
INLINE PTX ASSEMBLY IN CUDA

SP-04456-001_v5.5 | May 2013

Application Note

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | ii

TABLE OF CONTENTS

Chapter 1. Using Inline PTX Assembly in CUDA..1
1.1. Assembler (ASM) Statements..1

1.1.1. Parameters..1
1.1.2. Constraints..3

1.2. Pitfalls.. 3
1.2.1. Namespace Conflicts..3
1.2.2. Memory Space Conflicts.. 3
1.2.3. Incorrect Optimization... 4
1.2.4. Incorrect PTX...4

1.3. Error Checking...4

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | 1

Chapter 1.
USING INLINE PTX ASSEMBLY IN CUDA

The NVIDIA® CUDA™ programming environment provides a parallel thread execution
(PTX) instruction set architecture (ISA) for using the GPU as a data-parallel computing
device. For more information on the PTX ISA, refer to the latest version of the PTX ISA
reference document.

This application note describes how to inline PTX assembly language statements into
CUDA code.

1.1. Assembler (ASM) Statements
Assembler statements, asm(), provide a way to insert arbitrary PTX code into your
CUDA program. A simple example is:
asm("membar.gl;");

This inserts a PTX membar.gl into your generated PTX code at the point of the asm()
statement.

1.1.1. Parameters
An asm() statement becomes more complicated, and more useful, when we pass values
in and out of the asm. The basic syntax is as follows:
asm("template-string" : "constraint"(output) : "constraint"(input));

where you can have multiple input or output operands separated by commas. The
template string contains PTX instructions with references to the operands. Multiple PTX
instructions can be given by separating them with semicolons.

A simple example is as follows:
asm("add.s32 %0, %1, %2;" : "=r"(i) : "r"(j), "r"(k));

Each %n in the template string is an index into the following list of operands, in text
order. So %0 refers to the first operand, %1 to the second operand, and so on. Since the
output operands are always listed ahead of the input operands, they are assigned the
smallest indices. This example is conceptually equivalent to the following:
add.s32 i, j, k;

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Using Inline PTX Assembly in CUDA

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | 2

Note that the numbered references in the string can be in arbitrary order. The following
is equivalent to the above example:
asm("add.s32 %0, %2, %1;" : "=r"(i) : "r"(k), "r"(j));

You can also repeat a reference, e.g.:
asm("add.s32 %0, %1, %1;" : "=r"(i) : "r"(k));

is conceptually
add.s32 i, k, k;

If there is no input operand, you can drop the final colon, e.g.:
asm("mov.s32 %0, 2;" : "=r"(i));

If there is no output operand, the colon separators are adjacent, e.g.:
asm("mov.s32 r1, %0;" :: "r"(i));

If you want the % in a ptx instruction, then you should escape it with double %%, e.g.:
asm("mov.u32 %0, %%clock;" : "=r"(x));

The above was simplified to explain the ordering of the string % references. In reality,
the operand values are passed via whatever mechanism the constraint specifies. The full
list of constraints will be explained later, but the "r" constraint refers to a 32bit integer
register. So the earlier example asm() statement:
asm("add.s32 %0, %1, %2;" : "=r"(i) : "r"(j), "r"(k));

produces the following code sequence in the output generated by the compiler:
ld.s32 r1, [j];
ld.s32 r2, [k];
add.s32 r3, r1, r2;
st.s32 [i], r3;

This is where the distinction between input and output operands becomes important.
The input operands are loaded into registers before the asm() statement, then the
result register is stored to the output operand. The "=" modifier in "=r" specifies that the
register is written to. There is also available a "+" modifier that specifies the register is
both read and written, e.g.:
asm("add.s32 %0, %0, %1;" : "+r"(i) : "r" (j));

Multiple instructions can be combined into a single asm() statement; basically, anything
legal can be put into the asm string. Multiple instructions can be split across multiple
lines by making use of C/C++'s implicit string concatenation. Both C++ style line end
comments "//" and classical C-style comments "/**/" can be interspersed with these
strings. To generate readable output in the PTX intermediate file it is best practice to
terminate each instruction string except the last one with "\n\t".

For example, a cube routine could be written as:
__device__ int cube (int x)
{
 int y;
 asm(".reg .u32 t1;\n\t" // temp reg t1
 " mul.lo.u32 t1, %1, %1;\n\t" // t1 = x * x
 " mul.lo.u32 %0, t1, %1;" // y = t1 * x
 : "=r"(y) : "r" (x));
 return y;
}

Using Inline PTX Assembly in CUDA

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | 3

1.1.2. Constraints
There is a separate constraint letter for each PTX register type:
"h" = .u16 reg
"r" = .u32 reg
"l" = .u64 reg
"f" = .f32 reg
"d" = .f64 reg

For example:
asm("cvt.f32.s64 %0, %1;" : "=f"(x) : "l"(y));

will generate:
ld.s64 rd1, [y];
cvt.f32.s64 f1, rd1;
st.f32 [x], f1;

Note that there are some constraints supported in earlier versions of the compiler like
"m", "s", and "n" that are not guaranteed to work across all versions and thus should not
be used.

1.2. Pitfalls
Although asm() statements are very flexible and powerful, you may encounter some
pitfalls—these are listed in this section.

1.2.1. Namespace Conflicts
If the cube function (described before) is called and inlined multiple times in the code, it
generates an error about duplicate definitions of the temp register t1. To avoid this error
you need to:

‣ not inline the cube function, or,
‣ nest the t1 use inside {} so that it has a separate scope for each invocation, e.g.:

__device__ int cube (int x)
{
 int y;
 asm("{\n\t" // use braces for local scope
 " reg .u32 t1;\n\t" // temp reg t1,
 " mul.lo.u32 t1, %1, %1;\n\t" // t1 = x * x
 " mul.lo.u32 %0, t1, %1;\n\t" // y = t1 * x
 "}"
 : "=r"(y) : "r" (x));
 return y;
}

Note that you can similarly use braces for local labels inside the asm() statement.

1.2.2. Memory Space Conflicts
Since asm() statements have no way of knowing what memory space a register is in,
the user must make sure that the appropriate PTX instruction is used. For sm_20 and
greater, any pointer argument to an asm() statement is passed as a generic address.

Using Inline PTX Assembly in CUDA

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | 4

1.2.3. Incorrect Optimization
The compiler assumes that an asm() statement has no side effects except to change the
output operands. To ensure that the asm is not deleted or moved, you should use the
volatile keyword, e.g.:
asm volatile ("mov.u32 %0, %%clock;" : "=r"(x));

Normally any memory that is written to will be specified as an out operand, but if
there is a hidden side effect on user memory (for example, indirect access of a memory
location via an operand), or if you want to stop any memory optimizations around the
asm() statement, you can add a "memory" clobbers specification after a 3rd colon, e.g.:
asm volatile ("mov.u32 %0, %%clock;" : "=r"(x) :: "memory");
asm ("st.u32 [%0], %1;" : "=r"(p), "=r"(x) :: "memory");

1.2.4. Incorrect PTX
The compiler front end does not parse the asm() statement template string and does
not know what it means or even whether it is valid PTX input. So if there are any errors
in the string it will not show up until ptxas. For example, if you pass a value with an
“r” constraint but use it in an add.f64 you will get a parse error from ptxas. Similarly,
operand modifiers are not supported. For example, in
asm("mov.u32 %0, %n1;" : "=r"(n) : "r"(1));

the ‘n’ modifier in “%n1” is not supported and will be passed to ptxas, where it can
cause undefined behavior. Refer to the document nvcc.pdf for further compiler related
details.

1.3. Error Checking
The following are some of the error checks that the compiler will do on inlinePTX asm:

‣ Multiple constraint letters for a single asm operand are not allowed, e.g.:
asm("add.s32 %0, %1, %2;" : "=r"(i) : "rf"(j), "r"(k));

error: an asm operand may specify only one constraint letter in a __device__/
__global__ function

‣ Only scalar variables are allowed as asm operands. Specifically aggregates like
‘struct’ type variables are not allowed, e.g.
int4 i4;
asm("add.s32 %0, %1, %2;" : "=r"(i4) : "r"(j), "r"(k));

error: an asm operand must have scalar type
‣ The type and size implied by a PTX asm constraint must match that of the associated

operand. Example where size does not match:

For ‘char’ type variable “ci”,
asm("add.s32 %0,%1,%2;":"=r"(ci):"r"(j),"r"(k));

error: asm operand type size(1) does not match type/size implied by constraint 'r'

Using Inline PTX Assembly in CUDA

www.nvidia.com
Inline PTX Assembly in CUDA SP-04456-001_v5.5 | 5

In order to use ‘char’ type variables “ci”, “cj”, and “ck” in the above asm statement,
code segment similar to the following may be used,
int temp = ci;
asm("add.s32 %0,%1,%2;":"=r"(temp):"r"((int)cj),"r"((int)ck));
ci = temp;

Another example where type does not match:

For ‘float’ type variable “fi”,
asm("add.s32 %0,%1,%2;":"=r"(fi):"r"(j),"r"(k));

error: asm operand type size(4) does not match type/size implied by constraint 'r'

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2012-2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Using Inline PTX Assembly in CUDA
	1.1. Assembler (ASM) Statements
	1.1.1. Parameters
	1.1.2. Constraints

	1.2. Pitfalls
	1.2.1. Namespace Conflicts
	1.2.2. Memory Space Conflicts
	1.2.3. Incorrect Optimization
	1.2.4. Incorrect PTX

	1.3. Error Checking

