OSDN Git Service

126b98fbf9ba2d6e53221440b5bba3bd62c10b28
[uclinux-h8/linux.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <trace/events/kvm.h>
34 #include <kvm/arm_pmu.h>
35 #include <kvm/arm_psci.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
39
40 #include <linux/uaccess.h>
41 #include <asm/ptrace.h>
42 #include <asm/mman.h>
43 #include <asm/tlbflush.h>
44 #include <asm/cacheflush.h>
45 #include <asm/cpufeature.h>
46 #include <asm/virt.h>
47 #include <asm/kvm_arm.h>
48 #include <asm/kvm_asm.h>
49 #include <asm/kvm_mmu.h>
50 #include <asm/kvm_emulate.h>
51 #include <asm/kvm_coproc.h>
52 #include <asm/sections.h>
53
54 #ifdef REQUIRES_VIRT
55 __asm__(".arch_extension        virt");
56 #endif
57
58 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
59 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
60
61 /* Per-CPU variable containing the currently running vcpu. */
62 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
63
64 /* The VMID used in the VTTBR */
65 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
66 static u32 kvm_next_vmid;
67 static unsigned int kvm_vmid_bits __read_mostly;
68 static DEFINE_RWLOCK(kvm_vmid_lock);
69
70 static bool vgic_present;
71
72 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
73
74 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
75 {
76         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 }
78
79 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
80
81 /**
82  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
83  * Must be called from non-preemptible context
84  */
85 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
86 {
87         return __this_cpu_read(kvm_arm_running_vcpu);
88 }
89
90 /**
91  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
92  */
93 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 {
95         return &kvm_arm_running_vcpu;
96 }
97
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 {
100         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105         return 0;
106 }
107
108 void kvm_arch_check_processor_compat(void *rtn)
109 {
110         *(int *)rtn = 0;
111 }
112
113
114 /**
115  * kvm_arch_init_vm - initializes a VM data structure
116  * @kvm:        pointer to the KVM struct
117  */
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
119 {
120         int ret, cpu;
121
122         if (type)
123                 return -EINVAL;
124
125         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
126         if (!kvm->arch.last_vcpu_ran)
127                 return -ENOMEM;
128
129         for_each_possible_cpu(cpu)
130                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
131
132         ret = kvm_alloc_stage2_pgd(kvm);
133         if (ret)
134                 goto out_fail_alloc;
135
136         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
137         if (ret)
138                 goto out_free_stage2_pgd;
139
140         kvm_vgic_early_init(kvm);
141
142         /* Mark the initial VMID generation invalid */
143         kvm->arch.vmid_gen = 0;
144
145         /* The maximum number of VCPUs is limited by the host's GIC model */
146         kvm->arch.max_vcpus = vgic_present ?
147                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
148
149         return ret;
150 out_free_stage2_pgd:
151         kvm_free_stage2_pgd(kvm);
152 out_fail_alloc:
153         free_percpu(kvm->arch.last_vcpu_ran);
154         kvm->arch.last_vcpu_ran = NULL;
155         return ret;
156 }
157
158 bool kvm_arch_has_vcpu_debugfs(void)
159 {
160         return false;
161 }
162
163 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
164 {
165         return 0;
166 }
167
168 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
169 {
170         return VM_FAULT_SIGBUS;
171 }
172
173
174 /**
175  * kvm_arch_destroy_vm - destroy the VM data structure
176  * @kvm:        pointer to the KVM struct
177  */
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         int i;
181
182         kvm_vgic_destroy(kvm);
183
184         free_percpu(kvm->arch.last_vcpu_ran);
185         kvm->arch.last_vcpu_ran = NULL;
186
187         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
188                 if (kvm->vcpus[i]) {
189                         kvm_arch_vcpu_free(kvm->vcpus[i]);
190                         kvm->vcpus[i] = NULL;
191                 }
192         }
193         atomic_set(&kvm->online_vcpus, 0);
194 }
195
196 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
197 {
198         int r;
199         switch (ext) {
200         case KVM_CAP_IRQCHIP:
201                 r = vgic_present;
202                 break;
203         case KVM_CAP_IOEVENTFD:
204         case KVM_CAP_DEVICE_CTRL:
205         case KVM_CAP_USER_MEMORY:
206         case KVM_CAP_SYNC_MMU:
207         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
208         case KVM_CAP_ONE_REG:
209         case KVM_CAP_ARM_PSCI:
210         case KVM_CAP_ARM_PSCI_0_2:
211         case KVM_CAP_READONLY_MEM:
212         case KVM_CAP_MP_STATE:
213         case KVM_CAP_IMMEDIATE_EXIT:
214                 r = 1;
215                 break;
216         case KVM_CAP_ARM_SET_DEVICE_ADDR:
217                 r = 1;
218                 break;
219         case KVM_CAP_NR_VCPUS:
220                 r = num_online_cpus();
221                 break;
222         case KVM_CAP_MAX_VCPUS:
223                 r = KVM_MAX_VCPUS;
224                 break;
225         case KVM_CAP_NR_MEMSLOTS:
226                 r = KVM_USER_MEM_SLOTS;
227                 break;
228         case KVM_CAP_MSI_DEVID:
229                 if (!kvm)
230                         r = -EINVAL;
231                 else
232                         r = kvm->arch.vgic.msis_require_devid;
233                 break;
234         case KVM_CAP_ARM_USER_IRQ:
235                 /*
236                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
237                  * (bump this number if adding more devices)
238                  */
239                 r = 1;
240                 break;
241         default:
242                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
243                 break;
244         }
245         return r;
246 }
247
248 long kvm_arch_dev_ioctl(struct file *filp,
249                         unsigned int ioctl, unsigned long arg)
250 {
251         return -EINVAL;
252 }
253
254
255 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
256 {
257         int err;
258         struct kvm_vcpu *vcpu;
259
260         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
261                 err = -EBUSY;
262                 goto out;
263         }
264
265         if (id >= kvm->arch.max_vcpus) {
266                 err = -EINVAL;
267                 goto out;
268         }
269
270         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
271         if (!vcpu) {
272                 err = -ENOMEM;
273                 goto out;
274         }
275
276         err = kvm_vcpu_init(vcpu, kvm, id);
277         if (err)
278                 goto free_vcpu;
279
280         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
281         if (err)
282                 goto vcpu_uninit;
283
284         return vcpu;
285 vcpu_uninit:
286         kvm_vcpu_uninit(vcpu);
287 free_vcpu:
288         kmem_cache_free(kvm_vcpu_cache, vcpu);
289 out:
290         return ERR_PTR(err);
291 }
292
293 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
294 {
295 }
296
297 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
298 {
299         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
300                 static_branch_dec(&userspace_irqchip_in_use);
301
302         kvm_mmu_free_memory_caches(vcpu);
303         kvm_timer_vcpu_terminate(vcpu);
304         kvm_pmu_vcpu_destroy(vcpu);
305         kvm_vcpu_uninit(vcpu);
306         kmem_cache_free(kvm_vcpu_cache, vcpu);
307 }
308
309 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
310 {
311         kvm_arch_vcpu_free(vcpu);
312 }
313
314 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
315 {
316         return kvm_timer_is_pending(vcpu);
317 }
318
319 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_schedule(vcpu);
322         kvm_vgic_v4_enable_doorbell(vcpu);
323 }
324
325 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
326 {
327         kvm_timer_unschedule(vcpu);
328         kvm_vgic_v4_disable_doorbell(vcpu);
329 }
330
331 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
332 {
333         /* Force users to call KVM_ARM_VCPU_INIT */
334         vcpu->arch.target = -1;
335         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
336
337         /* Set up the timer */
338         kvm_timer_vcpu_init(vcpu);
339
340         kvm_arm_reset_debug_ptr(vcpu);
341
342         return kvm_vgic_vcpu_init(vcpu);
343 }
344
345 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
346 {
347         int *last_ran;
348
349         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
350
351         /*
352          * We might get preempted before the vCPU actually runs, but
353          * over-invalidation doesn't affect correctness.
354          */
355         if (*last_ran != vcpu->vcpu_id) {
356                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
357                 *last_ran = vcpu->vcpu_id;
358         }
359
360         vcpu->cpu = cpu;
361         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
362
363         kvm_arm_set_running_vcpu(vcpu);
364         kvm_vgic_load(vcpu);
365         kvm_timer_vcpu_load(vcpu);
366         kvm_vcpu_load_sysregs(vcpu);
367         kvm_arch_vcpu_load_fp(vcpu);
368 }
369
370 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
371 {
372         kvm_arch_vcpu_put_fp(vcpu);
373         kvm_vcpu_put_sysregs(vcpu);
374         kvm_timer_vcpu_put(vcpu);
375         kvm_vgic_put(vcpu);
376
377         vcpu->cpu = -1;
378
379         kvm_arm_set_running_vcpu(NULL);
380 }
381
382 static void vcpu_power_off(struct kvm_vcpu *vcpu)
383 {
384         vcpu->arch.power_off = true;
385         kvm_make_request(KVM_REQ_SLEEP, vcpu);
386         kvm_vcpu_kick(vcpu);
387 }
388
389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         if (vcpu->arch.power_off)
393                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
394         else
395                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
396
397         return 0;
398 }
399
400 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
401                                     struct kvm_mp_state *mp_state)
402 {
403         int ret = 0;
404
405         switch (mp_state->mp_state) {
406         case KVM_MP_STATE_RUNNABLE:
407                 vcpu->arch.power_off = false;
408                 break;
409         case KVM_MP_STATE_STOPPED:
410                 vcpu_power_off(vcpu);
411                 break;
412         default:
413                 ret = -EINVAL;
414         }
415
416         return ret;
417 }
418
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:          The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
429         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430                 && !v->arch.power_off && !v->arch.pause);
431 }
432
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435         return vcpu_mode_priv(vcpu);
436 }
437
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442
443 void force_vm_exit(const cpumask_t *mask)
444 {
445         preempt_disable();
446         smp_call_function_many(mask, exit_vm_noop, NULL, true);
447         preempt_enable();
448 }
449
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @kvm: The VM's VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports only 256 values with the value zero reserved for the
457  * host, so we check if an assigned value belongs to a previous generation,
458  * which which requires us to assign a new value. If we're the first to use a
459  * VMID for the new generation, we must flush necessary caches and TLBs on all
460  * CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm *kvm)
463 {
464         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
465 }
466
467 /**
468  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469  * @kvm The guest that we are about to run
470  *
471  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
473  * caches and TLBs.
474  */
475 static void update_vttbr(struct kvm *kvm)
476 {
477         phys_addr_t pgd_phys;
478         u64 vmid;
479         bool new_gen;
480
481         read_lock(&kvm_vmid_lock);
482         new_gen = need_new_vmid_gen(kvm);
483         read_unlock(&kvm_vmid_lock);
484
485         if (!new_gen)
486                 return;
487
488         write_lock(&kvm_vmid_lock);
489
490         /*
491          * We need to re-check the vmid_gen here to ensure that if another vcpu
492          * already allocated a valid vmid for this vm, then this vcpu should
493          * use the same vmid.
494          */
495         if (!need_new_vmid_gen(kvm)) {
496                 write_unlock(&kvm_vmid_lock);
497                 return;
498         }
499
500         /* First user of a new VMID generation? */
501         if (unlikely(kvm_next_vmid == 0)) {
502                 atomic64_inc(&kvm_vmid_gen);
503                 kvm_next_vmid = 1;
504
505                 /*
506                  * On SMP we know no other CPUs can use this CPU's or each
507                  * other's VMID after force_vm_exit returns since the
508                  * kvm_vmid_lock blocks them from reentry to the guest.
509                  */
510                 force_vm_exit(cpu_all_mask);
511                 /*
512                  * Now broadcast TLB + ICACHE invalidation over the inner
513                  * shareable domain to make sure all data structures are
514                  * clean.
515                  */
516                 kvm_call_hyp(__kvm_flush_vm_context);
517         }
518
519         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
520         kvm->arch.vmid = kvm_next_vmid;
521         kvm_next_vmid++;
522         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
523
524         /* update vttbr to be used with the new vmid */
525         pgd_phys = virt_to_phys(kvm->arch.pgd);
526         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
527         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
528         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
529
530         write_unlock(&kvm_vmid_lock);
531 }
532
533 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
534 {
535         struct kvm *kvm = vcpu->kvm;
536         int ret = 0;
537
538         if (likely(vcpu->arch.has_run_once))
539                 return 0;
540
541         vcpu->arch.has_run_once = true;
542
543         if (likely(irqchip_in_kernel(kvm))) {
544                 /*
545                  * Map the VGIC hardware resources before running a vcpu the
546                  * first time on this VM.
547                  */
548                 if (unlikely(!vgic_ready(kvm))) {
549                         ret = kvm_vgic_map_resources(kvm);
550                         if (ret)
551                                 return ret;
552                 }
553         } else {
554                 /*
555                  * Tell the rest of the code that there are userspace irqchip
556                  * VMs in the wild.
557                  */
558                 static_branch_inc(&userspace_irqchip_in_use);
559         }
560
561         ret = kvm_timer_enable(vcpu);
562         if (ret)
563                 return ret;
564
565         ret = kvm_arm_pmu_v3_enable(vcpu);
566
567         return ret;
568 }
569
570 bool kvm_arch_intc_initialized(struct kvm *kvm)
571 {
572         return vgic_initialized(kvm);
573 }
574
575 void kvm_arm_halt_guest(struct kvm *kvm)
576 {
577         int i;
578         struct kvm_vcpu *vcpu;
579
580         kvm_for_each_vcpu(i, vcpu, kvm)
581                 vcpu->arch.pause = true;
582         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
583 }
584
585 void kvm_arm_resume_guest(struct kvm *kvm)
586 {
587         int i;
588         struct kvm_vcpu *vcpu;
589
590         kvm_for_each_vcpu(i, vcpu, kvm) {
591                 vcpu->arch.pause = false;
592                 swake_up(kvm_arch_vcpu_wq(vcpu));
593         }
594 }
595
596 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
597 {
598         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
599
600         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
601                                        (!vcpu->arch.pause)));
602
603         if (vcpu->arch.power_off || vcpu->arch.pause) {
604                 /* Awaken to handle a signal, request we sleep again later. */
605                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
606         }
607 }
608
609 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
610 {
611         return vcpu->arch.target >= 0;
612 }
613
614 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
615 {
616         if (kvm_request_pending(vcpu)) {
617                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
618                         vcpu_req_sleep(vcpu);
619
620                 /*
621                  * Clear IRQ_PENDING requests that were made to guarantee
622                  * that a VCPU sees new virtual interrupts.
623                  */
624                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
625         }
626 }
627
628 /**
629  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
630  * @vcpu:       The VCPU pointer
631  * @run:        The kvm_run structure pointer used for userspace state exchange
632  *
633  * This function is called through the VCPU_RUN ioctl called from user space. It
634  * will execute VM code in a loop until the time slice for the process is used
635  * or some emulation is needed from user space in which case the function will
636  * return with return value 0 and with the kvm_run structure filled in with the
637  * required data for the requested emulation.
638  */
639 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
640 {
641         int ret;
642
643         if (unlikely(!kvm_vcpu_initialized(vcpu)))
644                 return -ENOEXEC;
645
646         ret = kvm_vcpu_first_run_init(vcpu);
647         if (ret)
648                 return ret;
649
650         if (run->exit_reason == KVM_EXIT_MMIO) {
651                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
652                 if (ret)
653                         return ret;
654                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
655                         return 0;
656         }
657
658         if (run->immediate_exit)
659                 return -EINTR;
660
661         vcpu_load(vcpu);
662
663         kvm_sigset_activate(vcpu);
664
665         ret = 1;
666         run->exit_reason = KVM_EXIT_UNKNOWN;
667         while (ret > 0) {
668                 /*
669                  * Check conditions before entering the guest
670                  */
671                 cond_resched();
672
673                 update_vttbr(vcpu->kvm);
674
675                 check_vcpu_requests(vcpu);
676
677                 /*
678                  * Preparing the interrupts to be injected also
679                  * involves poking the GIC, which must be done in a
680                  * non-preemptible context.
681                  */
682                 preempt_disable();
683
684                 kvm_pmu_flush_hwstate(vcpu);
685
686                 local_irq_disable();
687
688                 kvm_vgic_flush_hwstate(vcpu);
689
690                 /*
691                  * Exit if we have a signal pending so that we can deliver the
692                  * signal to user space.
693                  */
694                 if (signal_pending(current)) {
695                         ret = -EINTR;
696                         run->exit_reason = KVM_EXIT_INTR;
697                 }
698
699                 /*
700                  * If we're using a userspace irqchip, then check if we need
701                  * to tell a userspace irqchip about timer or PMU level
702                  * changes and if so, exit to userspace (the actual level
703                  * state gets updated in kvm_timer_update_run and
704                  * kvm_pmu_update_run below).
705                  */
706                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
707                         if (kvm_timer_should_notify_user(vcpu) ||
708                             kvm_pmu_should_notify_user(vcpu)) {
709                                 ret = -EINTR;
710                                 run->exit_reason = KVM_EXIT_INTR;
711                         }
712                 }
713
714                 /*
715                  * Ensure we set mode to IN_GUEST_MODE after we disable
716                  * interrupts and before the final VCPU requests check.
717                  * See the comment in kvm_vcpu_exiting_guest_mode() and
718                  * Documentation/virtual/kvm/vcpu-requests.rst
719                  */
720                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
721
722                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
723                     kvm_request_pending(vcpu)) {
724                         vcpu->mode = OUTSIDE_GUEST_MODE;
725                         isb(); /* Ensure work in x_flush_hwstate is committed */
726                         kvm_pmu_sync_hwstate(vcpu);
727                         if (static_branch_unlikely(&userspace_irqchip_in_use))
728                                 kvm_timer_sync_hwstate(vcpu);
729                         kvm_vgic_sync_hwstate(vcpu);
730                         local_irq_enable();
731                         preempt_enable();
732                         continue;
733                 }
734
735                 kvm_arm_setup_debug(vcpu);
736
737                 /**************************************************************
738                  * Enter the guest
739                  */
740                 trace_kvm_entry(*vcpu_pc(vcpu));
741                 guest_enter_irqoff();
742
743                 if (has_vhe()) {
744                         kvm_arm_vhe_guest_enter();
745                         ret = kvm_vcpu_run_vhe(vcpu);
746                         kvm_arm_vhe_guest_exit();
747                 } else {
748                         ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
749                 }
750
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->stat.exits++;
753                 /*
754                  * Back from guest
755                  *************************************************************/
756
757                 kvm_arm_clear_debug(vcpu);
758
759                 /*
760                  * We must sync the PMU state before the vgic state so
761                  * that the vgic can properly sample the updated state of the
762                  * interrupt line.
763                  */
764                 kvm_pmu_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the vgic state before syncing the timer state because
768                  * the timer code needs to know if the virtual timer
769                  * interrupts are active.
770                  */
771                 kvm_vgic_sync_hwstate(vcpu);
772
773                 /*
774                  * Sync the timer hardware state before enabling interrupts as
775                  * we don't want vtimer interrupts to race with syncing the
776                  * timer virtual interrupt state.
777                  */
778                 if (static_branch_unlikely(&userspace_irqchip_in_use))
779                         kvm_timer_sync_hwstate(vcpu);
780
781                 kvm_arch_vcpu_ctxsync_fp(vcpu);
782
783                 /*
784                  * We may have taken a host interrupt in HYP mode (ie
785                  * while executing the guest). This interrupt is still
786                  * pending, as we haven't serviced it yet!
787                  *
788                  * We're now back in SVC mode, with interrupts
789                  * disabled.  Enabling the interrupts now will have
790                  * the effect of taking the interrupt again, in SVC
791                  * mode this time.
792                  */
793                 local_irq_enable();
794
795                 /*
796                  * We do local_irq_enable() before calling guest_exit() so
797                  * that if a timer interrupt hits while running the guest we
798                  * account that tick as being spent in the guest.  We enable
799                  * preemption after calling guest_exit() so that if we get
800                  * preempted we make sure ticks after that is not counted as
801                  * guest time.
802                  */
803                 guest_exit();
804                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
805
806                 /* Exit types that need handling before we can be preempted */
807                 handle_exit_early(vcpu, run, ret);
808
809                 preempt_enable();
810
811                 ret = handle_exit(vcpu, run, ret);
812         }
813
814         /* Tell userspace about in-kernel device output levels */
815         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
816                 kvm_timer_update_run(vcpu);
817                 kvm_pmu_update_run(vcpu);
818         }
819
820         kvm_sigset_deactivate(vcpu);
821
822         vcpu_put(vcpu);
823         return ret;
824 }
825
826 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
827 {
828         int bit_index;
829         bool set;
830         unsigned long *hcr;
831
832         if (number == KVM_ARM_IRQ_CPU_IRQ)
833                 bit_index = __ffs(HCR_VI);
834         else /* KVM_ARM_IRQ_CPU_FIQ */
835                 bit_index = __ffs(HCR_VF);
836
837         hcr = vcpu_hcr(vcpu);
838         if (level)
839                 set = test_and_set_bit(bit_index, hcr);
840         else
841                 set = test_and_clear_bit(bit_index, hcr);
842
843         /*
844          * If we didn't change anything, no need to wake up or kick other CPUs
845          */
846         if (set == level)
847                 return 0;
848
849         /*
850          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
851          * trigger a world-switch round on the running physical CPU to set the
852          * virtual IRQ/FIQ fields in the HCR appropriately.
853          */
854         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
855         kvm_vcpu_kick(vcpu);
856
857         return 0;
858 }
859
860 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
861                           bool line_status)
862 {
863         u32 irq = irq_level->irq;
864         unsigned int irq_type, vcpu_idx, irq_num;
865         int nrcpus = atomic_read(&kvm->online_vcpus);
866         struct kvm_vcpu *vcpu = NULL;
867         bool level = irq_level->level;
868
869         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
870         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
871         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
872
873         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
874
875         switch (irq_type) {
876         case KVM_ARM_IRQ_TYPE_CPU:
877                 if (irqchip_in_kernel(kvm))
878                         return -ENXIO;
879
880                 if (vcpu_idx >= nrcpus)
881                         return -EINVAL;
882
883                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
884                 if (!vcpu)
885                         return -EINVAL;
886
887                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
888                         return -EINVAL;
889
890                 return vcpu_interrupt_line(vcpu, irq_num, level);
891         case KVM_ARM_IRQ_TYPE_PPI:
892                 if (!irqchip_in_kernel(kvm))
893                         return -ENXIO;
894
895                 if (vcpu_idx >= nrcpus)
896                         return -EINVAL;
897
898                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899                 if (!vcpu)
900                         return -EINVAL;
901
902                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
903                         return -EINVAL;
904
905                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
906         case KVM_ARM_IRQ_TYPE_SPI:
907                 if (!irqchip_in_kernel(kvm))
908                         return -ENXIO;
909
910                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
911                         return -EINVAL;
912
913                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
914         }
915
916         return -EINVAL;
917 }
918
919 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
920                                const struct kvm_vcpu_init *init)
921 {
922         unsigned int i;
923         int phys_target = kvm_target_cpu();
924
925         if (init->target != phys_target)
926                 return -EINVAL;
927
928         /*
929          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
930          * use the same target.
931          */
932         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
933                 return -EINVAL;
934
935         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
936         for (i = 0; i < sizeof(init->features) * 8; i++) {
937                 bool set = (init->features[i / 32] & (1 << (i % 32)));
938
939                 if (set && i >= KVM_VCPU_MAX_FEATURES)
940                         return -ENOENT;
941
942                 /*
943                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
944                  * use the same feature set.
945                  */
946                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
947                     test_bit(i, vcpu->arch.features) != set)
948                         return -EINVAL;
949
950                 if (set)
951                         set_bit(i, vcpu->arch.features);
952         }
953
954         vcpu->arch.target = phys_target;
955
956         /* Now we know what it is, we can reset it. */
957         return kvm_reset_vcpu(vcpu);
958 }
959
960
961 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
962                                          struct kvm_vcpu_init *init)
963 {
964         int ret;
965
966         ret = kvm_vcpu_set_target(vcpu, init);
967         if (ret)
968                 return ret;
969
970         /*
971          * Ensure a rebooted VM will fault in RAM pages and detect if the
972          * guest MMU is turned off and flush the caches as needed.
973          */
974         if (vcpu->arch.has_run_once)
975                 stage2_unmap_vm(vcpu->kvm);
976
977         vcpu_reset_hcr(vcpu);
978
979         /*
980          * Handle the "start in power-off" case.
981          */
982         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
983                 vcpu_power_off(vcpu);
984         else
985                 vcpu->arch.power_off = false;
986
987         return 0;
988 }
989
990 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
991                                  struct kvm_device_attr *attr)
992 {
993         int ret = -ENXIO;
994
995         switch (attr->group) {
996         default:
997                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
998                 break;
999         }
1000
1001         return ret;
1002 }
1003
1004 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1005                                  struct kvm_device_attr *attr)
1006 {
1007         int ret = -ENXIO;
1008
1009         switch (attr->group) {
1010         default:
1011                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1012                 break;
1013         }
1014
1015         return ret;
1016 }
1017
1018 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1019                                  struct kvm_device_attr *attr)
1020 {
1021         int ret = -ENXIO;
1022
1023         switch (attr->group) {
1024         default:
1025                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1026                 break;
1027         }
1028
1029         return ret;
1030 }
1031
1032 long kvm_arch_vcpu_ioctl(struct file *filp,
1033                          unsigned int ioctl, unsigned long arg)
1034 {
1035         struct kvm_vcpu *vcpu = filp->private_data;
1036         void __user *argp = (void __user *)arg;
1037         struct kvm_device_attr attr;
1038         long r;
1039
1040         switch (ioctl) {
1041         case KVM_ARM_VCPU_INIT: {
1042                 struct kvm_vcpu_init init;
1043
1044                 r = -EFAULT;
1045                 if (copy_from_user(&init, argp, sizeof(init)))
1046                         break;
1047
1048                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1049                 break;
1050         }
1051         case KVM_SET_ONE_REG:
1052         case KVM_GET_ONE_REG: {
1053                 struct kvm_one_reg reg;
1054
1055                 r = -ENOEXEC;
1056                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1057                         break;
1058
1059                 r = -EFAULT;
1060                 if (copy_from_user(&reg, argp, sizeof(reg)))
1061                         break;
1062
1063                 if (ioctl == KVM_SET_ONE_REG)
1064                         r = kvm_arm_set_reg(vcpu, &reg);
1065                 else
1066                         r = kvm_arm_get_reg(vcpu, &reg);
1067                 break;
1068         }
1069         case KVM_GET_REG_LIST: {
1070                 struct kvm_reg_list __user *user_list = argp;
1071                 struct kvm_reg_list reg_list;
1072                 unsigned n;
1073
1074                 r = -ENOEXEC;
1075                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1076                         break;
1077
1078                 r = -EFAULT;
1079                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1080                         break;
1081                 n = reg_list.n;
1082                 reg_list.n = kvm_arm_num_regs(vcpu);
1083                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1084                         break;
1085                 r = -E2BIG;
1086                 if (n < reg_list.n)
1087                         break;
1088                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1089                 break;
1090         }
1091         case KVM_SET_DEVICE_ATTR: {
1092                 r = -EFAULT;
1093                 if (copy_from_user(&attr, argp, sizeof(attr)))
1094                         break;
1095                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1096                 break;
1097         }
1098         case KVM_GET_DEVICE_ATTR: {
1099                 r = -EFAULT;
1100                 if (copy_from_user(&attr, argp, sizeof(attr)))
1101                         break;
1102                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1103                 break;
1104         }
1105         case KVM_HAS_DEVICE_ATTR: {
1106                 r = -EFAULT;
1107                 if (copy_from_user(&attr, argp, sizeof(attr)))
1108                         break;
1109                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1110                 break;
1111         }
1112         default:
1113                 r = -EINVAL;
1114         }
1115
1116         return r;
1117 }
1118
1119 /**
1120  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1121  * @kvm: kvm instance
1122  * @log: slot id and address to which we copy the log
1123  *
1124  * Steps 1-4 below provide general overview of dirty page logging. See
1125  * kvm_get_dirty_log_protect() function description for additional details.
1126  *
1127  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1128  * always flush the TLB (step 4) even if previous step failed  and the dirty
1129  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1130  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1131  * writes will be marked dirty for next log read.
1132  *
1133  *   1. Take a snapshot of the bit and clear it if needed.
1134  *   2. Write protect the corresponding page.
1135  *   3. Copy the snapshot to the userspace.
1136  *   4. Flush TLB's if needed.
1137  */
1138 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1139 {
1140         bool is_dirty = false;
1141         int r;
1142
1143         mutex_lock(&kvm->slots_lock);
1144
1145         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1146
1147         if (is_dirty)
1148                 kvm_flush_remote_tlbs(kvm);
1149
1150         mutex_unlock(&kvm->slots_lock);
1151         return r;
1152 }
1153
1154 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1155                                         struct kvm_arm_device_addr *dev_addr)
1156 {
1157         unsigned long dev_id, type;
1158
1159         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1160                 KVM_ARM_DEVICE_ID_SHIFT;
1161         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1162                 KVM_ARM_DEVICE_TYPE_SHIFT;
1163
1164         switch (dev_id) {
1165         case KVM_ARM_DEVICE_VGIC_V2:
1166                 if (!vgic_present)
1167                         return -ENXIO;
1168                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1169         default:
1170                 return -ENODEV;
1171         }
1172 }
1173
1174 long kvm_arch_vm_ioctl(struct file *filp,
1175                        unsigned int ioctl, unsigned long arg)
1176 {
1177         struct kvm *kvm = filp->private_data;
1178         void __user *argp = (void __user *)arg;
1179
1180         switch (ioctl) {
1181         case KVM_CREATE_IRQCHIP: {
1182                 int ret;
1183                 if (!vgic_present)
1184                         return -ENXIO;
1185                 mutex_lock(&kvm->lock);
1186                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1187                 mutex_unlock(&kvm->lock);
1188                 return ret;
1189         }
1190         case KVM_ARM_SET_DEVICE_ADDR: {
1191                 struct kvm_arm_device_addr dev_addr;
1192
1193                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1194                         return -EFAULT;
1195                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1196         }
1197         case KVM_ARM_PREFERRED_TARGET: {
1198                 int err;
1199                 struct kvm_vcpu_init init;
1200
1201                 err = kvm_vcpu_preferred_target(&init);
1202                 if (err)
1203                         return err;
1204
1205                 if (copy_to_user(argp, &init, sizeof(init)))
1206                         return -EFAULT;
1207
1208                 return 0;
1209         }
1210         default:
1211                 return -EINVAL;
1212         }
1213 }
1214
1215 static void cpu_init_hyp_mode(void *dummy)
1216 {
1217         phys_addr_t pgd_ptr;
1218         unsigned long hyp_stack_ptr;
1219         unsigned long stack_page;
1220         unsigned long vector_ptr;
1221
1222         /* Switch from the HYP stub to our own HYP init vector */
1223         __hyp_set_vectors(kvm_get_idmap_vector());
1224
1225         pgd_ptr = kvm_mmu_get_httbr();
1226         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1227         hyp_stack_ptr = stack_page + PAGE_SIZE;
1228         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1229
1230         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1231         __cpu_init_stage2();
1232
1233         kvm_arm_init_debug();
1234 }
1235
1236 static void cpu_hyp_reset(void)
1237 {
1238         if (!is_kernel_in_hyp_mode())
1239                 __hyp_reset_vectors();
1240 }
1241
1242 static void cpu_hyp_reinit(void)
1243 {
1244         cpu_hyp_reset();
1245
1246         if (is_kernel_in_hyp_mode()) {
1247                 /*
1248                  * __cpu_init_stage2() is safe to call even if the PM
1249                  * event was cancelled before the CPU was reset.
1250                  */
1251                 __cpu_init_stage2();
1252                 kvm_timer_init_vhe();
1253         } else {
1254                 cpu_init_hyp_mode(NULL);
1255         }
1256
1257         if (vgic_present)
1258                 kvm_vgic_init_cpu_hardware();
1259 }
1260
1261 static void _kvm_arch_hardware_enable(void *discard)
1262 {
1263         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1264                 cpu_hyp_reinit();
1265                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1266         }
1267 }
1268
1269 int kvm_arch_hardware_enable(void)
1270 {
1271         _kvm_arch_hardware_enable(NULL);
1272         return 0;
1273 }
1274
1275 static void _kvm_arch_hardware_disable(void *discard)
1276 {
1277         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1278                 cpu_hyp_reset();
1279                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1280         }
1281 }
1282
1283 void kvm_arch_hardware_disable(void)
1284 {
1285         _kvm_arch_hardware_disable(NULL);
1286 }
1287
1288 #ifdef CONFIG_CPU_PM
1289 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1290                                     unsigned long cmd,
1291                                     void *v)
1292 {
1293         /*
1294          * kvm_arm_hardware_enabled is left with its old value over
1295          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1296          * re-enable hyp.
1297          */
1298         switch (cmd) {
1299         case CPU_PM_ENTER:
1300                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1301                         /*
1302                          * don't update kvm_arm_hardware_enabled here
1303                          * so that the hardware will be re-enabled
1304                          * when we resume. See below.
1305                          */
1306                         cpu_hyp_reset();
1307
1308                 return NOTIFY_OK;
1309         case CPU_PM_ENTER_FAILED:
1310         case CPU_PM_EXIT:
1311                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1312                         /* The hardware was enabled before suspend. */
1313                         cpu_hyp_reinit();
1314
1315                 return NOTIFY_OK;
1316
1317         default:
1318                 return NOTIFY_DONE;
1319         }
1320 }
1321
1322 static struct notifier_block hyp_init_cpu_pm_nb = {
1323         .notifier_call = hyp_init_cpu_pm_notifier,
1324 };
1325
1326 static void __init hyp_cpu_pm_init(void)
1327 {
1328         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1329 }
1330 static void __init hyp_cpu_pm_exit(void)
1331 {
1332         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1333 }
1334 #else
1335 static inline void hyp_cpu_pm_init(void)
1336 {
1337 }
1338 static inline void hyp_cpu_pm_exit(void)
1339 {
1340 }
1341 #endif
1342
1343 static int init_common_resources(void)
1344 {
1345         /* set size of VMID supported by CPU */
1346         kvm_vmid_bits = kvm_get_vmid_bits();
1347         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1348
1349         return 0;
1350 }
1351
1352 static int init_subsystems(void)
1353 {
1354         int err = 0;
1355
1356         /*
1357          * Enable hardware so that subsystem initialisation can access EL2.
1358          */
1359         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1360
1361         /*
1362          * Register CPU lower-power notifier
1363          */
1364         hyp_cpu_pm_init();
1365
1366         /*
1367          * Init HYP view of VGIC
1368          */
1369         err = kvm_vgic_hyp_init();
1370         switch (err) {
1371         case 0:
1372                 vgic_present = true;
1373                 break;
1374         case -ENODEV:
1375         case -ENXIO:
1376                 vgic_present = false;
1377                 err = 0;
1378                 break;
1379         default:
1380                 goto out;
1381         }
1382
1383         /*
1384          * Init HYP architected timer support
1385          */
1386         err = kvm_timer_hyp_init(vgic_present);
1387         if (err)
1388                 goto out;
1389
1390         kvm_perf_init();
1391         kvm_coproc_table_init();
1392
1393 out:
1394         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1395
1396         return err;
1397 }
1398
1399 static void teardown_hyp_mode(void)
1400 {
1401         int cpu;
1402
1403         free_hyp_pgds();
1404         for_each_possible_cpu(cpu)
1405                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1406         hyp_cpu_pm_exit();
1407 }
1408
1409 /**
1410  * Inits Hyp-mode on all online CPUs
1411  */
1412 static int init_hyp_mode(void)
1413 {
1414         int cpu;
1415         int err = 0;
1416
1417         /*
1418          * Allocate Hyp PGD and setup Hyp identity mapping
1419          */
1420         err = kvm_mmu_init();
1421         if (err)
1422                 goto out_err;
1423
1424         /*
1425          * Allocate stack pages for Hypervisor-mode
1426          */
1427         for_each_possible_cpu(cpu) {
1428                 unsigned long stack_page;
1429
1430                 stack_page = __get_free_page(GFP_KERNEL);
1431                 if (!stack_page) {
1432                         err = -ENOMEM;
1433                         goto out_err;
1434                 }
1435
1436                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1437         }
1438
1439         /*
1440          * Map the Hyp-code called directly from the host
1441          */
1442         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1443                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1444         if (err) {
1445                 kvm_err("Cannot map world-switch code\n");
1446                 goto out_err;
1447         }
1448
1449         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1450                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1451         if (err) {
1452                 kvm_err("Cannot map rodata section\n");
1453                 goto out_err;
1454         }
1455
1456         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1457                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1458         if (err) {
1459                 kvm_err("Cannot map bss section\n");
1460                 goto out_err;
1461         }
1462
1463         err = kvm_map_vectors();
1464         if (err) {
1465                 kvm_err("Cannot map vectors\n");
1466                 goto out_err;
1467         }
1468
1469         /*
1470          * Map the Hyp stack pages
1471          */
1472         for_each_possible_cpu(cpu) {
1473                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1474                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1475                                           PAGE_HYP);
1476
1477                 if (err) {
1478                         kvm_err("Cannot map hyp stack\n");
1479                         goto out_err;
1480                 }
1481         }
1482
1483         for_each_possible_cpu(cpu) {
1484                 kvm_cpu_context_t *cpu_ctxt;
1485
1486                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1487                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1488
1489                 if (err) {
1490                         kvm_err("Cannot map host CPU state: %d\n", err);
1491                         goto out_err;
1492                 }
1493         }
1494
1495         return 0;
1496
1497 out_err:
1498         teardown_hyp_mode();
1499         kvm_err("error initializing Hyp mode: %d\n", err);
1500         return err;
1501 }
1502
1503 static void check_kvm_target_cpu(void *ret)
1504 {
1505         *(int *)ret = kvm_target_cpu();
1506 }
1507
1508 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1509 {
1510         struct kvm_vcpu *vcpu;
1511         int i;
1512
1513         mpidr &= MPIDR_HWID_BITMASK;
1514         kvm_for_each_vcpu(i, vcpu, kvm) {
1515                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1516                         return vcpu;
1517         }
1518         return NULL;
1519 }
1520
1521 bool kvm_arch_has_irq_bypass(void)
1522 {
1523         return true;
1524 }
1525
1526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1527                                       struct irq_bypass_producer *prod)
1528 {
1529         struct kvm_kernel_irqfd *irqfd =
1530                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1531
1532         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1533                                           &irqfd->irq_entry);
1534 }
1535 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1536                                       struct irq_bypass_producer *prod)
1537 {
1538         struct kvm_kernel_irqfd *irqfd =
1539                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1540
1541         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1542                                      &irqfd->irq_entry);
1543 }
1544
1545 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1546 {
1547         struct kvm_kernel_irqfd *irqfd =
1548                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1549
1550         kvm_arm_halt_guest(irqfd->kvm);
1551 }
1552
1553 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1554 {
1555         struct kvm_kernel_irqfd *irqfd =
1556                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1557
1558         kvm_arm_resume_guest(irqfd->kvm);
1559 }
1560
1561 /**
1562  * Initialize Hyp-mode and memory mappings on all CPUs.
1563  */
1564 int kvm_arch_init(void *opaque)
1565 {
1566         int err;
1567         int ret, cpu;
1568         bool in_hyp_mode;
1569
1570         if (!is_hyp_mode_available()) {
1571                 kvm_info("HYP mode not available\n");
1572                 return -ENODEV;
1573         }
1574
1575         if (!kvm_arch_check_sve_has_vhe()) {
1576                 kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
1577                 return -ENODEV;
1578         }
1579
1580         for_each_online_cpu(cpu) {
1581                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1582                 if (ret < 0) {
1583                         kvm_err("Error, CPU %d not supported!\n", cpu);
1584                         return -ENODEV;
1585                 }
1586         }
1587
1588         err = init_common_resources();
1589         if (err)
1590                 return err;
1591
1592         in_hyp_mode = is_kernel_in_hyp_mode();
1593
1594         if (!in_hyp_mode) {
1595                 err = init_hyp_mode();
1596                 if (err)
1597                         goto out_err;
1598         }
1599
1600         err = init_subsystems();
1601         if (err)
1602                 goto out_hyp;
1603
1604         if (in_hyp_mode)
1605                 kvm_info("VHE mode initialized successfully\n");
1606         else
1607                 kvm_info("Hyp mode initialized successfully\n");
1608
1609         return 0;
1610
1611 out_hyp:
1612         if (!in_hyp_mode)
1613                 teardown_hyp_mode();
1614 out_err:
1615         return err;
1616 }
1617
1618 /* NOP: Compiling as a module not supported */
1619 void kvm_arch_exit(void)
1620 {
1621         kvm_perf_teardown();
1622 }
1623
1624 static int arm_init(void)
1625 {
1626         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1627         return rc;
1628 }
1629
1630 module_init(arm_init);