
PROFILER USER'S GUIDE

DU-05982-001_v5.5 | May 2013

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | ii

TABLE OF CONTENTS

Profiling Overview..v
What's New...v
Terminology... vi

Chapter 1. Preparing An Application For Profiling..1
1.1. Focused Profiling..1
1.2. Marking Regions of CPU Activity... 2
1.3. Naming CPU and CUDA Resources... 2
1.4. Flush Profile Data...2
1.5. Dynamic Parallelism.. 3

Chapter 2. Visual Profiler.. 4
2.1. Getting Started..4

2.1.1. Modify Your Application For Profiling.. 4
2.1.2. Creating a Session...4
2.1.3. Analyzing Your Application...5
2.1.4. Exploring the Timeline... 5
2.1.5. Looking at the Details..5

2.2. Sessions... 6
2.2.1. Executable Session.. 6
2.2.2. Import Session... 6

2.2.2.1. Import nvprof Session... 6
2.2.2.2. Import Command-Line Profiler Session... 7

2.3. Application Requirements... 7
2.4. Profiling Limitations.. 8
2.5. Visual Profiler Views... 8

2.5.1. Timeline View..8
2.5.1.1. Timeline Controls... 10
2.5.1.2. Navigating the Timeline... 11

2.5.2. Analysis View... 13
2.5.3. Details View...14
2.5.4. Properties View...15
2.5.5. Console View..16
2.5.6. Settings View... 16

2.6. Customizing the Visual Profiler... 17
2.6.1. Resizing a View...17
2.6.2. Reordering a View... 17
2.6.3. Moving a View.. 17
2.6.4. Undocking a View..17
2.6.5. Opening and Closing a View... 18

Chapter 3. nvprof...19
3.1. Profiling Modes...19

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | iii

3.1.1. Summary Mode... 19
3.1.2. GPU-Trace and API-Trace Modes...20
3.1.3. Event/metric Summary Mode.. 22
3.1.4. Event/metric Trace Mode...22

3.2. Profiling Controls.. 23
3.2.1. Timeout.. 23
3.2.2. Concurrent Kernels.. 23
3.2.3. Profiling Scope..23
3.2.4. Multiprocess Profiling..24
3.2.5. System Profiling.. 24

3.3. Output...24
3.3.1. Adjust Units...24
3.3.2. CSV... 24
3.3.3. Export/Import.. 25
3.3.4. Demangling..25
3.3.5. Redirecting Output...25

3.4. Limitations..25
Chapter 4. Command Line Profiler... 27

4.1. Command Line Profiler Control... 27
4.2. Command Line Profiler Default Output..28
4.3. Command Line Profiler Configuration..28

4.3.1. Command Line Profiler Options... 29
4.3.2. Command Line Profiler Counters..31

4.4. Command Line Profiler Output... 31
Chapter 5. Remote Profiling... 34

5.1. Collect Data On Remote System..34
5.2. View And Analyze Data.. 35
5.3. Limitations..36

Chapter 6. NVIDIA Tools Extension..37
6.1. NVTX API Overview... 37
6.2. NVTX API Events...38

6.2.1. NVTX Markers... 38
6.2.2. NVTX Range Start/Stop... 39
6.2.3. NVTX Range Push/Pop...39
6.2.4. Event Attributes Structure... 40

6.3. NVTX Resource Naming...41
Chapter 7. MPI Profiling...43

7.1. MPI Profiling With nvprof.. 43
7.2. MPI Profiling With The Command-Line Profiler...44

Chapter 8. Metrics Reference..45

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | iv

LIST OF TABLES

Table 1 Command Line Profiler Default Columns ... 28

Table 2 Command Line Profiler Options .. 29

Table 3 Capability 1.x Metrics ..45

Table 4 Capability 2.x Metrics ..46

Table 5 Capability 3.x Metrics ..51

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | v

PROFILING OVERVIEW

This document describes NVIDIA profiling tools and APIs that enable you to
understand and optimize the performance of your CUDA application. The Visual
Profiler is a graphical profiling tool that displays a timeline of your application's
CPU and GPU activity, and that includes an automated analysis engine to identify
optimization opportunities. The Visual Profiler is available as both a standalone
application and as part of Nsight Eclipse Edition. The nvprof profiling tool enables you
to collect and view profiling data from the command-line. The existing command-line
profiler continues to be supported.

What's New
The profiling tools contain a number of changes and new features as part of the CUDA
Toolkit 5.5 release.

‣ The Visual Profiler now supports applications that use CUDA Dynamic Parallelism.
The application timeline includes both host-launched and device-launched kernels,
and shows the parent-child relationship between kernels.

‣ The application analysis performed by the NVIDIA Visual Profiler has been
enhanced. A guided analysis mode has been added that provides step-by-step
analysis and optimization guidance. Also, the analysis results now include graphical
visualizations to more clearly indicate the optimization opportunities.

‣ The NVIDIA Visual Profiler and the command-line profiler, nvprof, now support
power, thermal, and clock profiling.

‣ nvprof now collects metrics, and can collect any number of events and metrics
during a single run of a CUDA application. nvprof uses kernel replay to execute
each kernel as many times as necessary to collect all the requested profile data.

‣ The NVIDIA Visual Profiler and nvprof, now support metrics that report the
floating-point operations performed by a kernel. These metrics include both single-
precision and double-precision counts for adds, multiplies, multiply-accumulates,
and special floating-point operations.

‣ nvprof now supports two multi-process modes. In "profile child processes" mode,
a parent process and all child processes are profiled. In "profile all processes" mode,
all CUDA processes on a system are profiled.

‣ The Visual Profiler now correctly shows all CUDA peer-to-peer memory copies on
the timeline.

Profiling Overview

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | vi

Terminology
An event is a countable activity, action, or occurrence on a device. It corresponds to a
single hardware counter value which is collected during kernel execution. To see a list of
all available events on a particular NVIDIA GPU, type nvprof --query-events.

A metric is a characteristic of an application that is calculated from one or more event
values. To see a list of all available metrics on a particular NVIDIA GPU, type nvprof
--query-metrics. You can also refer to the metrics reference .

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 1

Chapter 1.
PREPARING AN APPLICATION FOR
PROFILING

The CUDA profiling tools do not require any application changes to enable profiling;
however, by making some simple modifications and additions, you can greatly increase
the usability and effectiveness of the profilers. This section describes these modifications
and how they can improve your profiling results.

1.1. Focused Profiling
By default, the profiling tools collect profile data over the entire run of your application.
But, as explained below, you typically only want to profile the region(s) of your
application containing some or all of the performance-critical code. Limiting profiling
to performance-critical regions reduces the amount of profile data that both you and the
tools must process, and focuses attention on the code where optimization will result in
the greatest performance gains.

There are several common situations where profiling a region of the application is
helpful.

 1. The application is a test harness that contains a CUDA implementation of all or part
of your algorithm. The test harness initializes the data, invokes the CUDA functions
to perform the algorithm, and then checks the results for correctness. Using a test
harness is a common and productive way to quickly iterate and test algorithm
changes. When profiling, you want to collect profile data for the CUDA functions
implementing the algorithm, but not for the test harness code that initializes the data
or checks the results.

 2. The application operates in phases, where a different set of algorithms is active
in each phase. When the performance of each phase of the application can be
optimized independently of the others, you want to profile each phase separately to
focus your optimization efforts.

 3. The application contains algorithms that operate over a large number of iterations,
but the performance of the algorithm does not vary significantly across those
iterations. In this case you can collect profile data from a subset of the iterations.

Preparing An Application For Profiling

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 2

To limit profiling to a region of your application, CUDA provides functions to start
and stop profile data collection. cudaProfilerStart() is used to start profiling and
cudaProfilerStop() is used to stop profiling (using the CUDA driver API, you get
the same functionality with cuProfilerStart() and cuProfilerStop()). To use
these functions you must include cuda_profiler_api.h (or cudaProfiler.h for the
driver API).

When using the start and stop functions, you also need to instruct the profiling tool
to disable profiling at the start of the application. For nvprof you do this with the --
profile-from-start off flag. For the Visual Profiler you use the Start execution
with profiling enabled checkbox in the Settings View.

1.2. Marking Regions of CPU Activity
The Visual Profiler can collect a trace of the CUDA function calls made by your
application. The Visual Profiler shows these calls in the Timeline View, allowing you
to see where each CPU thread in the application is invoking CUDA functions. To
understand what the application's CPU threads are doing outside of CUDA function
calls, you can use the NVIDIA Tools Extension API (NVTX). When you add NVTX
markers and ranges to your application, the Timeline View shows when your CPU
threads are executing within those regions.

nvprof also supports NVTX markers and ranges. Markers and ranges are shown in the
API trace output in the timeline. In summary mode, each range is shown with CUDA
activities associated with that range.

1.3. Naming CPU and CUDA Resources
The Visual Profiler Timeline View shows default naming for CPU thread and GPU
devices, context and streams. Using custom names for these resources can improve
understanding of the application behavior, especially for CUDA applications that
have many host threads, devices, contexts, or streams. You can use the NVIDIA Tools
Extension API to assign custom names for your CPU and GPU resources. Your custom
names will then be displayed in the Timeline View.

nvprof also supports NVTX naming. Names of CUDA devices, contexts and streams are
displayed in summary and trace mode. Thread names are displayed in summary mode.

1.4. Flush Profile Data
To reduce profiling overhead, the profiling tools collect and record profile information
into internal buffers. These buffers are then flushed asynchronously to disk with
low priority to avoid perturbing application behavior. To avoid losing profile
information that has not yet been flushed, the application being profiled should call
cudaDeviceReset(), cudaProfilerStop() or cuProfilerStop() before exiting.
Doing so forces buffered profile information on corresponding context(s) to be flushed.

Preparing An Application For Profiling

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 3

If your CUDA application includes graphics that operate using a display or main
loop, care must be taken to call cudaDeviceReset(), cudaProfilerStop() or
cuProfilerStop() before the thread executing that loop calls exit(). Failure to call
one of these APIs may result in the loss of some or all of the collected profile data.

1.5. Dynamic Parallelism
When profiling an application that uses Dynamic Parallelism there are several
limitations to the profiling tools.

‣ The Visual Profiler timeline does not display CUDA API calls invoked from within
device-launched kernels.

‣ The Visual Profiler does not display detailed event, metric, and source-level results
for device-launched kernels. Event, metric, and source-level results collected for
CPU-launched kernels will include event, metric, and source-level results for the
entire call-tree of kernels launched from within that kernel.

‣ The nvprof event/metric output and the command-line profiler event output
does not include results for device-launched kernels. Events/metrics collected for
CPU-launched kernels will include events/metrics for the entire call-tree of kernels
launched from within that kernel.

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 4

Chapter 2.
VISUAL PROFILER

The NVIDIA Visual Profiler allows you to visualize and optimize the performance of
your CUDA application. The Visual Profiler displays a timeline of your application's
activity on both the CPU and GPU so that you can identify opportunities for
performance improvement. In addition, the Visual Profiler will analyze your application
to detect potential performance bottlenecks and direct you on how to take action to
eliminate or reduce those bottlenecks.

The Visual Profiler is available as both a standalone application and as part of Nsight
Eclipse Edition. The standalone version of the Visual Profiler, nvvp, is included in the
CUDA Toolkit for all supported OSes. Within Nsight Eclipse Edition, the Visual Profiler
is located in the Profile Perspective and is activated when an application is run in profile
mode. Nsight Ecipse Edition, nsight, is included in the CUDA Toolkit for Linux and
Mac OSX.

2.1. Getting Started
This section describes the steps you need to take to get started with the Visual Profiler.

2.1.1. Modify Your Application For Profiling
The Visual Profiler does not require any application changes; however, by making
some simple modifications and additions, you can greatly increase its usability and
effectiveness. Section Preparing An Application For Profiling describes how you can
focus your profiling efforts and add extra annotations to your application that will
greatly improve your profiling experience.

2.1.2. Creating a Session
The first step in using the Visual Profiler to profile your application is to create a new
profiling session. A session contains the settings, data, and results associated with your
application. Sessions gives more information on working with sessions.

You can create a new session by selecting the Profile An Application link on the
Welcome page, or by selecting New Session from the File menu. In the Create New

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 5

Session dialog enter the executable for your application. Optionally, you can also specify
the working directory, arguments, and environment.

Press Next to choose some additional profiling options. The options are:

‣ Start execution with profiling enabled - If selected profile data is collected from
the start of application execution. If not selected profile data is not collected until
cudaProfilerStart() is called in the application. See Focused Profiling for more
information about cudaProfilerStart().

‣ Enable concurrent kernel profiling - This option should be selected for an
application that uses CUDA streams to launch kernels that can execute concurrently.
If the application uses only a single stream (and therefore cannot have concurrent
kernel execution), deselecting this option may decrease profiling overhead.

‣ Enable power, clock, and thermal profiling - If selected, power, clock, and thermal
conditions on the GPUs will be sampled and displayed on the timeline. Collection of
this data is not supported on all GPUs. See the description of the Device timeline in
Timeline View for more information.

‣ Don't run guided analysis - By default guided analysis is run immediately after the
creation of a new session. Select this option to disable this behavior.

Press Finish.

2.1.3. Analyzing Your Application
If the Don't run guided analysis option was not selected when you created your session,
the Visual Profiler will immediately run your application to collect the data needed
for the first stage of guided analysis. As described in Analysis View, you can use the
guided analysis system to get recommendations on performance limiting behavior in
your application.

2.1.4. Exploring the Timeline
In addition to the guided analysis results, you will see a timeline for your application
showing the CPU and GPU activity that occurred as your application executed. Read
Timeline View and Properties View to learn how to explore the profiling information
that is available in the timeline. Navigating the Timeline describes how you can zoom
and scroll the timeline to focus on specific areas of your application.

2.1.5. Looking at the Details
In addition to the results provided in the Analysis View, you can also look at the specific
metric and event values collected as part of the analysis. Metric and event values are
displayed in the Details View. You can collect specific metric and event values that
reveal how the kernels in your application are behaving. You collect metrics and events
as described in the Details View section.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 6

2.2. Sessions
A session contains the settings, data, and profiling results associated with your
application. Each session is saved in a separate file; so you can delete, move, copy, or
share a session by simply deleting, moving, copying, or sharing the session file. By
convention, the file extension .nvvp is used for Visual Profiler session files.

There are two types of sessions: an executable session that is associated with an
application that is executed and profiled from within the Visual Profiler, and an import
session that is created by importing data generated by nvprof or the command-line
profiler.

2.2.1. Executable Session
You can create a new executable session for your application by selecting the Profile
An Application link on the Welcome page, or by selecting New Session from the File
menu. Once a session is created, you can edit the session's settings as described in the
Settings View.

You can open and save existing sessions using the open and save options in the File
menu.

To analyze your application and to collect metric and event values, the Visual Profiler
will execute your application multiple times. To get accurate profiling results, it is
important that your application conform to the requirements detailed in Application
Requirements.

2.2.2. Import Session
You create an import session from the output of nvprof or the command-line profiler
by using the Import... option in the File menu. Selecting this option opens the import
wizard which guides you through the import process.

Because an executable application is not associated with an import session, the Visual
Profiler cannot execute the application to collect additional profile data. As a result,
analysis can only be performed with the data that is imported. Also, the Details View
will show any imported event and metrics values but new metrics and events cannot be
selected and collected for the import session.

2.2.2.1. Import nvprof Session
Using the import wizard you can select one or more nvprof data files for import into
the new session.

You must have one nvprof data file that contains the timeline information for the
session. This data file should be collected by running nvprof with the --output-
profile option. You can optionally enable other options such as --system-profiling
on, but you should not collect any events or metrics as that will distort the timeline so
that it is not representative of the applications true behavior.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 7

You may optionally specify one or more event/metric data files that contain event and
metric values for the application. These data files should be collected by running nvprof
with one or both of the --events and --metrics options. To collect all the events
and metrics that are needed for the guided analysis system, you can simply use the --
analysis-metrics option along with the --kernels option to select the kernel(s) to
collect events and metrics for. See Remote Profiling for more information.

If you are importing multiple nvprof output files into the session, it is important that
your application conform to the requirements detailed in Application Requirements.

2.2.2.2. Import Command-Line Profiler Session
Using the import wizard you can select one or more command-line profiler generated
CSV files for import into the new session. When you import multiple CSV files, their
contents are combined and displayed in a single timeline.

When using the command-line profiler to create a CSV file for import into the Visual
Profiler, the following requirement must be met:

‣ COMPUTE_PROFILE_CSV must be 1 to generate CSV formatted output.
‣ COMPUTE_PROFILE_CONFIG must point to a file that contains gpustarttimestamp

and streamid configuration parameters. The configuration file may also contain
other configuration parameters, including events.

2.3. Application Requirements
To collect performance data about your application, the Visual Profiler must be able
to execute your application repeatedly in a deterministic manner. Due to software and
hardware limitations, it is not possible to collect all the necessary profile data in a single
execution of your application. Each time your application is run, it must operate on
the same data and perform the same kernel and memory copy invocations in the same
order. Specifically,

‣ For a device, the order of context creation must be the same each time the
application executes. For a multi-threaded application where each thread creates
its own context(s), care must be taken to ensure that the order of those context
creations is consistent across multiple runs. For example, it may be necessary to
create the contexts on a single thread and then pass the contexts to the other threads.
Alternatively, the NVIDIA Tools Extension API can be used to provide a custom
name for each context. As long as the same custom name is applied to the same
context on each execution of the application, the Visual Profiler will be able to
correctly associate those contexts across multiple runs.

‣ For a context, the order of stream creation must be the same each time the
application executes. Alternatively, the NVIDIA Tools Extension API can be used to
provide a custom name for each stream. As long as the same custom name is applied
to the same stream on each execution of the application, the Visual Profiler will be
able to correctly associate those streams across multiple runs.

‣ Within a stream, the order of kernel and memcpy invocations must be the same each
time the application executes.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 8

2.4. Profiling Limitations
Due to software and hardware restrictions, there are several limitations to the profiling
and analysis performed by the Visual Profiler.

‣ Some analysis results require metrics that are not available on all devices. When
these analyses are attempted on a device where the metric is not available the
analysis results will show that the required data is "not available".

‣ Some metric values are calculated assuming a kernel is large enough to occupy
all device multiprocessors with approximately the same amount of work. If a
kernel launch does not have this characteristic, then those metric values may not be
accurate.

‣ For some metrics, the required events can only be collected for a single CUDA
context. For an application that uses multiple CUDA contexts, these metrics will
only be collected for one of the contexts. The metrics that can be collected only for a
single CUDA context are indicated in the metric reference tables.

‣ The Warp Non-Predicated Execution Efficiency metric is only available on
compute capability 3.5 and later devices.

‣ The Warp Execution Efficiency metric is not available on compute capability
3.0 devices.

‣ The Branch Efficiency metric is not available on compute capability 3.5 devices.
‣ For compute capability 2.x devices, the Achieved Occupancy metric can report

inaccurate values that are greater than the actual achieved occupancy. In rare cases
this can cause the achieved occupancy value to exceed the theoretical occupancy
value for the kernel.

‣ The timestamps collected for applications running on GPUs in an SLI configuration
are incorrect. As a result most profiling results collected for the application will be
invalid.

‣ Concurrent kernel mode can add significant overhead if used on kernels that
execute a large number of blocks and that have short execution durations.

2.5. Visual Profiler Views
The Visual Profiler is organized into views. Together, the views allow you to analyze
and visualize the performance of your application. This section describes each view and
how you use it while profiling your application.

2.5.1. Timeline View
The Timeline View shows CPU and GPU activity that occurred while your application
was being profiled. Multiple timelines can be opened in the Visual Profiler at the same
time. Each opened timeline is represented by a different instance of the view. The
following figure shows a Timeline View for a CUDA application.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 9

Along the top of the view is a horizontal ruler that shows elapsed time from the start of
application profiling. Along the left of the view is a vertical ruler that describes what is
being shown for each horizontal row of the timeline, and that contains various controls
for the timeline. These controls are described in Timeline Controls

The types of timeline rows that are displayed in the Timeline View are:
Process

A timeline will contain a Process row for each application profiled. The process
identifier represents the pid of the process. The timeline row for a process does not
contain any intervals of activity. Threads within the process are shown as children of
the process.

Thread
A timeline will contain a Thread row for each thread in the profiled application
that performed either a CUDA driver or runtime API call. The thread identifier is
a unique id for that thread. The timeline row for a thread is does not contain any
intervals of activity.

Runtime API
A timeline will contain a Runtime API row for each thread that performs a CUDA
Runtime API call. Each interval in the row represents the duration of the call on the
CPU.

Driver API
A timeline will contain a Driver API row for each thread that performs a CUDA
Driver API call. Each interval in the row represents the duration of the call on the
CPU.

Markers and Ranges
A timeline will contain a single Markers and Ranges row for each thread that uses
the NVIDIA Tools Extension API to annotate a time range or marker. Each interval
in the row represents the duration of a time range, or the instantaneous point of a
marker.

Profiling Overhead
A timeline will contain a single Profiling Overhead row for each process. Each
interval in the row represents the duration of execution of some activity required for
profiling. These intervals represent activity that does not occur when the application
is not being profiled.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 10

Device
A timeline will contain a Device row for each GPU device utilized by the application
being profiled. The name of the timeline row indicates the device ID in square
brackets followed by the name of the device. After running the Compute Utilization
analysis, the row will contain an estimate of the compute utilization of the device
over time. If power, clock, and thermal profiling are enabled, the row will also contain
points representing those readings.

Context
A timeline will contains a Context row for each CUDA context on a GPU device. The
name of the timeline row indicates the context ID or the custom context name if the
NVIDIA Tools Extension API was used to name the context. The row for a context
does not contain any intervals of activity.

Memcpy
A timeline will contain memory copy row(s) for each context that performs memcpys.
A context may contain up to four memcpy rows for device-to-host, host-to-device,
device-to-device, and peer-to-peer memory copies. Each interval in a row represents
the duration of a memcpy executing on the GPU.

Compute
A timeline will contain a Compute row for each context that performs computation
on the GPU. Each interval in a row represents the duration of a kernel on the GPU
device. The Compute row indicates all the compute activity for the context on a
GPU device. The contained Kernel rows show activity of each individual application
kernel.

Kernel
A timeline will contain a Kernel row for each type of kernel executed by the
application. Each interval in a row represents the duration of execution of an instance
of that kernel on the GPU device. Each row is labeled with a percentage that indicates
the total execution time of all instances of that kernel compared to the total execution
time of all kernels. For each context, the kernels are ordered top to bottom by this
execution time percentage.

Stream
A timeline will contain a Stream row for each stream used by the application
(including both the default stream and any application created streams). Each interval
in a Stream row represents the duration of a memcpy or kernel execution performed
on that stream.

2.5.1.1. Timeline Controls
The Timeline View has several controls that you use to control how the timeline is
displayed. Some of these controls also influence the presentation of data in the Details
View and the Analysis View.

Resizing the Vertical Timeline Ruler

The width of the vertical ruler can be adjusted by placing the mouse pointer over the
right edge of the ruler. When the double arrow pointer appears, click and hold the left
mouse button while dragging. The vertical ruler width is saved with your session.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 11

Reordering Timelines

The Kernel and Stream timeline rows can be reordered. You may want to reorder these
rows to aid in visualizing related kernels and streams, or to move unimportant kernels
and streams to the bottom of the timeline. To reorder a row, left-click on the row label.
When the double arrow pointer appears, drag up or down to position the row. The
timeline ordering is saved with your session.

Filtering Timelines

Memcpy and Kernel rows can be filtered to exclude their activities from presentation
in the Details View and the Analysis View. To filter out a row, left-click on the filter icon
just to the left of the row label. To filter all Kernel or Memcpy rows, Shift-left-click one
of the rows. When a row is filtered, any intervals on that row are dimmed to indicate
their filtered status.

Expanding and Collapsing Timelines

Groups of timeline rows can be expanded and collapsed using the [+] and [-] controls
just to the left of the row labels. There are three expand/collapse states:
Collapsed

No timeline rows contained in the collapsed row are shown.
Expanded

All non-filtered timeline rows are shown.
All-Expanded

All timeline rows, filtered and non-filtered, are shown.

Intervals associated with collapsed rows may not be shown in the Details View and
the Analysis View, depending on the filtering mode set for those views (see view
documentation for more information). For example, if you collapse a device row, then
all memcpys, memsets, and kernels associated with that device are excluded from the
results shown in those views.

Coloring Timelines

There are two modes for timeline coloring. The coloring mode can be selected in the
View menu, in the timeline context menu (accessed by right-clicking in the timeline
view), and on the Visual Profiler toolbar. In kernel coloring mode, each type of kernel
is assigned a unique color (that is, all activity intervals in a kernel row have the same
color). In stream coloring mode, each stream is assigned a unique color (that is, all
memcpy and kernel activity occurring on a stream are assigned the same color).

2.5.1.2. Navigating the Timeline
The timeline can be scrolled, zoomed, and focused in several ways to help you better
understand and visualize your application's performance.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 12

Zooming

The zoom controls are available in the View menu, in the timeline context menu
(accessed by right-clicking in the timeline view), and on the Visual Profiler toolbar.
Zoom-in reduces the timespan displayed in the view, zoom-out increases the timespan
displayed in the view, and zoom-to-fit scales the view so that the entire timeline is
visible.

You can also zoom-in and zoom-out with the mouse wheel while holding the Ctrl key
(for MacOSX use the Command key).

Another useful zoom mode is zoom-to-region. Select a region of the timeline by holding
Ctrl (for MacOSX use the Command key) while left-clicking and dragging the mouse.
The highlighted region will be expanded to occupy the entire view when the mouse
button is released.

Scrolling

The timeline can be scrolled vertically with the scrollbar of the mouse wheel. The
timeline can be scrolled horizontally with the scrollbar or by using the mouse wheel
while holding the Shift key.

Highlighting/Correlation

When you move the mouse pointer over an activity interval on the timeline, that interval
is highlighted in all places where the corresponding activity is shown. For example,
if you move the mouse pointer over an interval representing a kernel execution, that
kernel execution is also highlighted in the Stream and in the Compute timeline row.
When a kernel or memcpy interval is highlighted, the corresponding driver or runtime
API interval will also highlight. This allows you to see the correlation between the
invocation of a driver or runtime API on the CPU and the corresponding activity on the
GPU. Information about the highlighted interval is shown in the Properties View.

Selecting

You can left-click on a timeline interval or row to select it. Multi-select is done using
Ctrl-left-click. To unselect an interval or row simply Ctrl-left-click on it again. When a
single interval or row is selected, the information about that interval or row is pinned
in the Properties View. In the Details View, the detailed information for the selected
interval is shown in the table.

Measuring Time Deltas

Measurement rulers can be created by left-click dragging in the horizontal ruler at the
top of the timeline. Once a ruler is created it can be activated and deactivated by left-
clicking. Multiple rulers can be activated by Ctrl-left-click. Any number of rulers can
be created. Active rulers are deleted with the Delete or Backspace keys. After a ruler

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 13

is created, it can be resized by dragging the vertical guide lines that appear over the
timeline. If the mouse is dragger over a timeline interval, the guideline will snap to the
nearest edge of that interval.

2.5.2. Analysis View
The Analysis View is used to control application analysis and to display the analysis
results. There are two analysis modes: guided and unguided. In guided mode the analysis
system will guide you though multiple analysis stages to help you understand the likely
performance limiters and optimization opportunties in your application. In unguided
mode you can manually explore all the analysis results collect for you application.
The following figure shows the analysis view in guided analysis mode. The left part
of the view provides step-by-step directions to help you analyze and optimize your
application. The right part of the view shows you detailed analysis results appropriate
for each part of the analysis.

Guided Application Analysis

In guided mode, the analysis view will guide you step-by-step though analysis of your
entire application with specific analysis guidance provided for each kernel within your
application. Guided analysis starts with CUDA Application Analysis and from there
will guide you to optimization opportunites within your application.

Unguided Application Analysis

In unguided analysis mode each application analysis stage has a Run analysis button
that can be used to generate the analysis results for that stage. When the Run analysis
button is selected, the Visual Profiler will execute the application to collect the profiling
data needed to perform the analysis. The green checkmark next to an analysis stage
indicates that the analysis results for that stage are available. Each analysis result
contains a brief description of the analysis and a More… link to detailed documentation

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 14

on the analysis. When you select an analysis result, the timeline rows or intervals
associated with that result are highlighted in the Timeline View.

When a single kernel instance is selected in the timeline, additional kernel-specific
analysis stages are available. Each kernel-specific analysis stage has a Run analysis
button that operates in the same manner as for the application analysis stages. The
following figure shows the analysis results for the Divergent Execution analysis stage.
Some kernel instance analysis results, like Divergent Execution are associated with
specific source-lines within the kernel. To see the source associated with each result,
select an entry from the table. The source-file associated with that entry will open.

2.5.3. Details View
The Details View displays a table of information for each memory copy and kernel
execution in the profiled application. The following figure shows the table containing
several memcpy and kernel executions. Each row of the table contains general
information for a kernel execution or memory copy. For kernels, the table will also
contain a column for each metric or event value collected for that kernel. In the figure,
the Achieved Occupancy column shows the value of that metric for each of the kernel
executions.

You can sort the data by a column by left clicking on the column header, and you can
rearrange the columns by left clicking on a column header and dragging it to its new
location. If you select a row in the table, the corresponding interval will be selected in the
Timeline View. Similarly, if you select a kernel or memcpy interval in the Timeline View
the table will be scrolled to show the corresponding data.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 15

If you hover the mouse over a column header, a tooltip will display describing the data
shown in that column. For a column containing event or metric data, the tooltip will
describe the corresponding event or metric. Section Metrics Reference contains more
detailed information about each metric.

The information shown in the Details View can be filtered in various ways, controlled by
the menu accessible from the Details View toolbar. The following modes are available:

‣ Filter By Selection - If selected, the Details View shows data only for the selected
kernel and memcpy intervals.

‣ Show Hidden Timeline Data - If not selected, data is shown only for kernels and
memcpys that are visible in the timeline. Kernels and memcpys that are not visible
because they are inside collapsed parts of the timeline are not shown.

‣ Show Filtered Timeline Data - If not selected, data is shown only for kernels and
memcpys that are in timeline rows that are not filtered.

Collecting Events and Metrics

Specific event and metric values can be collected for each kernel and displayed in the
details table. Use the toolbar icon in the upper right corner of the view to configure the
events and metrics to collect for each device, and to run the application to collect those
events and metrics.

Show Summary Data

By default the table shows one row for each memcpy and kernel invocation.
Alternatively, the table can show summary results for each kernel function. Use the
toolbar icon in the upper right corner of the view to select or deselect summary format.

Formatting Table Contents

The numbers in the table can be displayed either with or without grouping separators.
Use the toolbar icon in the upper right corner of the view to select or deselect grouping
separators.

Exporting Details

The contents of the table can be exported in CSV format using the toolbar icon in the
upper right corner of the view.

2.5.4. Properties View
The Properties View shows information about the row or interval highlighted or selected
in the Timeline View. If a row or interval is not selected, the displayed information
tracks the motion of the mouse pointer. If a row or interval is selected, the displayed
information is pinned to that row or interval.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 16

2.5.5. Console View
The Console View shows the stdout and stderr output of the application each time it
executes. If you need to provide stdin input to you application, you do so by typing into
the console view.

2.5.6. Settings View
The Settings View allows you to specify execution settings for the application being
profiled. As shown in the following figure, the Executable settings tab allows you to
specify the executable file for the application, the working directory for the application,
the command-line arguments for the application, and the environment for the
application. Only the executable file is required, all other fields are optional.

Exection timeout

The Executable settings tab also allows you to specify and optional execution timeout.
If the execution timeout is specified, the application execution will be terminated after
that number of seconds. If the execution timeout is not specified, the application will be
allowed to continue execution until it terminates normally.

Timeout starts counting from the moment the CUDA driver is initialized. If the
application doesn't call any CUDA APIs, timeout won't be triggered.

Start execution with profiling enabled

The Start execution with profiling enabled checkbox is set by default to indicate
that application profiling begins at the start of application execution. If you are using
cudaProfilerStart() and cudaProfilerStop() to control profiling within your
application as described in Focused Profiling, then you should uncheck this box.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 17

Enable concurrent kernels profiling

The Enable concurrent kernel profiling checkbox is set by default to enable profiling
of applications that exploit concurrent kernel execution. If this checkbox is unset, the
profiler will disable concurrent kernel execution. Disabling concurrent kernel execution
can reduce profiling overhead in some cases and so may be appropriate for applications
that do not exploit concurrent kernels.

Enable power, clock, and thermal profiling

The Enable power, clock, and thermal profiling checkbox can be set to enable low
frequency sampling of the power, clock, and thermal behavior of each GPU used by the
application.

2.6. Customizing the Visual Profiler
When you first start the Visual Profiler, and after closing the Welcome page, you will
be presented with a default placement of the views. By moving and resizing the views,
you can customize the Visual Profiler to meet you development needs. Any changes you
make to the Visual Profiler are restored the next time you start the profiler.

2.6.1. Resizing a View
To resize a view, simply left click and drag on the dividing area between the views. All
views stacked together in one area are resized at the same time.

2.6.2. Reordering a View
To reorder a view in a stacked set of views, left click and drag the view tab to the new
location within the view stack.

2.6.3. Moving a View
To move a view, left click the view tab and drag it to its new location. As you drag the
view, an outline will show the target location for the view. You can place the view in a
new location, or stack it in the same location as other views.

2.6.4. Undocking a View
You can undock a view from the Visual Profiler window so that the view occupies
its own stand-alone window. You may want to do this to take advantage of multiple
monitors or to maximum the size of an individual view. To undock a view, left click the
view tab and drag it outside of the Visual Profiler window. To dock a view, left click the
view tab (not the window decoration) and drag it into the Visual Profiler window.

Visual Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 18

2.6.5. Opening and Closing a View
Use the X icon on a view tab to close a view. To open a view, use the View menu.

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 19

Chapter 3.
NVPROF

The nvprof profiling tool enables you to collect and view profiling data from the
command-line. nvprof enables the collection of a timeline of CUDA-related activities
on both CPU and GPU, including kernel execution, memory transfers, memory set and
CUDA API calls. nvprof also enables you to collect events/metrics for CUDA kernels.
Profiling options are provided to nvprof through command-line options. Profiling
results are displayed in the console after the profiling data is collected, and may also be
saved for later viewing by either nvprof or the Visual Profiler.

The textual output is redirected to stderr by default. Use --log-file to redirect
the output to another file. See Redirecting Output.

nvprof is included in the CUDA Toolkit for all supported OSes. Here's how to use
nvprof to profile a CUDA application:
nvprof [options] [CUDA-application] [application-arguments]

nvprof and the Command Line Profiler are mutually exclusive profiling tools. If
nvprof is invoked when the command-line profiler is enabled, nvprof will report an
error and exit.

To view the full help page, type nvprof --help.

3.1. Profiling Modes
nvprof operates in one of the modes listed below.

3.1.1. Summary Mode
Summary mode is the default operating mode for nvprof. In this mode, nvprof outputs
a single result line for each kernel function and each type of CUDA memory copy/set
performed by the application. For each kernel, nvprof outputs the total time of all
instances of the kernel or type of memory copy as well as the average, minimum, and
maximum time. Output of nvprof (except for tables) are prefixed with ==<pid>==,

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 20

<pid> being the process ID of the application being profiled. Here's a simple example of
running nvprof on the CUDA sample matrixMul:
$ nvprof matrixMul
[Matrix Multiply Using CUDA] - Starting...
==27694== NVPROF is profiling process 27694, command: matrixMul
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops,
 WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27694== Profiling application: matrixMul
==27694== Profiling result:
Time(%) Time Calls Avg Min Max Name
 99.94% 1.11524s 301 3.7051ms 3.6928ms 3.7174ms void
 matrixMulCUDA<int=32>(float*, float*, float*, int, int)
 0.04% 406.30us 2 203.15us 136.13us 270.18us [CUDA memcpy HtoD]
 0.02% 248.29us 1 248.29us 248.29us 248.29us [CUDA memcpy DtoH]

nvprof supports CUDA Dynamic Parallelism in summary mode. If your application
uses Dynamic Parallelism, the output will contain one column for the number of host-
launched kernels and one for the number of device-launched kernels. Here's an example
of running nvprof on the CUDA Dynamic Parallelism sample cdpSimpleQuicksort:
$ nvprof cdpSimpleQuicksort
==27325== NVPROF is profiling process 27325, command: cdpSimpleQuicksort
Running on GPU 0 (Tesla K20c)
Initializing data:
Running quicksort on 128 elements
Launching kernel on the GPU
Validating results: OK
==27325== Profiling application: cdpSimpleQuicksort
==27325== Profiling result:
Time(%) Time Calls (host) Calls (device) Avg Min Max Name
 99.71% 1.2114ms 1 14 80.761us 5.1200us 145.66us cdp_simple_quicksort(unsigned
 int*, int, int, int)
 0.18% 2.2080us 1 - 2.2080us 2.2080us 2.2080us [CUDA memcpy DtoH]
 0.11% 1.2800us 1 - 1.2800us 1.2800us 1.2800us [CUDA memcpy HtoD]

3.1.2. GPU-Trace and API-Trace Modes
GPU-Trace and API-Trace modes can be enabled individually or at the same time. GPU-
trace mode provides a timeline of all activities taking place on the GPU in chronological
order. Each kernel execution and memory copy/set instance is shown in the output. For
each kernel or memory copy detailed information such as kernel parameters, shared
memory usage and memory transfer throughput are shown. The number shown in the
square brackets after the kernel name correlates to the CUDA API that launched that
kernel.

Here's an example:
$ nvprof --print-gpu-trace matrixMul
==27706== NVPROF is profiling process 27706, command: matrixMul
==27706== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.36 GFlop/s, Time= 3.707 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27706== Profiling result:

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 21

 Start Duration Grid Size Block Size Regs* SSMem* DSMem* Size Throughput
 Device Context Stream Name
133.81ms 135.78us - - - - - 409.60KB 3.0167GB/s
 GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.62ms 270.66us - - - - - 819.20KB 3.0267GB/s
 GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.90ms 3.7037ms (20 10 1) (32 32 1) 29 8.1920KB 0B - -
 GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [94]
138.71ms 3.7011ms (20 10 1) (32 32 1) 29 8.1920KB 0B - -
 GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [105]
<...more output...>
1.24341s 3.7011ms (20 10 1) (32 32 1) 29 8.1920KB 0B - -
 GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [2191]
1.24711s 3.7046ms (20 10 1) (32 32 1) 29 8.1920KB 0B - -
 GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [2198]
1.25089s 248.13us - - - - - 819.20KB 3.3015GB/s
 GeForce GT 640M 1 2 [CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

nvprof supports CUDA Dynamic Parallelism in GPU-trace mode. For host kernel
launch, the kernel ID will be shown. For device kernel launch, the kernel ID, parent
kernel ID and parent block will be shown. Here's an example:
$nvprof --print-gpu-trace cdpSimpleQuicksort
==28128== NVPROF is profiling process 28128, command: cdpSimpleQuicksort
Running on GPU 0 (Tesla K20c)
Initializing data:
Running quicksort on 128 elements
Launching kernel on the GPU
Validating results: OK
==28128== Profiling application: cdpSimpleQuicksort
==28128== Profiling result:
 Start Duration Grid Size Block Size Regs* SSMem* DSMem* Size Throughput Device
 Context Stream ID Parent ID Parent Block Name
192.76ms 1.2800us - - - - - 512B 400.00MB/s Tesla K20c (0)
 1 2 - - - [CUDA memcpy HtoD]
193.31ms 146.02us (1 1 1) (1 1 1) 32 0B 0B - - Tesla K20c (0)
 1 2 2 - - cdp_simple_quicksort(unsigned int*, int, int, int) [171]
193.41ms 110.53us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -5 2 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.45ms 125.57us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -6 2 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.48ms 9.2480us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -7 -5 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.52ms 107.23us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -8 -5 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.53ms 93.824us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -9 -6 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.57ms 117.47us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -10 -6 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.58ms 5.0560us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -11 -8 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.62ms 108.06us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -12 -8 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.65ms 113.34us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -13 -10 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.68ms 29.536us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -14 -12 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.69ms 22.848us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -15 -10 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.71ms 130.85us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -16 -13 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.73ms 62.432us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -17 -12 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.76ms 41.024us (1 1 1) (1 1 1) 32 0B 256B - - Tesla K20c (0)
 1 2 -18 -13 (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.92ms 2.1760us - - - - - 512B 235.29MB/s Tesla K20c (0)
 1 2 - - - [CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

API-trace mode shows the timeline of all CUDA runtime and driver API calls invoked
on the host in chronological order. Here's an example:
$nvprof --print-api-trace matrixMul
==27722== NVPROF is profiling process 27722, command: matrixMul
==27722== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops, WorkgroupSize=
 1024 threads/block
Checking computed result for correctness: OK

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 22

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27722== Profiling result:
 Start Duration Name
108.38ms 6.2130us cuDeviceGetCount
108.42ms 840ns cuDeviceGet
108.42ms 22.459us cuDeviceGetName
108.45ms 11.782us cuDeviceTotalMem
108.46ms 945ns cuDeviceGetAttribute
149.37ms 23.737us cudaLaunch (void matrixMulCUDA<int=32>(float*, float*,
 float*, int, int) [2198])
149.39ms 6.6290us cudaEventRecord
149.40ms 1.10156s cudaEventSynchronize
<...more output...>
1.25096s 21.543us cudaEventElapsedTime
1.25103s 1.5462ms cudaMemcpy
1.25467s 153.93us cudaFree
1.25483s 75.373us cudaFree
1.25491s 75.564us cudaFree
1.25693s 10.901ms cudaDeviceReset

3.1.3. Event/metric Summary Mode
To see a list of all available events on a particular NVIDIA GPU, type nvprof --query-
events. To see a list of all available metrics on a particular NVIDIA GPU, type nvprof
--query-metrics. nvprof is able to collect multiple events/metrics at the same time.
Here's an example:
$ nvprof --events warps_launched,branch --metrics ipc matrixMul
[Matrix Multiply Using CUDA] - Starting...
==60544== NVPROF is profiling process 60544, command: matrixMul
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
==60544== Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.
done
Performance= 7.75 GFlop/s, Time= 16.910 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==60544== Profiling application: matrixMul
==60544== Profiling result:
==60544== Event result:
Invocations Event Name Min Max Avg
Device "GeForce GT 640M LE (0)"
 Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
 301 warps_launched 6400 6400 6400
 301 branch 70400 70400 70400

==60544== Metric result:
Invocations Metric Name Metric Description Min Max Avg
Device "GeForce GT 640M LE (0)"
 Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
 301 ipc Executed IPC 1.386412 1.393312 1.390278

When collecting multiple events/metrics, nvprof uses kernel replay to execute each
kernel multiple times as needed to collect all the requested data. If a large number
of events or metrics are requested then a large number of replays may be required,
resulting in a significant increase in application execution time.

3.1.4. Event/metric Trace Mode
In event/metric trace mode, event and metric values are shown for each kernel
execution. By default, event and metric values are aggregated across all units in the
GPU. For example, by default multiprocessor specific events are aggregated across all
multiprocessors on the GPU. If --aggregate-mode off is specified, values of each unit
are shown. For example, in the following example, the "branch" event value is shown for
each multiprocessor on the GPU.
$ nvprof --aggregate-mode off --events branch --print-gpu-trace matrixMul
[Matrix Multiply Using CUDA] - Starting...
==60642== NVPROF is profiling process 60642, command: matrixMul

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 23

GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 23.73 GFlop/s, Time= 5.523 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==60642== Profiling application: matrixMul
==60642== Profiling result:
 Device Context Stream Kernel branch (0) branch (1)
GeForce GT 640M 1 2 void matrixMulCUDA<i 35200 35200
GeForce GT 640M 1 2 void matrixMulCUDA<i 35200 35200
<...more output...>

--aggregate-mode also applies to metrics. However some metrics are only available
in aggregate mode and some are only available in non-aggregate mode.

3.2. Profiling Controls

3.2.1. Timeout
A timeout (in seconds) can be provided to nvprof. The CUDA application being
profiled will be killed by nvprof after the timeout. Profiling result collected before the
timeout will be shown.

Timeout starts counting from the moment the CUDA driver is initialized. If the
application doesn't call any CUDA APIs, timeout won't be triggered.

3.2.2. Concurrent Kernels
Concurrent-kernel profiling is supported, and is turned on by default. To turn the
feature off, use the option --concurrent-kernels off. This forces concurrent kernel
executions to be serialized when a CUDA application is run with nvprof.

3.2.3. Profiling Scope
When collecting events/metrics, nvprof profiles all kernels launched on all visible
CUDA devices by default. This profiling scope can be limited by the following options.

--devices <device IDs> applies to --events, --metrics, --query-events and
--query-metrics options that follows it. It limits these options to collect events/
metrics only on the devices specified by <device IDs>, which can be a list of device ID
numbers separated by comma.

--kernels <kernel filter> applies to --events and --metrics options that
follows it. It limits these options to collect events/metrics only on the kernels specified
by <kernel filter>, which has the following syntax:

<context id/name>:<stream id/name>:<kernel name>:<invocation>

Each string in the angle brackets, except for invocation, can be a standard Perl regular
expression. Empty string matches any number or character combination. Invocation
should be a positive number, and indicates the nth invocation of the kernel.

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 24

Both --devices and --kernels can be specified multiple times, with distinct events/
metrics associated.

--events, --metrics, --query-events and --query-metrics are controlled by the
nearest scope options before them.

As an example, the following command,

nvprof --devices 0 --metrics ipc --kernels "1:foo:bar:2" --events local_load
 a.out

collects metric ipc on all kernels launched on device 0. It also collects event
local_load for any kernel whose name contains bar and is the 2nd instance launched
on context 1 and on stream named foo on device 0.

3.2.4. Multiprocess Profiling
By default, nvprof only profiles the application specified by the command-line
argument. It doesn't trace child processes launched by that process. To profile all
processes launched by an application, use the --profile-child-process option.

nvprof cannot profile processes that fork() but do not then exec().

nvprof also has a "profile all processes" mode, in which it profiles every CUDA process
launched on the same system by the same user who launched nvprof. Exit this mode by
typing "Ctrl-c".

3.2.5. System Profiling
For devices that support system profiling, nvprof can enable low frequency sampling
of the power, clock, and thermal behavior of each GPU used by the application. This
feature is turned off by default. To turn on this feature, use --system-profiling on.
To see the detail of each sample point, combine the above option with --print-gpu-
trace.

3.3. Output

3.3.1. Adjust Units
By default, nvprof adjusts the time units automatically to get the most precise time
values. The --normalized-time-unit options can be used to get fixed time units
throughout the results.

3.3.2. CSV
For each profiling mode, option --csv can be used to generate output in comma-
separated values (CSV) format. The result can be directly imported to spreadsheet
software such as Excel.

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 25

3.3.3. Export/Import
For each profiling mode, option --output-profile can be used to generate a result
file. This file is not human-readable, but can be imported to nvprof using the option --
import-profile, or into the Visual Profiler.

3.3.4. Demangling
By default, nvprof demangles C++ function names. Use option --demangling off to
turn this feature off.

3.3.5. Redirecting Output
By default, nvprof sends most of its output to stderr. To redirect the output, use --
log-file. --log-file %1 tells nvprof to redirect all output to stdout. --log-file
<filename> redirects output to a file. Use %p in the filename to be replaced by the
process ID of nvprof, %h by the hostname and %% by %.

3.4. Limitations
This section documents some nvprof limitations.

‣ For some metrics, the required events can only be collected for a single CUDA
context. For an application that uses multiple CUDA contexts, these metrics will
only be collected for one of the contexts. The metrics that can be collected only for a
single CUDA context are indicated in the metric reference tables.

‣ The warp_nonpred_execution_efficiency metric is only available on compute
capability 3.5 and later devices.

‣ The warp_execution_efficiency metric is not available on compute capability 3.0
devices.

‣ The branch_efficiency metric is not available on compute capability 3.5 devices.
‣ For compute capability 2.x devices, the achieved_occupancy metric can report

inaccurate values that are greater than the actual achieved occupancy. In rare cases
this can cause the achieved occupancy value to exceed the theoretical occupancy
value for the kernel.

‣ nvprof cannot profile processes that fork() but do not then exec().
‣ The timestamps collected for applications running on GPUs in an SLI configuration

are incorrect. As a result most profiling results collected for the application will be
invalid.

‣ Concurrent kernel mode can add significant overhead if used on kernels that
execute a large number of blocks and that have short execution durations.

‣ If the kernel launch rate is very high, the device memory used to collect profiling
data can run out. In such a case some profiling data might be dropped. This will be
indicated by a warning.

‣ nvprof assumes it has access to the temporary directory on the system, which
it uses to store temporary profiling data. On Linux/Mac the default is /tmp. On

nvprof

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 26

Windows it's specified by the system environment variables. To specify a custom
location, change $TMPDIR on Linux/Mac or %TMP% on Windows.

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 27

Chapter 4.
COMMAND LINE PROFILER

The Command Line Profiler is a profiling tool that can be used to measure performance
and find potential opportunities for optimization for CUDA applications executing on
NVIDIA GPUs. The command line profiler allows users to gather timing information
about kernel execution and memory transfer operations. Profiling options are controlled
through environment variables and a profiler configuration file. Profiler output is
generated in text files either in Key-Value-Pair (KVP) or Comma Separated (CSV)
format.

4.1. Command Line Profiler Control
The command line profiler is controlled using the following environment variables:

COMPUTE_PROFILE: is set to either 1 or 0 (or unset) to enable or disable profiling.

COMPUTE_PROFILE_LOG: is set to the desired file path for profiling output. In case
of multiple contexts you must add '%d' in the COMPUTE_PROFILE_LOG name. This
will generate separate profiler output files for each context - with '%d' substituted by the
context number. Contexts are numbered starting with zero. In case of multiple processes
you must add '%p' in the COMPUTE_PROFILE_LOG name. This will generate separate
profiler output files for each process - with '%p' substituted by the process id. If there
is no log path specified, the profiler will log data to "cuda_profile_%d.log" in case of a
CUDA context ('%d' is substituted by the context number).

COMPUTE_PROFILE_CSV: is set to either 1 (set) or 0 (unset) to enable or disable a
comma separated version of the log output.

COMPUTE_PROFILE_CONFIG: is used to specify a config file for selecting profiling
options and performance counters.

Configuration details are covered in a subsequent section.

The following old environment variables used for the above functionalities are still
supported:

CUDA_PROFILE

CUDA_PROFILE_LOG

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 28

CUDA_PROFILE_CSV

CUDA_PROFILE_CONFIG

4.2. Command Line Profiler Default Output
Table 1 describes the columns that are output in the profiler log by default.

Table 1 Command Line Profiler Default Columns

Column Description

method This is character string which gives the name of the GPU kernel or
memory copy method. In case of kernels the method name is the mangled
name generated by the compiler.

gputime This column gives the execution time for the GPU kernel or memory
copy method. This value is calculated as (gpuendtimestamp -
gpustarttimestamp)/1000.0. The column value is a single precision
floating point value in microseconds.

cputime For non-blocking methods the cputime is only the CPU or host side
overhead to launch the method. In this case:

walltime = cputime + gputime

For blocking methods cputime is the sum of gputime and CPU overhead.
In this case:

walltime = cputime

Note all kernel launches by default are non-blocking. But if any of
the profiler counters are enabled kernel launches are blocking. Also
asynchronous memory copy requests in different streams are non-
blocking.

The column value is a single precision floating point value in
microseconds.

occupancy This column gives the multiprocessor occupancy which is the ratio of
number of active warps to the maximum number of warps supported on a
multiprocessor of the GPU. This is helpful in determining how effectively
the GPU is kept busy. This column is output only for GPU kernels and the
column value is a single precision floating point value in the range 0.0 to
1.0.

4.3. Command Line Profiler Configuration
The profiler configuration file is used to select the profiler options and counters which
are to be collected during application execution. The configuration file is a simple
format text file with one option on each line. Options can be commented out using the
character at the start of a line. Refer the command line profiler options table for the
column names in the profiler output for each profiler configuration option.

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 29

4.3.1. Command Line Profiler Options
Table 2 contains the options supported by the command line profiler. Note the following
regarding the profiler log that is produced from the different options:

‣ Typically, each profiler option corresponds to a single column is output. There are
a few exceptions in which case multiple columns are output; these are noted where
applicable in Table 2.

‣ In most cases the column name is the same as the option name; the exceptions are
listed in Table 2.

‣ In most cases the column values are 32-bit integers in decimal format; the exceptions
are listed in Table 2.

Table 2 Command Line Profiler Options

Option Description

gpustarttimestamp Time stamp when a kernel or memory transfer starts.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

gpuendtimestamp Time stamp when a kernel or memory transfer completes.

The column values are 64-bit unsigned value in nanoseconds in
hexadecimal format.

timestamp Time stamp when a kernel or memory transfer starts. The column values
are single precision floating point value in microseconds. Use of the
gpustarttimestamp column is recommended as this provides a more
accurate time stamp.

gridsize Number of blocks in a grid along the X and Y dimensions for a kernel
launch.

This option outputs the following two columns:

‣ gridsizeX
‣ gridsizeY

gridsize3d Number of blocks in a grid along the X, Y and Z dimensions for a kernel
launch.

This option outputs the following three columns:

‣ gridsizeX
‣ gridsizeY
‣ gridsizeZ

threadblocksize Number of threads in a block along the X, Y and Z dimensions for a kernel
launch.

This option outputs the following three columns:

‣ threadblocksizeX
‣ threadblocksizeY
‣ threadblocksizeZ

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 30

Option Description

dynsmemperblock Size of dynamically allocated shared memory per block in bytes for a
kernel launch. (Only CUDA)

stasmemperblock Size of statically allocated shared memory per block in bytes for a kernel
launch.

regperthread Number of registers used per thread for a kernel launch.

memtransferdir Memory transfer direction, a direction value of 0 is used for host to
device memory copies and a value of 1 is used for device to host memory
copies.

memtransfersize Memory transfer size in bytes. This option shows the amount of memory
transferred between source (host/device) to destination (host/device).

memtransferhostmemtype Host memory type (pageable or page-locked). This option implies whether
during a memory transfer, the host memory type is pageable or page-
locked.

streamid Stream Id for a kernel launch or a memory transfer.

localblocksize This option is no longer supported and if it is selected all values in the
column will be -1.

This option outputs the following column:

‣ localworkgroupsize

cacheconfigrequested Requested cache configuration option for a kernel launch:

‣ 0 CU_FUNC_CACHE_PREFER_NONE - no preference for shared
memory or L1 (default)

‣ 1 CU_FUNC_CACHE_PREFER_SHARED - prefer larger shared memory
and smaller L1 cache

‣ 2 CU_FUNC_CACHE_PREFER_L1 - prefer larger L1 cache and smaller
shared memory

‣ 3 CU_FUNC_CACHE_PREFER_EQUAL - prefer equal sized L1 cache and
shared memory

cacheconfigexecuted Cache configuration which was used for the kernel launch. The values are
same as those listed under cacheconfigrequested.

cudadevice <device_index> This can be used to select different counters for different CUDA devices.
All counters after this option are selected only for a CUDA device with
index <device_index>.

<device_index> is an integer value specifying the CUDA device index.

Example: To select counterA for all devices, counterB for CUDA device 0
and counterC for CUDA device 1:
counterA
cudadevice 0
counterB
cudadevice 1
counterC

profilelogformat [CSV|KVP] Choose format for profiler log.

‣ CSV: Comma separated format
‣ KVP: Key Value Pair format

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 31

Option Description

The default format is KVP.

This option will override the format selected using the environment
variable COMPUTE_PROFILE_CSV.

countermodeaggregate If this option is selected then aggregate counter values will be
output. For a SM counter the counter value is the sum of the
counter values from all SMs. For l1*, tex*, sm_cta_launched,
uncached_global_load_transaction and global_store_transaction
counters the counter value is collected for 1 SM from each GPC and it is
extrapolated for all SMs. This option is supported only for CUDA devices
with compute capability 2.0 or higher.

conckerneltrace This option should be used to get gpu start and end timestamp values in
case of concurrent kernels. Without this option execution of concurrent
kernels is serialized and the timestamps are not correct. Only CUDA
devices with compute capability 2.0 or higher support execution of
multiple kernels concurrently. When this option is enabled additional
code is inserted for each kernel and this will result in some additional
execution overhead. This option cannot be used along with profiler
counters. In case some counter is given in the configuration file along
with "conckerneltrace" then a warning is printed in the profiler output file
and the counter will not be enabled.

enableonstart 0|1 Use enableonstart 1 option to enable or enableonstart 0 to disable
profiling from the start of application execution. If this option is not used
then by default profiling is enabled from the start. To limit profiling to
a region of your application, CUDA provides functions to start and stop
profile data collection. cudaProfilerStart() is used to start profiling
and cudaProfilerStop() is used to stop profiling (using the CUDA
driver API, you get the same functionality with cuProfilerStart()
and cuProfilerStop()). When using the start and stop functions, you
also need to instruct the profiling tool to disable profiling at the start
of the application. For command line profiler you do this by adding
enableonstart 0 in the profiler configuration file.

4.3.2. Command Line Profiler Counters
The command line profiler supports logging of event counters during kernel execution.
The list of available events can be found using nvprof --query-events as described
in Event/metric Summary Mode. The event name can be used in the command line
profiler configuration file. In every application run only a few counter values can be
collected. The number of counters depends on the specific counters selected.

4.4. Command Line Profiler Output
If the COMPUTE_PROFILE environment variable is set to enable profiling, the profiler log
records timing information for every kernel launch and memory operation performed
by the driver.

Example 1: CUDA Default Profiler Log- No Options or Counters Enabled (File name:
cuda_profile_0.log) shows the profiler log for a CUDA application with no profiler
configuration file specified.

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 32

Example 1: CUDA Default Profiler Log- No Options or Counters Enabled (File name:
cuda_profile_0.log)
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C2075
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff6de60e24570
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[80.640] cputime=[278.000]
method=[memcpyHtoD] gputime=[79.552] cputime=[237.000]
method=[_Z6VecAddPKfS0_Pfi] gputime=[5.760] cputime=[18.000]
 occupancy=[1.000]
method=[memcpyDtoH] gputime=[97.472] cputime=[647.000]

The log above in Example 1: CUDA Default Profiler Log- No Options or Counters
Enabled (File name: cuda_profile_0.log) shows data for memory copies and a kernel
launch. The method label specifies the name of the memory copy method or kernel
executed. The gputime and cputime labels specify the actual chip execution time
and the driver execution time, respectively. Note that gputime and cputime are in
microseconds. The 'occupancy' label gives the ratio of the number of active warps per
multiprocessor to the maximum number of active warps for a particular kernel launch.
This is the theoretical occupancy and is calculated using kernel block size, register usage
and shared memory usage.

Example 2: CUDA Profiler Log- Options and Counters Enabled shows the profiler log
of a CUDA application. There are a few options and counters enabled in this example
using the profiler configuration file:
gpustarttimestamp
gridsize3d
threadblocksize
dynsmemperblock
stasmemperblock
regperthread
memtransfersize
memtransferdir
streamid
countermodeaggregate
active_warps
active_cycles

Example 2: CUDA Profiler Log- Options and Counters Enabled
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C2075
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff6de5e08e990
gpustarttimestamp,method,gputime,cputime,gridsizeX,gridsizeY,gridsizeZ,
 threadblocksizeX,threadblocksizeY,threadblocksizeZ,dynsmemperblock,
 stasmemperblock,regperthread,occupancy,streamid,active_warps,
 active_cycles,memtransfersize,memtransferdir
gpustarttimestamp=[124b9e484b6f3f40] method=[memcpyHtoD] gputime=[80.800]
 cputime=[280.000] streamid=[1] memtransfersize=[200000]
 memtransferdir=[1]
gpustarttimestamp=[124b9e484b7517a0] method=[memcpyHtoD] gputime=[79.744]
 cputime=[232.000] streamid=[1] memtransfersize=[200000]
 memtransferdir=[1]
gpustarttimestamp=[124b9e484b8fd8e0] method=[_Z6VecAddPKfS0_Pfi]
 gputime=[10.016] cputime=[57.000] gridsize=[196, 1, 1]
 threadblocksize=[256, 1, 1] dynsmemperblock=[0] stasmemperblock=[0]

Command Line Profiler

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 33

 regperthread=[4] occupancy=[1.000] streamid=[1]active_warps=[1545830]
 active_cycles=[40774]
gpustarttimestamp=[124b9e484bb5a2c0] method=[memcpyDtoH] gputime=[98.528]
 cputime=[672.000] streamid=[1] memtransfersize=[200000]
 memtransferdir=[2]

The default log syntax is easy to parse with a script, but for spreadsheet analysis it might
be easier to use the comma separated format.

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the output log shown
in Example 3: CUDA Profiler Log- Options and Counters Enabled in CSV Format.

Example 3: CUDA Profiler Log- Options and Counters Enabled in CSV Format
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C2075
CUDA_CONTEXT 1
CUDA_PROFILE_CSV 1
TIMESTAMPFACTOR fffff6de5d77a1c0
gpustarttimestamp,method,gputime,cputime,gridsizeX,gridsizeY,gridsizeZ,
 threadblocksizeX,threadblocksizeY,threadblocksizeZ,dynsmemperblock,
 stasmemperblock,regperthread,occupancy,streamid,active_warps,
 active_cycles,memtransfersize,memtransferdir
124b9e85038d1800,memcpyHtoD,80.352,286.000,,,,,,,,,,,1,,,200000,1
124b9e850392ee00,memcpyHtoD,79.776,232.000,,,,,,,,,,,1,,,200000,1
124b9e8503af7460,_Z6VecAddPKfS0_Pfi,10.048,59.000,196,1,1,256,1,1,0,
 0,4,1.000,1,1532814,42030

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 34

Chapter 5.
REMOTE PROFILING

Remote profiling is the process of collecting profile data from a remote system that is
different than the host system at which that profile data will be viewed and analyzed. In
CUDA Toolkit 5.5 it is possible to use nvprof to collect the profile data on the remote
system and then use nvvp on the host system to view and analyze the data.

5.1. Collect Data On Remote System
There are three common remote profiling use cases that can be addressed by using
nvprof and nvvp.

Timeline

The first use case is to collect a timeline of the application executing on the remote
system. The timeline should be collected in a way that most accurately reflects the
behavior of the application. To collect the timeline execute the following on the remote
system. See nvprof for more information on nvprof options.
$ nvprof --output-profile timeline.nvprof <app> <app args>

The profile data will be collected in timeline.nvprof. You should copy this file back
to the host system and then import it into nvvp as described in the next section.

Metrics And Events

The second use case is to collect events or metrics for all kernels in an application for
which you have already collected a timeline. Collecting events or metrics for all kernels
will significantly change the overall performance characteristics of the application
because all kernel executions will be serialized on the GPU. Even though overall
application performance is changed, the event or metric values for individual kernels
will be correct and so you can merge the collected event and metric values onto a
previously collected timeline to get an accurate picture of the applications behavior. To

Remote Profiling

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 35

collect events or metrics you use the --events or --metrics flag. The following shows
an example using just the --metrics flag to collect two metrics.
$ nvprof --metrics achieved_occupancy,executed_ipc -o metrics.nvprof <app> <app
 args>

You can collect any number of events and metrics for each nvprof invocation, and
you can invoke nvprof multiple times to collect multiple metrics.nvprof files.
To get accurate profiling results, it is important that your application conform to the
requirements detailed in Application Requirements.

The profile data will be collected in the metrics.nvprof file(s). You should copy
these files back to the host system and then import it into nvvp as described in the next
section.

Guided Analysis For Individual Kernel

The third common remote profiling use case is to collect the metrics needed by the
guided analysis system for an individual kernel. When imported into nvvp this data
will enable the guided analysis system to analyze the kernel and report optimization
opportunities for that kernel. To collect the guided analysis data execute the following
on the remote system. It is important that the --kernels option appear before the --
analysis-metrics option so that metrics are collected only for the kernel(s) specified
by kernel specifier. See Profiling Scope for more information on the --kernels
option.
$ nvprof --kernels <kernel specifier> --analysis-metrics -o analysis.nvprof
 <app> <app args>

The profile data will be collected in analysis.nvprof. You should copy this file back
to the host system and then import it into nvvp as described in the next section.

5.2. View And Analyze Data
The collected profile data is viewed and analyzed by importing it into nvvp on the host
system. See Import Session for more information about importing.

Timeline, Metrics And Events

To view collected timeline data, the timeline.nvprof file can be imported into nvvp
as described in Import nvprof Session. If metric or event data was also collected for the
application, the corresponding metrics.nvprof file(s) can be imported into nvvp
along with the timeline so that the events and metrics collected for each kernel are
associated with the corresponding kernel in the timeline.

Remote Profiling

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 36

Guided Analysis For Individual Kernel

To view collected analysis data for an individual kernel, the analysis.nvprof file can
be imported into nvvp as described in Import nvprof Session. The analysis.nvprof
must be imported by itself. The timeline will show just the individual kernel that we
specified during data collection. After importing, the guided analysis system can be
used to explore the optimization opportunities for the kernel.

5.3. Limitations
There are several limitations to remote profiling.

‣ The host system must have an NVIDIA GPU and the CUDA Toolkit must be
installed. The host GPU does not have to match the GPU(s) on the remote system.

‣ When collecting events or metrics with the --events, --metrics, or --analysis-
metrics options, nvprof will use kernel replay to execute each kernel multiple
times as needed to collect all the requested data. If a large number of events or
metrics are requested then a large number of replays may be required, resulting in a
significant increase in application execution time.

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 37

Chapter 6.
NVIDIA TOOLS EXTENSION

NVIDIA Tools Extension (NVTX) is a C-based Application Programming Interface (API)
for annotating events, code ranges, and resources in your applications. Applications
which integrate NVTX can use the Visual Profiler to capture and visualize these events
and ranges. The NVTX API provides two core services:

 1. Tracing of CPU events and time ranges.
 2. Naming of OS and CUDA resources.

NVTX can be quickly integrated into an application. The sample program below shows
the use of marker events, range events, and resource naming.

 void Wait(int waitMilliseconds) {
 nvtxNameOsThread(“MAIN”);
 nvtxRangePush(__FUNCTION__);
 nvtxMark("Waiting...");
 Sleep(waitMilliseconds);
 nvtxRangePop();
 }

 int main(void) {
 nvtxNameOsThread("MAIN");
 nvtxRangePush(__FUNCTION__);
 Wait();
 nvtxRangePop();
 }

6.1. NVTX API Overview

Files

The core NVTX API is defined in file nvToolsExt.h, whereas CUDA-specific extensions
to the NVTX interface are defined in nvToolsExtCuda.h and nvToolsExtCudaRt.h. On
Linux the NVTX shared library is called libnvToolsExt.so and on Mac OSX the
shared library is called libnvToolsExt.dylib. On Windows the library (.lib) and
runtime components (.dll) are named nvToolsExt[bitness=32|64]_[version].
{dll|lib}.

NVIDIA Tools Extension

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 38

Function Calls

All NVTX API functions start with an nvtx name prefix and may end with one out of the
three suffixes: A, W, or Ex. NVTX functions with these suffixes exist in multiple variants,
performing the same core functionality with different parameter encodings. Depending
on the version of the NVTX library, available encodings may include ASCII (A), Unicode
(W), or event structure (Ex).

The CUDA implementation of NVTX only implements the ASCII (A) and event
structure (Ex) variants of the API, the Unicode (W) versions are not supported and have
no effect when called.

Return Values

Some of the NVTX functions are defined to have return values. For example, the
nvtxRangeStart() function returns a unique range identifier and nvtxRangePush()
function outputs the current stack level. It is recommended not to use the returned
values as part of conditional code in the instrumented application. The returned values
can differ between various implementations of the NVTX library and, consequently,
having added dependencies on the return values might work with one tool, but may fail
with another.

6.2. NVTX API Events
Markers are used to describe events that occur at a specific time during the execution of
an application, while ranges detail the time span in which they occur. This information is
presented alongside all of the other captured data, which makes it easier to understand
the collected information. All markers and ranges are identified by a message string.
The Ex version of the marker and range APIs also allows category, color, and payload
attributes to be associated with the event using the event attributes structure.

6.2.1. NVTX Markers
A marker is used to describe an instantaneous event. A marker can contain a text
message or specify additional information using the event attributes structure. Use
nvtxMarkA to create a marker containing an ASCII message. Use nvtxMarkEx()
to create a marker containing additional attributes specified by the event attribute
structure. The nvtxMarkW() function is not supported in the CUDA implementation of
NVTX and has no effect if called.

Code Example

 nvtxMarkA("My mark");

 nvtxEventAttributes_t eventAttrib = {0};
 eventAttrib.version = NVTX_VERSION;
 eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
 eventAttrib.colorType = NVTX_COLOR_ARGB;
 eventAttrib.color = COLOR_RED;

NVIDIA Tools Extension

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 39

 eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
 eventAttrib.message.ascii = "my mark with attributes";
 nvtxMarkEx(&eventAttrib);

6.2.2. NVTX Range Start/Stop
A start/end range is used to denote an arbitrary, potentially non-nested, time span.
The start of a range can occur on a different thread than the end of the range. A
range can contain a text message or specify additional information using the event
attributes structure. Use nvtxRangeStartA() to create a marker containing an ASCII
message. Use nvtxRangeStartEx() to create a range containing additional attributes
specified by the event attribute structure. The nvtxRangeStartW() function is not
supported in the CUDA implementation of NVTX and has no effect if called. For
the correlation of a start/end pair, a unique correlation ID is created that is returned
from nvtxRangeStartA() or nvtxRangeStartEx(), and is then passed into
nvtxRangeEnd().

Code Example

 // non-overlapping range
 nvtxRangeId_t id1 = nvtxRangeStartA("My range");
 nvtxRangeEnd(id1);

 nvtxEventAttributes_t eventAttrib = {0};
 eventAttrib.version = NVTX_VERSION;
 eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
 eventAttrib.colorType = NVTX_COLOR_ARGB;
 eventAttrib.color = COLOR_BLUE;
 eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
 eventAttrib.message.ascii = "my start/stop range";
 nvtxRangeId_t id2 = nvtxRangeStartEx(&eventAttrib);
 nvtxRangeEnd(id2);

 // overlapping ranges
 nvtxRangeId_t r1 = nvtxRangeStartA("My range 0");
 nvtxRangeId_t r2 = nvtxRangeStartA("My range 1");
 nvtxRangeEnd(r1);
 nvtxRangeEnd(r2);

6.2.3. NVTX Range Push/Pop
A push/pop range is used to denote nested time span. The start of a range must occur on
the same thread as the end of the range. A range can contain a text message or specify
additional information using the event attributes structure. Use nvtxRangePushA()
to create a marker containing an ASCII message. Use nvtxRangePushEx() to create
a range containing additional attributes specified by the event attribute structure. The
nvtxRangePushW() function is not supported in the CUDA implementation of NVTX
and has no effect if called. Each push function returns the zero-based depth of the range
being started. The nvtxRangePop() function is used to end the most recently pushed
range for the thread. nvtxRangePop() returns the zero-based depth of the range being
ended. If the pop does not have a matching push, a negative value is returned to indicate
an error.

NVIDIA Tools Extension

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 40

Code Example

 nvtxRangePushA("outer");
 nvtxRangePushA("inner");
 nvtxRangePop(); // end "inner" range
 nvtxRangePop(); // end "outer" range

 nvtxEventAttributes_t eventAttrib = {0};
 eventAttrib.version = NVTX_VERSION;
 eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
 eventAttrib.colorType = NVTX_COLOR_ARGB;
 eventAttrib.color = COLOR_GREEN;
 eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
 eventAttrib.message.ascii = "my push/pop range";
 nvtxRangePushEx(&eventAttrib);
 nvtxRangePop();

6.2.4. Event Attributes Structure
The events attributes structure, nvtxEventAttributes_t, is used to describe the
attributes of an event. The layout of the structure is defined by a specific version of
NVTX and can change between different versions of the Tools Extension library.

Attributes

Markers and ranges can use attributes to provide additional information for an event or
to guide the tool's visualization of the data. Each of the attributes is optional and if left
unspecified, the attributes fall back to a default value.
Message

The message field can be used to specify an optional string. The caller must set both
the messageType and message fields. The default value is NVTX_MESSAGE_UNKNOWN.
The CUDA implementation of NVTX only supports ASCII type messages.

Category
The category attribute is a user-controlled ID that can be used to group events. The
tool may use category IDs to improve filtering, or for grouping events. The default
value is 0.

Color
The color attribute is used to help visually identify events in the tool. The caller must
set both the colorType and color fields.

Payload
The payload attribute can be used to provide additional data for markers and ranges.
Range events can only specify values at the beginning of a range. The caller must
specify valid values for both the payloadType and payload fields.

Initialization

The caller should always perform the following three tasks when using attributes:

‣ Zero the structure
‣ Set the version field

NVIDIA Tools Extension

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 41

‣ Set the size field

Zeroing the structure sets all the event attributes types and values to the default
value. The version and size field are used by NVTX to handle multiple versions of the
attributes structure.

It is recommended that the caller use the following method to initialize the event
attributes structure.

 nvtxEventAttributes_t eventAttrib = {0};
 eventAttrib.version = NVTX_VERSION;
 eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
 eventAttrib.colorType = NVTX_COLOR_ARGB;
 eventAttrib.color = ::COLOR_YELLOW;
 eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
 eventAttrib.message.ascii = "My event";
 nvtxMarkEx(&eventAttrib);

6.3. NVTX Resource Naming
NVTX resource naming allows custom names to be associated with host OS threads
and CUDA resources such as devices, contexts, and streams. The names assigned using
NVTX are displayed by the Visual Profiler.

OS Thread

The nvtxNameOsThreadA() function is used to name a host OS thread. The
nvtxNameOsThreadW() function is not supported in the CUDA implementation of
NVTX and has no effect if called. The following example shows how the current host OS
thread can be named.

 // Windows
 nvtxNameOsThread(GetCurrentThreadId(), "MAIN_THREAD");

 // Linux/Mac
 nvtxNameOsThread(pthread_self(), "MAIN_THREAD");

CUDA Runtime Resources

The nvtxNameCudaDeviceA() and nvtxNameCudaStreamA() functions are used to
name CUDA device and stream objects, respectively. The nvtxNameCudaDeviceW()
and nvtxNameCudaStreamW() functions are not supported in the CUDA
implementation of NVTX and have no effect if called. The nvtxNameCudaEventA()
and nvtxNameCudaEventW() functions are also not supported. The following example
shows how a CUDA device and stream can be named.

 nvtxNameCudaDeviceA(0, "my cuda device 0");

 cudaStream_t cudastream;
 cudaStreamCreate(&cudastream);
 nvtxNameCudaStreamA(cudastream, "my cuda stream");

NVIDIA Tools Extension

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 42

CUDA Driver Resources

The nvtxNameCuDeviceA(), nvtxNameCuContextA() and nvtxNameCuStreamA()
functions are used to name CUDA driver device, context and stream objects,
respectively. The nvtxNameCuDeviceW(), nvtxNameCuContextW() and
nvtxNameCuStreamW() functions are not supported in the CUDA implementation
of NVTX and have no effect if called. The nvtxNameCuEventA() and
nvtxNameCuEventW() functions are also not supported. The following example shows
how a CUDA device, context and stream can be named.

 CUdevice device;
 cuDeviceGet(&device, 0);
 nvtxNameCuDeviceA(device, "my device 0");

 CUcontext context;
 cuCtxCreate(&context, 0, device);
 nvtxNameCuContextA(context, "my context");

 cuStream stream;
 cuStreamCreate(&stream, 0);
 nvtxNameCuStreamA(stream, "my stream");

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 43

Chapter 7.
MPI PROFILING

The nvprof profiler and the Command Line Profiler can be used to profile individual
MPI processes. The resulting output can be used directly, or can be imported into the
Visual Profiler.

7.1. MPI Profiling With nvprof
To use nvprof to collect the profiles of the individual MPI processes, you must tell
nvprof to send its output to unique files. In CUDA 5.0 and earlier versions, it was
recommended to use a script for this. However, you can now easily do it utilizing the %h
and %p features of the --output-profile argument to the nvprof command. Below is
example run using Open MPI.

$ mpirun -np 2 -host c0-0,c0-1 nvprof -o output.%h.%p a.out

Alternatively, one can make use of the new feature to turn on profiling on the nodes of
interest using the --profile-all-processes argument to nvprof. To do this, you
first log into the node you want to profile and start up nvprof there.

$ nvprof --profile-all-processes -o output.%h.%p

Then you can just run the MPI job as your normally would.

$ mpirun -np 2 -host c0-0,c0-1 a.out

Any processes that run on the node where the --profile-all-processes is running
will automatically get profiled. The profiling data will be written to the output files.

Details about what types of additional arguments to use with nvprof can be found in the
Multiprocess Profiling and Redirecting Output section. Additional information about
how to view the data with nvvp can be found in the Import nvprof Session section.

MPI Profiling

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 44

7.2. MPI Profiling With The Command-Line Profiler
The command-line profiler is enabled and controlled by environment variables and
a configuration file. To correctly profile MPI jobs, the profile output produced by the
command-line profiler must be directed to unique output files for each MPI process. The
command-line profiler uses the COMPUTE_PROFILE_LOG environment variable for
this purpose. You can use special substitute characters in the log name to ensure that
different devices and processes record their profile information to different files. The
'%d' is replaced by the device ID, and the '%p' is replaced by the process ID.

setenv COMPUTE_PROFILE_LOG cuda_profile.%d.%p

If you are running on multiple nodes, you will need to store the profile logs locally, so
that processes with the same ID running on different nodes don't clobber each others log
file.

setenv COMPUTE_PROFILE_LOG /tmp/cuda_profile.%d.%p

COMPUTE_PROFILE_LOG and the other command-line profiler environment variables
must get passed to the remote processes of the job. Most mpiruns have a way to do
this. Examples for Open MPI and MVAPICH2 are shown below using the simpleMPI
program from the CUDA Software Development Toolkit.

Open MPI

> setenv COMPUTE_PROFILE_LOG /tmp/cuda_profile.%d.%p
> setenv COMPUTE_PROFILE_CSV 1
> setenv COMPUTE_PROFILE_CONFIG /tmp/compute_profile.config
> setenv COMPUTE_PROFILE 1
> mpirun -x COMPUTE_PROFILE_CSV -x COMPUTE_PROFILE -x COMPUTE_PROFILE_CONFIG -x
 COMPUTE_PROFILE_LOG -np 6 -host c0-5,c0-6,c0-7 simpleMPI
Running on 6 nodes
Average of square roots is: 0.667282
PASSED

MVAPICH2

> mpirun_rsh -np 6 c0-5 c0-5 c0-6 c0-6 c0-7 c0-7 COMPUTE_PROFILE_CSV=1
 COMPUTE_PROFILE=1 COMPUTE_PROFILE_CONFIG=/tmp/compute_profile.config
 COMPUTE_PROFILE_LOG=cuda_profile.%d.%p simpleMPI
Running on 6 nodes
Average of square roots is: 0.667282
PASSED

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 45

Chapter 8.
METRICS REFERENCE

This section contains detailed descriptions of the metrics that can be collected by nvprof
and the Visual Profiler. A scope value of single-context indicates that the metric can only
be accurately collected when a single context (CUDA or graphic) is executing on the
GPU. A scope value of multi-context indicates that the metric can be accurately collected
when multiple contexts are executing on the GPU.

Devices with compute capability less than 2.0 implement the metrics shown in the
following table.

Table 3 Capability 1.x Metrics

Metric Name Description Scope

branch_efficiency Ratio of non-divergent branches to total

branches

Single-context

gld_efficiency Ratio of requested global memory load

transactions to actual global memory load

transactions

Single-context

gst_efficiency Ratio of requested global memory store

transactions to actual global memory store

transactions

Single-context

gld_requested_throughput Requested global memory load throughput Single-context

gst_requested_throughput Requested global memory store throughput Single-context

Devices with compute capability between 2.0, inclusive, and 3.0 implement the metrics
shown in the following table.

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 46

Table 4 Capability 2.x Metrics

Metric Name Description Scope

sm_efficiency The percentage of time at least one warp is

active on a multiprocessor averaged over all

multiprocessors on the GPU

Single-context

sm_efficiency_instance The percentage of time at least one warp is

active on a specific multiprocessor

Single-context

achieved_occupancy Ratio of the average active warps per active

cycle to the maximum number of warps

supported on a multiprocessor

Multi-context

issue_slot_utilization Percentage of issue slots that issued at least

one instruction, averaged across all cycles

Multi-context

inst_executed The number of instructions executed Multi-context

inst_issued The number of instructions issued Multi-context

issue_slots The number of issue slots used Multi-context

executed_ipc Instructions executed per cycle Multi-context

issued_ipc Instructions issued per cycle Multi-context

ipc_instance Instructions executed per cycle for a single

multiprocessor

Multi-context

inst_per_warp Average number of instructions executed by

each warp

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

cf_executed Number of executed control-flow instructions Multi-context

ldst_issued Number of issued load and store instructions Multi-context

ldst_executed Number of executed load and store

instructions

Multi-context

branch_efficiency Ratio of non-divergent branches to total

branches

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp

to the maximum number of threads per warp

supported on a multiprocessor

Multi-context

inst_replay_overhead Average number of replays for each

instruction executed

Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 47

Metric Name Description Scope

shared_replay_overhead Average number of replays due to shared

memory conflicts for each instruction

executed

Single-context

global_cache_replay_overhead Average number of replays due to global

memory cache misses for each instruction

executed

Single-context

local_replay_overhead Average number of replays due to local

memory accesses for each instruction

executed

Single-context

gld_efficiency Ratio of requested global memory load

throughput to required global memory load

throughput

Single-context

gst_efficiency Ratio of requested global memory store

throughput to required global memory store

throughput

Single-context

gld_transactions Number of global memory load transactions Single-context

gst_transactions Number of global memory store transactions Single-context

gld_transactions_per_request Average number of global memory load

transactions performed for each global

memory load

Single-context

gst_transactions_per_request Average number of global memory store

transactions performed for each global

memory store

Single-context

gld_throughput Global memory load throughput Single-context

gst_throughput Global memory store throughput Single-context

gld_requested_throughput Requested global memory load throughput Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

local_load_transactions Number of local memory load transactions Single-context

local_store_transactions Number of local memory store transactions Single-context

local_load_transactions_per_

request

Average number of local memory load

transactions performed for each local memory

load

Single-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 48

Metric Name Description Scope

local_store_transactions_per_

request

Average number of local memory store

transactions performed for each local memory

store

Single-context

local_load_throughput Local memory load throughput Single-context

local_store_throughput Local memory store throughput Single-context

shared_load_transactions Number of shared memory load transactions Single-context

shared_store_transactions Number of shared memory store transactions Single-context

shared_load_transactions_per_

request

Average number of shared memory load

transactions performed for each shared

memory load

Single-context

shared_store_transactions_per_

request

Average number of shared memory store

transactions performed for each shared

memory store

Single-context

shared_load_throughput Shared memory load throughput Single-context

shared_store_throughput Shared memory store throughput Single-context

shared_efficiency Ratio of requested shared memory throughput

to required shared memory throughput

Single-context

dram_read_transactions Device memory read transactions Single-context

dram_write_transactions Device memory write transactions Single-context

dram_read_throughput Device memory read throughput Single-context

dram_write_throughput Device memory write throughput Single-context

sysmem_read_transactions System memory read transactions Single-context

sysmem_write_transactions System memory write transactions Single-context

sysmem_read_throughput System memory read throughput Single-context

sysmem_write_throughput System memory write throughput Single-context

l1_cache_global_hit_rate Hit rate in L1 cache for global loads Single-context

l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores Single-context

tex_cache_hit_rate Texture cache hit rate Single-context

tex_cache_transactions Texture cache read transactions Single-context

tex_cache_throughput Texture cache throughput Single-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 49

Metric Name Description Scope

l2_read_transactions Memory read transactions seen at L2 cache

for all read requests

Single-context

l2_write_transactions Memory write transactions seen at L2 cache

for all write requests

Single-context

l2_read_throughput Memory read throughput seen at L2 cache for

all read requests

Single-context

l2_write_throughput Memory write throughput seen at L2 cache for

all write requests

Single-context

l2_l1_read_hit_rate Hit rate at L2 cache for all read requests from

L1 cache

Sinlge-context

l2_l1_read_throughput Memory read throughput seen at L2 cache for

read requests from L1 cache

Single-context

l2_texture_read_hit_rate Hit rate at L2 cache for all read requests from

texture cache

Single-context

l2_texure_read_throughput Memory read throughput seen at L2 cache for

read requests from the texture cache

Sinlge-context

local_memory_overhead Ratio of local memory traffic to total memory

traffic between the L1 and L2 caches

Single-context

l1_shared_utilization The utilization level of the L1/shared memory

relative to peak utilization

Single-context

l2_utilization The utilization level of the L2 cache relative

to the peak utilization

Single-context

tex_utilization The utilization level of the texture cache

relative to the peak utilization

Single-context

dram_utilization The utilization level of the device memory

relative to the peak utilization

Single-context

sysmem_utilization The utilization level of the system memory

relative to the peak utilization

Single-context

ldst_fu_utilization The utilization level of the multiprocessor

function units that execute load and store

instructions

Multi-context

int_fu_utilization The utilization level of the multiprocessor

function units that execute integer

instructions

Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 50

Metric Name Description Scope

cf_fu_utilization The utilization level of the multiprocessor

function units that execute control-flow

instructions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor

function units that execute texture

instructions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor

function units that execute floating point

instructions

Multi-context

fpspec_fu_utilization The utilization level of the multiprocessor

function units that execute special floating

point instructions

Multi-context

misc_fu_utilization The utilization level of the multiprocessor

function units that execute miscellaneous

instructions

Multi-context

flops_sp Single-precision floating point operations

executed

Multi-context

flops_sp_add Single-precision floating point add operations

executed

Multi-context

flops_sp_mul Single-precision floating point multiply

operations executed

Multi-context

flops_sp_fma Single-precision floating point multiply-

accumulate operations executed

Multi-context

flops_dp Double-precision floating point operations

executed

Multi-context

flops_dp_add Double-precision floating point add operations

executed

Multi-context

flops_dp_mul Double-precision floating point multiply

operations executed

Multi-context

flops_dp_fma Double-precision floating point multiply-

accumulate operations executed

Multi-context

flops_sp_special Single-precision floating point special

operations executed

Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 51

Metric Name Description Scope

stall_inst_fetch Percentage of stalls occurring because the

next assembly instruction has not yet been

fetched

Multi-context

stall_exec_dependency Percentage of stalls occurring because an

input required by the instruction is not yet

available

Multi-context

stall_data_request Percentage of stalls occurring because a

memory operation cannot be performed

due to the required resources not being

available or fully utilized, or because too

many requests of a given type are outstanding

Multi-context

stall_sync Percentage of stalls occurring because the

warp is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the

texture sub-system is fully utilized or has too

many outstanding requests

Multi-context

stall_other Percentage of stalls occurring due to

miscellaneous reasons

Multi-context

Devices with compute capability greater than or equal to 3.0 implement the metrics
shown in the following table.

Table 5 Capability 3.x Metrics

Metric Name Description Scope

sm_efficiency The percentage of time at least one warp is

active on a multiprocessor averaged over all

multiprocessors on the GPU

Single-context

sm_efficiency_instance The percentage of time at least one warp is

active on a specific multiprocessor

Single-context

achieved_occupancy Ratio of the average active warps per active

cycle to the maximum number of warps

supported on a multiprocessor

Multi-context

issue_slot_utilization Percentage of issue slots that issued at least

one instruction, averaged across all cycles

Multi-context

inst_executed The number of instructions executed Multi-context

inst_issued The number of instructions issued Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 52

Metric Name Description Scope

issue_slots The number of issue slots used Multi-context

executed_ipc Instructions executed per cycle Multi-context

issued_ipc Instructions issued per cycle Multi-context

ipc_instance Instructions executed per cycle for a single

multiprocessor

Multi-context

inst_per_warp Average number of instructions executed by

each warp

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

cf_executed Number of executed control-flow instructions Multi-context

ldst_issued Number of issued load and store instructions Multi-context

ldst_executed Number of executed load and store

instructions

Multi-context

branch_efficiency Ratio of non-divergent branches to total

branches

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp

to the maximum number of threads per warp

supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp

executing non-predicated instructions to

the maximum number of threads per warp

supported on a multiprocessor

Multi-context

inst_replay_overhead Average number of replays for each

instruction executed

Multi-context

shared_replay_overhead Average number of replays due to shared

memory conflicts for each instruction

executed

Single-context

global_cache_replay_overhead Average number of replays due to global

memory cache misses for each instruction

executed

Single-context

local_replay_overhead Average number of replays due to local

memory accesses for each instruction

executed

Single-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 53

Metric Name Description Scope

gld_efficiency Ratio of requested global memory load

throughput to required global memory load

throughput

Single-context

gst_efficiency Ratio of requested global memory store

throughput to required global memory store

throughput

Single-context

gld_transactions Number of global memory load transactions Single-context

gst_transactions Number of global memory store transactions Single-context

gld_transactions_per_request Average number of global memory load

transactions performed for each global

memory load

Single-context

gst_transactions_per_request Average number of global memory store

transactions performed for each global

memory store

Single-context

gld_throughput Global memory load throughput Single-context

gst_throughput Global memory store throughput Single-context

gld_requested_throughput Requested global memory load throughput Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

local_load_transactions Number of local memory load transactions Single-context

local_store_transactions Number of local memory store transactions Single-context

local_load_transactions_per_

request

Average number of local memory load

transactions performed for each local memory

load

Single-context

local_store_transactions_per_

request

Average number of local memory store

transactions performed for each local memory

store

Single-context

local_load_throughput Local memory load throughput Single-context

local_store_throughput Local memory store throughput Single-context

shared_load_transactions Number of shared memory load transactions Single-context

shared_store_transactions Number of shared memory store transactions Single-context

shared_load_transactions_per_

request

Average number of shared memory load

transactions performed for each shared

memory load

Single-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 54

Metric Name Description Scope

shared_store_transactions_per_

request

Average number of shared memory store

transactions performed for each shared

memory store

Single-context

shared_load_throughput Shared memory load throughput Single-context

shared_store_throughput Shared memory store throughput Single-context

shared_efficiency Ratio of requested shared memory throughput

to required shared memory throughput

Single-context

dram_read_transactions Device memory read transactions Single-context

dram_write_transactions Device memory write transactions Single-context

dram_read_throughput Device memory read throughput Single-context

dram_write_throughput Device memory write throughput Single-context

sysmem_read_transactions System memory read transactions Single-context

sysmem_write_transactions System memory write transactions Single-context

sysmem_read_throughput System memory read throughput Single-context

sysmem_write_throughput System memory write throughput Single-context

l1_cache_global_hit_rate Hit rate in L1 cache for global loads Single-context

l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores Single-context

tex_cache_hit_rate Texture cache hit rate Single-context

tex_cache_transactions Texture cache read transactions Single-context

tex_cache_throughput Texture cache throughput Single-context

l2_read_transactions Memory read transactions seen at L2 cache

for all read requests

Single-context

l2_write_transactions Memory write transactions seen at L2 cache

for all write requests

Single-context

l2_read_throughput Memory read throughput seen at L2 cache for

all read requests

Single-context

l2_write_throughput Memory write throughput seen at L2 cache for

all write requests

Single-context

l2_l1_read_hit_rate Hit rate at L2 cache for all read requests from

L1 cache

Sinlge-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 55

Metric Name Description Scope

l2_l1_read_throughput Memory read throughput seen at L2 cache for

read requests from L1 cache

Single-context

l2_texture_read_hit_rate Hit rate at L2 cache for all read requests from

texture cache

Single-context

l2_texure_read_throughput Memory read throughput seen at L2 cache for

read requests from the texture cache

Sinlge-context

local_memory_overhead Ratio of local memory traffic to total memory

traffic between the L1 and L2 caches

Single-context

l1_shared_utilization The utilization level of the L1/shared memory

relative to peak utilization

Single-context

l2_utilization The utilization level of the L2 cache relative

to the peak utilization

Single-context

tex_utilization The utilization level of the texture cache

relative to the peak utilization

Single-context

dram_utilization The utilization level of the device memory

relative to the peak utilization

Single-context

sysmem_utilization The utilization level of the system memory

relative to the peak utilization

Single-context

ldst_fu_utilization The utilization level of the multiprocessor

function units that execute load and store

instructions

Multi-context

int_fu_utilization The utilization level of the multiprocessor

function units that execute integer

instructions

Multi-context

cf_fu_utilization The utilization level of the multiprocessor

function units that execute control-flow

instructions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor

function units that execute texture

instructions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor

function units that execute floating point

instructions

Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 56

Metric Name Description Scope

fpspec_fu_utilization The utilization level of the multiprocessor

function units that execute special floating

point instructions

Multi-context

misc_fu_utilization The utilization level of the multiprocessor

function units that execute miscellaneous

instructions

Multi-context

flops_sp Single-precision floating point operations

executed

Multi-context

flops_sp_add Single-precision floating point add operations

executed

Multi-context

flops_sp_mul Single-precision floating point multiply

operations executed

Multi-context

flops_sp_fma Single-precision floating point multiply-

accumulate operations executed

Multi-context

flops_dp Double-precision floating point operations

executed

Multi-context

flops_dp_add Double-precision floating point add operations

executed

Multi-context

flops_dp_mul Double-precision floating point multiply

operations executed

Multi-context

flops_dp_fma Double-precision floating point multiply-

accumulate operations executed

Multi-context

flops_sp_special Single-precision floating point special

operations executed

Multi-context

stall_inst_fetch Percentage of stalls occurring because the

next assembly instruction has not yet been

fetched

Multi-context

stall_exec_dependency Percentage of stalls occurring because an

input required by the instruction is not yet

available

Multi-context

stall_data_request Percentage of stalls occurring because a

memory operation cannot be performed

due to the required resources not being

available or fully utilized, or because too

many requests of a given type are outstanding

Multi-context

Metrics Reference

www.nvidia.com
Profiler User's Guide DU-05982-001_v5.5 | 57

Metric Name Description Scope

stall_sync Percentage of stalls occurring because the

warp is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the

texture sub-system is fully utilized or has too

many outstanding requests

Multi-context

stall_other Percentage of stalls occurring due to

miscellaneous reasons

Multi-context

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Tables
	Profiling Overview
	What's New
	Terminology

	Preparing An Application For Profiling
	1.1. Focused Profiling
	1.2. Marking Regions of CPU Activity
	1.3. Naming CPU and CUDA Resources
	1.4. Flush Profile Data
	1.5. Dynamic Parallelism

	Visual Profiler
	2.1. Getting Started
	2.1.1. Modify Your Application For Profiling
	2.1.2. Creating a Session
	2.1.3. Analyzing Your Application
	2.1.4. Exploring the Timeline
	2.1.5. Looking at the Details

	2.2. Sessions
	2.2.1. Executable Session
	2.2.2. Import Session
	2.2.2.1. Import nvprof Session
	2.2.2.2. Import Command-Line Profiler Session

	2.3. Application Requirements
	2.4. Profiling Limitations
	2.5. Visual Profiler Views
	2.5.1. Timeline View
	2.5.1.1. Timeline Controls
	2.5.1.2. Navigating the Timeline

	2.5.2. Analysis View
	2.5.3. Details View
	2.5.4. Properties View
	2.5.5. Console View
	2.5.6. Settings View

	2.6. Customizing the Visual Profiler
	2.6.1. Resizing a View
	2.6.2. Reordering a View
	2.6.3. Moving a View
	2.6.4. Undocking a View
	2.6.5. Opening and Closing a View

	nvprof
	3.1. Profiling Modes
	3.1.1. Summary Mode
	3.1.2. GPU-Trace and API-Trace Modes
	3.1.3. Event/metric Summary Mode
	3.1.4. Event/metric Trace Mode

	3.2. Profiling Controls
	3.2.1. Timeout
	3.2.2. Concurrent Kernels
	3.2.3. Profiling Scope
	3.2.4. Multiprocess Profiling
	3.2.5. System Profiling

	3.3. Output
	3.3.1. Adjust Units
	3.3.2. CSV
	3.3.3. Export/Import
	3.3.4. Demangling
	3.3.5. Redirecting Output

	3.4. Limitations

	Command Line Profiler
	4.1. Command Line Profiler Control
	4.2. Command Line Profiler Default Output
	4.3. Command Line Profiler Configuration
	4.3.1. Command Line Profiler Options
	4.3.2. Command Line Profiler Counters

	4.4. Command Line Profiler Output

	Remote Profiling
	5.1. Collect Data On Remote System
	5.2. View And Analyze Data
	5.3. Limitations

	NVIDIA Tools Extension
	6.1. NVTX API Overview
	6.2. NVTX API Events
	6.2.1. NVTX Markers
	6.2.2. NVTX Range Start/Stop
	6.2.3. NVTX Range Push/Pop
	6.2.4. Event Attributes Structure

	6.3. NVTX Resource Naming

	MPI Profiling
	7.1. MPI Profiling With nvprof
	7.2. MPI Profiling With The Command-Line Profiler

	Metrics Reference

