OSDN Git Service

clk: at91: fix masterck name
[uclinux-h8/linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26
27 /* extract @num bytes at @offset bytes offset in data */
28 unsigned long extract_bytes(u64 data, unsigned int offset,
29                             unsigned int num)
30 {
31         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36                      unsigned long val)
37 {
38         int lower = (offset & 4) * 8;
39         int upper = lower + 8 * len - 1;
40
41         reg &= ~GENMASK_ULL(upper, lower);
42         val &= GENMASK_ULL(len * 8 - 1, 0);
43
44         return reg | ((u64)val << lower);
45 }
46
47 bool vgic_has_its(struct kvm *kvm)
48 {
49         struct vgic_dist *dist = &kvm->arch.vgic;
50
51         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52                 return false;
53
54         return dist->has_its;
55 }
56
57 bool vgic_supports_direct_msis(struct kvm *kvm)
58 {
59         return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
60 }
61
62 /*
63  * The Revision field in the IIDR have the following meanings:
64  *
65  * Revision 2: Interrupt groups are guest-configurable and signaled using
66  *             their configured groups.
67  */
68
69 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
70                                             gpa_t addr, unsigned int len)
71 {
72         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
73         u32 value = 0;
74
75         switch (addr & 0x0c) {
76         case GICD_CTLR:
77                 if (vgic->enabled)
78                         value |= GICD_CTLR_ENABLE_SS_G1;
79                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
80                 break;
81         case GICD_TYPER:
82                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
83                 value = (value >> 5) - 1;
84                 if (vgic_has_its(vcpu->kvm)) {
85                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
86                         value |= GICD_TYPER_LPIS;
87                 } else {
88                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
89                 }
90                 break;
91         case GICD_IIDR:
92                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
93                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
94                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
95                 break;
96         default:
97                 return 0;
98         }
99
100         return value;
101 }
102
103 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
104                                     gpa_t addr, unsigned int len,
105                                     unsigned long val)
106 {
107         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
108         bool was_enabled = dist->enabled;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR:
112                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
113
114                 if (!was_enabled && dist->enabled)
115                         vgic_kick_vcpus(vcpu->kvm);
116                 break;
117         case GICD_TYPER:
118         case GICD_IIDR:
119                 return;
120         }
121 }
122
123 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
124                                            gpa_t addr, unsigned int len,
125                                            unsigned long val)
126 {
127         switch (addr & 0x0c) {
128         case GICD_IIDR:
129                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
130                         return -EINVAL;
131         }
132
133         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
134         return 0;
135 }
136
137 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
138                                             gpa_t addr, unsigned int len)
139 {
140         int intid = VGIC_ADDR_TO_INTID(addr, 64);
141         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
142         unsigned long ret = 0;
143
144         if (!irq)
145                 return 0;
146
147         /* The upper word is RAZ for us. */
148         if (!(addr & 4))
149                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
150
151         vgic_put_irq(vcpu->kvm, irq);
152         return ret;
153 }
154
155 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
156                                     gpa_t addr, unsigned int len,
157                                     unsigned long val)
158 {
159         int intid = VGIC_ADDR_TO_INTID(addr, 64);
160         struct vgic_irq *irq;
161         unsigned long flags;
162
163         /* The upper word is WI for us since we don't implement Aff3. */
164         if (addr & 4)
165                 return;
166
167         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
168
169         if (!irq)
170                 return;
171
172         spin_lock_irqsave(&irq->irq_lock, flags);
173
174         /* We only care about and preserve Aff0, Aff1 and Aff2. */
175         irq->mpidr = val & GENMASK(23, 0);
176         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
177
178         spin_unlock_irqrestore(&irq->irq_lock, flags);
179         vgic_put_irq(vcpu->kvm, irq);
180 }
181
182 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
183                                              gpa_t addr, unsigned int len)
184 {
185         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
186
187         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
188 }
189
190
191 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
192                                      gpa_t addr, unsigned int len,
193                                      unsigned long val)
194 {
195         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
196         bool was_enabled = vgic_cpu->lpis_enabled;
197
198         if (!vgic_has_its(vcpu->kvm))
199                 return;
200
201         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
202
203         if (!was_enabled && vgic_cpu->lpis_enabled)
204                 vgic_enable_lpis(vcpu);
205 }
206
207 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
208                                               gpa_t addr, unsigned int len)
209 {
210         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
211         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
212         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
213         int target_vcpu_id = vcpu->vcpu_id;
214         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
215                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
216         u64 value;
217
218         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
219         value |= ((target_vcpu_id & 0xffff) << 8);
220
221         if (addr == last_rdist_typer)
222                 value |= GICR_TYPER_LAST;
223         if (vgic_has_its(vcpu->kvm))
224                 value |= GICR_TYPER_PLPIS;
225
226         return extract_bytes(value, addr & 7, len);
227 }
228
229 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
230                                              gpa_t addr, unsigned int len)
231 {
232         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
233 }
234
235 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
236                                               gpa_t addr, unsigned int len)
237 {
238         switch (addr & 0xffff) {
239         case GICD_PIDR2:
240                 /* report a GICv3 compliant implementation */
241                 return 0x3b;
242         }
243
244         return 0;
245 }
246
247 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
248                                                   gpa_t addr, unsigned int len)
249 {
250         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
251         u32 value = 0;
252         int i;
253
254         /*
255          * pending state of interrupt is latched in pending_latch variable.
256          * Userspace will save and restore pending state and line_level
257          * separately.
258          * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
259          * for handling of ISPENDR and ICPENDR.
260          */
261         for (i = 0; i < len * 8; i++) {
262                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
263
264                 if (irq->pending_latch)
265                         value |= (1U << i);
266
267                 vgic_put_irq(vcpu->kvm, irq);
268         }
269
270         return value;
271 }
272
273 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
274                                          gpa_t addr, unsigned int len,
275                                          unsigned long val)
276 {
277         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
278         int i;
279         unsigned long flags;
280
281         for (i = 0; i < len * 8; i++) {
282                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
283
284                 spin_lock_irqsave(&irq->irq_lock, flags);
285                 if (test_bit(i, &val)) {
286                         /*
287                          * pending_latch is set irrespective of irq type
288                          * (level or edge) to avoid dependency that VM should
289                          * restore irq config before pending info.
290                          */
291                         irq->pending_latch = true;
292                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
293                 } else {
294                         irq->pending_latch = false;
295                         spin_unlock_irqrestore(&irq->irq_lock, flags);
296                 }
297
298                 vgic_put_irq(vcpu->kvm, irq);
299         }
300
301         return 0;
302 }
303
304 /* We want to avoid outer shareable. */
305 u64 vgic_sanitise_shareability(u64 field)
306 {
307         switch (field) {
308         case GIC_BASER_OuterShareable:
309                 return GIC_BASER_InnerShareable;
310         default:
311                 return field;
312         }
313 }
314
315 /* Avoid any inner non-cacheable mapping. */
316 u64 vgic_sanitise_inner_cacheability(u64 field)
317 {
318         switch (field) {
319         case GIC_BASER_CACHE_nCnB:
320         case GIC_BASER_CACHE_nC:
321                 return GIC_BASER_CACHE_RaWb;
322         default:
323                 return field;
324         }
325 }
326
327 /* Non-cacheable or same-as-inner are OK. */
328 u64 vgic_sanitise_outer_cacheability(u64 field)
329 {
330         switch (field) {
331         case GIC_BASER_CACHE_SameAsInner:
332         case GIC_BASER_CACHE_nC:
333                 return field;
334         default:
335                 return GIC_BASER_CACHE_nC;
336         }
337 }
338
339 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
340                         u64 (*sanitise_fn)(u64))
341 {
342         u64 field = (reg & field_mask) >> field_shift;
343
344         field = sanitise_fn(field) << field_shift;
345         return (reg & ~field_mask) | field;
346 }
347
348 #define PROPBASER_RES0_MASK                                             \
349         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
350 #define PENDBASER_RES0_MASK                                             \
351         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
352          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
353
354 static u64 vgic_sanitise_pendbaser(u64 reg)
355 {
356         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
357                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
358                                   vgic_sanitise_shareability);
359         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
360                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
361                                   vgic_sanitise_inner_cacheability);
362         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
363                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
364                                   vgic_sanitise_outer_cacheability);
365
366         reg &= ~PENDBASER_RES0_MASK;
367
368         return reg;
369 }
370
371 static u64 vgic_sanitise_propbaser(u64 reg)
372 {
373         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
374                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
375                                   vgic_sanitise_shareability);
376         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
377                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
378                                   vgic_sanitise_inner_cacheability);
379         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
380                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
381                                   vgic_sanitise_outer_cacheability);
382
383         reg &= ~PROPBASER_RES0_MASK;
384         return reg;
385 }
386
387 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
388                                              gpa_t addr, unsigned int len)
389 {
390         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
391
392         return extract_bytes(dist->propbaser, addr & 7, len);
393 }
394
395 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
396                                      gpa_t addr, unsigned int len,
397                                      unsigned long val)
398 {
399         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
400         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
401         u64 old_propbaser, propbaser;
402
403         /* Storing a value with LPIs already enabled is undefined */
404         if (vgic_cpu->lpis_enabled)
405                 return;
406
407         do {
408                 old_propbaser = READ_ONCE(dist->propbaser);
409                 propbaser = old_propbaser;
410                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
411                 propbaser = vgic_sanitise_propbaser(propbaser);
412         } while (cmpxchg64(&dist->propbaser, old_propbaser,
413                            propbaser) != old_propbaser);
414 }
415
416 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
417                                              gpa_t addr, unsigned int len)
418 {
419         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
420
421         return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
422 }
423
424 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
425                                      gpa_t addr, unsigned int len,
426                                      unsigned long val)
427 {
428         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
429         u64 old_pendbaser, pendbaser;
430
431         /* Storing a value with LPIs already enabled is undefined */
432         if (vgic_cpu->lpis_enabled)
433                 return;
434
435         do {
436                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
437                 pendbaser = old_pendbaser;
438                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
439                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
440         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
441                            pendbaser) != old_pendbaser);
442 }
443
444 /*
445  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
446  * redistributors, while SPIs are covered by registers in the distributor
447  * block. Trying to set private IRQs in this block gets ignored.
448  * We take some special care here to fix the calculation of the register
449  * offset.
450  */
451 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
452         {                                                               \
453                 .reg_offset = off,                                      \
454                 .bits_per_irq = bpi,                                    \
455                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
456                 .access_flags = acc,                                    \
457                 .read = vgic_mmio_read_raz,                             \
458                 .write = vgic_mmio_write_wi,                            \
459         }, {                                                            \
460                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
461                 .bits_per_irq = bpi,                                    \
462                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
463                 .access_flags = acc,                                    \
464                 .read = rd,                                             \
465                 .write = wr,                                            \
466                 .uaccess_read = ur,                                     \
467                 .uaccess_write = uw,                                    \
468         }
469
470 static const struct vgic_register_region vgic_v3_dist_registers[] = {
471         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
472                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
473                 NULL, vgic_mmio_uaccess_write_v3_misc,
474                 16, VGIC_ACCESS_32bit),
475         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
476                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
477                 VGIC_ACCESS_32bit),
478         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
479                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
480                 VGIC_ACCESS_32bit),
481         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
482                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
483                 VGIC_ACCESS_32bit),
484         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
485                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
486                 VGIC_ACCESS_32bit),
487         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
488                 vgic_mmio_read_pending, vgic_mmio_write_spending,
489                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
490                 VGIC_ACCESS_32bit),
491         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
492                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
493                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
494                 VGIC_ACCESS_32bit),
495         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
496                 vgic_mmio_read_active, vgic_mmio_write_sactive,
497                 NULL, vgic_mmio_uaccess_write_sactive, 1,
498                 VGIC_ACCESS_32bit),
499         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
500                 vgic_mmio_read_active, vgic_mmio_write_cactive,
501                 NULL, vgic_mmio_uaccess_write_cactive,
502                 1, VGIC_ACCESS_32bit),
503         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
504                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
505                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
506         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
507                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
508                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
509         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
510                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
511                 VGIC_ACCESS_32bit),
512         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
513                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
514                 VGIC_ACCESS_32bit),
515         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
516                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
517                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
518         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
519                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
520                 VGIC_ACCESS_32bit),
521 };
522
523 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
524         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
525                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
526                 VGIC_ACCESS_32bit),
527         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
528                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
529                 VGIC_ACCESS_32bit),
530         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
531                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
532                 VGIC_ACCESS_32bit),
533         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
534                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
535                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
536         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
537                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
538                 VGIC_ACCESS_32bit),
539         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
540                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
541                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
542         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
543                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
544                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
545         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
546                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
547                 VGIC_ACCESS_32bit),
548 };
549
550 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
551         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
552                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
553                 VGIC_ACCESS_32bit),
554         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
555                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
556                 VGIC_ACCESS_32bit),
557         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
558                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
559                 VGIC_ACCESS_32bit),
560         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
561                 vgic_mmio_read_pending, vgic_mmio_write_spending,
562                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
563                 VGIC_ACCESS_32bit),
564         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
565                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
566                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
567                 VGIC_ACCESS_32bit),
568         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
569                 vgic_mmio_read_active, vgic_mmio_write_sactive,
570                 NULL, vgic_mmio_uaccess_write_sactive,
571                 4, VGIC_ACCESS_32bit),
572         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
573                 vgic_mmio_read_active, vgic_mmio_write_cactive,
574                 NULL, vgic_mmio_uaccess_write_cactive,
575                 4, VGIC_ACCESS_32bit),
576         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
577                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
578                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
579         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
580                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
581                 VGIC_ACCESS_32bit),
582         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
583                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
584                 VGIC_ACCESS_32bit),
585         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
586                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
587                 VGIC_ACCESS_32bit),
588 };
589
590 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
591 {
592         dev->regions = vgic_v3_dist_registers;
593         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
594
595         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
596
597         return SZ_64K;
598 }
599
600 /**
601  * vgic_register_redist_iodev - register a single redist iodev
602  * @vcpu:    The VCPU to which the redistributor belongs
603  *
604  * Register a KVM iodev for this VCPU's redistributor using the address
605  * provided.
606  *
607  * Return 0 on success, -ERRNO otherwise.
608  */
609 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
610 {
611         struct kvm *kvm = vcpu->kvm;
612         struct vgic_dist *vgic = &kvm->arch.vgic;
613         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
614         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
615         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
616         struct vgic_redist_region *rdreg;
617         gpa_t rd_base, sgi_base;
618         int ret;
619
620         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
621                 return 0;
622
623         /*
624          * We may be creating VCPUs before having set the base address for the
625          * redistributor region, in which case we will come back to this
626          * function for all VCPUs when the base address is set.  Just return
627          * without doing any work for now.
628          */
629         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
630         if (!rdreg)
631                 return 0;
632
633         if (!vgic_v3_check_base(kvm))
634                 return -EINVAL;
635
636         vgic_cpu->rdreg = rdreg;
637
638         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
639         sgi_base = rd_base + SZ_64K;
640
641         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
642         rd_dev->base_addr = rd_base;
643         rd_dev->iodev_type = IODEV_REDIST;
644         rd_dev->regions = vgic_v3_rdbase_registers;
645         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
646         rd_dev->redist_vcpu = vcpu;
647
648         mutex_lock(&kvm->slots_lock);
649         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
650                                       SZ_64K, &rd_dev->dev);
651         mutex_unlock(&kvm->slots_lock);
652
653         if (ret)
654                 return ret;
655
656         kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
657         sgi_dev->base_addr = sgi_base;
658         sgi_dev->iodev_type = IODEV_REDIST;
659         sgi_dev->regions = vgic_v3_sgibase_registers;
660         sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
661         sgi_dev->redist_vcpu = vcpu;
662
663         mutex_lock(&kvm->slots_lock);
664         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
665                                       SZ_64K, &sgi_dev->dev);
666         if (ret) {
667                 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
668                                           &rd_dev->dev);
669                 goto out;
670         }
671
672         rdreg->free_index++;
673 out:
674         mutex_unlock(&kvm->slots_lock);
675         return ret;
676 }
677
678 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
679 {
680         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
681         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
682
683         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
684         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
685 }
686
687 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
688 {
689         struct kvm_vcpu *vcpu;
690         int c, ret = 0;
691
692         kvm_for_each_vcpu(c, vcpu, kvm) {
693                 ret = vgic_register_redist_iodev(vcpu);
694                 if (ret)
695                         break;
696         }
697
698         if (ret) {
699                 /* The current c failed, so we start with the previous one. */
700                 mutex_lock(&kvm->slots_lock);
701                 for (c--; c >= 0; c--) {
702                         vcpu = kvm_get_vcpu(kvm, c);
703                         vgic_unregister_redist_iodev(vcpu);
704                 }
705                 mutex_unlock(&kvm->slots_lock);
706         }
707
708         return ret;
709 }
710
711 /**
712  * vgic_v3_insert_redist_region - Insert a new redistributor region
713  *
714  * Performs various checks before inserting the rdist region in the list.
715  * Those tests depend on whether the size of the rdist region is known
716  * (ie. count != 0). The list is sorted by rdist region index.
717  *
718  * @kvm: kvm handle
719  * @index: redist region index
720  * @base: base of the new rdist region
721  * @count: number of redistributors the region is made of (0 in the old style
722  * single region, whose size is induced from the number of vcpus)
723  *
724  * Return 0 on success, < 0 otherwise
725  */
726 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
727                                         gpa_t base, uint32_t count)
728 {
729         struct vgic_dist *d = &kvm->arch.vgic;
730         struct vgic_redist_region *rdreg;
731         struct list_head *rd_regions = &d->rd_regions;
732         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
733         int ret;
734
735         /* single rdist region already set ?*/
736         if (!count && !list_empty(rd_regions))
737                 return -EINVAL;
738
739         /* cross the end of memory ? */
740         if (base + size < base)
741                 return -EINVAL;
742
743         if (list_empty(rd_regions)) {
744                 if (index != 0)
745                         return -EINVAL;
746         } else {
747                 rdreg = list_last_entry(rd_regions,
748                                         struct vgic_redist_region, list);
749                 if (index != rdreg->index + 1)
750                         return -EINVAL;
751
752                 /* Cannot add an explicitly sized regions after legacy region */
753                 if (!rdreg->count)
754                         return -EINVAL;
755         }
756
757         /*
758          * For legacy single-region redistributor regions (!count),
759          * check that the redistributor region does not overlap with the
760          * distributor's address space.
761          */
762         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
763                 vgic_dist_overlap(kvm, base, size))
764                 return -EINVAL;
765
766         /* collision with any other rdist region? */
767         if (vgic_v3_rdist_overlap(kvm, base, size))
768                 return -EINVAL;
769
770         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
771         if (!rdreg)
772                 return -ENOMEM;
773
774         rdreg->base = VGIC_ADDR_UNDEF;
775
776         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
777         if (ret)
778                 goto free;
779
780         rdreg->base = base;
781         rdreg->count = count;
782         rdreg->free_index = 0;
783         rdreg->index = index;
784
785         list_add_tail(&rdreg->list, rd_regions);
786         return 0;
787 free:
788         kfree(rdreg);
789         return ret;
790 }
791
792 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
793 {
794         int ret;
795
796         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
797         if (ret)
798                 return ret;
799
800         /*
801          * Register iodevs for each existing VCPU.  Adding more VCPUs
802          * afterwards will register the iodevs when needed.
803          */
804         ret = vgic_register_all_redist_iodevs(kvm);
805         if (ret)
806                 return ret;
807
808         return 0;
809 }
810
811 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
812 {
813         const struct vgic_register_region *region;
814         struct vgic_io_device iodev;
815         struct vgic_reg_attr reg_attr;
816         struct kvm_vcpu *vcpu;
817         gpa_t addr;
818         int ret;
819
820         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
821         if (ret)
822                 return ret;
823
824         vcpu = reg_attr.vcpu;
825         addr = reg_attr.addr;
826
827         switch (attr->group) {
828         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
829                 iodev.regions = vgic_v3_dist_registers;
830                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
831                 iodev.base_addr = 0;
832                 break;
833         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
834                 iodev.regions = vgic_v3_rdbase_registers;
835                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
836                 iodev.base_addr = 0;
837                 break;
838         }
839         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
840                 u64 reg, id;
841
842                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
843                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
844         }
845         default:
846                 return -ENXIO;
847         }
848
849         /* We only support aligned 32-bit accesses. */
850         if (addr & 3)
851                 return -ENXIO;
852
853         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
854         if (!region)
855                 return -ENXIO;
856
857         return 0;
858 }
859 /*
860  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
861  * generation register ICC_SGI1R_EL1) with a given VCPU.
862  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
863  * return -1.
864  */
865 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
866 {
867         unsigned long affinity;
868         int level0;
869
870         /*
871          * Split the current VCPU's MPIDR into affinity level 0 and the
872          * rest as this is what we have to compare against.
873          */
874         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
875         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
876         affinity &= ~MPIDR_LEVEL_MASK;
877
878         /* bail out if the upper three levels don't match */
879         if (sgi_aff != affinity)
880                 return -1;
881
882         /* Is this VCPU's bit set in the mask ? */
883         if (!(sgi_cpu_mask & BIT(level0)))
884                 return -1;
885
886         return level0;
887 }
888
889 /*
890  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
891  * so provide a wrapper to use the existing defines to isolate a certain
892  * affinity level.
893  */
894 #define SGI_AFFINITY_LEVEL(reg, level) \
895         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
896         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
897
898 /**
899  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
900  * @vcpu: The VCPU requesting a SGI
901  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
902  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
903  *
904  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
905  * This will trap in sys_regs.c and call this function.
906  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
907  * target processors as well as a bitmask of 16 Aff0 CPUs.
908  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
909  * check for matching ones. If this bit is set, we signal all, but not the
910  * calling VCPU.
911  */
912 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
913 {
914         struct kvm *kvm = vcpu->kvm;
915         struct kvm_vcpu *c_vcpu;
916         u16 target_cpus;
917         u64 mpidr;
918         int sgi, c;
919         int vcpu_id = vcpu->vcpu_id;
920         bool broadcast;
921         unsigned long flags;
922
923         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
924         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
925         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
926         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
927         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
928         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
929
930         /*
931          * We iterate over all VCPUs to find the MPIDRs matching the request.
932          * If we have handled one CPU, we clear its bit to detect early
933          * if we are already finished. This avoids iterating through all
934          * VCPUs when most of the times we just signal a single VCPU.
935          */
936         kvm_for_each_vcpu(c, c_vcpu, kvm) {
937                 struct vgic_irq *irq;
938
939                 /* Exit early if we have dealt with all requested CPUs */
940                 if (!broadcast && target_cpus == 0)
941                         break;
942
943                 /* Don't signal the calling VCPU */
944                 if (broadcast && c == vcpu_id)
945                         continue;
946
947                 if (!broadcast) {
948                         int level0;
949
950                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
951                         if (level0 == -1)
952                                 continue;
953
954                         /* remove this matching VCPU from the mask */
955                         target_cpus &= ~BIT(level0);
956                 }
957
958                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
959
960                 spin_lock_irqsave(&irq->irq_lock, flags);
961
962                 /*
963                  * An access targetting Group0 SGIs can only generate
964                  * those, while an access targetting Group1 SGIs can
965                  * generate interrupts of either group.
966                  */
967                 if (!irq->group || allow_group1) {
968                         irq->pending_latch = true;
969                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
970                 } else {
971                         spin_unlock_irqrestore(&irq->irq_lock, flags);
972                 }
973
974                 vgic_put_irq(vcpu->kvm, irq);
975         }
976 }
977
978 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
979                          int offset, u32 *val)
980 {
981         struct vgic_io_device dev = {
982                 .regions = vgic_v3_dist_registers,
983                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
984         };
985
986         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
987 }
988
989 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
990                            int offset, u32 *val)
991 {
992         struct vgic_io_device rd_dev = {
993                 .regions = vgic_v3_rdbase_registers,
994                 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
995         };
996
997         struct vgic_io_device sgi_dev = {
998                 .regions = vgic_v3_sgibase_registers,
999                 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
1000         };
1001
1002         /* SGI_base is the next 64K frame after RD_base */
1003         if (offset >= SZ_64K)
1004                 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1005                                     val);
1006         else
1007                 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1008 }
1009
1010 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1011                                     u32 intid, u64 *val)
1012 {
1013         if (intid % 32)
1014                 return -EINVAL;
1015
1016         if (is_write)
1017                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1018         else
1019                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1020
1021         return 0;
1022 }