OSDN Git Service

848af90b8091a9a3bd8ed7e18d6ace2692210c36
[uclinux-h8/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73  * Ordering of locks:
74  *
75  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95                            unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98                                   unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115         if (pfn_valid(pfn))
116                 return PageReserved(pfn_to_page(pfn));
117
118         return true;
119 }
120
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126         int cpu;
127
128         if (mutex_lock_killable(&vcpu->mutex))
129                 return -EINTR;
130         cpu = get_cpu();
131         preempt_notifier_register(&vcpu->preempt_notifier);
132         kvm_arch_vcpu_load(vcpu, cpu);
133         put_cpu();
134         return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139         preempt_disable();
140         kvm_arch_vcpu_put(vcpu);
141         preempt_notifier_unregister(&vcpu->preempt_notifier);
142         preempt_enable();
143         mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152         int i, cpu, me;
153         cpumask_var_t cpus;
154         bool called = true;
155         struct kvm_vcpu *vcpu;
156
157         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159         me = get_cpu();
160         kvm_for_each_vcpu(i, vcpu, kvm) {
161                 kvm_make_request(req, vcpu);
162                 cpu = vcpu->cpu;
163
164                 /* Set ->requests bit before we read ->mode */
165                 smp_mb();
166
167                 if (cpus != NULL && cpu != -1 && cpu != me &&
168                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169                         cpumask_set_cpu(cpu, cpus);
170         }
171         if (unlikely(cpus == NULL))
172                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173         else if (!cpumask_empty(cpus))
174                 smp_call_function_many(cpus, ack_flush, NULL, 1);
175         else
176                 called = false;
177         put_cpu();
178         free_cpumask_var(cpus);
179         return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185         long dirty_count = kvm->tlbs_dirty;
186
187         smp_mb();
188         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189                 ++kvm->stat.remote_tlb_flush;
190         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212         struct page *page;
213         int r;
214
215         mutex_init(&vcpu->mutex);
216         vcpu->cpu = -1;
217         vcpu->kvm = kvm;
218         vcpu->vcpu_id = id;
219         vcpu->pid = NULL;
220         init_waitqueue_head(&vcpu->wq);
221         kvm_async_pf_vcpu_init(vcpu);
222
223         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224         if (!page) {
225                 r = -ENOMEM;
226                 goto fail;
227         }
228         vcpu->run = page_address(page);
229
230         kvm_vcpu_set_in_spin_loop(vcpu, false);
231         kvm_vcpu_set_dy_eligible(vcpu, false);
232         vcpu->preempted = false;
233
234         r = kvm_arch_vcpu_init(vcpu);
235         if (r < 0)
236                 goto fail_free_run;
237         return 0;
238
239 fail_free_run:
240         free_page((unsigned long)vcpu->run);
241 fail:
242         return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248         put_pid(vcpu->pid);
249         kvm_arch_vcpu_uninit(vcpu);
250         free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257         return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261                                              struct mm_struct *mm,
262                                              unsigned long address)
263 {
264         struct kvm *kvm = mmu_notifier_to_kvm(mn);
265         int need_tlb_flush, idx;
266
267         /*
268          * When ->invalidate_page runs, the linux pte has been zapped
269          * already but the page is still allocated until
270          * ->invalidate_page returns. So if we increase the sequence
271          * here the kvm page fault will notice if the spte can't be
272          * established because the page is going to be freed. If
273          * instead the kvm page fault establishes the spte before
274          * ->invalidate_page runs, kvm_unmap_hva will release it
275          * before returning.
276          *
277          * The sequence increase only need to be seen at spin_unlock
278          * time, and not at spin_lock time.
279          *
280          * Increasing the sequence after the spin_unlock would be
281          * unsafe because the kvm page fault could then establish the
282          * pte after kvm_unmap_hva returned, without noticing the page
283          * is going to be freed.
284          */
285         idx = srcu_read_lock(&kvm->srcu);
286         spin_lock(&kvm->mmu_lock);
287
288         kvm->mmu_notifier_seq++;
289         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290         /* we've to flush the tlb before the pages can be freed */
291         if (need_tlb_flush)
292                 kvm_flush_remote_tlbs(kvm);
293
294         spin_unlock(&kvm->mmu_lock);
295
296         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298         srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334         need_tlb_flush |= kvm->tlbs_dirty;
335         /* we've to flush the tlb before the pages can be freed */
336         if (need_tlb_flush)
337                 kvm_flush_remote_tlbs(kvm);
338
339         spin_unlock(&kvm->mmu_lock);
340         srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344                                                   struct mm_struct *mm,
345                                                   unsigned long start,
346                                                   unsigned long end)
347 {
348         struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * This sequence increase will notify the kvm page fault that
353          * the page that is going to be mapped in the spte could have
354          * been freed.
355          */
356         kvm->mmu_notifier_seq++;
357         smp_wmb();
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease, which is ensured by the smp_wmb above
361          * in conjunction with the smp_rmb in mmu_notifier_retry().
362          */
363         kvm->mmu_notifier_count--;
364         spin_unlock(&kvm->mmu_lock);
365
366         BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370                                               struct mm_struct *mm,
371                                               unsigned long start,
372                                               unsigned long end)
373 {
374         struct kvm *kvm = mmu_notifier_to_kvm(mn);
375         int young, idx;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379
380         young = kvm_age_hva(kvm, start, end);
381         if (young)
382                 kvm_flush_remote_tlbs(kvm);
383
384         spin_unlock(&kvm->mmu_lock);
385         srcu_read_unlock(&kvm->srcu, idx);
386
387         return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391                                        struct mm_struct *mm,
392                                        unsigned long address)
393 {
394         struct kvm *kvm = mmu_notifier_to_kvm(mn);
395         int young, idx;
396
397         idx = srcu_read_lock(&kvm->srcu);
398         spin_lock(&kvm->mmu_lock);
399         young = kvm_test_age_hva(kvm, address);
400         spin_unlock(&kvm->mmu_lock);
401         srcu_read_unlock(&kvm->srcu, idx);
402
403         return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407                                      struct mm_struct *mm)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int idx;
411
412         idx = srcu_read_lock(&kvm->srcu);
413         kvm_arch_flush_shadow_all(kvm);
414         srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
419         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
421         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
422         .test_young             = kvm_mmu_notifier_test_young,
423         .change_pte             = kvm_mmu_notifier_change_pte,
424         .release                = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437         return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static struct kvm_memslots *kvm_alloc_memslots(void)
443 {
444         int i;
445         struct kvm_memslots *slots;
446
447         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
448         if (!slots)
449                 return NULL;
450
451         /*
452          * Init kvm generation close to the maximum to easily test the
453          * code of handling generation number wrap-around.
454          */
455         slots->generation = -150;
456         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457                 slots->id_to_index[i] = slots->memslots[i].id = i;
458
459         return slots;
460 }
461
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
463 {
464         if (!memslot->dirty_bitmap)
465                 return;
466
467         kvfree(memslot->dirty_bitmap);
468         memslot->dirty_bitmap = NULL;
469 }
470
471 /*
472  * Free any memory in @free but not in @dont.
473  */
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475                               struct kvm_memory_slot *dont)
476 {
477         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478                 kvm_destroy_dirty_bitmap(free);
479
480         kvm_arch_free_memslot(kvm, free, dont);
481
482         free->npages = 0;
483 }
484
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
486 {
487         struct kvm_memory_slot *memslot;
488
489         if (!slots)
490                 return;
491
492         kvm_for_each_memslot(memslot, slots)
493                 kvm_free_memslot(kvm, memslot, NULL);
494
495         kvfree(slots);
496 }
497
498 static struct kvm *kvm_create_vm(unsigned long type)
499 {
500         int r, i;
501         struct kvm *kvm = kvm_arch_alloc_vm();
502
503         if (!kvm)
504                 return ERR_PTR(-ENOMEM);
505
506         r = kvm_arch_init_vm(kvm, type);
507         if (r)
508                 goto out_err_no_disable;
509
510         r = hardware_enable_all();
511         if (r)
512                 goto out_err_no_disable;
513
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
516 #endif
517
518         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
519
520         r = -ENOMEM;
521         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522                 kvm->memslots[i] = kvm_alloc_memslots();
523                 if (!kvm->memslots[i])
524                         goto out_err_no_srcu;
525         }
526
527         if (init_srcu_struct(&kvm->srcu))
528                 goto out_err_no_srcu;
529         if (init_srcu_struct(&kvm->irq_srcu))
530                 goto out_err_no_irq_srcu;
531         for (i = 0; i < KVM_NR_BUSES; i++) {
532                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
533                                         GFP_KERNEL);
534                 if (!kvm->buses[i])
535                         goto out_err;
536         }
537
538         spin_lock_init(&kvm->mmu_lock);
539         kvm->mm = current->mm;
540         atomic_inc(&kvm->mm->mm_count);
541         kvm_eventfd_init(kvm);
542         mutex_init(&kvm->lock);
543         mutex_init(&kvm->irq_lock);
544         mutex_init(&kvm->slots_lock);
545         atomic_set(&kvm->users_count, 1);
546         INIT_LIST_HEAD(&kvm->devices);
547
548         r = kvm_init_mmu_notifier(kvm);
549         if (r)
550                 goto out_err;
551
552         spin_lock(&kvm_lock);
553         list_add(&kvm->vm_list, &vm_list);
554         spin_unlock(&kvm_lock);
555
556         return kvm;
557
558 out_err:
559         cleanup_srcu_struct(&kvm->irq_srcu);
560 out_err_no_irq_srcu:
561         cleanup_srcu_struct(&kvm->srcu);
562 out_err_no_srcu:
563         hardware_disable_all();
564 out_err_no_disable:
565         for (i = 0; i < KVM_NR_BUSES; i++)
566                 kfree(kvm->buses[i]);
567         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
568                 kvm_free_memslots(kvm, kvm->memslots[i]);
569         kvm_arch_free_vm(kvm);
570         return ERR_PTR(r);
571 }
572
573 /*
574  * Avoid using vmalloc for a small buffer.
575  * Should not be used when the size is statically known.
576  */
577 void *kvm_kvzalloc(unsigned long size)
578 {
579         if (size > PAGE_SIZE)
580                 return vzalloc(size);
581         else
582                 return kzalloc(size, GFP_KERNEL);
583 }
584
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587         struct list_head *node, *tmp;
588
589         list_for_each_safe(node, tmp, &kvm->devices) {
590                 struct kvm_device *dev =
591                         list_entry(node, struct kvm_device, vm_node);
592
593                 list_del(node);
594                 dev->ops->destroy(dev);
595         }
596 }
597
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600         int i;
601         struct mm_struct *mm = kvm->mm;
602
603         kvm_arch_sync_events(kvm);
604         spin_lock(&kvm_lock);
605         list_del(&kvm->vm_list);
606         spin_unlock(&kvm_lock);
607         kvm_free_irq_routing(kvm);
608         for (i = 0; i < KVM_NR_BUSES; i++)
609                 kvm_io_bus_destroy(kvm->buses[i]);
610         kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614         kvm_arch_flush_shadow_all(kvm);
615 #endif
616         kvm_arch_destroy_vm(kvm);
617         kvm_destroy_devices(kvm);
618         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
619                 kvm_free_memslots(kvm, kvm->memslots[i]);
620         cleanup_srcu_struct(&kvm->irq_srcu);
621         cleanup_srcu_struct(&kvm->srcu);
622         kvm_arch_free_vm(kvm);
623         hardware_disable_all();
624         mmdrop(mm);
625 }
626
627 void kvm_get_kvm(struct kvm *kvm)
628 {
629         atomic_inc(&kvm->users_count);
630 }
631 EXPORT_SYMBOL_GPL(kvm_get_kvm);
632
633 void kvm_put_kvm(struct kvm *kvm)
634 {
635         if (atomic_dec_and_test(&kvm->users_count))
636                 kvm_destroy_vm(kvm);
637 }
638 EXPORT_SYMBOL_GPL(kvm_put_kvm);
639
640
641 static int kvm_vm_release(struct inode *inode, struct file *filp)
642 {
643         struct kvm *kvm = filp->private_data;
644
645         kvm_irqfd_release(kvm);
646
647         kvm_put_kvm(kvm);
648         return 0;
649 }
650
651 /*
652  * Allocation size is twice as large as the actual dirty bitmap size.
653  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
654  */
655 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
656 {
657         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
658
659         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
660         if (!memslot->dirty_bitmap)
661                 return -ENOMEM;
662
663         return 0;
664 }
665
666 /*
667  * Insert memslot and re-sort memslots based on their GFN,
668  * so binary search could be used to lookup GFN.
669  * Sorting algorithm takes advantage of having initially
670  * sorted array and known changed memslot position.
671  */
672 static void update_memslots(struct kvm_memslots *slots,
673                             struct kvm_memory_slot *new)
674 {
675         int id = new->id;
676         int i = slots->id_to_index[id];
677         struct kvm_memory_slot *mslots = slots->memslots;
678
679         WARN_ON(mslots[i].id != id);
680         if (!new->npages) {
681                 WARN_ON(!mslots[i].npages);
682                 if (mslots[i].npages)
683                         slots->used_slots--;
684         } else {
685                 if (!mslots[i].npages)
686                         slots->used_slots++;
687         }
688
689         while (i < KVM_MEM_SLOTS_NUM - 1 &&
690                new->base_gfn <= mslots[i + 1].base_gfn) {
691                 if (!mslots[i + 1].npages)
692                         break;
693                 mslots[i] = mslots[i + 1];
694                 slots->id_to_index[mslots[i].id] = i;
695                 i++;
696         }
697
698         /*
699          * The ">=" is needed when creating a slot with base_gfn == 0,
700          * so that it moves before all those with base_gfn == npages == 0.
701          *
702          * On the other hand, if new->npages is zero, the above loop has
703          * already left i pointing to the beginning of the empty part of
704          * mslots, and the ">=" would move the hole backwards in this
705          * case---which is wrong.  So skip the loop when deleting a slot.
706          */
707         if (new->npages) {
708                 while (i > 0 &&
709                        new->base_gfn >= mslots[i - 1].base_gfn) {
710                         mslots[i] = mslots[i - 1];
711                         slots->id_to_index[mslots[i].id] = i;
712                         i--;
713                 }
714         } else
715                 WARN_ON_ONCE(i != slots->used_slots);
716
717         mslots[i] = *new;
718         slots->id_to_index[mslots[i].id] = i;
719 }
720
721 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
722 {
723         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
724
725 #ifdef __KVM_HAVE_READONLY_MEM
726         valid_flags |= KVM_MEM_READONLY;
727 #endif
728
729         if (mem->flags & ~valid_flags)
730                 return -EINVAL;
731
732         return 0;
733 }
734
735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
736                 int as_id, struct kvm_memslots *slots)
737 {
738         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
739
740         /*
741          * Set the low bit in the generation, which disables SPTE caching
742          * until the end of synchronize_srcu_expedited.
743          */
744         WARN_ON(old_memslots->generation & 1);
745         slots->generation = old_memslots->generation + 1;
746
747         rcu_assign_pointer(kvm->memslots[as_id], slots);
748         synchronize_srcu_expedited(&kvm->srcu);
749
750         /*
751          * Increment the new memslot generation a second time. This prevents
752          * vm exits that race with memslot updates from caching a memslot
753          * generation that will (potentially) be valid forever.
754          */
755         slots->generation++;
756
757         kvm_arch_memslots_updated(kvm, slots);
758
759         return old_memslots;
760 }
761
762 /*
763  * Allocate some memory and give it an address in the guest physical address
764  * space.
765  *
766  * Discontiguous memory is allowed, mostly for framebuffers.
767  *
768  * Must be called holding kvm->slots_lock for write.
769  */
770 int __kvm_set_memory_region(struct kvm *kvm,
771                             const struct kvm_userspace_memory_region *mem)
772 {
773         int r;
774         gfn_t base_gfn;
775         unsigned long npages;
776         struct kvm_memory_slot *slot;
777         struct kvm_memory_slot old, new;
778         struct kvm_memslots *slots = NULL, *old_memslots;
779         int as_id, id;
780         enum kvm_mr_change change;
781
782         r = check_memory_region_flags(mem);
783         if (r)
784                 goto out;
785
786         r = -EINVAL;
787         as_id = mem->slot >> 16;
788         id = (u16)mem->slot;
789
790         /* General sanity checks */
791         if (mem->memory_size & (PAGE_SIZE - 1))
792                 goto out;
793         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
794                 goto out;
795         /* We can read the guest memory with __xxx_user() later on. */
796         if ((id < KVM_USER_MEM_SLOTS) &&
797             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
798              !access_ok(VERIFY_WRITE,
799                         (void __user *)(unsigned long)mem->userspace_addr,
800                         mem->memory_size)))
801                 goto out;
802         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
803                 goto out;
804         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
805                 goto out;
806
807         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
808         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
809         npages = mem->memory_size >> PAGE_SHIFT;
810
811         if (npages > KVM_MEM_MAX_NR_PAGES)
812                 goto out;
813
814         new = old = *slot;
815
816         new.id = id;
817         new.base_gfn = base_gfn;
818         new.npages = npages;
819         new.flags = mem->flags;
820
821         if (npages) {
822                 if (!old.npages)
823                         change = KVM_MR_CREATE;
824                 else { /* Modify an existing slot. */
825                         if ((mem->userspace_addr != old.userspace_addr) ||
826                             (npages != old.npages) ||
827                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
828                                 goto out;
829
830                         if (base_gfn != old.base_gfn)
831                                 change = KVM_MR_MOVE;
832                         else if (new.flags != old.flags)
833                                 change = KVM_MR_FLAGS_ONLY;
834                         else { /* Nothing to change. */
835                                 r = 0;
836                                 goto out;
837                         }
838                 }
839         } else {
840                 if (!old.npages)
841                         goto out;
842
843                 change = KVM_MR_DELETE;
844                 new.base_gfn = 0;
845                 new.flags = 0;
846         }
847
848         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
849                 /* Check for overlaps */
850                 r = -EEXIST;
851                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
852                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
853                             (slot->id == id))
854                                 continue;
855                         if (!((base_gfn + npages <= slot->base_gfn) ||
856                               (base_gfn >= slot->base_gfn + slot->npages)))
857                                 goto out;
858                 }
859         }
860
861         /* Free page dirty bitmap if unneeded */
862         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
863                 new.dirty_bitmap = NULL;
864
865         r = -ENOMEM;
866         if (change == KVM_MR_CREATE) {
867                 new.userspace_addr = mem->userspace_addr;
868
869                 if (kvm_arch_create_memslot(kvm, &new, npages))
870                         goto out_free;
871         }
872
873         /* Allocate page dirty bitmap if needed */
874         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
875                 if (kvm_create_dirty_bitmap(&new) < 0)
876                         goto out_free;
877         }
878
879         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
880         if (!slots)
881                 goto out_free;
882         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
883
884         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
885                 slot = id_to_memslot(slots, id);
886                 slot->flags |= KVM_MEMSLOT_INVALID;
887
888                 old_memslots = install_new_memslots(kvm, as_id, slots);
889
890                 /* slot was deleted or moved, clear iommu mapping */
891                 kvm_iommu_unmap_pages(kvm, &old);
892                 /* From this point no new shadow pages pointing to a deleted,
893                  * or moved, memslot will be created.
894                  *
895                  * validation of sp->gfn happens in:
896                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
897                  *      - kvm_is_visible_gfn (mmu_check_roots)
898                  */
899                 kvm_arch_flush_shadow_memslot(kvm, slot);
900
901                 /*
902                  * We can re-use the old_memslots from above, the only difference
903                  * from the currently installed memslots is the invalid flag.  This
904                  * will get overwritten by update_memslots anyway.
905                  */
906                 slots = old_memslots;
907         }
908
909         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
910         if (r)
911                 goto out_slots;
912
913         /* actual memory is freed via old in kvm_free_memslot below */
914         if (change == KVM_MR_DELETE) {
915                 new.dirty_bitmap = NULL;
916                 memset(&new.arch, 0, sizeof(new.arch));
917         }
918
919         update_memslots(slots, &new);
920         old_memslots = install_new_memslots(kvm, as_id, slots);
921
922         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
923
924         kvm_free_memslot(kvm, &old, &new);
925         kvfree(old_memslots);
926
927         /*
928          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
929          * un-mapped and re-mapped if their base changes.  Since base change
930          * unmapping is handled above with slot deletion, mapping alone is
931          * needed here.  Anything else the iommu might care about for existing
932          * slots (size changes, userspace addr changes and read-only flag
933          * changes) is disallowed above, so any other attribute changes getting
934          * here can be skipped.
935          */
936         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
937                 r = kvm_iommu_map_pages(kvm, &new);
938                 return r;
939         }
940
941         return 0;
942
943 out_slots:
944         kvfree(slots);
945 out_free:
946         kvm_free_memslot(kvm, &new, &old);
947 out:
948         return r;
949 }
950 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
951
952 int kvm_set_memory_region(struct kvm *kvm,
953                           const struct kvm_userspace_memory_region *mem)
954 {
955         int r;
956
957         mutex_lock(&kvm->slots_lock);
958         r = __kvm_set_memory_region(kvm, mem);
959         mutex_unlock(&kvm->slots_lock);
960         return r;
961 }
962 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
963
964 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
965                                           struct kvm_userspace_memory_region *mem)
966 {
967         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
968                 return -EINVAL;
969
970         return kvm_set_memory_region(kvm, mem);
971 }
972
973 int kvm_get_dirty_log(struct kvm *kvm,
974                         struct kvm_dirty_log *log, int *is_dirty)
975 {
976         struct kvm_memslots *slots;
977         struct kvm_memory_slot *memslot;
978         int r, i, as_id, id;
979         unsigned long n;
980         unsigned long any = 0;
981
982         r = -EINVAL;
983         as_id = log->slot >> 16;
984         id = (u16)log->slot;
985         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
986                 goto out;
987
988         slots = __kvm_memslots(kvm, as_id);
989         memslot = id_to_memslot(slots, id);
990         r = -ENOENT;
991         if (!memslot->dirty_bitmap)
992                 goto out;
993
994         n = kvm_dirty_bitmap_bytes(memslot);
995
996         for (i = 0; !any && i < n/sizeof(long); ++i)
997                 any = memslot->dirty_bitmap[i];
998
999         r = -EFAULT;
1000         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1001                 goto out;
1002
1003         if (any)
1004                 *is_dirty = 1;
1005
1006         r = 0;
1007 out:
1008         return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1011
1012 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1013 /**
1014  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1015  *      are dirty write protect them for next write.
1016  * @kvm:        pointer to kvm instance
1017  * @log:        slot id and address to which we copy the log
1018  * @is_dirty:   flag set if any page is dirty
1019  *
1020  * We need to keep it in mind that VCPU threads can write to the bitmap
1021  * concurrently. So, to avoid losing track of dirty pages we keep the
1022  * following order:
1023  *
1024  *    1. Take a snapshot of the bit and clear it if needed.
1025  *    2. Write protect the corresponding page.
1026  *    3. Copy the snapshot to the userspace.
1027  *    4. Upon return caller flushes TLB's if needed.
1028  *
1029  * Between 2 and 4, the guest may write to the page using the remaining TLB
1030  * entry.  This is not a problem because the page is reported dirty using
1031  * the snapshot taken before and step 4 ensures that writes done after
1032  * exiting to userspace will be logged for the next call.
1033  *
1034  */
1035 int kvm_get_dirty_log_protect(struct kvm *kvm,
1036                         struct kvm_dirty_log *log, bool *is_dirty)
1037 {
1038         struct kvm_memslots *slots;
1039         struct kvm_memory_slot *memslot;
1040         int r, i, as_id, id;
1041         unsigned long n;
1042         unsigned long *dirty_bitmap;
1043         unsigned long *dirty_bitmap_buffer;
1044
1045         r = -EINVAL;
1046         as_id = log->slot >> 16;
1047         id = (u16)log->slot;
1048         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1049                 goto out;
1050
1051         slots = __kvm_memslots(kvm, as_id);
1052         memslot = id_to_memslot(slots, id);
1053
1054         dirty_bitmap = memslot->dirty_bitmap;
1055         r = -ENOENT;
1056         if (!dirty_bitmap)
1057                 goto out;
1058
1059         n = kvm_dirty_bitmap_bytes(memslot);
1060
1061         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1062         memset(dirty_bitmap_buffer, 0, n);
1063
1064         spin_lock(&kvm->mmu_lock);
1065         *is_dirty = false;
1066         for (i = 0; i < n / sizeof(long); i++) {
1067                 unsigned long mask;
1068                 gfn_t offset;
1069
1070                 if (!dirty_bitmap[i])
1071                         continue;
1072
1073                 *is_dirty = true;
1074
1075                 mask = xchg(&dirty_bitmap[i], 0);
1076                 dirty_bitmap_buffer[i] = mask;
1077
1078                 if (mask) {
1079                         offset = i * BITS_PER_LONG;
1080                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1081                                                                 offset, mask);
1082                 }
1083         }
1084
1085         spin_unlock(&kvm->mmu_lock);
1086
1087         r = -EFAULT;
1088         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1089                 goto out;
1090
1091         r = 0;
1092 out:
1093         return r;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1096 #endif
1097
1098 bool kvm_largepages_enabled(void)
1099 {
1100         return largepages_enabled;
1101 }
1102
1103 void kvm_disable_largepages(void)
1104 {
1105         largepages_enabled = false;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1108
1109 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1110 {
1111         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1112 }
1113 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1114
1115 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1116 {
1117         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1118 }
1119
1120 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1121 {
1122         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1123
1124         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1125               memslot->flags & KVM_MEMSLOT_INVALID)
1126                 return 0;
1127
1128         return 1;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1131
1132 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1133 {
1134         struct vm_area_struct *vma;
1135         unsigned long addr, size;
1136
1137         size = PAGE_SIZE;
1138
1139         addr = gfn_to_hva(kvm, gfn);
1140         if (kvm_is_error_hva(addr))
1141                 return PAGE_SIZE;
1142
1143         down_read(&current->mm->mmap_sem);
1144         vma = find_vma(current->mm, addr);
1145         if (!vma)
1146                 goto out;
1147
1148         size = vma_kernel_pagesize(vma);
1149
1150 out:
1151         up_read(&current->mm->mmap_sem);
1152
1153         return size;
1154 }
1155
1156 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1157 {
1158         return slot->flags & KVM_MEM_READONLY;
1159 }
1160
1161 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1162                                        gfn_t *nr_pages, bool write)
1163 {
1164         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1165                 return KVM_HVA_ERR_BAD;
1166
1167         if (memslot_is_readonly(slot) && write)
1168                 return KVM_HVA_ERR_RO_BAD;
1169
1170         if (nr_pages)
1171                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1172
1173         return __gfn_to_hva_memslot(slot, gfn);
1174 }
1175
1176 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1177                                      gfn_t *nr_pages)
1178 {
1179         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1180 }
1181
1182 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1183                                         gfn_t gfn)
1184 {
1185         return gfn_to_hva_many(slot, gfn, NULL);
1186 }
1187 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1188
1189 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1190 {
1191         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1192 }
1193 EXPORT_SYMBOL_GPL(gfn_to_hva);
1194
1195 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1196 {
1197         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1200
1201 /*
1202  * If writable is set to false, the hva returned by this function is only
1203  * allowed to be read.
1204  */
1205 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1206                                       gfn_t gfn, bool *writable)
1207 {
1208         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1209
1210         if (!kvm_is_error_hva(hva) && writable)
1211                 *writable = !memslot_is_readonly(slot);
1212
1213         return hva;
1214 }
1215
1216 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1217 {
1218         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1219
1220         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1221 }
1222
1223 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1224 {
1225         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1226
1227         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1228 }
1229
1230 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1231         unsigned long start, int write, struct page **page)
1232 {
1233         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1234
1235         if (write)
1236                 flags |= FOLL_WRITE;
1237
1238         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1239 }
1240
1241 static inline int check_user_page_hwpoison(unsigned long addr)
1242 {
1243         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1244
1245         rc = __get_user_pages(current, current->mm, addr, 1,
1246                               flags, NULL, NULL, NULL);
1247         return rc == -EHWPOISON;
1248 }
1249
1250 /*
1251  * The atomic path to get the writable pfn which will be stored in @pfn,
1252  * true indicates success, otherwise false is returned.
1253  */
1254 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1255                             bool write_fault, bool *writable, pfn_t *pfn)
1256 {
1257         struct page *page[1];
1258         int npages;
1259
1260         if (!(async || atomic))
1261                 return false;
1262
1263         /*
1264          * Fast pin a writable pfn only if it is a write fault request
1265          * or the caller allows to map a writable pfn for a read fault
1266          * request.
1267          */
1268         if (!(write_fault || writable))
1269                 return false;
1270
1271         npages = __get_user_pages_fast(addr, 1, 1, page);
1272         if (npages == 1) {
1273                 *pfn = page_to_pfn(page[0]);
1274
1275                 if (writable)
1276                         *writable = true;
1277                 return true;
1278         }
1279
1280         return false;
1281 }
1282
1283 /*
1284  * The slow path to get the pfn of the specified host virtual address,
1285  * 1 indicates success, -errno is returned if error is detected.
1286  */
1287 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1288                            bool *writable, pfn_t *pfn)
1289 {
1290         struct page *page[1];
1291         int npages = 0;
1292
1293         might_sleep();
1294
1295         if (writable)
1296                 *writable = write_fault;
1297
1298         if (async) {
1299                 down_read(&current->mm->mmap_sem);
1300                 npages = get_user_page_nowait(current, current->mm,
1301                                               addr, write_fault, page);
1302                 up_read(&current->mm->mmap_sem);
1303         } else
1304                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1305                                                    write_fault, 0, page,
1306                                                    FOLL_TOUCH|FOLL_HWPOISON);
1307         if (npages != 1)
1308                 return npages;
1309
1310         /* map read fault as writable if possible */
1311         if (unlikely(!write_fault) && writable) {
1312                 struct page *wpage[1];
1313
1314                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1315                 if (npages == 1) {
1316                         *writable = true;
1317                         put_page(page[0]);
1318                         page[0] = wpage[0];
1319                 }
1320
1321                 npages = 1;
1322         }
1323         *pfn = page_to_pfn(page[0]);
1324         return npages;
1325 }
1326
1327 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1328 {
1329         if (unlikely(!(vma->vm_flags & VM_READ)))
1330                 return false;
1331
1332         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1333                 return false;
1334
1335         return true;
1336 }
1337
1338 /*
1339  * Pin guest page in memory and return its pfn.
1340  * @addr: host virtual address which maps memory to the guest
1341  * @atomic: whether this function can sleep
1342  * @async: whether this function need to wait IO complete if the
1343  *         host page is not in the memory
1344  * @write_fault: whether we should get a writable host page
1345  * @writable: whether it allows to map a writable host page for !@write_fault
1346  *
1347  * The function will map a writable host page for these two cases:
1348  * 1): @write_fault = true
1349  * 2): @write_fault = false && @writable, @writable will tell the caller
1350  *     whether the mapping is writable.
1351  */
1352 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1353                         bool write_fault, bool *writable)
1354 {
1355         struct vm_area_struct *vma;
1356         pfn_t pfn = 0;
1357         int npages;
1358
1359         /* we can do it either atomically or asynchronously, not both */
1360         BUG_ON(atomic && async);
1361
1362         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1363                 return pfn;
1364
1365         if (atomic)
1366                 return KVM_PFN_ERR_FAULT;
1367
1368         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1369         if (npages == 1)
1370                 return pfn;
1371
1372         down_read(&current->mm->mmap_sem);
1373         if (npages == -EHWPOISON ||
1374               (!async && check_user_page_hwpoison(addr))) {
1375                 pfn = KVM_PFN_ERR_HWPOISON;
1376                 goto exit;
1377         }
1378
1379         vma = find_vma_intersection(current->mm, addr, addr + 1);
1380
1381         if (vma == NULL)
1382                 pfn = KVM_PFN_ERR_FAULT;
1383         else if ((vma->vm_flags & VM_PFNMAP)) {
1384                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1385                         vma->vm_pgoff;
1386                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1387         } else {
1388                 if (async && vma_is_valid(vma, write_fault))
1389                         *async = true;
1390                 pfn = KVM_PFN_ERR_FAULT;
1391         }
1392 exit:
1393         up_read(&current->mm->mmap_sem);
1394         return pfn;
1395 }
1396
1397 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1398                            bool *async, bool write_fault, bool *writable)
1399 {
1400         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1401
1402         if (addr == KVM_HVA_ERR_RO_BAD)
1403                 return KVM_PFN_ERR_RO_FAULT;
1404
1405         if (kvm_is_error_hva(addr))
1406                 return KVM_PFN_NOSLOT;
1407
1408         /* Do not map writable pfn in the readonly memslot. */
1409         if (writable && memslot_is_readonly(slot)) {
1410                 *writable = false;
1411                 writable = NULL;
1412         }
1413
1414         return hva_to_pfn(addr, atomic, async, write_fault,
1415                           writable);
1416 }
1417 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1418
1419 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1420                       bool *writable)
1421 {
1422         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1423                                     write_fault, writable);
1424 }
1425 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1426
1427 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1428 {
1429         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1430 }
1431 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1432
1433 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1434 {
1435         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1436 }
1437 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1438
1439 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1440 {
1441         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1442 }
1443 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1444
1445 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1446 {
1447         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1450
1451 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1452 {
1453         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1454 }
1455 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1456
1457 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1458 {
1459         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1462
1463 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1464                             struct page **pages, int nr_pages)
1465 {
1466         unsigned long addr;
1467         gfn_t entry;
1468
1469         addr = gfn_to_hva_many(slot, gfn, &entry);
1470         if (kvm_is_error_hva(addr))
1471                 return -1;
1472
1473         if (entry < nr_pages)
1474                 return 0;
1475
1476         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1479
1480 static struct page *kvm_pfn_to_page(pfn_t pfn)
1481 {
1482         if (is_error_noslot_pfn(pfn))
1483                 return KVM_ERR_PTR_BAD_PAGE;
1484
1485         if (kvm_is_reserved_pfn(pfn)) {
1486                 WARN_ON(1);
1487                 return KVM_ERR_PTR_BAD_PAGE;
1488         }
1489
1490         return pfn_to_page(pfn);
1491 }
1492
1493 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1494 {
1495         pfn_t pfn;
1496
1497         pfn = gfn_to_pfn(kvm, gfn);
1498
1499         return kvm_pfn_to_page(pfn);
1500 }
1501 EXPORT_SYMBOL_GPL(gfn_to_page);
1502
1503 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1504 {
1505         pfn_t pfn;
1506
1507         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1508
1509         return kvm_pfn_to_page(pfn);
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1512
1513 void kvm_release_page_clean(struct page *page)
1514 {
1515         WARN_ON(is_error_page(page));
1516
1517         kvm_release_pfn_clean(page_to_pfn(page));
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1520
1521 void kvm_release_pfn_clean(pfn_t pfn)
1522 {
1523         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1524                 put_page(pfn_to_page(pfn));
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1527
1528 void kvm_release_page_dirty(struct page *page)
1529 {
1530         WARN_ON(is_error_page(page));
1531
1532         kvm_release_pfn_dirty(page_to_pfn(page));
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1535
1536 static void kvm_release_pfn_dirty(pfn_t pfn)
1537 {
1538         kvm_set_pfn_dirty(pfn);
1539         kvm_release_pfn_clean(pfn);
1540 }
1541
1542 void kvm_set_pfn_dirty(pfn_t pfn)
1543 {
1544         if (!kvm_is_reserved_pfn(pfn)) {
1545                 struct page *page = pfn_to_page(pfn);
1546
1547                 if (!PageReserved(page))
1548                         SetPageDirty(page);
1549         }
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1552
1553 void kvm_set_pfn_accessed(pfn_t pfn)
1554 {
1555         if (!kvm_is_reserved_pfn(pfn))
1556                 mark_page_accessed(pfn_to_page(pfn));
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1559
1560 void kvm_get_pfn(pfn_t pfn)
1561 {
1562         if (!kvm_is_reserved_pfn(pfn))
1563                 get_page(pfn_to_page(pfn));
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1566
1567 static int next_segment(unsigned long len, int offset)
1568 {
1569         if (len > PAGE_SIZE - offset)
1570                 return PAGE_SIZE - offset;
1571         else
1572                 return len;
1573 }
1574
1575 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1576                                  void *data, int offset, int len)
1577 {
1578         int r;
1579         unsigned long addr;
1580
1581         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1582         if (kvm_is_error_hva(addr))
1583                 return -EFAULT;
1584         r = __copy_from_user(data, (void __user *)addr + offset, len);
1585         if (r)
1586                 return -EFAULT;
1587         return 0;
1588 }
1589
1590 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1591                         int len)
1592 {
1593         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1594
1595         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1598
1599 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1600                              int offset, int len)
1601 {
1602         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1603
1604         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1607
1608 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1609 {
1610         gfn_t gfn = gpa >> PAGE_SHIFT;
1611         int seg;
1612         int offset = offset_in_page(gpa);
1613         int ret;
1614
1615         while ((seg = next_segment(len, offset)) != 0) {
1616                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1617                 if (ret < 0)
1618                         return ret;
1619                 offset = 0;
1620                 len -= seg;
1621                 data += seg;
1622                 ++gfn;
1623         }
1624         return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_read_guest);
1627
1628 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1629 {
1630         gfn_t gfn = gpa >> PAGE_SHIFT;
1631         int seg;
1632         int offset = offset_in_page(gpa);
1633         int ret;
1634
1635         while ((seg = next_segment(len, offset)) != 0) {
1636                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1637                 if (ret < 0)
1638                         return ret;
1639                 offset = 0;
1640                 len -= seg;
1641                 data += seg;
1642                 ++gfn;
1643         }
1644         return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1647
1648 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1649                                    void *data, int offset, unsigned long len)
1650 {
1651         int r;
1652         unsigned long addr;
1653
1654         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1655         if (kvm_is_error_hva(addr))
1656                 return -EFAULT;
1657         pagefault_disable();
1658         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1659         pagefault_enable();
1660         if (r)
1661                 return -EFAULT;
1662         return 0;
1663 }
1664
1665 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1666                           unsigned long len)
1667 {
1668         gfn_t gfn = gpa >> PAGE_SHIFT;
1669         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1670         int offset = offset_in_page(gpa);
1671
1672         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1675
1676 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1677                                void *data, unsigned long len)
1678 {
1679         gfn_t gfn = gpa >> PAGE_SHIFT;
1680         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1681         int offset = offset_in_page(gpa);
1682
1683         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1686
1687 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1688                                   const void *data, int offset, int len)
1689 {
1690         int r;
1691         unsigned long addr;
1692
1693         addr = gfn_to_hva_memslot(memslot, gfn);
1694         if (kvm_is_error_hva(addr))
1695                 return -EFAULT;
1696         r = __copy_to_user((void __user *)addr + offset, data, len);
1697         if (r)
1698                 return -EFAULT;
1699         mark_page_dirty_in_slot(memslot, gfn);
1700         return 0;
1701 }
1702
1703 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1704                          const void *data, int offset, int len)
1705 {
1706         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1707
1708         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1711
1712 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1713                               const void *data, int offset, int len)
1714 {
1715         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716
1717         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1720
1721 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1722                     unsigned long len)
1723 {
1724         gfn_t gfn = gpa >> PAGE_SHIFT;
1725         int seg;
1726         int offset = offset_in_page(gpa);
1727         int ret;
1728
1729         while ((seg = next_segment(len, offset)) != 0) {
1730                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1731                 if (ret < 0)
1732                         return ret;
1733                 offset = 0;
1734                 len -= seg;
1735                 data += seg;
1736                 ++gfn;
1737         }
1738         return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_write_guest);
1741
1742 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1743                          unsigned long len)
1744 {
1745         gfn_t gfn = gpa >> PAGE_SHIFT;
1746         int seg;
1747         int offset = offset_in_page(gpa);
1748         int ret;
1749
1750         while ((seg = next_segment(len, offset)) != 0) {
1751                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1752                 if (ret < 0)
1753                         return ret;
1754                 offset = 0;
1755                 len -= seg;
1756                 data += seg;
1757                 ++gfn;
1758         }
1759         return 0;
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1762
1763 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1764                               gpa_t gpa, unsigned long len)
1765 {
1766         struct kvm_memslots *slots = kvm_memslots(kvm);
1767         int offset = offset_in_page(gpa);
1768         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1769         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1770         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1771         gfn_t nr_pages_avail;
1772
1773         ghc->gpa = gpa;
1774         ghc->generation = slots->generation;
1775         ghc->len = len;
1776         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1777         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1778         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1779                 ghc->hva += offset;
1780         } else {
1781                 /*
1782                  * If the requested region crosses two memslots, we still
1783                  * verify that the entire region is valid here.
1784                  */
1785                 while (start_gfn <= end_gfn) {
1786                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1787                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1788                                                    &nr_pages_avail);
1789                         if (kvm_is_error_hva(ghc->hva))
1790                                 return -EFAULT;
1791                         start_gfn += nr_pages_avail;
1792                 }
1793                 /* Use the slow path for cross page reads and writes. */
1794                 ghc->memslot = NULL;
1795         }
1796         return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1799
1800 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1801                            void *data, unsigned long len)
1802 {
1803         struct kvm_memslots *slots = kvm_memslots(kvm);
1804         int r;
1805
1806         BUG_ON(len > ghc->len);
1807
1808         if (slots->generation != ghc->generation)
1809                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1810
1811         if (unlikely(!ghc->memslot))
1812                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1813
1814         if (kvm_is_error_hva(ghc->hva))
1815                 return -EFAULT;
1816
1817         r = __copy_to_user((void __user *)ghc->hva, data, len);
1818         if (r)
1819                 return -EFAULT;
1820         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1821
1822         return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1825
1826 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1827                            void *data, unsigned long len)
1828 {
1829         struct kvm_memslots *slots = kvm_memslots(kvm);
1830         int r;
1831
1832         BUG_ON(len > ghc->len);
1833
1834         if (slots->generation != ghc->generation)
1835                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1836
1837         if (unlikely(!ghc->memslot))
1838                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1839
1840         if (kvm_is_error_hva(ghc->hva))
1841                 return -EFAULT;
1842
1843         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1844         if (r)
1845                 return -EFAULT;
1846
1847         return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1850
1851 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1852 {
1853         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1854
1855         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1858
1859 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1860 {
1861         gfn_t gfn = gpa >> PAGE_SHIFT;
1862         int seg;
1863         int offset = offset_in_page(gpa);
1864         int ret;
1865
1866         while ((seg = next_segment(len, offset)) != 0) {
1867                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1868                 if (ret < 0)
1869                         return ret;
1870                 offset = 0;
1871                 len -= seg;
1872                 ++gfn;
1873         }
1874         return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1877
1878 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1879                                     gfn_t gfn)
1880 {
1881         if (memslot && memslot->dirty_bitmap) {
1882                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1883
1884                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1885         }
1886 }
1887
1888 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1889 {
1890         struct kvm_memory_slot *memslot;
1891
1892         memslot = gfn_to_memslot(kvm, gfn);
1893         mark_page_dirty_in_slot(memslot, gfn);
1894 }
1895 EXPORT_SYMBOL_GPL(mark_page_dirty);
1896
1897 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1898 {
1899         struct kvm_memory_slot *memslot;
1900
1901         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1902         mark_page_dirty_in_slot(memslot, gfn);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1905
1906 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1907 {
1908         if (kvm_arch_vcpu_runnable(vcpu)) {
1909                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1910                 return -EINTR;
1911         }
1912         if (kvm_cpu_has_pending_timer(vcpu))
1913                 return -EINTR;
1914         if (signal_pending(current))
1915                 return -EINTR;
1916
1917         return 0;
1918 }
1919
1920 /*
1921  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1922  */
1923 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1924 {
1925         ktime_t start, cur;
1926         DEFINE_WAIT(wait);
1927         bool waited = false;
1928
1929         start = cur = ktime_get();
1930         if (halt_poll_ns) {
1931                 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1932
1933                 do {
1934                         /*
1935                          * This sets KVM_REQ_UNHALT if an interrupt
1936                          * arrives.
1937                          */
1938                         if (kvm_vcpu_check_block(vcpu) < 0) {
1939                                 ++vcpu->stat.halt_successful_poll;
1940                                 goto out;
1941                         }
1942                         cur = ktime_get();
1943                 } while (single_task_running() && ktime_before(cur, stop));
1944         }
1945
1946         for (;;) {
1947                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1948
1949                 if (kvm_vcpu_check_block(vcpu) < 0)
1950                         break;
1951
1952                 waited = true;
1953                 schedule();
1954         }
1955
1956         finish_wait(&vcpu->wq, &wait);
1957         cur = ktime_get();
1958
1959 out:
1960         trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1963
1964 #ifndef CONFIG_S390
1965 /*
1966  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1967  */
1968 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1969 {
1970         int me;
1971         int cpu = vcpu->cpu;
1972         wait_queue_head_t *wqp;
1973
1974         wqp = kvm_arch_vcpu_wq(vcpu);
1975         if (waitqueue_active(wqp)) {
1976                 wake_up_interruptible(wqp);
1977                 ++vcpu->stat.halt_wakeup;
1978         }
1979
1980         me = get_cpu();
1981         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1982                 if (kvm_arch_vcpu_should_kick(vcpu))
1983                         smp_send_reschedule(cpu);
1984         put_cpu();
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1987 #endif /* !CONFIG_S390 */
1988
1989 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1990 {
1991         struct pid *pid;
1992         struct task_struct *task = NULL;
1993         int ret = 0;
1994
1995         rcu_read_lock();
1996         pid = rcu_dereference(target->pid);
1997         if (pid)
1998                 task = get_pid_task(pid, PIDTYPE_PID);
1999         rcu_read_unlock();
2000         if (!task)
2001                 return ret;
2002         ret = yield_to(task, 1);
2003         put_task_struct(task);
2004
2005         return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2008
2009 /*
2010  * Helper that checks whether a VCPU is eligible for directed yield.
2011  * Most eligible candidate to yield is decided by following heuristics:
2012  *
2013  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2014  *  (preempted lock holder), indicated by @in_spin_loop.
2015  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2016  *
2017  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2018  *  chance last time (mostly it has become eligible now since we have probably
2019  *  yielded to lockholder in last iteration. This is done by toggling
2020  *  @dy_eligible each time a VCPU checked for eligibility.)
2021  *
2022  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2023  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2024  *  burning. Giving priority for a potential lock-holder increases lock
2025  *  progress.
2026  *
2027  *  Since algorithm is based on heuristics, accessing another VCPU data without
2028  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2029  *  and continue with next VCPU and so on.
2030  */
2031 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2032 {
2033 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2034         bool eligible;
2035
2036         eligible = !vcpu->spin_loop.in_spin_loop ||
2037                     vcpu->spin_loop.dy_eligible;
2038
2039         if (vcpu->spin_loop.in_spin_loop)
2040                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2041
2042         return eligible;
2043 #else
2044         return true;
2045 #endif
2046 }
2047
2048 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2049 {
2050         struct kvm *kvm = me->kvm;
2051         struct kvm_vcpu *vcpu;
2052         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2053         int yielded = 0;
2054         int try = 3;
2055         int pass;
2056         int i;
2057
2058         kvm_vcpu_set_in_spin_loop(me, true);
2059         /*
2060          * We boost the priority of a VCPU that is runnable but not
2061          * currently running, because it got preempted by something
2062          * else and called schedule in __vcpu_run.  Hopefully that
2063          * VCPU is holding the lock that we need and will release it.
2064          * We approximate round-robin by starting at the last boosted VCPU.
2065          */
2066         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2067                 kvm_for_each_vcpu(i, vcpu, kvm) {
2068                         if (!pass && i <= last_boosted_vcpu) {
2069                                 i = last_boosted_vcpu;
2070                                 continue;
2071                         } else if (pass && i > last_boosted_vcpu)
2072                                 break;
2073                         if (!ACCESS_ONCE(vcpu->preempted))
2074                                 continue;
2075                         if (vcpu == me)
2076                                 continue;
2077                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2078                                 continue;
2079                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2080                                 continue;
2081
2082                         yielded = kvm_vcpu_yield_to(vcpu);
2083                         if (yielded > 0) {
2084                                 kvm->last_boosted_vcpu = i;
2085                                 break;
2086                         } else if (yielded < 0) {
2087                                 try--;
2088                                 if (!try)
2089                                         break;
2090                         }
2091                 }
2092         }
2093         kvm_vcpu_set_in_spin_loop(me, false);
2094
2095         /* Ensure vcpu is not eligible during next spinloop */
2096         kvm_vcpu_set_dy_eligible(me, false);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2099
2100 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101 {
2102         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2103         struct page *page;
2104
2105         if (vmf->pgoff == 0)
2106                 page = virt_to_page(vcpu->run);
2107 #ifdef CONFIG_X86
2108         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2109                 page = virt_to_page(vcpu->arch.pio_data);
2110 #endif
2111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2112         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2113                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2114 #endif
2115         else
2116                 return kvm_arch_vcpu_fault(vcpu, vmf);
2117         get_page(page);
2118         vmf->page = page;
2119         return 0;
2120 }
2121
2122 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2123         .fault = kvm_vcpu_fault,
2124 };
2125
2126 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2127 {
2128         vma->vm_ops = &kvm_vcpu_vm_ops;
2129         return 0;
2130 }
2131
2132 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2133 {
2134         struct kvm_vcpu *vcpu = filp->private_data;
2135
2136         kvm_put_kvm(vcpu->kvm);
2137         return 0;
2138 }
2139
2140 static struct file_operations kvm_vcpu_fops = {
2141         .release        = kvm_vcpu_release,
2142         .unlocked_ioctl = kvm_vcpu_ioctl,
2143 #ifdef CONFIG_KVM_COMPAT
2144         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2145 #endif
2146         .mmap           = kvm_vcpu_mmap,
2147         .llseek         = noop_llseek,
2148 };
2149
2150 /*
2151  * Allocates an inode for the vcpu.
2152  */
2153 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2154 {
2155         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2156 }
2157
2158 /*
2159  * Creates some virtual cpus.  Good luck creating more than one.
2160  */
2161 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2162 {
2163         int r;
2164         struct kvm_vcpu *vcpu, *v;
2165
2166         if (id >= KVM_MAX_VCPUS)
2167                 return -EINVAL;
2168
2169         vcpu = kvm_arch_vcpu_create(kvm, id);
2170         if (IS_ERR(vcpu))
2171                 return PTR_ERR(vcpu);
2172
2173         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2174
2175         r = kvm_arch_vcpu_setup(vcpu);
2176         if (r)
2177                 goto vcpu_destroy;
2178
2179         mutex_lock(&kvm->lock);
2180         if (!kvm_vcpu_compatible(vcpu)) {
2181                 r = -EINVAL;
2182                 goto unlock_vcpu_destroy;
2183         }
2184         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2185                 r = -EINVAL;
2186                 goto unlock_vcpu_destroy;
2187         }
2188
2189         kvm_for_each_vcpu(r, v, kvm)
2190                 if (v->vcpu_id == id) {
2191                         r = -EEXIST;
2192                         goto unlock_vcpu_destroy;
2193                 }
2194
2195         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2196
2197         /* Now it's all set up, let userspace reach it */
2198         kvm_get_kvm(kvm);
2199         r = create_vcpu_fd(vcpu);
2200         if (r < 0) {
2201                 kvm_put_kvm(kvm);
2202                 goto unlock_vcpu_destroy;
2203         }
2204
2205         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2206         smp_wmb();
2207         atomic_inc(&kvm->online_vcpus);
2208
2209         mutex_unlock(&kvm->lock);
2210         kvm_arch_vcpu_postcreate(vcpu);
2211         return r;
2212
2213 unlock_vcpu_destroy:
2214         mutex_unlock(&kvm->lock);
2215 vcpu_destroy:
2216         kvm_arch_vcpu_destroy(vcpu);
2217         return r;
2218 }
2219
2220 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2221 {
2222         if (sigset) {
2223                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2224                 vcpu->sigset_active = 1;
2225                 vcpu->sigset = *sigset;
2226         } else
2227                 vcpu->sigset_active = 0;
2228         return 0;
2229 }
2230
2231 static long kvm_vcpu_ioctl(struct file *filp,
2232                            unsigned int ioctl, unsigned long arg)
2233 {
2234         struct kvm_vcpu *vcpu = filp->private_data;
2235         void __user *argp = (void __user *)arg;
2236         int r;
2237         struct kvm_fpu *fpu = NULL;
2238         struct kvm_sregs *kvm_sregs = NULL;
2239
2240         if (vcpu->kvm->mm != current->mm)
2241                 return -EIO;
2242
2243         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2244                 return -EINVAL;
2245
2246 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2247         /*
2248          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2249          * so vcpu_load() would break it.
2250          */
2251         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2252                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2253 #endif
2254
2255
2256         r = vcpu_load(vcpu);
2257         if (r)
2258                 return r;
2259         switch (ioctl) {
2260         case KVM_RUN:
2261                 r = -EINVAL;
2262                 if (arg)
2263                         goto out;
2264                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2265                         /* The thread running this VCPU changed. */
2266                         struct pid *oldpid = vcpu->pid;
2267                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2268
2269                         rcu_assign_pointer(vcpu->pid, newpid);
2270                         if (oldpid)
2271                                 synchronize_rcu();
2272                         put_pid(oldpid);
2273                 }
2274                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2275                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2276                 break;
2277         case KVM_GET_REGS: {
2278                 struct kvm_regs *kvm_regs;
2279
2280                 r = -ENOMEM;
2281                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2282                 if (!kvm_regs)
2283                         goto out;
2284                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2285                 if (r)
2286                         goto out_free1;
2287                 r = -EFAULT;
2288                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2289                         goto out_free1;
2290                 r = 0;
2291 out_free1:
2292                 kfree(kvm_regs);
2293                 break;
2294         }
2295         case KVM_SET_REGS: {
2296                 struct kvm_regs *kvm_regs;
2297
2298                 r = -ENOMEM;
2299                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2300                 if (IS_ERR(kvm_regs)) {
2301                         r = PTR_ERR(kvm_regs);
2302                         goto out;
2303                 }
2304                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2305                 kfree(kvm_regs);
2306                 break;
2307         }
2308         case KVM_GET_SREGS: {
2309                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2310                 r = -ENOMEM;
2311                 if (!kvm_sregs)
2312                         goto out;
2313                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2314                 if (r)
2315                         goto out;
2316                 r = -EFAULT;
2317                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2318                         goto out;
2319                 r = 0;
2320                 break;
2321         }
2322         case KVM_SET_SREGS: {
2323                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2324                 if (IS_ERR(kvm_sregs)) {
2325                         r = PTR_ERR(kvm_sregs);
2326                         kvm_sregs = NULL;
2327                         goto out;
2328                 }
2329                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2330                 break;
2331         }
2332         case KVM_GET_MP_STATE: {
2333                 struct kvm_mp_state mp_state;
2334
2335                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2336                 if (r)
2337                         goto out;
2338                 r = -EFAULT;
2339                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2340                         goto out;
2341                 r = 0;
2342                 break;
2343         }
2344         case KVM_SET_MP_STATE: {
2345                 struct kvm_mp_state mp_state;
2346
2347                 r = -EFAULT;
2348                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2349                         goto out;
2350                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2351                 break;
2352         }
2353         case KVM_TRANSLATE: {
2354                 struct kvm_translation tr;
2355
2356                 r = -EFAULT;
2357                 if (copy_from_user(&tr, argp, sizeof(tr)))
2358                         goto out;
2359                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2360                 if (r)
2361                         goto out;
2362                 r = -EFAULT;
2363                 if (copy_to_user(argp, &tr, sizeof(tr)))
2364                         goto out;
2365                 r = 0;
2366                 break;
2367         }
2368         case KVM_SET_GUEST_DEBUG: {
2369                 struct kvm_guest_debug dbg;
2370
2371                 r = -EFAULT;
2372                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2373                         goto out;
2374                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2375                 break;
2376         }
2377         case KVM_SET_SIGNAL_MASK: {
2378                 struct kvm_signal_mask __user *sigmask_arg = argp;
2379                 struct kvm_signal_mask kvm_sigmask;
2380                 sigset_t sigset, *p;
2381
2382                 p = NULL;
2383                 if (argp) {
2384                         r = -EFAULT;
2385                         if (copy_from_user(&kvm_sigmask, argp,
2386                                            sizeof(kvm_sigmask)))
2387                                 goto out;
2388                         r = -EINVAL;
2389                         if (kvm_sigmask.len != sizeof(sigset))
2390                                 goto out;
2391                         r = -EFAULT;
2392                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2393                                            sizeof(sigset)))
2394                                 goto out;
2395                         p = &sigset;
2396                 }
2397                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2398                 break;
2399         }
2400         case KVM_GET_FPU: {
2401                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2402                 r = -ENOMEM;
2403                 if (!fpu)
2404                         goto out;
2405                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2406                 if (r)
2407                         goto out;
2408                 r = -EFAULT;
2409                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2410                         goto out;
2411                 r = 0;
2412                 break;
2413         }
2414         case KVM_SET_FPU: {
2415                 fpu = memdup_user(argp, sizeof(*fpu));
2416                 if (IS_ERR(fpu)) {
2417                         r = PTR_ERR(fpu);
2418                         fpu = NULL;
2419                         goto out;
2420                 }
2421                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2422                 break;
2423         }
2424         default:
2425                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2426         }
2427 out:
2428         vcpu_put(vcpu);
2429         kfree(fpu);
2430         kfree(kvm_sregs);
2431         return r;
2432 }
2433
2434 #ifdef CONFIG_KVM_COMPAT
2435 static long kvm_vcpu_compat_ioctl(struct file *filp,
2436                                   unsigned int ioctl, unsigned long arg)
2437 {
2438         struct kvm_vcpu *vcpu = filp->private_data;
2439         void __user *argp = compat_ptr(arg);
2440         int r;
2441
2442         if (vcpu->kvm->mm != current->mm)
2443                 return -EIO;
2444
2445         switch (ioctl) {
2446         case KVM_SET_SIGNAL_MASK: {
2447                 struct kvm_signal_mask __user *sigmask_arg = argp;
2448                 struct kvm_signal_mask kvm_sigmask;
2449                 compat_sigset_t csigset;
2450                 sigset_t sigset;
2451
2452                 if (argp) {
2453                         r = -EFAULT;
2454                         if (copy_from_user(&kvm_sigmask, argp,
2455                                            sizeof(kvm_sigmask)))
2456                                 goto out;
2457                         r = -EINVAL;
2458                         if (kvm_sigmask.len != sizeof(csigset))
2459                                 goto out;
2460                         r = -EFAULT;
2461                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2462                                            sizeof(csigset)))
2463                                 goto out;
2464                         sigset_from_compat(&sigset, &csigset);
2465                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2466                 } else
2467                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2468                 break;
2469         }
2470         default:
2471                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2472         }
2473
2474 out:
2475         return r;
2476 }
2477 #endif
2478
2479 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2480                                  int (*accessor)(struct kvm_device *dev,
2481                                                  struct kvm_device_attr *attr),
2482                                  unsigned long arg)
2483 {
2484         struct kvm_device_attr attr;
2485
2486         if (!accessor)
2487                 return -EPERM;
2488
2489         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2490                 return -EFAULT;
2491
2492         return accessor(dev, &attr);
2493 }
2494
2495 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2496                              unsigned long arg)
2497 {
2498         struct kvm_device *dev = filp->private_data;
2499
2500         switch (ioctl) {
2501         case KVM_SET_DEVICE_ATTR:
2502                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2503         case KVM_GET_DEVICE_ATTR:
2504                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2505         case KVM_HAS_DEVICE_ATTR:
2506                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2507         default:
2508                 if (dev->ops->ioctl)
2509                         return dev->ops->ioctl(dev, ioctl, arg);
2510
2511                 return -ENOTTY;
2512         }
2513 }
2514
2515 static int kvm_device_release(struct inode *inode, struct file *filp)
2516 {
2517         struct kvm_device *dev = filp->private_data;
2518         struct kvm *kvm = dev->kvm;
2519
2520         kvm_put_kvm(kvm);
2521         return 0;
2522 }
2523
2524 static const struct file_operations kvm_device_fops = {
2525         .unlocked_ioctl = kvm_device_ioctl,
2526 #ifdef CONFIG_KVM_COMPAT
2527         .compat_ioctl = kvm_device_ioctl,
2528 #endif
2529         .release = kvm_device_release,
2530 };
2531
2532 struct kvm_device *kvm_device_from_filp(struct file *filp)
2533 {
2534         if (filp->f_op != &kvm_device_fops)
2535                 return NULL;
2536
2537         return filp->private_data;
2538 }
2539
2540 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2541 #ifdef CONFIG_KVM_MPIC
2542         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2543         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2544 #endif
2545
2546 #ifdef CONFIG_KVM_XICS
2547         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2548 #endif
2549 };
2550
2551 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2552 {
2553         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2554                 return -ENOSPC;
2555
2556         if (kvm_device_ops_table[type] != NULL)
2557                 return -EEXIST;
2558
2559         kvm_device_ops_table[type] = ops;
2560         return 0;
2561 }
2562
2563 void kvm_unregister_device_ops(u32 type)
2564 {
2565         if (kvm_device_ops_table[type] != NULL)
2566                 kvm_device_ops_table[type] = NULL;
2567 }
2568
2569 static int kvm_ioctl_create_device(struct kvm *kvm,
2570                                    struct kvm_create_device *cd)
2571 {
2572         struct kvm_device_ops *ops = NULL;
2573         struct kvm_device *dev;
2574         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2575         int ret;
2576
2577         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2578                 return -ENODEV;
2579
2580         ops = kvm_device_ops_table[cd->type];
2581         if (ops == NULL)
2582                 return -ENODEV;
2583
2584         if (test)
2585                 return 0;
2586
2587         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2588         if (!dev)
2589                 return -ENOMEM;
2590
2591         dev->ops = ops;
2592         dev->kvm = kvm;
2593
2594         ret = ops->create(dev, cd->type);
2595         if (ret < 0) {
2596                 kfree(dev);
2597                 return ret;
2598         }
2599
2600         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2601         if (ret < 0) {
2602                 ops->destroy(dev);
2603                 return ret;
2604         }
2605
2606         list_add(&dev->vm_node, &kvm->devices);
2607         kvm_get_kvm(kvm);
2608         cd->fd = ret;
2609         return 0;
2610 }
2611
2612 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2613 {
2614         switch (arg) {
2615         case KVM_CAP_USER_MEMORY:
2616         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2617         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2618 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2619         case KVM_CAP_SET_BOOT_CPU_ID:
2620 #endif
2621         case KVM_CAP_INTERNAL_ERROR_DATA:
2622 #ifdef CONFIG_HAVE_KVM_MSI
2623         case KVM_CAP_SIGNAL_MSI:
2624 #endif
2625 #ifdef CONFIG_HAVE_KVM_IRQFD
2626         case KVM_CAP_IRQFD:
2627         case KVM_CAP_IRQFD_RESAMPLE:
2628 #endif
2629         case KVM_CAP_CHECK_EXTENSION_VM:
2630                 return 1;
2631 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2632         case KVM_CAP_IRQ_ROUTING:
2633                 return KVM_MAX_IRQ_ROUTES;
2634 #endif
2635 #if KVM_ADDRESS_SPACE_NUM > 1
2636         case KVM_CAP_MULTI_ADDRESS_SPACE:
2637                 return KVM_ADDRESS_SPACE_NUM;
2638 #endif
2639         default:
2640                 break;
2641         }
2642         return kvm_vm_ioctl_check_extension(kvm, arg);
2643 }
2644
2645 static long kvm_vm_ioctl(struct file *filp,
2646                            unsigned int ioctl, unsigned long arg)
2647 {
2648         struct kvm *kvm = filp->private_data;
2649         void __user *argp = (void __user *)arg;
2650         int r;
2651
2652         if (kvm->mm != current->mm)
2653                 return -EIO;
2654         switch (ioctl) {
2655         case KVM_CREATE_VCPU:
2656                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2657                 break;
2658         case KVM_SET_USER_MEMORY_REGION: {
2659                 struct kvm_userspace_memory_region kvm_userspace_mem;
2660
2661                 r = -EFAULT;
2662                 if (copy_from_user(&kvm_userspace_mem, argp,
2663                                                 sizeof(kvm_userspace_mem)))
2664                         goto out;
2665
2666                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2667                 break;
2668         }
2669         case KVM_GET_DIRTY_LOG: {
2670                 struct kvm_dirty_log log;
2671
2672                 r = -EFAULT;
2673                 if (copy_from_user(&log, argp, sizeof(log)))
2674                         goto out;
2675                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2676                 break;
2677         }
2678 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2679         case KVM_REGISTER_COALESCED_MMIO: {
2680                 struct kvm_coalesced_mmio_zone zone;
2681
2682                 r = -EFAULT;
2683                 if (copy_from_user(&zone, argp, sizeof(zone)))
2684                         goto out;
2685                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2686                 break;
2687         }
2688         case KVM_UNREGISTER_COALESCED_MMIO: {
2689                 struct kvm_coalesced_mmio_zone zone;
2690
2691                 r = -EFAULT;
2692                 if (copy_from_user(&zone, argp, sizeof(zone)))
2693                         goto out;
2694                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2695                 break;
2696         }
2697 #endif
2698         case KVM_IRQFD: {
2699                 struct kvm_irqfd data;
2700
2701                 r = -EFAULT;
2702                 if (copy_from_user(&data, argp, sizeof(data)))
2703                         goto out;
2704                 r = kvm_irqfd(kvm, &data);
2705                 break;
2706         }
2707         case KVM_IOEVENTFD: {
2708                 struct kvm_ioeventfd data;
2709
2710                 r = -EFAULT;
2711                 if (copy_from_user(&data, argp, sizeof(data)))
2712                         goto out;
2713                 r = kvm_ioeventfd(kvm, &data);
2714                 break;
2715         }
2716 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2717         case KVM_SET_BOOT_CPU_ID:
2718                 r = 0;
2719                 mutex_lock(&kvm->lock);
2720                 if (atomic_read(&kvm->online_vcpus) != 0)
2721                         r = -EBUSY;
2722                 else
2723                         kvm->bsp_vcpu_id = arg;
2724                 mutex_unlock(&kvm->lock);
2725                 break;
2726 #endif
2727 #ifdef CONFIG_HAVE_KVM_MSI
2728         case KVM_SIGNAL_MSI: {
2729                 struct kvm_msi msi;
2730
2731                 r = -EFAULT;
2732                 if (copy_from_user(&msi, argp, sizeof(msi)))
2733                         goto out;
2734                 r = kvm_send_userspace_msi(kvm, &msi);
2735                 break;
2736         }
2737 #endif
2738 #ifdef __KVM_HAVE_IRQ_LINE
2739         case KVM_IRQ_LINE_STATUS:
2740         case KVM_IRQ_LINE: {
2741                 struct kvm_irq_level irq_event;
2742
2743                 r = -EFAULT;
2744                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2745                         goto out;
2746
2747                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2748                                         ioctl == KVM_IRQ_LINE_STATUS);
2749                 if (r)
2750                         goto out;
2751
2752                 r = -EFAULT;
2753                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2754                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2755                                 goto out;
2756                 }
2757
2758                 r = 0;
2759                 break;
2760         }
2761 #endif
2762 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2763         case KVM_SET_GSI_ROUTING: {
2764                 struct kvm_irq_routing routing;
2765                 struct kvm_irq_routing __user *urouting;
2766                 struct kvm_irq_routing_entry *entries;
2767
2768                 r = -EFAULT;
2769                 if (copy_from_user(&routing, argp, sizeof(routing)))
2770                         goto out;
2771                 r = -EINVAL;
2772                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2773                         goto out;
2774                 if (routing.flags)
2775                         goto out;
2776                 r = -ENOMEM;
2777                 entries = vmalloc(routing.nr * sizeof(*entries));
2778                 if (!entries)
2779                         goto out;
2780                 r = -EFAULT;
2781                 urouting = argp;
2782                 if (copy_from_user(entries, urouting->entries,
2783                                    routing.nr * sizeof(*entries)))
2784                         goto out_free_irq_routing;
2785                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2786                                         routing.flags);
2787 out_free_irq_routing:
2788                 vfree(entries);
2789                 break;
2790         }
2791 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2792         case KVM_CREATE_DEVICE: {
2793                 struct kvm_create_device cd;
2794
2795                 r = -EFAULT;
2796                 if (copy_from_user(&cd, argp, sizeof(cd)))
2797                         goto out;
2798
2799                 r = kvm_ioctl_create_device(kvm, &cd);
2800                 if (r)
2801                         goto out;
2802
2803                 r = -EFAULT;
2804                 if (copy_to_user(argp, &cd, sizeof(cd)))
2805                         goto out;
2806
2807                 r = 0;
2808                 break;
2809         }
2810         case KVM_CHECK_EXTENSION:
2811                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2812                 break;
2813         default:
2814                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2815         }
2816 out:
2817         return r;
2818 }
2819
2820 #ifdef CONFIG_KVM_COMPAT
2821 struct compat_kvm_dirty_log {
2822         __u32 slot;
2823         __u32 padding1;
2824         union {
2825                 compat_uptr_t dirty_bitmap; /* one bit per page */
2826                 __u64 padding2;
2827         };
2828 };
2829
2830 static long kvm_vm_compat_ioctl(struct file *filp,
2831                            unsigned int ioctl, unsigned long arg)
2832 {
2833         struct kvm *kvm = filp->private_data;
2834         int r;
2835
2836         if (kvm->mm != current->mm)
2837                 return -EIO;
2838         switch (ioctl) {
2839         case KVM_GET_DIRTY_LOG: {
2840                 struct compat_kvm_dirty_log compat_log;
2841                 struct kvm_dirty_log log;
2842
2843                 r = -EFAULT;
2844                 if (copy_from_user(&compat_log, (void __user *)arg,
2845                                    sizeof(compat_log)))
2846                         goto out;
2847                 log.slot         = compat_log.slot;
2848                 log.padding1     = compat_log.padding1;
2849                 log.padding2     = compat_log.padding2;
2850                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2851
2852                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2853                 break;
2854         }
2855         default:
2856                 r = kvm_vm_ioctl(filp, ioctl, arg);
2857         }
2858
2859 out:
2860         return r;
2861 }
2862 #endif
2863
2864 static struct file_operations kvm_vm_fops = {
2865         .release        = kvm_vm_release,
2866         .unlocked_ioctl = kvm_vm_ioctl,
2867 #ifdef CONFIG_KVM_COMPAT
2868         .compat_ioctl   = kvm_vm_compat_ioctl,
2869 #endif
2870         .llseek         = noop_llseek,
2871 };
2872
2873 static int kvm_dev_ioctl_create_vm(unsigned long type)
2874 {
2875         int r;
2876         struct kvm *kvm;
2877
2878         kvm = kvm_create_vm(type);
2879         if (IS_ERR(kvm))
2880                 return PTR_ERR(kvm);
2881 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2882         r = kvm_coalesced_mmio_init(kvm);
2883         if (r < 0) {
2884                 kvm_put_kvm(kvm);
2885                 return r;
2886         }
2887 #endif
2888         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2889         if (r < 0)
2890                 kvm_put_kvm(kvm);
2891
2892         return r;
2893 }
2894
2895 static long kvm_dev_ioctl(struct file *filp,
2896                           unsigned int ioctl, unsigned long arg)
2897 {
2898         long r = -EINVAL;
2899
2900         switch (ioctl) {
2901         case KVM_GET_API_VERSION:
2902                 if (arg)
2903                         goto out;
2904                 r = KVM_API_VERSION;
2905                 break;
2906         case KVM_CREATE_VM:
2907                 r = kvm_dev_ioctl_create_vm(arg);
2908                 break;
2909         case KVM_CHECK_EXTENSION:
2910                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2911                 break;
2912         case KVM_GET_VCPU_MMAP_SIZE:
2913                 if (arg)
2914                         goto out;
2915                 r = PAGE_SIZE;     /* struct kvm_run */
2916 #ifdef CONFIG_X86
2917                 r += PAGE_SIZE;    /* pio data page */
2918 #endif
2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2920                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2921 #endif
2922                 break;
2923         case KVM_TRACE_ENABLE:
2924         case KVM_TRACE_PAUSE:
2925         case KVM_TRACE_DISABLE:
2926                 r = -EOPNOTSUPP;
2927                 break;
2928         default:
2929                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2930         }
2931 out:
2932         return r;
2933 }
2934
2935 static struct file_operations kvm_chardev_ops = {
2936         .unlocked_ioctl = kvm_dev_ioctl,
2937         .compat_ioctl   = kvm_dev_ioctl,
2938         .llseek         = noop_llseek,
2939 };
2940
2941 static struct miscdevice kvm_dev = {
2942         KVM_MINOR,
2943         "kvm",
2944         &kvm_chardev_ops,
2945 };
2946
2947 static void hardware_enable_nolock(void *junk)
2948 {
2949         int cpu = raw_smp_processor_id();
2950         int r;
2951
2952         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2953                 return;
2954
2955         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2956
2957         r = kvm_arch_hardware_enable();
2958
2959         if (r) {
2960                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2961                 atomic_inc(&hardware_enable_failed);
2962                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2963         }
2964 }
2965
2966 static void hardware_enable(void)
2967 {
2968         raw_spin_lock(&kvm_count_lock);
2969         if (kvm_usage_count)
2970                 hardware_enable_nolock(NULL);
2971         raw_spin_unlock(&kvm_count_lock);
2972 }
2973
2974 static void hardware_disable_nolock(void *junk)
2975 {
2976         int cpu = raw_smp_processor_id();
2977
2978         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2979                 return;
2980         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2981         kvm_arch_hardware_disable();
2982 }
2983
2984 static void hardware_disable(void)
2985 {
2986         raw_spin_lock(&kvm_count_lock);
2987         if (kvm_usage_count)
2988                 hardware_disable_nolock(NULL);
2989         raw_spin_unlock(&kvm_count_lock);
2990 }
2991
2992 static void hardware_disable_all_nolock(void)
2993 {
2994         BUG_ON(!kvm_usage_count);
2995
2996         kvm_usage_count--;
2997         if (!kvm_usage_count)
2998                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2999 }
3000
3001 static void hardware_disable_all(void)
3002 {
3003         raw_spin_lock(&kvm_count_lock);
3004         hardware_disable_all_nolock();
3005         raw_spin_unlock(&kvm_count_lock);
3006 }
3007
3008 static int hardware_enable_all(void)
3009 {
3010         int r = 0;
3011
3012         raw_spin_lock(&kvm_count_lock);
3013
3014         kvm_usage_count++;
3015         if (kvm_usage_count == 1) {
3016                 atomic_set(&hardware_enable_failed, 0);
3017                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3018
3019                 if (atomic_read(&hardware_enable_failed)) {
3020                         hardware_disable_all_nolock();
3021                         r = -EBUSY;
3022                 }
3023         }
3024
3025         raw_spin_unlock(&kvm_count_lock);
3026
3027         return r;
3028 }
3029
3030 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3031                            void *v)
3032 {
3033         val &= ~CPU_TASKS_FROZEN;
3034         switch (val) {
3035         case CPU_DYING:
3036                 hardware_disable();
3037                 break;
3038         case CPU_STARTING:
3039                 hardware_enable();
3040                 break;
3041         }
3042         return NOTIFY_OK;
3043 }
3044
3045 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3046                       void *v)
3047 {
3048         /*
3049          * Some (well, at least mine) BIOSes hang on reboot if
3050          * in vmx root mode.
3051          *
3052          * And Intel TXT required VMX off for all cpu when system shutdown.
3053          */
3054         pr_info("kvm: exiting hardware virtualization\n");
3055         kvm_rebooting = true;
3056         on_each_cpu(hardware_disable_nolock, NULL, 1);
3057         return NOTIFY_OK;
3058 }
3059
3060 static struct notifier_block kvm_reboot_notifier = {
3061         .notifier_call = kvm_reboot,
3062         .priority = 0,
3063 };
3064
3065 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3066 {
3067         int i;
3068
3069         for (i = 0; i < bus->dev_count; i++) {
3070                 struct kvm_io_device *pos = bus->range[i].dev;
3071
3072                 kvm_iodevice_destructor(pos);
3073         }
3074         kfree(bus);
3075 }
3076
3077 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3078                                  const struct kvm_io_range *r2)
3079 {
3080         if (r1->addr < r2->addr)
3081                 return -1;
3082         if (r1->addr + r1->len > r2->addr + r2->len)
3083                 return 1;
3084         return 0;
3085 }
3086
3087 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3088 {
3089         return kvm_io_bus_cmp(p1, p2);
3090 }
3091
3092 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3093                           gpa_t addr, int len)
3094 {
3095         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3096                 .addr = addr,
3097                 .len = len,
3098                 .dev = dev,
3099         };
3100
3101         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3102                 kvm_io_bus_sort_cmp, NULL);
3103
3104         return 0;
3105 }
3106
3107 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3108                              gpa_t addr, int len)
3109 {
3110         struct kvm_io_range *range, key;
3111         int off;
3112
3113         key = (struct kvm_io_range) {
3114                 .addr = addr,
3115                 .len = len,
3116         };
3117
3118         range = bsearch(&key, bus->range, bus->dev_count,
3119                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3120         if (range == NULL)
3121                 return -ENOENT;
3122
3123         off = range - bus->range;
3124
3125         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3126                 off--;
3127
3128         return off;
3129 }
3130
3131 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3132                               struct kvm_io_range *range, const void *val)
3133 {
3134         int idx;
3135
3136         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3137         if (idx < 0)
3138                 return -EOPNOTSUPP;
3139
3140         while (idx < bus->dev_count &&
3141                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3142                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3143                                         range->len, val))
3144                         return idx;
3145                 idx++;
3146         }
3147
3148         return -EOPNOTSUPP;
3149 }
3150
3151 /* kvm_io_bus_write - called under kvm->slots_lock */
3152 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3153                      int len, const void *val)
3154 {
3155         struct kvm_io_bus *bus;
3156         struct kvm_io_range range;
3157         int r;
3158
3159         range = (struct kvm_io_range) {
3160                 .addr = addr,
3161                 .len = len,
3162         };
3163
3164         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3165         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3166         return r < 0 ? r : 0;
3167 }
3168
3169 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3171                             gpa_t addr, int len, const void *val, long cookie)
3172 {
3173         struct kvm_io_bus *bus;
3174         struct kvm_io_range range;
3175
3176         range = (struct kvm_io_range) {
3177                 .addr = addr,
3178                 .len = len,
3179         };
3180
3181         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3182
3183         /* First try the device referenced by cookie. */
3184         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3185             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3186                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3187                                         val))
3188                         return cookie;
3189
3190         /*
3191          * cookie contained garbage; fall back to search and return the
3192          * correct cookie value.
3193          */
3194         return __kvm_io_bus_write(vcpu, bus, &range, val);
3195 }
3196
3197 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3198                              struct kvm_io_range *range, void *val)
3199 {
3200         int idx;
3201
3202         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3203         if (idx < 0)
3204                 return -EOPNOTSUPP;
3205
3206         while (idx < bus->dev_count &&
3207                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3208                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3209                                        range->len, val))
3210                         return idx;
3211                 idx++;
3212         }
3213
3214         return -EOPNOTSUPP;
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3217
3218 /* kvm_io_bus_read - called under kvm->slots_lock */
3219 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3220                     int len, void *val)
3221 {
3222         struct kvm_io_bus *bus;
3223         struct kvm_io_range range;
3224         int r;
3225
3226         range = (struct kvm_io_range) {
3227                 .addr = addr,
3228                 .len = len,
3229         };
3230
3231         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3232         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3233         return r < 0 ? r : 0;
3234 }
3235
3236
3237 /* Caller must hold slots_lock. */
3238 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3239                             int len, struct kvm_io_device *dev)
3240 {
3241         struct kvm_io_bus *new_bus, *bus;
3242
3243         bus = kvm->buses[bus_idx];
3244         /* exclude ioeventfd which is limited by maximum fd */
3245         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3246                 return -ENOSPC;
3247
3248         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3249                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3250         if (!new_bus)
3251                 return -ENOMEM;
3252         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3253                sizeof(struct kvm_io_range)));
3254         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3255         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3256         synchronize_srcu_expedited(&kvm->srcu);
3257         kfree(bus);
3258
3259         return 0;
3260 }
3261
3262 /* Caller must hold slots_lock. */
3263 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3264                               struct kvm_io_device *dev)
3265 {
3266         int i, r;
3267         struct kvm_io_bus *new_bus, *bus;
3268
3269         bus = kvm->buses[bus_idx];
3270         r = -ENOENT;
3271         for (i = 0; i < bus->dev_count; i++)
3272                 if (bus->range[i].dev == dev) {
3273                         r = 0;
3274                         break;
3275                 }
3276
3277         if (r)
3278                 return r;
3279
3280         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3281                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3282         if (!new_bus)
3283                 return -ENOMEM;
3284
3285         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3286         new_bus->dev_count--;
3287         memcpy(new_bus->range + i, bus->range + i + 1,
3288                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3289
3290         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3291         synchronize_srcu_expedited(&kvm->srcu);
3292         kfree(bus);
3293         return r;
3294 }
3295
3296 static struct notifier_block kvm_cpu_notifier = {
3297         .notifier_call = kvm_cpu_hotplug,
3298 };
3299
3300 static int vm_stat_get(void *_offset, u64 *val)
3301 {
3302         unsigned offset = (long)_offset;
3303         struct kvm *kvm;
3304
3305         *val = 0;
3306         spin_lock(&kvm_lock);
3307         list_for_each_entry(kvm, &vm_list, vm_list)
3308                 *val += *(u32 *)((void *)kvm + offset);
3309         spin_unlock(&kvm_lock);
3310         return 0;
3311 }
3312
3313 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3314
3315 static int vcpu_stat_get(void *_offset, u64 *val)
3316 {
3317         unsigned offset = (long)_offset;
3318         struct kvm *kvm;
3319         struct kvm_vcpu *vcpu;
3320         int i;
3321
3322         *val = 0;
3323         spin_lock(&kvm_lock);
3324         list_for_each_entry(kvm, &vm_list, vm_list)
3325                 kvm_for_each_vcpu(i, vcpu, kvm)
3326                         *val += *(u32 *)((void *)vcpu + offset);
3327
3328         spin_unlock(&kvm_lock);
3329         return 0;
3330 }
3331
3332 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3333
3334 static const struct file_operations *stat_fops[] = {
3335         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3336         [KVM_STAT_VM]   = &vm_stat_fops,
3337 };
3338
3339 static int kvm_init_debug(void)
3340 {
3341         int r = -EEXIST;
3342         struct kvm_stats_debugfs_item *p;
3343
3344         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3345         if (kvm_debugfs_dir == NULL)
3346                 goto out;
3347
3348         for (p = debugfs_entries; p->name; ++p) {
3349                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3350                                                 (void *)(long)p->offset,
3351                                                 stat_fops[p->kind]);
3352                 if (p->dentry == NULL)
3353                         goto out_dir;
3354         }
3355
3356         return 0;
3357
3358 out_dir:
3359         debugfs_remove_recursive(kvm_debugfs_dir);
3360 out:
3361         return r;
3362 }
3363
3364 static void kvm_exit_debug(void)
3365 {
3366         struct kvm_stats_debugfs_item *p;
3367
3368         for (p = debugfs_entries; p->name; ++p)
3369                 debugfs_remove(p->dentry);
3370         debugfs_remove(kvm_debugfs_dir);
3371 }
3372
3373 static int kvm_suspend(void)
3374 {
3375         if (kvm_usage_count)
3376                 hardware_disable_nolock(NULL);
3377         return 0;
3378 }
3379
3380 static void kvm_resume(void)
3381 {
3382         if (kvm_usage_count) {
3383                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3384                 hardware_enable_nolock(NULL);
3385         }
3386 }
3387
3388 static struct syscore_ops kvm_syscore_ops = {
3389         .suspend = kvm_suspend,
3390         .resume = kvm_resume,
3391 };
3392
3393 static inline
3394 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3395 {
3396         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3397 }
3398
3399 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3400 {
3401         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3402
3403         if (vcpu->preempted)
3404                 vcpu->preempted = false;
3405
3406         kvm_arch_sched_in(vcpu, cpu);
3407
3408         kvm_arch_vcpu_load(vcpu, cpu);
3409 }
3410
3411 static void kvm_sched_out(struct preempt_notifier *pn,
3412                           struct task_struct *next)
3413 {
3414         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3415
3416         if (current->state == TASK_RUNNING)
3417                 vcpu->preempted = true;
3418         kvm_arch_vcpu_put(vcpu);
3419 }
3420
3421 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3422                   struct module *module)
3423 {
3424         int r;
3425         int cpu;
3426
3427         r = kvm_arch_init(opaque);
3428         if (r)
3429                 goto out_fail;
3430
3431         /*
3432          * kvm_arch_init makes sure there's at most one caller
3433          * for architectures that support multiple implementations,
3434          * like intel and amd on x86.
3435          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3436          * conflicts in case kvm is already setup for another implementation.
3437          */
3438         r = kvm_irqfd_init();
3439         if (r)
3440                 goto out_irqfd;
3441
3442         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3443                 r = -ENOMEM;
3444                 goto out_free_0;
3445         }
3446
3447         r = kvm_arch_hardware_setup();
3448         if (r < 0)
3449                 goto out_free_0a;
3450
3451         for_each_online_cpu(cpu) {
3452                 smp_call_function_single(cpu,
3453                                 kvm_arch_check_processor_compat,
3454                                 &r, 1);
3455                 if (r < 0)
3456                         goto out_free_1;
3457         }
3458
3459         r = register_cpu_notifier(&kvm_cpu_notifier);
3460         if (r)
3461                 goto out_free_2;
3462         register_reboot_notifier(&kvm_reboot_notifier);
3463
3464         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3465         if (!vcpu_align)
3466                 vcpu_align = __alignof__(struct kvm_vcpu);
3467         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3468                                            0, NULL);
3469         if (!kvm_vcpu_cache) {
3470                 r = -ENOMEM;
3471                 goto out_free_3;
3472         }
3473
3474         r = kvm_async_pf_init();
3475         if (r)
3476                 goto out_free;
3477
3478         kvm_chardev_ops.owner = module;
3479         kvm_vm_fops.owner = module;
3480         kvm_vcpu_fops.owner = module;
3481
3482         r = misc_register(&kvm_dev);
3483         if (r) {
3484                 pr_err("kvm: misc device register failed\n");
3485                 goto out_unreg;
3486         }
3487
3488         register_syscore_ops(&kvm_syscore_ops);
3489
3490         kvm_preempt_ops.sched_in = kvm_sched_in;
3491         kvm_preempt_ops.sched_out = kvm_sched_out;
3492
3493         r = kvm_init_debug();
3494         if (r) {
3495                 pr_err("kvm: create debugfs files failed\n");
3496                 goto out_undebugfs;
3497         }
3498
3499         r = kvm_vfio_ops_init();
3500         WARN_ON(r);
3501
3502         return 0;
3503
3504 out_undebugfs:
3505         unregister_syscore_ops(&kvm_syscore_ops);
3506         misc_deregister(&kvm_dev);
3507 out_unreg:
3508         kvm_async_pf_deinit();
3509 out_free:
3510         kmem_cache_destroy(kvm_vcpu_cache);
3511 out_free_3:
3512         unregister_reboot_notifier(&kvm_reboot_notifier);
3513         unregister_cpu_notifier(&kvm_cpu_notifier);
3514 out_free_2:
3515 out_free_1:
3516         kvm_arch_hardware_unsetup();
3517 out_free_0a:
3518         free_cpumask_var(cpus_hardware_enabled);
3519 out_free_0:
3520         kvm_irqfd_exit();
3521 out_irqfd:
3522         kvm_arch_exit();
3523 out_fail:
3524         return r;
3525 }
3526 EXPORT_SYMBOL_GPL(kvm_init);
3527
3528 void kvm_exit(void)
3529 {
3530         kvm_exit_debug();
3531         misc_deregister(&kvm_dev);
3532         kmem_cache_destroy(kvm_vcpu_cache);
3533         kvm_async_pf_deinit();
3534         unregister_syscore_ops(&kvm_syscore_ops);
3535         unregister_reboot_notifier(&kvm_reboot_notifier);
3536         unregister_cpu_notifier(&kvm_cpu_notifier);
3537         on_each_cpu(hardware_disable_nolock, NULL, 1);
3538         kvm_arch_hardware_unsetup();
3539         kvm_arch_exit();
3540         kvm_irqfd_exit();
3541         free_cpumask_var(cpus_hardware_enabled);
3542         kvm_vfio_ops_exit();
3543 }
3544 EXPORT_SYMBOL_GPL(kvm_exit);