the user does not have the
permission to query process ids or there is an error in querying the process id.

3.4. CUpti_ActivityBranch Struct Reference

The activity record for source level result branch. (deprecated).

This activity record the locations of the branches in the source
(CUPTI_ACTIVITY_KIND_BRANCH). Branch activities are now reported using the
CUpti_ActivityBranch2 activity record.

uint32_t CUpti_ActivityBranch::correlationld

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivityBranch::diverged

Number of times this branch diverged

uint32_t CUpti_ActivityBranch::executed
The number of times this branch was executed
CUpti_ActivityKind CUpti_ActivityBranch::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_BRANCH.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 129

Data Structures

uint32_t CUpti_ActivityBranch::pcOffset

The pc offset for the branch.

uint32_t CUpti_ActivityBranch::sourcelLocatorld

The ID for source locator.

uinté4_t CUpti_ActivityBranch::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction

3.5. CUpti_ActivityBranch2 Struct Reference

The activity record for source level result branch.

This activity record the locations of the branches in the source
(CUPTI_ACTIVITY_KIND_BRANCH).

uint32_t CUpti_ActivityBranch2::correlationld

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivityBranch2::diverged

Number of times this branch diverged

uint32_t CUpti_ActivityBranch2::executed

The number of times this branch was executed

uint32_t CUpti_ActivityBranch2::functionid

Correlation ID with global/device function name

CUpti_ActivityKind CUpti_ActivityBranch2::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_BRANCH.

uint32_t CUpti_ActivityBranch2::pad

Undefined. Reserved for internal use.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 130

Data Structures

uint32_t CUpti_ActivityBranch2::pcOffset

The pc offset for the branch.

uint32_t CUpti_ActivityBranch2::sourcelLocatorld

The ID for source locator.

uinté4_t CUpti_ActivityBranch2::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction

3.6. CUpti_ActivityCdpKernel Struct Reference
The activity record for CDP (CUDA Dynamic Parallelism) kernel.
This activity record represents a CDP kernel execution.

int32_t CUpti_ActivityCdpKernel::blockX

The X-dimension block size for the kernel.

int32_t CUpti_ActivityCdpKernel::blockY

The Y-dimension block size for the kernel.

int32_t CUpti_ActivityCdpKernel::blockZ

The Z-dimension grid size for the kernel.

uinté4_t CUpti_ActivityCdpKernel::completed

The timestamp when kernel is marked as completed, in ns. A value of
CUPTI_TIMESTAMP_UNKNOWN indicates that the completion time is unknown.

uint32_t CUpti_ActivityCdpKernel::contextld

The ID of the context where the kernel is executing.

uint32_t CUpti_ActivityCdpKernel::correlationld

The correlation ID of the kernel. Each kernel execution is assigned a unique correlation
ID that is identical to the correlation ID in the driver API activity record that launched
the kernel.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 131

Data Structures

uint32_t CUpti_ActivityCdpKernel::deviceld

The ID of the device where the kernel is executing.

int32_t
CUpti_ActivityCdpKernel::dynamicSharedMemory

The dynamic shared memory reserved for the kernel, in bytes.

uint64_t CUpti_ActivityCdpKernel::end

The end timestamp for the kernel execution, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the kernel.

uint8_t CUpti_ActivityCdpKernel::executed

The cache configuration used for the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

inté4_t CUpti_ActivityCdpKernel::gridld

The grid ID of the kernel. Each kernel execution is assigned a unique grid ID.

int32_t CUpti_ActivityCdpKernel::gridX

The X-dimension grid size for the kernel.

int32_t CUpti_ActivityCdpKernel::gridY

The Y-dimension grid size for the kernel.

int32_t CUpti_ActivityCdpKernel::gridZ

The Z-dimension grid size for the kernel.

CUpti_ActivityKind CUpti_ActivityCdpKernel::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_CDP_KERNEL

uint32_t
CUpti_ActivityCdpKernel::localMemoryPerThread

The amount of local memory reserved for each thread, in bytes.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 132

Data Structures

uint32_t CUpti_ActivityCdpKernel::localMemoryTotal

The total amount of local memory reserved for the kernel, in bytes.

const char *CUpti_ActivityCdpKernel::name

The name of the kernel. This name is shared across all activity records representing the
same kernel, and so should not be modified.

uint32_t CUpti_ActivityCdpKernel::parentBlockX

The X-dimension of the parent block.

uint32_t CUpti_ActivityCdpKernel::parentBlockY

The Y-dimension of the parent block.

uint32_t CUpti_ActivityCdpKernel::parentBlockZ

The Z-dimension of the parent block.

inté4_t CUpti_ActivityCdpKernel::parentGridid

The grid ID of the parent kernel.

uinté4_t CUpti_ActivityCdpKernel::queued

The timestamp when kernel is queued up, in ns. A value of
CUPTI_TIMESTAMP_UNKNOWN indicates that the queued time is unknown.

uint16_t CUpti_ActivityCdpKernel::registersPerThread

The number of registers required for each thread executing the kernel.

uint8_t CUpti_ActivityCdpKernel::requested

The cache configuration requested by the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

uint8_t CUpti_ActivityCdpKernel::sharedMemoryConfig

The shared memory configuration used for the kernel. The value is one of the
CUsharedconfig enumeration values from cuda.h.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 133

Data Structures

uinté4_t CUpti_ActivityCdpKernel::start

The start timestamp for the kernel execution, in ns. A value of 0 for both the start and
end timestamps indicates that timestamp information could not be collected for the
kernel.

int32_t CUpti_ActivityCdpKernel::staticSharedMemory

The static shared memory allocated for the kernel, in bytes.

uint32_t CUpti_ActivityCdpKernel::streamid

The ID of the stream where the kernel is executing.

uinté4_t CUpti_ActivityCdpKernel::submitted

The timestamp when kernel is submitted to the gpu, in ns. A value of
CUPTI_TIMESTAMP_ UNKNOWN indicates that the submission time is unknown.

3.7. CUpti_ActivityContext Struct Reference

The activity record for a context.

This activity record represents information about a context
(CUPTI_ACTIVITY_KIND_CONTEXT).

uint16_t CUpti_ActivityContext::computeApiKind
The compute API kind.

See also:

CUpti_ActivityComputeApiKind

uint32_t CUpti_ActivityContext::contextld

The context ID.

uint32_t CUpti_ActivityContext::deviceld
The device ID.
CUpti_ActivityKind CUpti_ActivityContext::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_CONTEXT.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 134

Data Structures

uint16_t CUpti_ActivityContext::nullStreamld

The ID for the NULL stream in this context

3.8. CUpti_ActivityDevice Struct Reference

The activity record for a device.

This activity record represents information about a GPU device
(CUPTI_ACTIVITY_KIND_DEVICE).

uint32_t CUpti_ActivityDevice::computeCapabilityMajor
Compute capability for the device, major number.

uint32_t CUpti_ActivityDevice::computeCapabilityMinor

Compute capability for the device, minor number.

uint32_t CUpti_ActivityDevice::constantMemorySize

The amount of constant memory on the device, in bytes.

uint32_t CUpti_ActivityDevice::coreClockRate
The core clock rate of the device, in kHz.

CUpti_ActivityFlag CUpti_ActivityDevice::flags
The flags associated with the device.

See also:

CUpti_ActivityFlag

uint64_t CUpti_ActivityDevice::globalMemoryBandwidth

The global memory bandwidth available on the device, in kBytes/sec.

uinté4_t CUpti_ActivityDevice::globalMemorySize

The amount of global memory on the device, in bytes.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 135

Data Structures

uint32_t CUpti_ActivityDevice::id

The device ID.

CUpti_ActivityKind CUpti_ActivityDevice::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_DEVICE.

uint32_t CUpti_ActivityDevice::[2CacheSize

The size of the L2 cache on the device, in bytes.

uint32_t CUpti_ActivityDevice::maxBlockDimX

Maximum allowed X dimension for a block.

uint32_t CUpti_ActivityDevice::maxBlockDimY

Maximum allowed Y dimension for a block.

uint32_t CUpti_ActivityDevice::maxBlockDimZ

Maximum allowed Z dimension for a block.

uint32_t
CUpti_ActivityDevice::maxBlocksPerMultiprocessor

Maximum number of blocks that can be present on a multiprocessor at any given time.

uint32_t CUpti_ActivityDevice::maxGridDimX

Maximum allowed X dimension for a grid.

uint32_t CUpti_ActivityDevice::maxGridDimY

Maximum allowed Y dimension for a grid.

uint32_t CUpti_ActivityDevice::maxGridDimZ

Maximum allowed Z dimension for a grid.

uint32_t CUpti_ActivityDevice::maxIPC

The maximum "instructions per cycle" possible on each device multiprocessor.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 136

Data Structures

uint32_t CUpti_ActivityDevice::maxRegistersPerBlock

Maximum number of registers that can be allocated to a block.

uint32_t
CUpti_ActivityDevice::maxSharedMemoryPerBlock

Maximum amount of shared memory that can be assigned to a block, in bytes.

uint32_t CUpti_ActivityDevice::maxThreadsPerBlock
Maximum number of threads allowed in a block.

uint32_t
CUpti_ActivityDevice::maxWarpsPerMultiprocessor

Maximum number of warps that can be present on a multiprocessor at any given time.

const char *CUpti_ActivityDevice::name

The device name. This name is shared across all activity records representing instances
of the device, and so should not be modified.

uint32_t CUpti_ActivityDevice::numMemcpyEngines

Number of memory copy engines on the device.

uint32_t CUpti_ActivityDevice::numMultiprocessors

Number of multiprocessors on the device.

uint32_t CUpti_ActivityDevice::numThreadsPerWarp

The number of threads per warp on the device.

3.9. CUpti_ActivityDeviceAttribute Struct
Reference

The activity record for a device attribute.

This activity record represents information about a GPU device:
either a CUpti_DeviceAttribute or CUdevice_attribute value
(CUPTI_ACTIVITY_KIND_DEVICE_ATTRIBUTE).

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 137

Data Structures

CUpti_ActivityDeviceAttribute:: @6
CUpti_ActivityDeviceAttribute::attribute

The attribute, either a CUpti_DeviceAttribute or CUdevice_attribute. Flag
CUPTI_ACTIVITY_FLAG_DEVICE_ATTRIBUTE_CUDEVICE is used to indicate what
kind of attribute this is. If CUPTI_ACTIVITY_FLAG_DEVICE_ATTRIBUTE_CUDEVICE
is 1 then CUdevice_attribute field is value, otherwise CUpti_DeviceAttribute field is
valid.

uint32_t CUpti_ActivityDeviceAttribute::deviceld

The ID of the device that this attribute applies to.

CUpti_ActivityFlag CUpti_ActivityDeviceAttribute::flags
The flags associated with the device.

See also:

CUpti_ActivityFlag

CUpti_ActivityKind CUpti_ActivityDeviceAttribute::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_DEVICE_ATTRIBUTE.

CUpti_ActivityDeviceAttribute::@7
CUpti_ActivityDeviceAttribute::value

The value for the attribute. See CUpti_DeviceAttribute and CUdevice_attribute for the
type of the value for a given attribute.

3.10. CUpti_ActivityEnvironment Struct Reference
The activity record for CUPTI environmental data.

This activity record provides CUPTI environmental data, include power, clocks, and
thermals. This information is sampled at various rates and returned in this activity
record. The consumer of the record needs to check the environmentKind field to figure
out what kind of environmental record this is.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 138

Data Structures

CUpti_EnvironmentClocksThrottleReason
CUpti_ActivityEnvironment::clocksThrottleReasons

The clocks throttle reasons.

CUpti_ActivityEnvironment::@8::@12
CUpti_ActivityEnvironment::cooling

Data returned for CUPTI_ACTIVITY_ENVIRONMENT_COOLING environment kind.

uint32_t CUpti_ActivityEnvironment::deviceld

The ID of the device

CUpti_ActivityEnvironmentKind
CUpti_ActivityEnvironment::environmentKind

The kind of data reported in this record.

uint32_t CUpti_ActivityEnvironment::fanSpeed

The fan speed as percentage of maximum.

uint32_t CUpti_ActivityEnvironment::gpuTemperature
The GPU temperature in degrees C.

CUpti_ActivityKind CUpti_ActivityEnvironment::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_ENVIRONMENT.

uint32_t CUpti_ActivityEnvironment::memoryClock

The memory frequency in MHz

uint32_t CUpti_ActivityEnvironment::pcieLinkGen

The PCle link generation.

uint32_t CUpti_ActivityEnvironment::pcieLinkWidth

The PCle link width.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 139

Data Structures

CUpti_ActivityEnvironment::@8::@11
CUpti_ActivityEnvironment::power

Data returned for CUPTI_ACTIVITY_ENVIRONMENT_POWER environment kind.

uint32_t CUpti_ActivityEnvironment::power

The power in milliwatts consumed by GPU and associated circuitry.

uint32_t CUpti_ActivityEnvironment::powerLimit

The power in milliwatts that will trigger power management algorithm.

uint32_t CUpti_ActivityEnvironment::smClock

The SM frequency in MHz

CUpti_ActivityEnvironment::@8::@9
CUpti_ActivityEnvironment::speed

Data returned for CUPTI_ACTIVITY_ENVIRONMENT_SPEED environment kind.

CUpti_ActivityEnvironment::@8::@10
CUpti_ActivityEnvironment::temperature

Data returned for CUPTI_ACTIVITY_ENVIRONMENT_ TEMPERATURE environment
kind.

uint64_t CUpti_ActivityEnvironment::timestamp

The timestamp when this sample was retrieved, in ns. A value of 0 indicates that
timestamp information could not be collected for the marker.

3.11. CUpti_ActivityEvent Struct Reference
The activity record for a CUPTI event.

This activity record represents a CUPTI event value
(CUPTI_ACTIVITY_KIND_EVENT). This activity record kind is not produced by the
activity API but is included for completeness and ease-of-use. Profile frameworks built
on top of CUPTI that collect event data may choose to use this type to store the collected
event data.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 140

Data Structures

uint32_t CUpti_ActivityEvent::correlationld

The correlation ID of the event. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the event was gathered.

CUpti_EventDomainID CUpti_ActivityEvent::domain

The event domain ID.

CUpti_EventID CUpti_ActivityEvent::id

The event ID.

CUpti_ActivityKind CUpti_ActivityEvent::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_EVENT.

uint64_t CUpti_ActivityEvent::value

The event value.

3.12. CUpti_ActivityEventinstance Struct
Reference

The activity record for a CUPTI event with instance information.

This activity record represents the a CUPTI event value for a specific event domain
instance (CUPTI_ACTIVITY_KIND_EVENT_INSTANCE). This activity record kind

is not produced by the activity API but is included for completeness and ease-of-use.
Profile frameworks built on top of CUPTI that collect event data may choose to use this
type to store the collected event data. This activity record should be used when event
domain instance information needs to be associated with the event.

uint32_t CUpti_ActivityEventinstance::correlationld

The correlation ID of the event. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the event was gathered.

CUpti_EventDomainID
CUpti_ActivityEventInstance::domain

The event domain ID.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 141

Data Structures

CUpti_EventID CUpti_ActivityEventinstance::id

The event ID.

uint32_t CUpti_ActivityEventinstance::instance

The event domain instance.

CUpti_ActivityKind CUpti_ActivityEventinstance::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_EVENT_INSTANCE.

uint32_t CUpti_ActivityEventinstance::pad

Undefined. Reserved for internal use.

uinté4_t CUpti_ActivityEventinstance::value

The event value.

3.13. CUpti_ActivityFunction Struct Reference

The activity record for global/device functions.

This activity records function name and corresponding module information.
(CUPTI_ACTIVITY_KIND_FUNCTION).

uint32_t CUpti_ActivityFunction::contextld

The ID of the context where the function is launched.

uint32_t CUpti_ActivityFunction::functionindex

The function's unique symbol index in the module.

uint32_t CUpti_ActivityFunction::id

ID to uniquely identify the record

CUpti_ActivityKind CUpti_ActivityFunction::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_FUNCTION.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 142

Data Structures

uint32_t CUpti_ActivityFunction::moduleld

The module ID in which this global/device function is present.

const char *CUpti_ActivityFunction::name

The name of the function. This name is shared across all activity records representing the
same kernel, and so should not be modified.

3.14. CUpti_ActivityGlobalAccess Struct Reference

The activity record for source-level global access. (deprecated).

This activity records the locations of the global accesses in the source
(CUPTI_ACTIVITY_KIND_GLOBAL_ACCESS). Global access activities are now
reported using the CUpti_ActivityGlobalAccess2 activity record.

uint32_t CUpti_ActivityGlobalAccess::correlationid

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivityGlobalAccess::executed

The number of times this instruction was executed

CUpti_ActivityFlag CUpti_ActivityGlobalAccess::flags

The properties of this global access.

CUpti_ActivityKind CUpti_ActivityGlobalAccess::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_GLOBAL_ACCESS.

uinté4_t CUpti_ActivityGlobalAccess::2_transactions

The total number of 32 bytes transactions to L2 cache generated by this access

uint32_t CUpti_ActivityGlobalAccess::pcOffset

The pc offset for the access.

uint32_t CUpti_ActivityGlobalAccess::sourcelLocatorld

The ID for source locator.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 143

Data Structures

uinté4_t CUpti_ActivityGlobalAccess::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction with predicate and condition code evaluating to true.

3.15. CUpti_ActivityGlobalAccess2 Struct
Reference

The activity record for source-level global access.

This activity records the locations of the global accesses in the source
(CUPTI_ACTIVITY_KIND_GLOBAL_ACCESS).

uint32_t CUpti_ActivityGlobalAccess2::correlationld

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivityGlobalAccess2::executed

The number of times this instruction was executed

CUpti_ActivityFlag CUpti_ActivityGlobalAccess2::flags

The properties of this global access.

uint32_t CUpti_ActivityGlobalAccess2::functionid

Correlation ID with global/device function name

CUpti_ActivityKind CUpti_ActivityGlobalAccess2::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_GLOBAL_ACCESS.

uinté4_t CUpti_ActivityGlobalAccess2::12_transactions

The total number of 32 bytes transactions to L2 cache generated by this access

uint32_t CUpti_ActivityGlobalAccess2::pad

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityGlobalAccess2::pcOffset

The pc offset for the access.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 144

Data Structures

uint32_t CUpti_ActivityGlobalAccess2::sourcelLocatorld

The ID for source locator.

uinté4_t
CUpti_ActivityGlobalAccess2::theoreticalL2Transactions

The minimum number of L2 transactions possible based on the access pattern.

uint64_t CUpti_ActivityGlobalAccess2::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction with predicate and condition code evaluating to true.

3.16. CUpti_ActivitylnstructionExecution Struct
Reference

The activity record for source-level sass/source line-by-line correlation.

This activity records source level sass/source correlation information.
(CUPTI_ACTIVITY_KIND_INSTRUCTION_EXECUTION).

uint32_t
CUpti_ActivitylnstructionExecution::correlationid

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivitylnstructionExecution::executed

The number of times this instruction was executed.

CUpti_ActivityFlag
CUpti_ActivitylnstructionExecution::flags

The properties of this instruction execution. Check mask
CUPTI_ACTIVITY_FLAG_INSTRUCTION_VALUE_INVALID to determine whether
threadsExecuted, notPredOffThreadsExecuted and executed are valid for the instruction.
Check mask CUPTI_ACTIVITY_FLAG_INSTRUCTION_CLASS_MASK to identify the

instruction class. See CUpti_ActivitylnstructionClass.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 145

Data Structures

uint32_t CUpti_ActivitylnstructionExecution::functionld
Correlation ID with global/device function name

CUpti_ActivityKind
CUpti_ActivitylnstructionExecution::kind

The activity record kind, must be
CUPTI_ACTIVITY_KIND_INSTRUCTION_EXECUTION.

uint64_t
CUpti_ActivitylnstructionExecution::notPredOffThreadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction with predicate and condition code evaluating to true.

uint32_t CUpti_ActivitylnstructionExecution::pad

Undefined. Reserved for internal use.

uint32_t CUpti_ActivitylnstructionExecution::pcOffset

The pc offset for the instruction.

uint32_t
CUpti_ActivitylnstructionExecution::sourcelLocatorld

The ID for source locator.

uinté64_t
CUpti_ActivitylnstructionExecution::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction, regardless of predicate or condition code.

3.17. CUpti_ActivityKernel Struct Reference

The activity record for kernel. (deprecated).

This activity record represents a kernel execution (CUPTI_ACTIVITY_KIND_KERNEL
and CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL) but is no longer generated
by CUPTI. Kernel activities are now reported using the CUpti_ActivityKernel2 activity
record.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 146

Data Structures

int32_t CUpti_ActivityKernel::blockX

The X-dimension block size for the kernel.

int32_t CUpti_ActivityKernel::blockY

The Y-dimension block size for the kernel.

int32_t CUpti_ActivityKernel::blockZ

The Z-dimension grid size for the kernel.

uint8_t CUpti_ActivityKernel::cacheConfigExecuted

The cache configuration used for the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

uint8_t CUpti_ActivityKernel::cacheConfigRequested

The cache configuration requested by the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

uint32_t CUpti_ActivityKernel::contextld

The ID of the context where the kernel is executing.

uint32_t CUpti_ActivityKernel::correlationld

The correlation ID of the kernel. Each kernel execution is assigned a unique correlation
ID that is identical to the correlation ID in the driver API activity record that launched
the kernel.

uint32_t CUpti_ActivityKernel::deviceld

The ID of the device where the kernel is executing.

int32_t CUpti_ActivityKernel::dynamicSharedMemory

The dynamic shared memory reserved for the kernel, in bytes.

uinté4_t CUpti_ActivityKernel::end

The end timestamp for the kernel execution, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the kernel.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 147

Data Structures

int32_t CUpti_ActivityKernel::gridX

The X-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel::gridY

The Y-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel::gridZ
The Z-dimension grid size for the kernel.
CUpti_ActivityKind CUpti_ActivityKernel::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_KERNEL or
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL.

uint32_t CUpti_ActivityKernel::localMemoryPerThread

The amount of local memory reserved for each thread, in bytes.

uint32_t CUpti_ActivityKernel::localMemoryTotal

The total amount of local memory reserved for the kernel, in bytes.

const char *CUpti_ActivityKernel::name

The name of the kernel. This name is shared across all activity records representing the
same kernel, and so should not be modified.

uint32_t CUpti_ActivityKernel::pad

Undefined. Reserved for internal use.

uint16_t CUpti_ActivityKernel::registersPerThread

The number of registers required for each thread executing the kernel.

void *CUpti_ActivityKernel::reservedQ

Undefined. Reserved for internal use.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 148

Data Structures

uint32_t CUpti_ActivityKernel::runtimeCorrelationld

The runtime correlation ID of the kernel. Each kernel execution is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the kernel.

uinté4_t CUpti_ActivityKernel::start

The start timestamp for the kernel execution, in ns. A value of 0 for both the start and
end timestamps indicates that timestamp information could not be collected for the
kernel.

int32_t CUpti_ActivityKernel::staticSharedMemory

The static shared memory allocated for the kernel, in bytes.

uint32_t CUpti_ActivityKernel::streamld

The ID of the stream where the kernel is executing.

3.18. CUpti_ActivityKernel2 Struct Reference

The activity record for a kernel (CUDA 5.5 onwards).

This activity record represents a kernel execution (CUPTI_ACTIVITY_KIND_KERNEL
and CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL).

int32_t CUpti_ActivityKernel2::blockX

The X-dimension block size for the kernel.

int32_t CUpti_ActivityKernel2::blockY

The Y-dimension block size for the kernel.

int32_t CUpti_ActivityKernel2::blockZ

The Z-dimension grid size for the kernel.

uinté4_t CUpti_ActivityKernel2::completed

The completed timestamp for the kernel execution, in ns. It represents the completion of
all it's child kernels and the kernel itself. A value of CUPTI_TIMESTAMP_UNKNOWN
indicates that the completion time is unknown.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 149

Data Structures

uint32_t CUpti_ActivityKernel2::contextld

The ID of the context where the kernel is executing.

uint32_t CUpti_ActivityKernel2::correlationld

The correlation ID of the kernel. Each kernel execution is assigned a unique correlation
ID that is identical to the correlation ID in the driver or runtime API activity record that
launched the kernel.

uint32_t CUpti_ActivityKernel2::deviceld

The ID of the device where the kernel is executing.

int32_t CUpti_ActivityKernel2::dynamicSharedMemory

The dynamic shared memory reserved for the kernel, in bytes.

uinté4_t CUpti_ActivityKernel2::end

The end timestamp for the kernel execution, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the kernel.

uint8_t CUpti_ActivityKernel2::executed

The cache configuration used for the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

int64_t CUpti_ActivityKernel2::gridld

The grid ID of the kernel. Each kernel is assigned a unique grid ID at runtime.

int32_t CUpti_ActivityKernel2::gridX

The X-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel2::gridY

The Y-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel2::gridZ

The Z-dimension grid size for the kernel.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 150

Data Structures

CUpti_ActivityKind CUpti_ActivityKernel2::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_KERNEL or
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL.

uint32_t CUpti_ActivityKernel2::localMemoryPerThread

The amount of local memory reserved for each thread, in bytes.

uint32_t CUpti_ActivityKernel2::localMemoryTotal

The total amount of local memory reserved for the kernel, in bytes.

const char *CUpti_ActivityKernel2::name

The name of the kernel. This name is shared across all activity records representing the
same kernel, and so should not be modified.

uint16_t CUpti_ActivityKernel2::registersPerThread

The number of registers required for each thread executing the kernel.

uint8_t CUpti_ActivityKernel2::requested

The cache configuration requested by the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

void *CUpti_ActivityKernel2::reservedO

Undefined. Reserved for internal use.

uint8_t CUpti_ActivityKernel2::sharedMemoryConfig

The shared memory configuration used for the kernel. The value is one of the
CUsharedconfig enumeration values from cuda.h.

uint64_t CUpti_ActivityKernel2::start

The start timestamp for the kernel execution, in ns. A value of 0 for both the start and
end timestamps indicates that timestamp information could not be collected for the
kernel.

int32_t CUpti_ActivityKernel2::staticSharedMemory

The static shared memory allocated for the kernel, in bytes.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 151

Data Structures

uint32_t CUpti_ActivityKernel2::streamld

The ID of the stream where the kernel is executing.

3.19. CUpti_ActivityMarker Struct Reference

The activity record providing a marker which is an instantaneous point in time.

The marker is specified with a descriptive name and unique id
(CUPTI_ACTIVITY_KIND_MARKER).

CUpti_ActivityFlag CUpti_ActivityMarker::flags
The flags associated with the marker.

See also:

CUpti_ActivityFlag

uint32_t CUpti_ActivityMarker::id

The marker ID.

CUpti_ActivityKind CUpti_ActivityMarker::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_MARKER.

const char *CUpti_ActivityMarker::name

The marker name for an instantaneous or start marker. This will be NULL for an end
marker.

CUpti_ActivityMarker::objectld

The identifier for the activity object associated with this marker. 'objectKind' indicates
which ID is valid for this record.

CUpti_ActivityObjectKind
CUpti_ActivityMarker::objectKind

The kind of activity object associated with this marker.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 152

Data Structures

uinté4_t CUpti_ActivityMarker::timestamp

The timestamp for the marker, in ns. A value of 0 indicates that timestamp information
could not be collected for the marker.

3.20. CUpti_ActivityMarkerData Struct Reference

The activity record providing detailed information for a marker.

The marker data contains color, payload, and category.
(CUPTI_ACTIVITY_KIND_MARKER_DATA).

uint32_t CUpti_ActivityMarkerData::category

The category for the marker.

uint32_t CUpti_ActivityMarkerData::color

The color for the marker.

CUpti_ActivityFlag CUpti_ActivityMarkerData::flags
The flags associated with the marker.

See also:

CUpti_ActivityFlag

uint32_t CUpti_ActivityMarkerData::id

The marker ID.

CUpti_ActivityKind CUpti_ActivityMarkerData::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_MARKER_DATA.

CUpti_ActivityMarkerData::payload

The payload value.

CUpti_MetricValueKind
CUpti_ActivityMarkerData::payloadKind

Defines the payload format for the value associated with the marker.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 153

Data Structures

3.21. CUpti_ActivityMemcpy Struct Reference

The activity record for memory copies.

This activity record represents a memory copy (CUPTI_ACTIVITY_KIND_MEMCPY).

uinté4_t CUpti_ActivityMemcpy::bytes

The number of bytes transferred by the memory copy:.

uint32_t CUpti_ActivityMemcpy::contextld

The ID of the context where the memory copy is occurring.

uint8_t CUpti_ActivityMemcpy::copyKind
The kind of the memory copy, stored as a byte to reduce record size.

See also:

CUpti_ActivityMemcpyKind

uint32_t CUpti_ActivityMemcpy::correlationid

The correlation ID of the memory copy. Each memory copy is assigned a unique
correlation ID that is identical to the correlation ID in the driver API activity record that
launched the memory copy.

uint32_t CUpti_ActivityMemcpy::deviceld

The ID of the device where the memory copy is occurring.

uint8_t CUpti_ActivityMemcpy::dstKind

The destination memory kind read by the memory copy, stored as a byte to reduce
record size.

See also:

CUpti_ActivityMemoryKind

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 154

Data Structures

uinté4_t CUpti_ActivityMemcpy::end

The end timestamp for the memory copy, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory

copy.

uint8_t CUpti_ActivityMemcpy::flags
The flags associated with the memory copy.

See also:

CUpti_ActivityFlag

CUpti_ActivityKind CUpti_ActivityMemcpy::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_MEMCPY.

void *CUpti_ActivityMemcpy::reservedQ

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityMemcpy::runtimeCorrelationld

The runtime correlation ID of the memory copy. Each memory copy is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the memory copy.

uint8_t CUpti_ActivityMemcpy::srcKind

The source memory kind read by the memory copy, stored as a byte to reduce record
size.

See also:

CUpti_ActivityMemoryKind

uint64_t CUpti_ActivityMemcpy::start

The start timestamp for the memory copy, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory

copy.

uint32_t CUpti_ActivityMemcpy::streamid

The ID of the stream where the memory copy is occurring.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 155

Data Structures

3.22. CUpti_ActivityMemcpy2 Struct Reference

The activity record for peer-to-peer memory copies.

This activity record represents a peer-to-peer memory copy
(CUPTI_ACTIVITY_KIND_MEMCPY?2).

uinté4_t CUpti_ActivityMemcpy2::bytes

The number of bytes transferred by the memory copy.

uint32_t CUpti_ActivityMemcpy2::contextld

The ID of the context where the memory copy is occurring.

uint8_t CUpti_ActivityMemcpy2::copyKind
The kind of the memory copy, stored as a byte to reduce record size.

See also:

CUpti_ActivityMemcpyKind

uint32_t CUpti_ActivityMemcpy2::correlationid

The correlation ID of the memory copy. Each memory copy is assigned a unique
correlation ID that is identical to the correlation ID in the driver and runtime API
activity record that launched the memory copy.

uint32_t CUpti_ActivityMemcpy2::deviceld

The ID of the device where the memory copy is occurring.

uint32_t CUpti_ActivityMemcpy2::dstContextld

The ID of the context owning the memory being copied to.

uint32_t CUpti_ActivityMemcpy2::dstDeviceld

The ID of the device where memory is being copied to.

uint8_t CUpti_ActivityMemcpy2::dstKind

The destination memory kind read by the memory copy, stored as a byte to reduce
record size.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 156

Data Structures

See also:

CUpti_ActivityMemoryKind

uinté4_t CUpti_ActivityMemcpy2::end

The end timestamp for the memory copy, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory

copy.

uint8_t CUpti_ActivityMemcpy2::flags

The flags associated with the memory copy.

See also:

CUpti_ActivityFlag

CUpti_ActivityKind CUpti_ActivityMemcpy2::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_MEMCPY2.
uint32_t CUpti_ActivityMemcpy2::pad

Undefined. Reserved for internal use.

void *CUpti_ActivityMemcpy2::reservedO

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityMemcpy2::srcContextld

The ID of the context owning the memory being copied from.

uint32_t CUpti_ActivityMemcpy2::srcDeviceld

The ID of the device where memory is being copied from.

uint8_t CUpti_ActivityMemcpy2::srcKind

The source memory kind read by the memory copy, stored as a byte to reduce record
size.

See also:

CUpti_ActivityMemoryKind

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 157

Data Structures

uint64_t CUpti_ActivityMemcpy2::start

The start timestamp for the memory copy, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory

copy.

uint32_t CUpti_ActivityMemcpy2::streamid

The ID of the stream where the memory copy is occurring.

3.23. CUpti_ActivityMemset Struct Reference

The activity record for memset.

This activity record represents a memory set operation
(CUPTI_ACTIVITY_KIND_MEMSET).

uinté4_t CUpti_ActivityMemset::bytes

The number of bytes being set by the memory set.

uint32_t CUpti_ActivityMemset::contextld

The ID of the context where the memory set is occurring.

uint32_t CUpti_ActivityMemset::correlationld

The correlation ID of the memory set. Each memory set is assigned a unique correlation
ID that is identical to the correlation ID in the driver API activity record that launched
the memory set.

uint32_t CUpti_ActivityMemset::deviceld

The ID of the device where the memory set is occurring.

uinté64_t CUpti_ActivityMemset::end

The end timestamp for the memory set, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory
set.

CUpti_ActivityKind CUpti_ActivityMemset::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_MEMSET.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 158

Data Structures

void *CUpti_ActivityMemset::reserved(

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityMemset::runtimeCorrelationid

The runtime correlation ID of the memory set. Each memory set is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the memory set.

uinté4_t CUpti_ActivityMemset::start

The start timestamp for the memory set, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the memory
set.

uint32_t CUpti_ActivityMemset::streamid

The ID of the stream where the memory set is occurring.

uint32_t CUpti_ActivityMemset::value

The value being assigned to memory by the memory set.

3.24. CUpti_ActivityMetric Struct Reference

The activity record for a CUPTI metric.

This activity record represents the collection of a CUPTI metric value
(CUPTI_ACTIVITY_KIND_METRIC). This activity record kind is not produced by
the activity API but is included for completeness and ease-of-use. Profile frameworks
built on top of CUPTI that collect metric data may choose to use this type to store the
collected metric data.

uint32_t CUpti_ActivityMetric::correlationld

The correlation ID of the metric. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the metric was gathered.

uint8_t CUpti_ActivityMetric::flags
The properties of this metric.

See also:

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 159

Data Structures

CUpti_ActivityFlag

CUpti_MetriclD CUpti_ActivityMetric::id

The metric ID.

CUpti_ActivityKind CUpti_ActivityMetric::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_METRIC.

uint8_t CUpti_ActivityMetric::pad

Undefined. Reserved for internal use.

CUpti_ActivityMetric::value

The metric value.

3.25. CUpti_ActivityMetriclnstance Struct
Reference

The activity record for a CUPTI metric with instance information. This activity

record represents a CUPTI metric value for a specific metric domain instance
(CUPTI_ACTIVITY_KIND_METRIC_INSTANCE). This activity record kind is not
produced by the activity API but is included for completeness and ease-of-use. Profile
frameworks built on top of CUPTI that collect metric data may choose to use this type to
store the collected metric data. This activity record should be used when metric domain
instance information needs to be associated with the metric.

uint32_t CUpti_ActivityMetriclnstance::correlationld

The correlation ID of the metric. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the metric was gathered.

uint8_t CUpti_ActivityMetriclnstance::flags

The properties of this metric.
See also:

CUpti_ActivityFlag

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 160

Data Structures

CUpti_MetriclD CUpti_ActivityMetriclnstance::id

The metric ID.

uint32_t CUpti_ActivityMetriclnstance::instance

The metric domain instance.

CUpti_ActivityKind CUpti_ActivityMetriclnstance::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_METRIC_INSTANCE.

uint8_t CUpti_ActivityMetriclnstance::pad

Undefined. Reserved for internal use.

CUpti_ActivityMetriclnstance::value

The metric value.

3.26. CUpti_ActivityModule Struct Reference

The activity record for a CUDA module.

This activity record represents a CUDA module (CUPTI_ACTIVITY_KIND_MODULE).
This activity record kind is not produced by the activity API but is included for
completeness and ease-of-use. Profile frameworks built on top of CUPTI that collect
module data from the module callback may choose to use this type to store the collected
module data.

uint32_t CUpti_ActivityModule::contextld

The ID of the context where the module is loaded.

const void *CUpti_ActivityModule::cubin

The pointer to cubin.

uint32_t CUpti_ActivityModule::cubinSize

The cubin size.

uint32_t CUpti_ActivityModule::id

The module ID.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 161

Data Structures

CUpti_ActivityKind CUpti_ActivityModule::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_MODULE.

uint32_t CUpti_ActivityModule::pad

Undefined. Reserved for internal use.

3.27. CUpti_ActivityName Struct Reference

The activity record providing a name.

This activity record provides a name for a device, context, thread, etc.
(CUPTI_ACTIVITY_KIND_NAME).

CUpti_ActivityKind CUpti_ActivityName::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_NAME.

const char *CUpti_ActivityName::name

The name.

CUpti_ActivityName::objectld

The identifier for the activity object. 'objectKind' indicates which ID is valid for this
record.

CUpti_ActivityObjectKind
CUpti_ActivityName::objectKind

The kind of activity object being named.

3.28. CUpti_ActivityObjectKindld Union Reference

Identifiers for object kinds as specified by CUpti_ActivityObjectKind.
See also:

CUpti_ActivityObjectKind

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 162

Data Structures

CUpti_ActivityObjectKindld::@1
CUpti_ActivityObjectKindld::dcs

A device object requires that we identify the device ID. A context object requires that we
identify both the device and context ID. A stream object requires that we identify device,
context, and stream ID.

CUpti_ActivityObjectKindld::@0
CUpti_ActivityObjectKindld::pt

A process object requires that we identify the process ID. A thread object requires that
we identify both the process and thread ID.

3.29. CUpti_ActivityOverhead Struct Reference

The activity record for CUPTI and driver overheads.

This activity record provides CUPTI and driver overhead information
(CUPTI_ACTIVITY_OVERHEAD).

uint64_t CUpti_ActivityOverhead::end

The end timestamp for the overhead, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the
overhead.

CUpti_ActivityKind CUpti_ActivityOverhead::kind

The activity record kind, must be CUPTI_ACTIVITY_OVERHEAD.

CUpti_ActivityOverhead::objectld

The identifier for the activity object. 'objectKind' indicates which ID is valid for this
record.

CUpti_ActivityObjectKind
CUpti_ActivityOverhead::objectKind

The kind of activity object that the overhead is associated with.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 163

Data Structures

CUpti_ActivityOverheadKind
CUpti_ActivityOverhead::overheadKind

The kind of overhead, CUPTI, DRIVER, COMPILER etc.

uinté4_t CUpti_ActivityOverhead::start

The start timestamp for the overhead, in ns. A value of 0 for both the start and end
timestamps indicates that timestamp information could not be collected for the
overhead.

3.30. CUpti_ActivityPreemption Struct Reference
The activity record for a preemption of a CDP kernel.

This activity record represents a preemption of a CDP kernel.

uint32_t CUpti_ActivityPreemption::blockX

The X-dimension of the block that is preempted

uint32_t CUpti_ActivityPreemption::blockY

The Y-dimension of the block that is preempted

uint32_t CUpti_ActivityPreemption::blockZ

The Z-dimension of the block that is preempted

inté4_t CUpti_ActivityPreemption::gridid

The grid-id of the block that is preempted

CUpti_ActivityKind CUpti_ActivityPreemption::kind
The activity record kind, must be CUPTI_ACTIVITY_KIND_PREEMPTION

uint32_t CUpti_ActivityPreemption::pad

Undefined. Reserved for internal use.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 164

Data Structures

CUpti_ActivityPreemptionKind
CUpti_ActivityPreemption::preemptionKind

kind of the preemption

uint64_t CUpti_ActivityPreemption::timestamp

The timestamp of the preemption, in ns. A value of 0 indicates that timestamp
information could not be collected for the preemption.

3.31. CUpti_ActivitySharedAccess Struct
Reference

The activity record for source-level shared access.

This activity records the locations of the shared accesses in the source
(CUPTI_ACTIVITY_KIND_SHARED_ACCESS).

uint32_t CUpti_ActivitySharedAccess::correlationld

The correlation ID of the kernel to which this result is associated.

uint32_t CUpti_ActivitySharedAccess::executed

The number of times this instruction was executed

CUpti_ActivityFlag CUpti_ActivitySharedAccess::flags

The properties of this shared access.

uint32_t CUpti_ActivitySharedAccess::functionld

Correlation ID with global/device function name

CUpti_ActivityKind CUpti_ActivitySharedAccess::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_SHARED_ACCESS.

uint32_t CUpti_ActivitySharedAccess::pad

Undefined. Reserved for internal use.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 165

Data Structures

uint32_t CUpti_ActivitySharedAccess::pcOffset
The pc offset for the access.

uinté4_t
CUpti_ActivitySharedAccess::sharedTransactions

The total number of shared memory transactions generated by this access

uint32_t CUpti_ActivitySharedAccess::sourcelLocatorld

The ID for source locator.

uint64_t
CUpti_ActivitySharedAccess::theoreticalSharedTransactions

The minimum number of shared memory transactions possible based on the access
pattern.

uint64_t CUpti_ActivitySharedAccess::threadsExecuted

This increments each time when this instruction is executed by number of threads that
executed this instruction with predicate and condition code evaluating to true.

3.32. CUpti_ActivitySourcelLocator Struct
Reference

The activity record for source locator.

This activity record represents a source locator
(CUPTI_ACTIVITY_KIND_SOURCE_LOCATOR).

const char *CUpti_ActivitySourcelLocator::fileName
The path for the file.

uint32_t CUpti_ActivitySourcelocator::id

The ID for the source path, will be used in all the source level results.

CUpti_ActivityKind CUpti_ActivitySourcelLocator::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_SOURCE_LOCATOR.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 166

Data Structures

uint32_t CUpti_ActivitySourcelLocator::lineNumber

The line number in the source .

3.33. CUpti_ActivityUnifiedMemoryCounter Struct
Reference

The activity record for Unified Memory counters.

This activity record represents a Unified Memory counter
(CUPTI_ACTIVITY_KIND_UNIFIED_MEMORY_COUNTER).

CUpti_ActivityUnifiedMemoryCounterKind
CUpti_ActivityUnifiedMemoryCounter::counterKind

The Unified Memory counter kind. See /ref CUpti_ActivityUnifiedMemoryCounterKind

uint32_t CUpti_ActivityUnifiedMemoryCounter::deviceld

The ID of the device involved in the memory transfer operation. It is not relevant if the
scope of the counter is global (all devices).

CUpti_ActivityKind
CUpti_ActivityUnifiedMemoryCounter::kind

The activity record kind, must be
CUPTI_ACTIVITY_KIND_UNIFIED_MEMORY_COUNTER

uint32_t CUpti_ActivityUnifiedMemoryCounter::pad
Undefined. Reserved for internal use.

uint32_t
CUpti_ActivityUnifiedMemoryCounter::processid

The ID of the process to which this record belongs to. In case of global scope, processld
is undefined.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 167

Data Structures

CUpti_ActivityUnifiedMemoryCounterScope
CUpti_ActivityUnifiedMemoryCounter::scope

Scope of the Unified Memory counter. See /ref
CUpti_ActivityUnifiedMemoryCounterScope

uint64_t
CUpti_ActivityUnifiedMemoryCounter::timestamp

The timestamp when this sample was retrieved, in ns. A value of 0 indicates that
timestamp information could not be collected

uinté4_t CUpti_ActivityUnifiedMemoryCounter::value

Value of the counter

3.34. CUpti_ActivityUnifiedMemoryCounterConfig
Struct Reference

Unified Memory counters configuration structure.

This structure controls the enable/disable of the various Unified Memory
counters consisting of scope, kind and other parameters. See function /ref
cuptiActivityConfigureUnifiedMemoryCounter

uint32_t
CUpti_ActivityUnifiedMemoryCounterConfig::deviceld
Device id of the traget device. This is relevant only for single device scopes.
uint32_t
CUpti_ActivityUnifiedMemoryCounterConfig::enable

Control to enable/disable the counter. To enable the counter set it to non-zero value
while disable is indicated by zero.

CUpti_ActivityUnifiedMemoryCounterKind
CUpti_ActivityUnifiedMemoryCounterConfig::kind

Unified Memory counter Counter kind

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 168

Data Structures

CUpti_ActivityUnifiedMemoryCounterScope
CUpti_ActivityUnifiedMemoryCounterConfig::scope

Unified Memory counter Counter scope

3.35. CUpti_CallbackData Struct Reference

Data passed into a runtime or driver API callback function.

Data passed into a runtime or driver API callback function as the cbdata argument

to CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_DRIVER_API or CUPTI_CB_DOMAIN_RUNTIME_API. The
callback data is valid only within the invocation of the callback function that is passed
the data. If you need to retain some data for use outside of the callback, you must make
a copy of that data. For example, if you make a shallow copy of CUpti_CallbackData
within a callback, you cannot dereference functionParams outside of that callback to
access the function parameters. functionName is an exception: the string pointed to by
functionName is a global constant and so may be accessed outside of the callback.

CUpti_ApiCallbackSite CUpti_CallbackData::callbackSite

Point in the runtime or driver function from where the callback was issued.

CUcontext CUpti_CallbackData::context

Driver context current to the thread, or null if no context is current. This value can
change from the entry to exit callback of a runtime API function if the runtime initializes
a context.

uint32_t CUpti_CallbackData::contextUid

Unique ID for the CUDA context associated with the thread. The UIDs are assigned
sequentially as contexts are created and are unique within a process.

uinté4_t *CUpti_CallbackData::correlationData

Pointer to data shared between the entry and exit callbacks of a given runtime or drive
API function invocation. This field can be used to pass 64-bit values from the entry
callback to the corresponding exit callback.

uint32_t CUpti_CallbackData::correlationld

The activity record correlation ID for this callback. For a driver domain callback (i.e.
domain CUPTI_CB_DOMAIN_DRIVER_API) this ID will equal the correlation ID in

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 169

Data Structures

the CUpti_Activity API record corresponding to the CUDA driver function call. For

a runtime domain callback (i.e. domain CUPTI_CB_DOMAIN_RUNTIME_API) this
ID will equal the correlation ID in the CUpti_Activity API record corresponding to the
CUDA runtime function call. Within the callback, this ID can be recorded to correlate
user data with the activity record. This field is new in 4.1.

const char *CUpti_CallbackData::functionName

Name of the runtime or driver API function which issued the callback. This string is a
global constant and so may be accessed outside of the callback.

const void *CUpti_CallbackData::functionParams

Pointer to the arguments passed to the runtime or driver API call. See
generated_cuda_runtime_api_meta.h and generated_cuda_meta.h for structure
definitions for the parameters for each runtime and driver API function.

void *CUpti_CallbackData::functionReturnValue

Pointer to the return value of the runtime or driver API call. This field is only valid
within the exit::CUPTI_API_EXIT callback. For a runtime API functionReturnvValue
points to a cudaError t. For a driver API functionReturnValue pointsto a
CUresult.

const char *CUpti_CallbackData::symbolName

Name of the symbol operated on by the runtime or driver API function which issued
the callback. This entry is valid only for driver and runtime launch callbacks, where it
returns the name of the kernel.

3.36. CUpti_EventGroupSet Struct Reference

A set of event groups.

A set of event groups. When returned by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets a set indicates that event groups that can be enabled
at the same time (i.e. all the events in the set can be collected simultaneously).

CUpti_EventGroup *CUpti_EventGroupSet::eventGroups

An array of numEventGroups event groups.

uint32_t CUpti_EventGroupSet::numEventGroups

The number of event groups in the set.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 170

Data Structures

3.37. CUpti_EventGroupSets Struct Reference

A set of event group sets.

A set of event group sets. When returned by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets a CUpti_EventGroupSets indicates the number of
passes required to collect all the events, and the event groups that should be collected
during each pass.

uint32_t CUpti_EventGroupSets::numSets

Number of event group sets.

CUpti_EventGroupSet *CUpti_EventGroupSets::sets

An array of numSets event group sets.

3.38. CUpti_MetricValue Union Reference

A metric value.

Metric values can be one of several different kinds. Corresponding to each kind

is a member of the CUpti_MetricValue union. The metric value returned by
cuptiMetricGetValue should be accessed using the appropriate member of that union
based on its value kind.

3.39. CUpti_ModuleResourceData Struct Reference

Module data passed into a resource callback function.

CUDA module data passed into a resource callback function as the cbdata

argument to CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_RESOURCE. The module data is valid only within the invocation
of the callback function that is passed the data. If you need to retain some data for use
outside of the callback, you must make a copy of that data.

size_t CUpti_ModuleResourceData::cubinSize

The size of the cubin.

uint32_t CUpti_ModuleResourceData::moduleld

Identifier to associate with the CUDA module.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 171

Data Structures

const char *CUpti_ModuleResourceData::pCubin

Pointer to the associated cubin.

3.40. CUpti_NvtxData Struct Reference

Data passed into a NVTX callback function.

Data passed into a NVTX callback function as the cbdata argument to
CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_NVTX. Unless otherwise notes, the callback data is valid only
within the invocation of the callback function that is passed the data. If you need to
retain some data for use outside of the callback, you must make a copy of that data.

const char *CUpti_NvtxData::functionName

Name of the NVTX API function which issued the callback. This string is a global
constant and so may be accessed outside of the callback.

const void *CUpti_NvtxData::functionParams

Pointer to the arguments passed to the NVTX API call. See generated_nvtx_meta.h for
structure definitions for the parameters for each NVTX API function.

3.41. CUpti_ResourceData Struct Reference

Data passed into a resource callback function.

Data passed into a resource callback function as the cbdata argument to
CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_RESOURCE. The callback data is valid only within the invocation
of the callback function that is passed the data. If you need to retain some data for use
outside of the callback, you must make a copy of that data.

CUcontext CUpti_ResourceData::context

For CUPTI_CBID_RESOURCE_CONTEXT_CREATED and
CUPTI_CBID_RESOURCE_CONTEXT_DESTROY_STARTING, the context being
created or destroyed. For CUPTI_CBID_RESOURCE_STREAM_CREATED and
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING, the context containing the
stream being created or destroyed.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 172

Data Structures

void *CUpti_ResourceData::resourceDescriptor

Reserved for future use.

CUstream CUpti_ResourceData::stream

For CUPTI_CBID_RESOURCE_STREAM_CREATED and
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING, the stream being created
or destroyed.

3.42. CUpti_SynchronizeData Struct Reference

Data passed into a synchronize callback function.

Data passed into a synchronize callback function as the cbdata argument

to CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_SYNCHRONIZE. The callback data is valid only within the
invocation of the callback function that is passed the data. If you need to retain some
data for use outside of the callback, you must make a copy of that data.

CUcontext CUpti_SynchronizeData::context

The context of the stream being synchronized.

CUstream CUpti_SynchronizeData::stream

The stream being synchronized.

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 173

Chapter 4.
DATA FIELDS

Here is a list of all documented struct and union fields with links to the struct/union
documentation for each field:

A
attribute
CUpti_ActivityDeviceAttribute

B

blockX
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityPreemption
CUpti_ActivityCdpKernel

blockY
CUpti_ActivityPreemption
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel

blockZ
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityPreemption

bytes
CUpti_ActivityMemset
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 174

c
cacheConfigExecuted
CUpti_ActivityKernel
cacheConfigRequested
CUpti_ActivityKernel
callbackSite
CUpti_CallbackData
category
CUpti_ActivityMarkerData
cbid
CUpti_Activity API
clocksThrottleReasons

CUpti_ActivityEnvironment

color
CUpti_ActivityMarkerData
completed
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
computeApiKind
CUpti_ActivityContext
computeCapabilityMajor
CUpti_ActivityDevice
computeCapabilityMinor
CUpti_ActivityDevice
constantMemorySize
CUpti_ActivityDevice
context
CUpti_SynchronizeData
CUpti_CallbackData
CUpti_ResourceData
contextld
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2
CUpti_ActivityMemset
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityContext
CUpti_ActivityFunction
CUpti_ActivityModule
contextUid
CUpti_CallbackData

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 175

Data Fields

cooling
CUpti_ActivityEnvironment
copyKind
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy2
coreClockRate
CUpti_ActivityDevice
correlationData
CUpti_CallbackData
correlationld
CUpti_ActivityKernel
CUpti_ActivityBranch2
CUpti_ActivityBranch
CUpti_ActivityCdpKernel
CUpti_ActivityMetric
CUpti_ActivityKernel2
CUpti_ActivityGlobal Access?2
CUpti_ActivityMemcpy
CUpti_ActivityInstructionExecution
CUpti_Activity API
CUpti_ActivityMetricInstance
CUpti_ActivityEvent
CUpti_ActivityMemset
CUpti_ActivityMemcpy?2
CUpti_ActivityEventInstance
CUpti_ActivityShared Access
CUpti_CallbackData
CUpti_ActivityGlobal Access
counterKind
CUpti_ActivityUnifiedMemoryCounter
cubin
CUpti_ActivityModule
cubinSize
CUpti_ModuleResourceData
CUpti_ActivityModule

D

dcs
CUpti_ActivityObjectKindId

deviceld
CUpti_ActivityUnifiedMemoryCounterConfig
CUpti_ActivityMemcpy2
CUpti_ActivityCdpKernel

www.nvidia.com
CUPTI DA-05679-001 _v6.5 | 176

CUpti_ActivityDeviceAttribute
CUpti_ActivityMemset
CUpti_ActivityContext
CUpti_ActivityEnvironment
CUpti_ActivityMemcpy
CUpti_ActivityKernel
CUpti_ActivityUnifiedMemoryCounter
CUpti_ActivityKernel2
diverged
CUpti_ActivityBranch
CUpti_ActivityBranch2
domain
CUpti_ActivityEventInstance
CUpti_ActivityEvent
dstContextld
CUpti_ActivityMemcpy2
dstDeviceld
CUpti_ActivityMemcpy?2
dstKind
CUpti_ActivityMemcpy?2
CUpti_ActivityMemcpy
dynamicSharedMemory
CUpti_ActivityKernel
CUpti_ActivityCdpKernel
CUpti_ActivityKernel2

E
enable

CUpti_ActivityUnifiedMemoryCounterConfig

enabled
CUpti_Activity AutoBoostState
end
CUpti_ActivityMemcpy?2
CUpti_ActivityCdpKernel
CUpti_Activity API
CUpti_ActivityMemset
CUpti_ActivityOverhead
CUpti_ActivityMemcpy
CUpti_ActivityKernel
CUpti_ActivityKernel2
environmentKind
CUpti_ActivityEnvironment

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 177

eventGroups
CUpti_EventGroupSet

executed
CUpti_ActivityInstructionExecution
CUpti_ActivityShared Access
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityGlobal Access
CUpti_ActivityBranch2
CUpti_ActivityBranch
CUpti_ActivityGlobal Access?2

F
fanSpeed
CUpti_ActivityEnvironment
fileName
CUpti_ActivitySourceLocator
flags
CUpti_ActivityMemcpy?2
CUpti_ActivityGlobal Access2
CUpti_ActivityDevice
CUpti_ActivityMetric
CUpti_ActivityDeviceAttribute
CUpti_ActivityMarker
CUpti_ActivityMemcpy
CUpti_ActivityMetricInstance
CUpti_ActivityMarkerData
CUpti_ActivityShared Access
CUpti_ActivityInstructionExecution
CUpti_ActivityGlobal Access
functionld
CUpti_ActivityBranch2
CUpti_ActivitylnstructionExecution
CUpti_ActivityShared Access
CUpti_ActivityGlobal Access?2
functionIndex
CUpti_ActivityFunction
functionName
CUpti_NvtxData
CUpti_CallbackData
functionParams
CUpti_CallbackData
CUpti_NvtxData

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 178

functionReturnValue
CUpti_CallbackData

G
globalMemoryBandwidth
CUpti_ActivityDevice
globalMemorySize
CUpti_ActivityDevice
gpuTemperature
CUpti_ActivityEnvironment
gridld
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityPreemption
gridX
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
gridY
CUpti_ActivityKernel2
CUpti_ActivityKernel
CUpti_ActivityCdpKernel
gridZ
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel

id
CUpti_ActivityEvent
CUpti_ActivityEventInstance
CUpti_ActivityMetricInstance
CUpti_ActivityModule
CUpti_ActivityMarkerData
CUpti_ActivityFunction
CUpti_ActivityMarker
CUpti_ActivityDevice
CUpti_ActivitySourceLocator
CUpti_ActivityMetric

instance
CUpti_ActivityEventInstance
CUpti_ActivityMetricInstance

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 179

K

kind

L

CUpti_ActivityUnifiedMemoryCounterConfig

CUpti_ActivityShared Access
CUpti_ActivityModule
CUpti_ActivityFunction

CUpti_ActivityUnifiedMemoryCounter
CUpti_ActivityInstructionExecution

CUpti_ActivityEnvironment
CUpti_ActivityOverhead
CUpti_ActivityMarkerData
CUpti_ActivityMarker
CUpti_ActivityName
CUpti_ActivityContext
CUpti_ActivityDeviceAttribute
CUpti_ActivityDevice
CUpti_ActivityBranch2
CUpti_ActivityBranch
CUpti_ActivityGlobal Access?2
CUpti_ActivityGlobal Access
CUpti_ActivitySourceLocator
CUpti_ActivityMetricInstance
CUpti_ActivityMetric
CUpti_ActivityEventInstance
CUpti_ActivityEvent
CUpti_ActivityAPI
CUpti_ActivityPreemption
CUpti_ActivityCdpKernel
CUpti_ActivityKernel2
CUpti_ActivityKernel
CUpti_ActivityMemset
CUpti_ActivityMemcpy?2
CUpti_ActivityMemcpy
CUpti_Activity

12_transactions

CUpti_ActivityGlobal Access
CUpti_ActivityGlobal Access?2

12CacheSize

CUpti_ActivityDevice

lineNumber

CUpti_ActivitySourceLocator

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 180

localMemoryPerThread
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
CUpti_ActivityKernel2

localMemoryTotal
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
CUpti_ActivityKernel2

M
maxBlockDimX
CUpti_ActivityDevice
maxBlockDimY
CUpti_ActivityDevice
maxBlockDimZ
CUpti_ActivityDevice
maxBlocksPerMultiprocessor
CUpti_ActivityDevice
maxGridDimX
CUpti_ActivityDevice
maxGridDimY
CUpti_ActivityDevice
maxGridDimZ
CUpti_ActivityDevice
maxIPC
CUpti_ActivityDevice
maxRegistersPerBlock
CUpti_ActivityDevice
maxSharedMemoryPerBlock
CUpti_ActivityDevice
maxThreadsPerBlock
CUpti_ActivityDevice
maxWarpsPerMultiprocessor
CUpti_ActivityDevice
memoryClock
CUpti_ActivityEnvironment
moduleld
CUpti_ModuleResourceData
CUpti_ActivityFunction

N

name
CUpti_ActivityKernel

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 181

CUpti_ActivityKernel2
CUpti_ActivityDevice
CUpti_ActivityName
CUpti_ActivityCdpKernel
CUpti_ActivityMarker
CUpti_ActivityFunction
notPredOffThreadsExecuted
CUpti_ActivityInstructionExecution
nullStreamId
CUpti_ActivityContext
numEventGroups
CUpti_EventGroupSet
numMemcpyEngines
CUpti_ActivityDevice
numMultiprocessors
CUpti_ActivityDevice
numSets
CUpti_EventGroupSets
numThreadsPerWarp
CUpti_ActivityDevice

o

objectld
CUpti_ActivityName
CUpti_ActivityMarker
CUpti_ActivityOverhead

objectKind
CUpti_ActivityMarker
CUpti_ActivityName
CUpti_ActivityOverhead

overheadKind
CUpti_ActivityOverhead

P

pad
CUpti_ActivityMemcpy?2
CUpti_ActivityKernel
CUpti_ActivityEventInstance
CUpti_ActivityBranch2
CUpti_ActivityInstructionExecution
CUpti_ActivityMetric
CUpti_ActivityUnifiedMemoryCounter
CUpti_ActivityModule

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 182

CUpti_ActivityPreemption
CUpti_ActivityMetricInstance
CUpti_ActivityShared Access
CUpti_ActivityGlobal Access?2
parentBlockX
CUpti_ActivityCdpKernel
parentBlockY
CUpti_ActivityCdpKernel
parentBlockZ
CUpti_ActivityCdpKernel
parentGridId
CUpti_ActivityCdpKernel
payload
CUpti_ActivityMarkerData
payloadKind
CUpti_ActivityMarkerData
pcieLinkGen
CUpti_ActivityEnvironment
pcieLinkWidth
CUpti_ActivityEnvironment
pcOffset
CUpti_ActivityGlobal Access
CUpti_ActivityGlobal Access2
CUpti_ActivityInstructionExecution
CUpti_ActivityBranch2
CUpti_ActivityShared Access
CUpti_ActivityBranch
pCubin
CUpti_ModuleResourceData
pid
CUpti_ActivityAutoBoostState
power
CUpti_ActivityEnvironment
powerLimit
CUpti_ActivityEnvironment
preemptionKind
CUpti_ActivityPreemption
processld

CUpti_ActivityUnifiedMemoryCounter

CUpti_Activity API

pt
CUpti_ActivityObjectKindId

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 183

Q

queued
CUpti_ActivityCdpKernel

R
registersPerThread
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
requested
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
reserved0
CUpti_ActivityMemset
CUpti_ActivityKernel
CUpti_ActivityKernel2
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2
resourceDescriptor
CUpti_ResourceData
returnValue
CUpti_Activity API
runtimeCorrelationld
CUpti_ActivityMemset
CUpti_ActivityMemcpy
CUpti_ActivityKernel

S
scope

CUpti_ActivityUnifiedMemoryCounterConfig
CUpti_ActivityUnifiedMemoryCounter

sets
CUpti_EventGroupSets
sharedMemoryConfig
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
sharedTransactions
CUpti_ActivityShared Access
smClock
CUpti_ActivityEnvironment
sourceLocatorld
CUpti_ActivityGlobal Access
CUpti_ActivityGlobal Access?2

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 184

CUpti_ActivityBranch
CUpti_ActivityBranch2

CUpti_ActivityInstructionExecution
CUpti_ActivityShared Access

speed

CUpti_ActivityEnvironment

srcContextld
CUpti_ActivityMemcpy?2
srcDeviceld
CUpti_ActivityMemcpy?2
srcKind
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2
start
CUpti_ActivityKernel2
CUpti_ActivityMemcpy
CUpti_ActivityMemcpy?2
CUpti_ActivityMemset
CUpti_ActivityKernel
CUpti_ActivityCdpKernel
CUpti_Activity API
CUpti_ActivityOverhead
staticSharedMemory
CUpti_ActivityKernel2
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
stream
CUpti_ResourceData
CUpti_SynchronizeData
streamld
CUpti_ActivityKernel2
CUpti_ActivityMemcpy?2
CUpti_ActivityMemset
CUpti_ActivityMemcpy
CUpti_ActivityCdpKernel
CUpti_ActivityKernel
submitted
CUpti_ActivityCdpKernel
symbolName
CUpti_CallbackData

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 185

T
temperature
CUpti_ActivityEnvironment
theoreticalL2Transactions
CUpti_ActivityGlobal Access2
theoreticalSharedTransactions
CUpti_ActivityShared Access
threadld
CUpti_Activity API
threadsExecuted
CUpti_ActivityBranch2
CUpti_ActivityShared Access
CUpti_ActivityInstructionExecution
CUpti_ActivityGlobal Access
CUpti_ActivityBranch
CUpti_ActivityGlobal Access2
timestamp
CUpti_ActivityMarker
CUpti_ActivityPreemption
CUpti_ActivityEnvironment
CUpti_ActivityUnifiedMemoryCounter

V'

value
CUpti_ActivityMemset
CUpti_ActivityUnifiedMemoryCounter
CUpti_ActivityDeviceAttribute
CUpti_ActivityMetricInstance
CUpti_ActivityMetric
CUpti_ActivityEventInstance
CUpti_ActivityEvent

www.nvidia.com
CUPTI

Data Fields

DA-05679-001 _v6.5 | 186

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	Table of Contents
	List of Tables
	Usage
	1.1. CUPTI Compatibility and Requirements
	1.2. CUPTI Initialization
	1.3. CUPTI Activity API
	1.3.1. Context Activity Record
	1.3.2. Legacy Activity Records

	1.4. CUPTI Callback API
	1.4.1. Driver and Runtime API Callbacks
	1.4.2. Resource Callbacks
	1.4.3. Synchronization Callbacks
	1.4.4. NVIDIA Tools Extension Callbacks

	1.5. CUPTI Event API
	1.5.1. Collecting Kernel Execution Events
	1.5.2. Sampling Events

	1.6. CUPTI Metric API
	1.7. Samples

	Modules
	2.1. CUPTI Version
	CUptiResult cuptiGetVersion (uint32_t *version)
	#define CUPTI_API_VERSION 6

	2.2. CUPTI Result Codes
	enum CUptiResult
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CUptiResult cuptiGetResultString (CUptiResult result, const char **str)

	2.3. CUPTI Activity API
	struct CUpti_Activity
	struct CUpti_ActivityAPI
	struct CUpti_ActivityAutoBoostState
	struct CUpti_ActivityBranch
	struct CUpti_ActivityBranch2
	struct CUpti_ActivityCdpKernel
	struct CUpti_ActivityContext
	struct CUpti_ActivityDevice
	struct CUpti_ActivityDeviceAttribute
	struct CUpti_ActivityEnvironment
	struct CUpti_ActivityEvent
	struct CUpti_ActivityEventInstance
	struct CUpti_ActivityFunction
	struct CUpti_ActivityGlobalAccess
	struct CUpti_ActivityGlobalAccess2
	struct CUpti_ActivityInstructionExecution
	struct CUpti_ActivityKernel
	struct CUpti_ActivityKernel2
	struct CUpti_ActivityMarker
	struct CUpti_ActivityMarkerData
	struct CUpti_ActivityMemcpy
	struct CUpti_ActivityMemcpy2
	struct CUpti_ActivityMemset
	struct CUpti_ActivityMetric
	struct CUpti_ActivityMetricInstance
	struct CUpti_ActivityModule
	struct CUpti_ActivityName
	union CUpti_ActivityObjectKindId
	struct CUpti_ActivityOverhead
	struct CUpti_ActivityPreemption
	struct CUpti_ActivitySharedAccess
	struct CUpti_ActivitySourceLocator
	struct CUpti_ActivityUnifiedMemoryCounter
	struct CUpti_ActivityUnifiedMemoryCounterConfig
	enum CUpti_ActivityAttribute
	
	
	
	

	enum CUpti_ActivityComputeApiKind
	
	
	
	

	enum CUpti_ActivityEnvironmentKind
	
	
	
	
	
	
	

	enum CUpti_ActivityFlag
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_ActivityInstructionClass
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_ActivityKind
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_ActivityMemcpyKind
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_ActivityMemoryKind
	
	
	
	
	
	

	enum CUpti_ActivityObjectKind
	
	
	
	
	
	
	

	enum CUpti_ActivityOverheadKind
	
	
	
	
	
	

	enum CUpti_ActivityPreemptionKind
	
	
	
	

	enum CUpti_ActivityUnifiedMemoryCounterKind
	
	
	
	
	
	

	enum CUpti_ActivityUnifiedMemoryCounterScope
	
	
	
	
	

	enum CUpti_EnvironmentClocksThrottleReason
	
	
	
	
	
	
	
	

	typedef (*CUpti_BuffersCallbackCompleteFunc) (CUcontext context, uint32_t streamId, uint8_t* buffer, size_t size, size_t validSize)
	(*) (CUcontext context, uint32_t streamId, uint8_t* buffer, size_t size, size_t validSize)
	(CUcontext context, uint32_t streamId, uint8_t* buffer, size_t size, size_t validSize)

	typedef (*CUpti_BuffersCallbackRequestFunc) (uint8_t* *buffer, size_t* size, size_t* maxNumRecords)
	(*) (uint8_t* *buffer, size_t* size, size_t* maxNumRecords)
	(uint8_t* *buffer, size_t* size, size_t* maxNumRecords)

	CUptiResult cuptiActivityConfigureUnifiedMemoryCounter (CUpti_ActivityUnifiedMemoryCounterConfig *config, uint32_t count)
	CUptiResult cuptiActivityDisable (CUpti_ActivityKind kind)
	CUptiResult cuptiActivityDisableContext (CUcontext context, CUpti_ActivityKind kind)
	CUptiResult cuptiActivityEnable (CUpti_ActivityKind kind)
	CUptiResult cuptiActivityEnableContext (CUcontext context, CUpti_ActivityKind kind)
	CUptiResult cuptiActivityFlush (CUcontext context, uint32_t streamId, uint32_t flag)
	CUptiResult cuptiActivityFlushAll (uint32_t flag)
	CUptiResult cuptiActivityGetAttribute (CUpti_ActivityAttribute attr, size_t *valueSize, void *value)
	CUptiResult cuptiActivityGetNextRecord (uint8_t *buffer, size_t validBufferSizeBytes, CUpti_Activity **record)
	CUptiResult cuptiActivityGetNumDroppedRecords (CUcontext context, uint32_t streamId, size_t *dropped)
	CUptiResult cuptiActivityRegisterCallbacks (CUpti_BuffersCallbackRequestFunc funcBufferRequested, CUpti_BuffersCallbackCompleteFunc funcBufferCompleted)
	CUptiResult cuptiActivitySetAttribute (CUpti_ActivityAttribute attr, size_t *valueSize, void *value)
	CUptiResult cuptiGetAutoBoostState (CUcontext context, CUpti_ActivityAutoBoostState *state)
	CUptiResult cuptiGetContextId (CUcontext context, uint32_t *contextId)
	CUptiResult cuptiGetDeviceId (CUcontext context, uint32_t *deviceId)
	CUptiResult cuptiGetStreamId (CUcontext context, CUstream stream, uint32_t *streamId)
	CUptiResult cuptiGetTimestamp (uint64_t *timestamp)
	#define CUPTI_AUTO_BOOST_INVALID_CLIENT_PID 0
	#define CUPTI_CORRELATION_ID_UNKNOWN 0
	#define CUPTI_GRID_ID_UNKNOWN 0LL
	#define CUPTI_SOURCE_LOCATOR_ID_UNKNOWN 0
	#define CUPTI_TIMESTAMP_UNKNOWN 0LL

	2.4. CUPTI Callback API
	struct CUpti_CallbackData
	struct CUpti_ModuleResourceData
	struct CUpti_NvtxData
	struct CUpti_ResourceData
	struct CUpti_SynchronizeData
	enum CUpti_ApiCallbackSite
	
	
	

	enum CUpti_CallbackDomain
	
	
	
	
	
	
	
	

	enum CUpti_CallbackIdResource
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_CallbackIdSync
	
	
	
	
	

	typedef (*CUpti_CallbackFunc) (void* userdata, CUpti_CallbackDomain domain, CUpti_CallbackId cbid, const void* cbdata)
	(*) (void* userdata, CUpti_CallbackDomain domain, CUpti_CallbackId cbid, const void* cbdata)
	(void* userdata, CUpti_CallbackDomain domain, CUpti_CallbackId cbid, const void* cbdata)

	typedef uint32_t CUpti_CallbackId
	uint32_t ::

	typedef CUpti_DomainTable
	CUpti_CallbackDomain* ::

	typedef struct CUpti_Subscriber_st *CUpti_SubscriberHandle
	CUpti_Subscriber_st * ::

	CUptiResult cuptiEnableAllDomains (uint32_t enable, CUpti_SubscriberHandle subscriber)
	CUptiResult cuptiEnableCallback (uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)
	CUptiResult cuptiEnableDomain (uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain)
	CUptiResult cuptiGetCallbackName (CUpti_CallbackDomain domain, uint32_t cbid, const char **name)
	CUptiResult cuptiGetCallbackState (uint32_t *enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)
	CUptiResult cuptiSubscribe (CUpti_SubscriberHandle *subscriber, CUpti_CallbackFunc callback, void *userdata)
	CUptiResult cuptiSupportedDomains (size_t *domainCount, CUpti_DomainTable *domainTable)
	CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle subscriber)

	2.5. CUPTI Event API
	struct CUpti_EventGroupSet
	struct CUpti_EventGroupSets
	enum CUpti_DeviceAttribute
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_DeviceAttributeDeviceClass
	
	
	

	enum CUpti_EventAttribute
	
	
	
	
	

	enum CUpti_EventCategory
	
	
	
	
	

	enum CUpti_EventCollectionMethod
	
	
	
	

	enum CUpti_EventCollectionMode
	
	
	

	enum CUpti_EventDomainAttribute
	
	
	
	
	

	enum CUpti_EventGroupAttribute
	
	
	
	
	
	
	

	enum CUpti_ReadEventFlags
	
	

	typedef uint32_t CUpti_EventDomainID
	uint32_t ::

	typedef void *CUpti_EventGroup
	void * ::

	typedef uint32_t CUpti_EventID
	uint32_t ::

	CUptiResult cuptiDeviceEnumEventDomains (CUdevice device, size_t *arraySizeBytes, CUpti_EventDomainID *domainArray)
	CUptiResult cuptiDeviceGetAttribute (CUdevice device, CUpti_DeviceAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiDeviceGetEventDomainAttribute (CUdevice device, CUpti_EventDomainID eventDomain, CUpti_EventDomainAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiDeviceGetNumEventDomains (CUdevice device, uint32_t *numDomains)
	CUptiResult cuptiDeviceGetTimestamp (CUcontext context, uint64_t *timestamp)
	CUptiResult cuptiDisableKernelReplayMode (CUcontext context)
	CUptiResult cuptiEnableKernelReplayMode (CUcontext context)
	CUptiResult cuptiEnumEventDomains (size_t *arraySizeBytes, CUpti_EventDomainID *domainArray)
	CUptiResult cuptiEventDomainEnumEvents (CUpti_EventDomainID eventDomain, size_t *arraySizeBytes, CUpti_EventID *eventArray)
	CUptiResult cuptiEventDomainGetAttribute (CUpti_EventDomainID eventDomain, CUpti_EventDomainAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiEventDomainGetNumEvents (CUpti_EventDomainID eventDomain, uint32_t *numEvents)
	CUptiResult cuptiEventGetAttribute (CUpti_EventID event, CUpti_EventAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiEventGetIdFromName (CUdevice device, const char *eventName, CUpti_EventID *event)
	CUptiResult cuptiEventGroupAddEvent (CUpti_EventGroup eventGroup, CUpti_EventID event)
	CUptiResult cuptiEventGroupCreate (CUcontext context, CUpti_EventGroup *eventGroup, uint32_t flags)
	CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup eventGroup)
	CUptiResult cuptiEventGroupDisable (CUpti_EventGroup eventGroup)
	CUptiResult cuptiEventGroupEnable (CUpti_EventGroup eventGroup)
	CUptiResult cuptiEventGroupGetAttribute (CUpti_EventGroup eventGroup, CUpti_EventGroupAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiEventGroupReadAllEvents (CUpti_EventGroup eventGroup, CUpti_ReadEventFlags flags, size_t *eventValueBufferSizeBytes, uint64_t *eventValueBuffer, size_t *eventIdArraySizeBytes, CUpti_EventID *eventIdArray, size_t *numEventIdsRead)
	CUptiResult cuptiEventGroupReadEvent (CUpti_EventGroup eventGroup, CUpti_ReadEventFlags flags, CUpti_EventID event, size_t *eventValueBufferSizeBytes, uint64_t *eventValueBuffer)
	CUptiResult cuptiEventGroupRemoveAllEvents (CUpti_EventGroup eventGroup)
	CUptiResult cuptiEventGroupRemoveEvent (CUpti_EventGroup eventGroup, CUpti_EventID event)
	CUptiResult cuptiEventGroupResetAllEvents (CUpti_EventGroup eventGroup)
	CUptiResult cuptiEventGroupSetAttribute (CUpti_EventGroup eventGroup, CUpti_EventGroupAttribute attrib, size_t valueSize, void *value)
	CUptiResult cuptiEventGroupSetDisable (CUpti_EventGroupSet *eventGroupSet)
	CUptiResult cuptiEventGroupSetEnable (CUpti_EventGroupSet *eventGroupSet)
	CUptiResult cuptiEventGroupSetsCreate (CUcontext context, size_t eventIdArraySizeBytes, CUpti_EventID *eventIdArray, CUpti_EventGroupSets **eventGroupPasses)
	CUptiResult cuptiEventGroupSetsDestroy (CUpti_EventGroupSets *eventGroupSets)
	CUptiResult cuptiGetNumEventDomains (uint32_t *numDomains)
	CUptiResult cuptiSetEventCollectionMode (CUcontext context, CUpti_EventCollectionMode mode)
	#define CUPTI_EVENT_OVERFLOW ((uint64_t)0xFFFFFFFFFFFFFFFFULL)

	2.6. CUPTI Metric API
	union CUpti_MetricValue
	enum CUpti_MetricAttribute
	
	
	
	
	
	
	

	enum CUpti_MetricCategory
	
	
	
	
	
	

	enum CUpti_MetricEvaluationMode
	
	
	

	enum CUpti_MetricPropertyDeviceClass
	
	
	

	enum CUpti_MetricPropertyID
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum CUpti_MetricValueKind
	
	
	
	
	
	
	

	enum CUpti_MetricValueUtilizationLevel
	
	
	
	
	
	

	typedef uint32_t CUpti_MetricID
	uint32_t ::

	CUptiResult cuptiDeviceEnumMetrics (CUdevice device, size_t *arraySizeBytes, CUpti_MetricID *metricArray)
	CUptiResult cuptiDeviceGetNumMetrics (CUdevice device, uint32_t *numMetrics)
	CUptiResult cuptiEnumMetrics (size_t *arraySizeBytes, CUpti_MetricID *metricArray)
	CUptiResult cuptiGetNumMetrics (uint32_t *numMetrics)
	CUptiResult cuptiMetricCreateEventGroupSets (CUcontext context, size_t metricIdArraySizeBytes, CUpti_MetricID *metricIdArray, CUpti_EventGroupSets **eventGroupPasses)
	CUptiResult cuptiMetricEnumEvents (CUpti_MetricID metric, size_t *eventIdArraySizeBytes, CUpti_EventID *eventIdArray)
	CUptiResult cuptiMetricEnumProperties (CUpti_MetricID metric, size_t *propIdArraySizeBytes, CUpti_MetricPropertyID *propIdArray)
	CUptiResult cuptiMetricGetAttribute (CUpti_MetricID metric, CUpti_MetricAttribute attrib, size_t *valueSize, void *value)
	CUptiResult cuptiMetricGetIdFromName (CUdevice device, const char *metricName, CUpti_MetricID *metric)
	CUptiResult cuptiMetricGetNumEvents (CUpti_MetricID metric, uint32_t *numEvents)
	CUptiResult cuptiMetricGetNumProperties (CUpti_MetricID metric, uint32_t *numProp)
	CUptiResult cuptiMetricGetRequiredEventGroupSets (CUcontext context, CUpti_MetricID metric, CUpti_EventGroupSets **eventGroupSets)
	CUptiResult cuptiMetricGetValue (CUdevice device, CUpti_MetricID metric, size_t eventIdArraySizeBytes, CUpti_EventID *eventIdArray, size_t eventValueArraySizeBytes, uint64_t *eventValueArray, uint64_t timeDuration, CUpti_MetricValue *metricValue)
	CUptiResult cuptiMetricGetValue2 (CUpti_MetricID metric, size_t eventIdArraySizeBytes, CUpti_EventID *eventIdArray, size_t eventValueArraySizeBytes, uint64_t *eventValueArray, size_t propIdArraySizeBytes, CUpti_MetricPropertyID *propIdArray, size_t propValueArraySizeBytes, uint64_t *propValueArray, CUpti_MetricValue *metricValue)

	Data Structures
	3.1. CUpti_Activity Struct Reference
	CUpti_ActivityKind CUpti_Activity::kind

	3.2. CUpti_ActivityAPI Struct Reference
	CUpti_CallbackId CUpti_ActivityAPI::cbid
	uint32_t CUpti_ActivityAPI::correlationId
	uint64_t CUpti_ActivityAPI::end
	CUpti_ActivityKind CUpti_ActivityAPI::kind
	uint32_t CUpti_ActivityAPI::processId
	uint32_t CUpti_ActivityAPI::returnValue
	uint64_t CUpti_ActivityAPI::start
	uint32_t CUpti_ActivityAPI::threadId

	3.3. CUpti_ActivityAutoBoostState Struct Reference
	uint32_t CUpti_ActivityAutoBoostState::enabled
	uint32_t CUpti_ActivityAutoBoostState::pid

	3.4. CUpti_ActivityBranch Struct Reference
	uint32_t CUpti_ActivityBranch::correlationId
	uint32_t CUpti_ActivityBranch::diverged
	uint32_t CUpti_ActivityBranch::executed
	CUpti_ActivityKind CUpti_ActivityBranch::kind
	uint32_t CUpti_ActivityBranch::pcOffset
	uint32_t CUpti_ActivityBranch::sourceLocatorId
	uint64_t CUpti_ActivityBranch::threadsExecuted

	3.5. CUpti_ActivityBranch2 Struct Reference
	uint32_t CUpti_ActivityBranch2::correlationId
	uint32_t CUpti_ActivityBranch2::diverged
	uint32_t CUpti_ActivityBranch2::executed
	uint32_t CUpti_ActivityBranch2::functionId
	CUpti_ActivityKind CUpti_ActivityBranch2::kind
	uint32_t CUpti_ActivityBranch2::pad
	uint32_t CUpti_ActivityBranch2::pcOffset
	uint32_t CUpti_ActivityBranch2::sourceLocatorId
	uint64_t CUpti_ActivityBranch2::threadsExecuted

	3.6. CUpti_ActivityCdpKernel Struct Reference
	int32_t CUpti_ActivityCdpKernel::blockX
	int32_t CUpti_ActivityCdpKernel::blockY
	int32_t CUpti_ActivityCdpKernel::blockZ
	uint64_t CUpti_ActivityCdpKernel::completed
	uint32_t CUpti_ActivityCdpKernel::contextId
	uint32_t CUpti_ActivityCdpKernel::correlationId
	uint32_t CUpti_ActivityCdpKernel::deviceId
	int32_t CUpti_ActivityCdpKernel::dynamicSharedMemory
	uint64_t CUpti_ActivityCdpKernel::end
	uint8_t CUpti_ActivityCdpKernel::executed
	int64_t CUpti_ActivityCdpKernel::gridId
	int32_t CUpti_ActivityCdpKernel::gridX
	int32_t CUpti_ActivityCdpKernel::gridY
	int32_t CUpti_ActivityCdpKernel::gridZ
	CUpti_ActivityKind CUpti_ActivityCdpKernel::kind
	uint32_t CUpti_ActivityCdpKernel::localMemoryPerThread
	uint32_t CUpti_ActivityCdpKernel::localMemoryTotal
	const char *CUpti_ActivityCdpKernel::name
	uint32_t CUpti_ActivityCdpKernel::parentBlockX
	uint32_t CUpti_ActivityCdpKernel::parentBlockY
	uint32_t CUpti_ActivityCdpKernel::parentBlockZ
	int64_t CUpti_ActivityCdpKernel::parentGridId
	uint64_t CUpti_ActivityCdpKernel::queued
	uint16_t CUpti_ActivityCdpKernel::registersPerThread
	uint8_t CUpti_ActivityCdpKernel::requested
	uint8_t CUpti_ActivityCdpKernel::sharedMemoryConfig
	uint64_t CUpti_ActivityCdpKernel::start
	int32_t CUpti_ActivityCdpKernel::staticSharedMemory
	uint32_t CUpti_ActivityCdpKernel::streamId
	uint64_t CUpti_ActivityCdpKernel::submitted

	3.7. CUpti_ActivityContext Struct Reference
	uint16_t CUpti_ActivityContext::computeApiKind
	uint32_t CUpti_ActivityContext::contextId
	uint32_t CUpti_ActivityContext::deviceId
	CUpti_ActivityKind CUpti_ActivityContext::kind
	uint16_t CUpti_ActivityContext::nullStreamId

	3.8. CUpti_ActivityDevice Struct Reference
	uint32_t CUpti_ActivityDevice::computeCapabilityMajor
	uint32_t CUpti_ActivityDevice::computeCapabilityMinor
	uint32_t CUpti_ActivityDevice::constantMemorySize
	uint32_t CUpti_ActivityDevice::coreClockRate
	CUpti_ActivityFlag CUpti_ActivityDevice::flags
	uint64_t CUpti_ActivityDevice::globalMemoryBandwidth
	uint64_t CUpti_ActivityDevice::globalMemorySize
	uint32_t CUpti_ActivityDevice::id
	CUpti_ActivityKind CUpti_ActivityDevice::kind
	uint32_t CUpti_ActivityDevice::l2CacheSize
	uint32_t CUpti_ActivityDevice::maxBlockDimX
	uint32_t CUpti_ActivityDevice::maxBlockDimY
	uint32_t CUpti_ActivityDevice::maxBlockDimZ
	uint32_t CUpti_ActivityDevice::maxBlocksPerMultiprocessor
	uint32_t CUpti_ActivityDevice::maxGridDimX
	uint32_t CUpti_ActivityDevice::maxGridDimY
	uint32_t CUpti_ActivityDevice::maxGridDimZ
	uint32_t CUpti_ActivityDevice::maxIPC
	uint32_t CUpti_ActivityDevice::maxRegistersPerBlock
	uint32_t CUpti_ActivityDevice::maxSharedMemoryPerBlock
	uint32_t CUpti_ActivityDevice::maxThreadsPerBlock
	uint32_t CUpti_ActivityDevice::maxWarpsPerMultiprocessor
	const char *CUpti_ActivityDevice::name
	uint32_t CUpti_ActivityDevice::numMemcpyEngines
	uint32_t CUpti_ActivityDevice::numMultiprocessors
	uint32_t CUpti_ActivityDevice::numThreadsPerWarp

	3.9. CUpti_ActivityDeviceAttribute Struct Reference
	CUpti_ActivityDeviceAttribute::@6 CUpti_ActivityDeviceAttribute::attribute
	uint32_t CUpti_ActivityDeviceAttribute::deviceId
	CUpti_ActivityFlag CUpti_ActivityDeviceAttribute::flags
	CUpti_ActivityKind CUpti_ActivityDeviceAttribute::kind
	CUpti_ActivityDeviceAttribute::@7 CUpti_ActivityDeviceAttribute::value

	3.10. CUpti_ActivityEnvironment Struct Reference
	CUpti_EnvironmentClocksThrottleReason CUpti_ActivityEnvironment::clocksThrottleReasons
	CUpti_ActivityEnvironment::@8::@12 CUpti_ActivityEnvironment::cooling
	uint32_t CUpti_ActivityEnvironment::deviceId
	CUpti_ActivityEnvironmentKind CUpti_ActivityEnvironment::environmentKind
	uint32_t CUpti_ActivityEnvironment::fanSpeed
	uint32_t CUpti_ActivityEnvironment::gpuTemperature
	CUpti_ActivityKind CUpti_ActivityEnvironment::kind
	uint32_t CUpti_ActivityEnvironment::memoryClock
	uint32_t CUpti_ActivityEnvironment::pcieLinkGen
	uint32_t CUpti_ActivityEnvironment::pcieLinkWidth
	CUpti_ActivityEnvironment::@8::@11 CUpti_ActivityEnvironment::power
	uint32_t CUpti_ActivityEnvironment::power
	uint32_t CUpti_ActivityEnvironment::powerLimit
	uint32_t CUpti_ActivityEnvironment::smClock
	CUpti_ActivityEnvironment::@8::@9 CUpti_ActivityEnvironment::speed
	CUpti_ActivityEnvironment::@8::@10 CUpti_ActivityEnvironment::temperature
	uint64_t CUpti_ActivityEnvironment::timestamp

	3.11. CUpti_ActivityEvent Struct Reference
	uint32_t CUpti_ActivityEvent::correlationId
	CUpti_EventDomainID CUpti_ActivityEvent::domain
	CUpti_EventID CUpti_ActivityEvent::id
	CUpti_ActivityKind CUpti_ActivityEvent::kind
	uint64_t CUpti_ActivityEvent::value

	3.12. CUpti_ActivityEventInstance Struct Reference
	uint32_t CUpti_ActivityEventInstance::correlationId
	CUpti_EventDomainID CUpti_ActivityEventInstance::domain
	CUpti_EventID CUpti_ActivityEventInstance::id
	uint32_t CUpti_ActivityEventInstance::instance
	CUpti_ActivityKind CUpti_ActivityEventInstance::kind
	uint32_t CUpti_ActivityEventInstance::pad
	uint64_t CUpti_ActivityEventInstance::value

	3.13. CUpti_ActivityFunction Struct Reference
	uint32_t CUpti_ActivityFunction::contextId
	uint32_t CUpti_ActivityFunction::functionIndex
	uint32_t CUpti_ActivityFunction::id
	CUpti_ActivityKind CUpti_ActivityFunction::kind
	uint32_t CUpti_ActivityFunction::moduleId
	const char *CUpti_ActivityFunction::name

	3.14. CUpti_ActivityGlobalAccess Struct Reference
	uint32_t CUpti_ActivityGlobalAccess::correlationId
	uint32_t CUpti_ActivityGlobalAccess::executed
	CUpti_ActivityFlag CUpti_ActivityGlobalAccess::flags
	CUpti_ActivityKind CUpti_ActivityGlobalAccess::kind
	uint64_t CUpti_ActivityGlobalAccess::l2_transactions
	uint32_t CUpti_ActivityGlobalAccess::pcOffset
	uint32_t CUpti_ActivityGlobalAccess::sourceLocatorId
	uint64_t CUpti_ActivityGlobalAccess::threadsExecuted

	3.15. CUpti_ActivityGlobalAccess2 Struct Reference
	uint32_t CUpti_ActivityGlobalAccess2::correlationId
	uint32_t CUpti_ActivityGlobalAccess2::executed
	CUpti_ActivityFlag CUpti_ActivityGlobalAccess2::flags
	uint32_t CUpti_ActivityGlobalAccess2::functionId
	CUpti_ActivityKind CUpti_ActivityGlobalAccess2::kind
	uint64_t CUpti_ActivityGlobalAccess2::l2_transactions
	uint32_t CUpti_ActivityGlobalAccess2::pad
	uint32_t CUpti_ActivityGlobalAccess2::pcOffset
	uint32_t CUpti_ActivityGlobalAccess2::sourceLocatorId
	uint64_t CUpti_ActivityGlobalAccess2::theoreticalL2Transactions
	uint64_t CUpti_ActivityGlobalAccess2::threadsExecuted

	3.16. CUpti_ActivityInstructionExecution Struct Reference
	uint32_t CUpti_ActivityInstructionExecution::correlationId
	uint32_t CUpti_ActivityInstructionExecution::executed
	CUpti_ActivityFlag CUpti_ActivityInstructionExecution::flags
	uint32_t CUpti_ActivityInstructionExecution::functionId
	CUpti_ActivityKind CUpti_ActivityInstructionExecution::kind
	uint64_t CUpti_ActivityInstructionExecution::notPredOffThreadsExecuted
	uint32_t CUpti_ActivityInstructionExecution::pad
	uint32_t CUpti_ActivityInstructionExecution::pcOffset
	uint32_t CUpti_ActivityInstructionExecution::sourceLocatorId
	uint64_t CUpti_ActivityInstructionExecution::threadsExecuted

	3.17. CUpti_ActivityKernel Struct Reference
	int32_t CUpti_ActivityKernel::blockX
	int32_t CUpti_ActivityKernel::blockY
	int32_t CUpti_ActivityKernel::blockZ
	uint8_t CUpti_ActivityKernel::cacheConfigExecuted
	uint8_t CUpti_ActivityKernel::cacheConfigRequested
	uint32_t CUpti_ActivityKernel::contextId
	uint32_t CUpti_ActivityKernel::correlationId
	uint32_t CUpti_ActivityKernel::deviceId
	int32_t CUpti_ActivityKernel::dynamicSharedMemory
	uint64_t CUpti_ActivityKernel::end
	int32_t CUpti_ActivityKernel::gridX
	int32_t CUpti_ActivityKernel::gridY
	int32_t CUpti_ActivityKernel::gridZ
	CUpti_ActivityKind CUpti_ActivityKernel::kind
	uint32_t CUpti_ActivityKernel::localMemoryPerThread
	uint32_t CUpti_ActivityKernel::localMemoryTotal
	const char *CUpti_ActivityKernel::name
	uint32_t CUpti_ActivityKernel::pad
	uint16_t CUpti_ActivityKernel::registersPerThread
	void *CUpti_ActivityKernel::reserved0
	uint32_t CUpti_ActivityKernel::runtimeCorrelationId
	uint64_t CUpti_ActivityKernel::start
	int32_t CUpti_ActivityKernel::staticSharedMemory
	uint32_t CUpti_ActivityKernel::streamId

	3.18. CUpti_ActivityKernel2 Struct Reference
	int32_t CUpti_ActivityKernel2::blockX
	int32_t CUpti_ActivityKernel2::blockY
	int32_t CUpti_ActivityKernel2::blockZ
	uint64_t CUpti_ActivityKernel2::completed
	uint32_t CUpti_ActivityKernel2::contextId
	uint32_t CUpti_ActivityKernel2::correlationId
	uint32_t CUpti_ActivityKernel2::deviceId
	int32_t CUpti_ActivityKernel2::dynamicSharedMemory
	uint64_t CUpti_ActivityKernel2::end
	uint8_t CUpti_ActivityKernel2::executed
	int64_t CUpti_ActivityKernel2::gridId
	int32_t CUpti_ActivityKernel2::gridX
	int32_t CUpti_ActivityKernel2::gridY
	int32_t CUpti_ActivityKernel2::gridZ
	CUpti_ActivityKind CUpti_ActivityKernel2::kind
	uint32_t CUpti_ActivityKernel2::localMemoryPerThread
	uint32_t CUpti_ActivityKernel2::localMemoryTotal
	const char *CUpti_ActivityKernel2::name
	uint16_t CUpti_ActivityKernel2::registersPerThread
	uint8_t CUpti_ActivityKernel2::requested
	void *CUpti_ActivityKernel2::reserved0
	uint8_t CUpti_ActivityKernel2::sharedMemoryConfig
	uint64_t CUpti_ActivityKernel2::start
	int32_t CUpti_ActivityKernel2::staticSharedMemory
	uint32_t CUpti_ActivityKernel2::streamId

	3.19. CUpti_ActivityMarker Struct Reference
	CUpti_ActivityFlag CUpti_ActivityMarker::flags
	uint32_t CUpti_ActivityMarker::id
	CUpti_ActivityKind CUpti_ActivityMarker::kind
	const char *CUpti_ActivityMarker::name
	CUpti_ActivityMarker::objectId
	CUpti_ActivityObjectKind CUpti_ActivityMarker::objectKind
	uint64_t CUpti_ActivityMarker::timestamp

	3.20. CUpti_ActivityMarkerData Struct Reference
	uint32_t CUpti_ActivityMarkerData::category
	uint32_t CUpti_ActivityMarkerData::color
	CUpti_ActivityFlag CUpti_ActivityMarkerData::flags
	uint32_t CUpti_ActivityMarkerData::id
	CUpti_ActivityKind CUpti_ActivityMarkerData::kind
	CUpti_ActivityMarkerData::payload
	CUpti_MetricValueKind CUpti_ActivityMarkerData::payloadKind

	3.21. CUpti_ActivityMemcpy Struct Reference
	uint64_t CUpti_ActivityMemcpy::bytes
	uint32_t CUpti_ActivityMemcpy::contextId
	uint8_t CUpti_ActivityMemcpy::copyKind
	uint32_t CUpti_ActivityMemcpy::correlationId
	uint32_t CUpti_ActivityMemcpy::deviceId
	uint8_t CUpti_ActivityMemcpy::dstKind
	uint64_t CUpti_ActivityMemcpy::end
	uint8_t CUpti_ActivityMemcpy::flags
	CUpti_ActivityKind CUpti_ActivityMemcpy::kind
	void *CUpti_ActivityMemcpy::reserved0
	uint32_t CUpti_ActivityMemcpy::runtimeCorrelationId
	uint8_t CUpti_ActivityMemcpy::srcKind
	uint64_t CUpti_ActivityMemcpy::start
	uint32_t CUpti_ActivityMemcpy::streamId

	3.22. CUpti_ActivityMemcpy2 Struct Reference
	uint64_t CUpti_ActivityMemcpy2::bytes
	uint32_t CUpti_ActivityMemcpy2::contextId
	uint8_t CUpti_ActivityMemcpy2::copyKind
	uint32_t CUpti_ActivityMemcpy2::correlationId
	uint32_t CUpti_ActivityMemcpy2::deviceId
	uint32_t CUpti_ActivityMemcpy2::dstContextId
	uint32_t CUpti_ActivityMemcpy2::dstDeviceId
	uint8_t CUpti_ActivityMemcpy2::dstKind
	uint64_t CUpti_ActivityMemcpy2::end
	uint8_t CUpti_ActivityMemcpy2::flags
	CUpti_ActivityKind CUpti_ActivityMemcpy2::kind
	uint32_t CUpti_ActivityMemcpy2::pad
	void *CUpti_ActivityMemcpy2::reserved0
	uint32_t CUpti_ActivityMemcpy2::srcContextId
	uint32_t CUpti_ActivityMemcpy2::srcDeviceId
	uint8_t CUpti_ActivityMemcpy2::srcKind
	uint64_t CUpti_ActivityMemcpy2::start
	uint32_t CUpti_ActivityMemcpy2::streamId

	3.23. CUpti_ActivityMemset Struct Reference
	uint64_t CUpti_ActivityMemset::bytes
	uint32_t CUpti_ActivityMemset::contextId
	uint32_t CUpti_ActivityMemset::correlationId
	uint32_t CUpti_ActivityMemset::deviceId
	uint64_t CUpti_ActivityMemset::end
	CUpti_ActivityKind CUpti_ActivityMemset::kind
	void *CUpti_ActivityMemset::reserved0
	uint32_t CUpti_ActivityMemset::runtimeCorrelationId
	uint64_t CUpti_ActivityMemset::start
	uint32_t CUpti_ActivityMemset::streamId
	uint32_t CUpti_ActivityMemset::value

	3.24. CUpti_ActivityMetric Struct Reference
	uint32_t CUpti_ActivityMetric::correlationId
	uint8_t CUpti_ActivityMetric::flags
	CUpti_MetricID CUpti_ActivityMetric::id
	CUpti_ActivityKind CUpti_ActivityMetric::kind
	uint8_t CUpti_ActivityMetric::pad
	CUpti_ActivityMetric::value

	3.25. CUpti_ActivityMetricInstance Struct Reference
	uint32_t CUpti_ActivityMetricInstance::correlationId
	uint8_t CUpti_ActivityMetricInstance::flags
	CUpti_MetricID CUpti_ActivityMetricInstance::id
	uint32_t CUpti_ActivityMetricInstance::instance
	CUpti_ActivityKind CUpti_ActivityMetricInstance::kind
	uint8_t CUpti_ActivityMetricInstance::pad
	CUpti_ActivityMetricInstance::value

	3.26. CUpti_ActivityModule Struct Reference
	uint32_t CUpti_ActivityModule::contextId
	const void *CUpti_ActivityModule::cubin
	uint32_t CUpti_ActivityModule::cubinSize
	uint32_t CUpti_ActivityModule::id
	CUpti_ActivityKind CUpti_ActivityModule::kind
	uint32_t CUpti_ActivityModule::pad

	3.27. CUpti_ActivityName Struct Reference
	CUpti_ActivityKind CUpti_ActivityName::kind
	const char *CUpti_ActivityName::name
	CUpti_ActivityName::objectId
	CUpti_ActivityObjectKind CUpti_ActivityName::objectKind

	3.28. CUpti_ActivityObjectKindId Union Reference
	CUpti_ActivityObjectKindId::@1 CUpti_ActivityObjectKindId::dcs
	CUpti_ActivityObjectKindId::@0 CUpti_ActivityObjectKindId::pt

	3.29. CUpti_ActivityOverhead Struct Reference
	uint64_t CUpti_ActivityOverhead::end
	CUpti_ActivityKind CUpti_ActivityOverhead::kind
	CUpti_ActivityOverhead::objectId
	CUpti_ActivityObjectKind CUpti_ActivityOverhead::objectKind
	CUpti_ActivityOverheadKind CUpti_ActivityOverhead::overheadKind
	uint64_t CUpti_ActivityOverhead::start

	3.30. CUpti_ActivityPreemption Struct Reference
	uint32_t CUpti_ActivityPreemption::blockX
	uint32_t CUpti_ActivityPreemption::blockY
	uint32_t CUpti_ActivityPreemption::blockZ
	int64_t CUpti_ActivityPreemption::gridId
	CUpti_ActivityKind CUpti_ActivityPreemption::kind
	uint32_t CUpti_ActivityPreemption::pad
	CUpti_ActivityPreemptionKind CUpti_ActivityPreemption::preemptionKind
	uint64_t CUpti_ActivityPreemption::timestamp

	3.31. CUpti_ActivitySharedAccess Struct Reference
	uint32_t CUpti_ActivitySharedAccess::correlationId
	uint32_t CUpti_ActivitySharedAccess::executed
	CUpti_ActivityFlag CUpti_ActivitySharedAccess::flags
	uint32_t CUpti_ActivitySharedAccess::functionId
	CUpti_ActivityKind CUpti_ActivitySharedAccess::kind
	uint32_t CUpti_ActivitySharedAccess::pad
	uint32_t CUpti_ActivitySharedAccess::pcOffset
	uint64_t CUpti_ActivitySharedAccess::sharedTransactions
	uint32_t CUpti_ActivitySharedAccess::sourceLocatorId
	uint64_t CUpti_ActivitySharedAccess::theoreticalSharedTransactions
	uint64_t CUpti_ActivitySharedAccess::threadsExecuted

	3.32. CUpti_ActivitySourceLocator Struct Reference
	const char *CUpti_ActivitySourceLocator::fileName
	uint32_t CUpti_ActivitySourceLocator::id
	CUpti_ActivityKind CUpti_ActivitySourceLocator::kind
	uint32_t CUpti_ActivitySourceLocator::lineNumber

	3.33. CUpti_ActivityUnifiedMemoryCounter Struct Reference
	CUpti_ActivityUnifiedMemoryCounterKind CUpti_ActivityUnifiedMemoryCounter::counterKind
	uint32_t CUpti_ActivityUnifiedMemoryCounter::deviceId
	CUpti_ActivityKind CUpti_ActivityUnifiedMemoryCounter::kind
	uint32_t CUpti_ActivityUnifiedMemoryCounter::pad
	uint32_t CUpti_ActivityUnifiedMemoryCounter::processId
	CUpti_ActivityUnifiedMemoryCounterScope CUpti_ActivityUnifiedMemoryCounter::scope
	uint64_t CUpti_ActivityUnifiedMemoryCounter::timestamp
	uint64_t CUpti_ActivityUnifiedMemoryCounter::value

	3.34. CUpti_ActivityUnifiedMemoryCounterConfig Struct Reference
	uint32_t CUpti_ActivityUnifiedMemoryCounterConfig::deviceId
	uint32_t CUpti_ActivityUnifiedMemoryCounterConfig::enable
	CUpti_ActivityUnifiedMemoryCounterKind CUpti_ActivityUnifiedMemoryCounterConfig::kind
	CUpti_ActivityUnifiedMemoryCounterScope CUpti_ActivityUnifiedMemoryCounterConfig::scope

	3.35. CUpti_CallbackData Struct Reference
	CUpti_ApiCallbackSite CUpti_CallbackData::callbackSite
	CUcontext CUpti_CallbackData::context
	uint32_t CUpti_CallbackData::contextUid
	uint64_t *CUpti_CallbackData::correlationData
	uint32_t CUpti_CallbackData::correlationId
	const char *CUpti_CallbackData::functionName
	const void *CUpti_CallbackData::functionParams
	void *CUpti_CallbackData::functionReturnValue
	const char *CUpti_CallbackData::symbolName

	3.36. CUpti_EventGroupSet Struct Reference
	CUpti_EventGroup *CUpti_EventGroupSet::eventGroups
	uint32_t CUpti_EventGroupSet::numEventGroups

	3.37. CUpti_EventGroupSets Struct Reference
	uint32_t CUpti_EventGroupSets::numSets
	CUpti_EventGroupSet *CUpti_EventGroupSets::sets

	3.38. CUpti_MetricValue Union Reference
	3.39. CUpti_ModuleResourceData Struct Reference
	size_t CUpti_ModuleResourceData::cubinSize
	uint32_t CUpti_ModuleResourceData::moduleId
	const char *CUpti_ModuleResourceData::pCubin

	3.40. CUpti_NvtxData Struct Reference
	const char *CUpti_NvtxData::functionName
	const void *CUpti_NvtxData::functionParams

	3.41. CUpti_ResourceData Struct Reference
	CUcontext CUpti_ResourceData::context
	void *CUpti_ResourceData::resourceDescriptor
	CUstream CUpti_ResourceData::stream

	3.42. CUpti_SynchronizeData Struct Reference
	CUcontext CUpti_SynchronizeData::context
	CUstream CUpti_SynchronizeData::stream

	Data Fields

