OSDN Git Service

KVM: arm64: GICv4.1: Add direct injection capability to SGI registers
[tomoyo/tomoyo-test1.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/irqchip/arm-gic-v3.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/interrupt.h>
10 #include <kvm/iodev.h>
11 #include <kvm/arm_vgic.h>
12
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_arm.h>
15 #include <asm/kvm_mmu.h>
16
17 #include "vgic.h"
18 #include "vgic-mmio.h"
19
20 /* extract @num bytes at @offset bytes offset in data */
21 unsigned long extract_bytes(u64 data, unsigned int offset,
22                             unsigned int num)
23 {
24         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
25 }
26
27 /* allows updates of any half of a 64-bit register (or the whole thing) */
28 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
29                      unsigned long val)
30 {
31         int lower = (offset & 4) * 8;
32         int upper = lower + 8 * len - 1;
33
34         reg &= ~GENMASK_ULL(upper, lower);
35         val &= GENMASK_ULL(len * 8 - 1, 0);
36
37         return reg | ((u64)val << lower);
38 }
39
40 bool vgic_has_its(struct kvm *kvm)
41 {
42         struct vgic_dist *dist = &kvm->arch.vgic;
43
44         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
45                 return false;
46
47         return dist->has_its;
48 }
49
50 bool vgic_supports_direct_msis(struct kvm *kvm)
51 {
52         return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
53 }
54
55 /*
56  * The Revision field in the IIDR have the following meanings:
57  *
58  * Revision 2: Interrupt groups are guest-configurable and signaled using
59  *             their configured groups.
60  */
61
62 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
63                                             gpa_t addr, unsigned int len)
64 {
65         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
66         u32 value = 0;
67
68         switch (addr & 0x0c) {
69         case GICD_CTLR:
70                 if (vgic->enabled)
71                         value |= GICD_CTLR_ENABLE_SS_G1;
72                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
73                 break;
74         case GICD_TYPER:
75                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
76                 value = (value >> 5) - 1;
77                 if (vgic_has_its(vcpu->kvm)) {
78                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
79                         value |= GICD_TYPER_LPIS;
80                 } else {
81                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
82                 }
83                 break;
84         case GICD_IIDR:
85                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
86                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
87                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
88                 break;
89         default:
90                 return 0;
91         }
92
93         return value;
94 }
95
96 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
97                                     gpa_t addr, unsigned int len,
98                                     unsigned long val)
99 {
100         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
101         bool was_enabled = dist->enabled;
102
103         switch (addr & 0x0c) {
104         case GICD_CTLR:
105                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
106
107                 if (!was_enabled && dist->enabled)
108                         vgic_kick_vcpus(vcpu->kvm);
109                 break;
110         case GICD_TYPER:
111         case GICD_IIDR:
112                 return;
113         }
114 }
115
116 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
117                                            gpa_t addr, unsigned int len,
118                                            unsigned long val)
119 {
120         switch (addr & 0x0c) {
121         case GICD_IIDR:
122                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
123                         return -EINVAL;
124         }
125
126         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
127         return 0;
128 }
129
130 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
131                                             gpa_t addr, unsigned int len)
132 {
133         int intid = VGIC_ADDR_TO_INTID(addr, 64);
134         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
135         unsigned long ret = 0;
136
137         if (!irq)
138                 return 0;
139
140         /* The upper word is RAZ for us. */
141         if (!(addr & 4))
142                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
143
144         vgic_put_irq(vcpu->kvm, irq);
145         return ret;
146 }
147
148 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
149                                     gpa_t addr, unsigned int len,
150                                     unsigned long val)
151 {
152         int intid = VGIC_ADDR_TO_INTID(addr, 64);
153         struct vgic_irq *irq;
154         unsigned long flags;
155
156         /* The upper word is WI for us since we don't implement Aff3. */
157         if (addr & 4)
158                 return;
159
160         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
161
162         if (!irq)
163                 return;
164
165         raw_spin_lock_irqsave(&irq->irq_lock, flags);
166
167         /* We only care about and preserve Aff0, Aff1 and Aff2. */
168         irq->mpidr = val & GENMASK(23, 0);
169         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
170
171         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
172         vgic_put_irq(vcpu->kvm, irq);
173 }
174
175 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
176                                              gpa_t addr, unsigned int len)
177 {
178         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
179
180         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
181 }
182
183
184 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
185                                      gpa_t addr, unsigned int len,
186                                      unsigned long val)
187 {
188         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
189         bool was_enabled = vgic_cpu->lpis_enabled;
190
191         if (!vgic_has_its(vcpu->kvm))
192                 return;
193
194         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
195
196         if (was_enabled && !vgic_cpu->lpis_enabled) {
197                 vgic_flush_pending_lpis(vcpu);
198                 vgic_its_invalidate_cache(vcpu->kvm);
199         }
200
201         if (!was_enabled && vgic_cpu->lpis_enabled)
202                 vgic_enable_lpis(vcpu);
203 }
204
205 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
206                                               gpa_t addr, unsigned int len)
207 {
208         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
209         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
210         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
211         int target_vcpu_id = vcpu->vcpu_id;
212         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
213                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
214         u64 value;
215
216         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
217         value |= ((target_vcpu_id & 0xffff) << 8);
218
219         if (addr == last_rdist_typer)
220                 value |= GICR_TYPER_LAST;
221         if (vgic_has_its(vcpu->kvm))
222                 value |= GICR_TYPER_PLPIS;
223
224         return extract_bytes(value, addr & 7, len);
225 }
226
227 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
228                                              gpa_t addr, unsigned int len)
229 {
230         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
231 }
232
233 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
234                                               gpa_t addr, unsigned int len)
235 {
236         switch (addr & 0xffff) {
237         case GICD_PIDR2:
238                 /* report a GICv3 compliant implementation */
239                 return 0x3b;
240         }
241
242         return 0;
243 }
244
245 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
246                                                   gpa_t addr, unsigned int len)
247 {
248         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
249         u32 value = 0;
250         int i;
251
252         /*
253          * pending state of interrupt is latched in pending_latch variable.
254          * Userspace will save and restore pending state and line_level
255          * separately.
256          * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
257          * for handling of ISPENDR and ICPENDR.
258          */
259         for (i = 0; i < len * 8; i++) {
260                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
261                 bool state = irq->pending_latch;
262
263                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
264                         int err;
265
266                         err = irq_get_irqchip_state(irq->host_irq,
267                                                     IRQCHIP_STATE_PENDING,
268                                                     &state);
269                         WARN_ON(err);
270                 }
271
272                 if (state)
273                         value |= (1U << i);
274
275                 vgic_put_irq(vcpu->kvm, irq);
276         }
277
278         return value;
279 }
280
281 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
282                                          gpa_t addr, unsigned int len,
283                                          unsigned long val)
284 {
285         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
286         int i;
287         unsigned long flags;
288
289         for (i = 0; i < len * 8; i++) {
290                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
291
292                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
293                 if (test_bit(i, &val)) {
294                         /*
295                          * pending_latch is set irrespective of irq type
296                          * (level or edge) to avoid dependency that VM should
297                          * restore irq config before pending info.
298                          */
299                         irq->pending_latch = true;
300                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
301                 } else {
302                         irq->pending_latch = false;
303                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
304                 }
305
306                 vgic_put_irq(vcpu->kvm, irq);
307         }
308
309         return 0;
310 }
311
312 /* We want to avoid outer shareable. */
313 u64 vgic_sanitise_shareability(u64 field)
314 {
315         switch (field) {
316         case GIC_BASER_OuterShareable:
317                 return GIC_BASER_InnerShareable;
318         default:
319                 return field;
320         }
321 }
322
323 /* Avoid any inner non-cacheable mapping. */
324 u64 vgic_sanitise_inner_cacheability(u64 field)
325 {
326         switch (field) {
327         case GIC_BASER_CACHE_nCnB:
328         case GIC_BASER_CACHE_nC:
329                 return GIC_BASER_CACHE_RaWb;
330         default:
331                 return field;
332         }
333 }
334
335 /* Non-cacheable or same-as-inner are OK. */
336 u64 vgic_sanitise_outer_cacheability(u64 field)
337 {
338         switch (field) {
339         case GIC_BASER_CACHE_SameAsInner:
340         case GIC_BASER_CACHE_nC:
341                 return field;
342         default:
343                 return GIC_BASER_CACHE_nC;
344         }
345 }
346
347 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
348                         u64 (*sanitise_fn)(u64))
349 {
350         u64 field = (reg & field_mask) >> field_shift;
351
352         field = sanitise_fn(field) << field_shift;
353         return (reg & ~field_mask) | field;
354 }
355
356 #define PROPBASER_RES0_MASK                                             \
357         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
358 #define PENDBASER_RES0_MASK                                             \
359         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
360          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
361
362 static u64 vgic_sanitise_pendbaser(u64 reg)
363 {
364         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
365                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
366                                   vgic_sanitise_shareability);
367         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
368                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
369                                   vgic_sanitise_inner_cacheability);
370         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
371                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
372                                   vgic_sanitise_outer_cacheability);
373
374         reg &= ~PENDBASER_RES0_MASK;
375
376         return reg;
377 }
378
379 static u64 vgic_sanitise_propbaser(u64 reg)
380 {
381         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
382                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
383                                   vgic_sanitise_shareability);
384         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
385                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
386                                   vgic_sanitise_inner_cacheability);
387         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
388                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
389                                   vgic_sanitise_outer_cacheability);
390
391         reg &= ~PROPBASER_RES0_MASK;
392         return reg;
393 }
394
395 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
396                                              gpa_t addr, unsigned int len)
397 {
398         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
399
400         return extract_bytes(dist->propbaser, addr & 7, len);
401 }
402
403 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
404                                      gpa_t addr, unsigned int len,
405                                      unsigned long val)
406 {
407         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
408         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
409         u64 old_propbaser, propbaser;
410
411         /* Storing a value with LPIs already enabled is undefined */
412         if (vgic_cpu->lpis_enabled)
413                 return;
414
415         do {
416                 old_propbaser = READ_ONCE(dist->propbaser);
417                 propbaser = old_propbaser;
418                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
419                 propbaser = vgic_sanitise_propbaser(propbaser);
420         } while (cmpxchg64(&dist->propbaser, old_propbaser,
421                            propbaser) != old_propbaser);
422 }
423
424 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
425                                              gpa_t addr, unsigned int len)
426 {
427         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
428         u64 value = vgic_cpu->pendbaser;
429
430         value &= ~GICR_PENDBASER_PTZ;
431
432         return extract_bytes(value, addr & 7, len);
433 }
434
435 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
436                                      gpa_t addr, unsigned int len,
437                                      unsigned long val)
438 {
439         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
440         u64 old_pendbaser, pendbaser;
441
442         /* Storing a value with LPIs already enabled is undefined */
443         if (vgic_cpu->lpis_enabled)
444                 return;
445
446         do {
447                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
448                 pendbaser = old_pendbaser;
449                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
450                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
451         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
452                            pendbaser) != old_pendbaser);
453 }
454
455 /*
456  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
457  * redistributors, while SPIs are covered by registers in the distributor
458  * block. Trying to set private IRQs in this block gets ignored.
459  * We take some special care here to fix the calculation of the register
460  * offset.
461  */
462 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
463         {                                                               \
464                 .reg_offset = off,                                      \
465                 .bits_per_irq = bpi,                                    \
466                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
467                 .access_flags = acc,                                    \
468                 .read = vgic_mmio_read_raz,                             \
469                 .write = vgic_mmio_write_wi,                            \
470         }, {                                                            \
471                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
472                 .bits_per_irq = bpi,                                    \
473                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
474                 .access_flags = acc,                                    \
475                 .read = rd,                                             \
476                 .write = wr,                                            \
477                 .uaccess_read = ur,                                     \
478                 .uaccess_write = uw,                                    \
479         }
480
481 static const struct vgic_register_region vgic_v3_dist_registers[] = {
482         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
483                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
484                 NULL, vgic_mmio_uaccess_write_v3_misc,
485                 16, VGIC_ACCESS_32bit),
486         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
487                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
488                 VGIC_ACCESS_32bit),
489         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
490                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
491                 VGIC_ACCESS_32bit),
492         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
493                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
494                 VGIC_ACCESS_32bit),
495         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
496                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
497                 VGIC_ACCESS_32bit),
498         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
499                 vgic_mmio_read_pending, vgic_mmio_write_spending,
500                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
501                 VGIC_ACCESS_32bit),
502         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
503                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
504                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
505                 VGIC_ACCESS_32bit),
506         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
507                 vgic_mmio_read_active, vgic_mmio_write_sactive,
508                 NULL, vgic_mmio_uaccess_write_sactive, 1,
509                 VGIC_ACCESS_32bit),
510         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
511                 vgic_mmio_read_active, vgic_mmio_write_cactive,
512                 NULL, vgic_mmio_uaccess_write_cactive,
513                 1, VGIC_ACCESS_32bit),
514         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
515                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
516                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
517         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
518                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
519                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
520         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
521                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
522                 VGIC_ACCESS_32bit),
523         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
524                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
525                 VGIC_ACCESS_32bit),
526         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
527                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
528                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
529         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
530                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
531                 VGIC_ACCESS_32bit),
532 };
533
534 static const struct vgic_register_region vgic_v3_rd_registers[] = {
535         /* RD_base registers */
536         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
537                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
538                 VGIC_ACCESS_32bit),
539         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
540                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
541                 VGIC_ACCESS_32bit),
542         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
543                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
544                 VGIC_ACCESS_32bit),
545         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
546                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
547                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
548         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
549                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
550                 VGIC_ACCESS_32bit),
551         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
552                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
553                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
554         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
555                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
556                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
557         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
558                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
559                 VGIC_ACCESS_32bit),
560         /* SGI_base registers */
561         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
562                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
563                 VGIC_ACCESS_32bit),
564         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ISENABLER0,
565                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
566                 VGIC_ACCESS_32bit),
567         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICENABLER0,
568                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
569                 VGIC_ACCESS_32bit),
570         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
571                 vgic_mmio_read_pending, vgic_mmio_write_spending,
572                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
573                 VGIC_ACCESS_32bit),
574         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
575                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
576                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
577                 VGIC_ACCESS_32bit),
578         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
579                 vgic_mmio_read_active, vgic_mmio_write_sactive,
580                 NULL, vgic_mmio_uaccess_write_sactive,
581                 4, VGIC_ACCESS_32bit),
582         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
583                 vgic_mmio_read_active, vgic_mmio_write_cactive,
584                 NULL, vgic_mmio_uaccess_write_cactive,
585                 4, VGIC_ACCESS_32bit),
586         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
587                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
588                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
589         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
590                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
591                 VGIC_ACCESS_32bit),
592         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
593                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
594                 VGIC_ACCESS_32bit),
595         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
596                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
597                 VGIC_ACCESS_32bit),
598 };
599
600 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
601 {
602         dev->regions = vgic_v3_dist_registers;
603         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
604
605         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
606
607         return SZ_64K;
608 }
609
610 /**
611  * vgic_register_redist_iodev - register a single redist iodev
612  * @vcpu:    The VCPU to which the redistributor belongs
613  *
614  * Register a KVM iodev for this VCPU's redistributor using the address
615  * provided.
616  *
617  * Return 0 on success, -ERRNO otherwise.
618  */
619 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
620 {
621         struct kvm *kvm = vcpu->kvm;
622         struct vgic_dist *vgic = &kvm->arch.vgic;
623         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
624         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
625         struct vgic_redist_region *rdreg;
626         gpa_t rd_base;
627         int ret;
628
629         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
630                 return 0;
631
632         /*
633          * We may be creating VCPUs before having set the base address for the
634          * redistributor region, in which case we will come back to this
635          * function for all VCPUs when the base address is set.  Just return
636          * without doing any work for now.
637          */
638         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
639         if (!rdreg)
640                 return 0;
641
642         if (!vgic_v3_check_base(kvm))
643                 return -EINVAL;
644
645         vgic_cpu->rdreg = rdreg;
646
647         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
648
649         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
650         rd_dev->base_addr = rd_base;
651         rd_dev->iodev_type = IODEV_REDIST;
652         rd_dev->regions = vgic_v3_rd_registers;
653         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
654         rd_dev->redist_vcpu = vcpu;
655
656         mutex_lock(&kvm->slots_lock);
657         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
658                                       2 * SZ_64K, &rd_dev->dev);
659         mutex_unlock(&kvm->slots_lock);
660
661         if (ret)
662                 return ret;
663
664         rdreg->free_index++;
665         return 0;
666 }
667
668 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
669 {
670         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
671
672         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
673 }
674
675 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
676 {
677         struct kvm_vcpu *vcpu;
678         int c, ret = 0;
679
680         kvm_for_each_vcpu(c, vcpu, kvm) {
681                 ret = vgic_register_redist_iodev(vcpu);
682                 if (ret)
683                         break;
684         }
685
686         if (ret) {
687                 /* The current c failed, so we start with the previous one. */
688                 mutex_lock(&kvm->slots_lock);
689                 for (c--; c >= 0; c--) {
690                         vcpu = kvm_get_vcpu(kvm, c);
691                         vgic_unregister_redist_iodev(vcpu);
692                 }
693                 mutex_unlock(&kvm->slots_lock);
694         }
695
696         return ret;
697 }
698
699 /**
700  * vgic_v3_insert_redist_region - Insert a new redistributor region
701  *
702  * Performs various checks before inserting the rdist region in the list.
703  * Those tests depend on whether the size of the rdist region is known
704  * (ie. count != 0). The list is sorted by rdist region index.
705  *
706  * @kvm: kvm handle
707  * @index: redist region index
708  * @base: base of the new rdist region
709  * @count: number of redistributors the region is made of (0 in the old style
710  * single region, whose size is induced from the number of vcpus)
711  *
712  * Return 0 on success, < 0 otherwise
713  */
714 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
715                                         gpa_t base, uint32_t count)
716 {
717         struct vgic_dist *d = &kvm->arch.vgic;
718         struct vgic_redist_region *rdreg;
719         struct list_head *rd_regions = &d->rd_regions;
720         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
721         int ret;
722
723         /* single rdist region already set ?*/
724         if (!count && !list_empty(rd_regions))
725                 return -EINVAL;
726
727         /* cross the end of memory ? */
728         if (base + size < base)
729                 return -EINVAL;
730
731         if (list_empty(rd_regions)) {
732                 if (index != 0)
733                         return -EINVAL;
734         } else {
735                 rdreg = list_last_entry(rd_regions,
736                                         struct vgic_redist_region, list);
737                 if (index != rdreg->index + 1)
738                         return -EINVAL;
739
740                 /* Cannot add an explicitly sized regions after legacy region */
741                 if (!rdreg->count)
742                         return -EINVAL;
743         }
744
745         /*
746          * For legacy single-region redistributor regions (!count),
747          * check that the redistributor region does not overlap with the
748          * distributor's address space.
749          */
750         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
751                 vgic_dist_overlap(kvm, base, size))
752                 return -EINVAL;
753
754         /* collision with any other rdist region? */
755         if (vgic_v3_rdist_overlap(kvm, base, size))
756                 return -EINVAL;
757
758         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
759         if (!rdreg)
760                 return -ENOMEM;
761
762         rdreg->base = VGIC_ADDR_UNDEF;
763
764         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
765         if (ret)
766                 goto free;
767
768         rdreg->base = base;
769         rdreg->count = count;
770         rdreg->free_index = 0;
771         rdreg->index = index;
772
773         list_add_tail(&rdreg->list, rd_regions);
774         return 0;
775 free:
776         kfree(rdreg);
777         return ret;
778 }
779
780 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
781 {
782         int ret;
783
784         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
785         if (ret)
786                 return ret;
787
788         /*
789          * Register iodevs for each existing VCPU.  Adding more VCPUs
790          * afterwards will register the iodevs when needed.
791          */
792         ret = vgic_register_all_redist_iodevs(kvm);
793         if (ret)
794                 return ret;
795
796         return 0;
797 }
798
799 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
800 {
801         const struct vgic_register_region *region;
802         struct vgic_io_device iodev;
803         struct vgic_reg_attr reg_attr;
804         struct kvm_vcpu *vcpu;
805         gpa_t addr;
806         int ret;
807
808         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
809         if (ret)
810                 return ret;
811
812         vcpu = reg_attr.vcpu;
813         addr = reg_attr.addr;
814
815         switch (attr->group) {
816         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
817                 iodev.regions = vgic_v3_dist_registers;
818                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
819                 iodev.base_addr = 0;
820                 break;
821         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
822                 iodev.regions = vgic_v3_rd_registers;
823                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
824                 iodev.base_addr = 0;
825                 break;
826         }
827         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
828                 u64 reg, id;
829
830                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
831                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
832         }
833         default:
834                 return -ENXIO;
835         }
836
837         /* We only support aligned 32-bit accesses. */
838         if (addr & 3)
839                 return -ENXIO;
840
841         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
842         if (!region)
843                 return -ENXIO;
844
845         return 0;
846 }
847 /*
848  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
849  * generation register ICC_SGI1R_EL1) with a given VCPU.
850  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
851  * return -1.
852  */
853 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
854 {
855         unsigned long affinity;
856         int level0;
857
858         /*
859          * Split the current VCPU's MPIDR into affinity level 0 and the
860          * rest as this is what we have to compare against.
861          */
862         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
863         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
864         affinity &= ~MPIDR_LEVEL_MASK;
865
866         /* bail out if the upper three levels don't match */
867         if (sgi_aff != affinity)
868                 return -1;
869
870         /* Is this VCPU's bit set in the mask ? */
871         if (!(sgi_cpu_mask & BIT(level0)))
872                 return -1;
873
874         return level0;
875 }
876
877 /*
878  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
879  * so provide a wrapper to use the existing defines to isolate a certain
880  * affinity level.
881  */
882 #define SGI_AFFINITY_LEVEL(reg, level) \
883         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
884         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
885
886 /**
887  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
888  * @vcpu: The VCPU requesting a SGI
889  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
890  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
891  *
892  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
893  * This will trap in sys_regs.c and call this function.
894  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
895  * target processors as well as a bitmask of 16 Aff0 CPUs.
896  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
897  * check for matching ones. If this bit is set, we signal all, but not the
898  * calling VCPU.
899  */
900 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
901 {
902         struct kvm *kvm = vcpu->kvm;
903         struct kvm_vcpu *c_vcpu;
904         u16 target_cpus;
905         u64 mpidr;
906         int sgi, c;
907         int vcpu_id = vcpu->vcpu_id;
908         bool broadcast;
909         unsigned long flags;
910
911         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
912         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
913         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
914         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
915         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
916         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
917
918         /*
919          * We iterate over all VCPUs to find the MPIDRs matching the request.
920          * If we have handled one CPU, we clear its bit to detect early
921          * if we are already finished. This avoids iterating through all
922          * VCPUs when most of the times we just signal a single VCPU.
923          */
924         kvm_for_each_vcpu(c, c_vcpu, kvm) {
925                 struct vgic_irq *irq;
926
927                 /* Exit early if we have dealt with all requested CPUs */
928                 if (!broadcast && target_cpus == 0)
929                         break;
930
931                 /* Don't signal the calling VCPU */
932                 if (broadcast && c == vcpu_id)
933                         continue;
934
935                 if (!broadcast) {
936                         int level0;
937
938                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
939                         if (level0 == -1)
940                                 continue;
941
942                         /* remove this matching VCPU from the mask */
943                         target_cpus &= ~BIT(level0);
944                 }
945
946                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
947
948                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
949
950                 /*
951                  * An access targetting Group0 SGIs can only generate
952                  * those, while an access targetting Group1 SGIs can
953                  * generate interrupts of either group.
954                  */
955                 if (!irq->group || allow_group1) {
956                         if (!irq->hw) {
957                                 irq->pending_latch = true;
958                                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
959                         } else {
960                                 /* HW SGI? Ask the GIC to inject it */
961                                 int err;
962                                 err = irq_set_irqchip_state(irq->host_irq,
963                                                             IRQCHIP_STATE_PENDING,
964                                                             true);
965                                 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
966                                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
967                         }
968                 } else {
969                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
970                 }
971
972                 vgic_put_irq(vcpu->kvm, irq);
973         }
974 }
975
976 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
977                          int offset, u32 *val)
978 {
979         struct vgic_io_device dev = {
980                 .regions = vgic_v3_dist_registers,
981                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
982         };
983
984         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
985 }
986
987 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
988                            int offset, u32 *val)
989 {
990         struct vgic_io_device rd_dev = {
991                 .regions = vgic_v3_rd_registers,
992                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
993         };
994
995         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
996 }
997
998 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
999                                     u32 intid, u64 *val)
1000 {
1001         if (intid % 32)
1002                 return -EINVAL;
1003
1004         if (is_write)
1005                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1006         else
1007                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1008
1009         return 0;
1010 }