OSDN Git Service

a17d78759727f352991a97b4c2bed21266657760
[android-x86/kernel.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174         int i, cpu, me;
175         cpumask_var_t cpus;
176         bool called = true;
177         struct kvm_vcpu *vcpu;
178
179         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181         me = get_cpu();
182         kvm_for_each_vcpu(i, vcpu, kvm) {
183                 kvm_make_request(req, vcpu);
184                 cpu = vcpu->cpu;
185
186                 /* Set ->requests bit before we read ->mode. */
187                 smp_mb__after_atomic();
188
189                 if (cpus != NULL && cpu != -1 && cpu != me &&
190                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191                         cpumask_set_cpu(cpu, cpus);
192         }
193         if (unlikely(cpus == NULL))
194                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195         else if (!cpumask_empty(cpus))
196                 smp_call_function_many(cpus, ack_flush, NULL, 1);
197         else
198                 called = false;
199         put_cpu();
200         free_cpumask_var(cpus);
201         return called;
202 }
203
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207         /*
208          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209          * kvm_make_all_cpus_request.
210          */
211         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212
213         /*
214          * We want to publish modifications to the page tables before reading
215          * mode. Pairs with a memory barrier in arch-specific code.
216          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217          * and smp_mb in walk_shadow_page_lockless_begin/end.
218          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219          *
220          * There is already an smp_mb__after_atomic() before
221          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222          * barrier here.
223          */
224         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225                 ++kvm->stat.remote_tlb_flush;
226         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238         struct page *page;
239         int r;
240
241         mutex_init(&vcpu->mutex);
242         vcpu->cpu = -1;
243         vcpu->kvm = kvm;
244         vcpu->vcpu_id = id;
245         vcpu->pid = NULL;
246         init_swait_queue_head(&vcpu->wq);
247         kvm_async_pf_vcpu_init(vcpu);
248
249         vcpu->pre_pcpu = -1;
250         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251
252         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253         if (!page) {
254                 r = -ENOMEM;
255                 goto fail;
256         }
257         vcpu->run = page_address(page);
258
259         kvm_vcpu_set_in_spin_loop(vcpu, false);
260         kvm_vcpu_set_dy_eligible(vcpu, false);
261         vcpu->preempted = false;
262
263         r = kvm_arch_vcpu_init(vcpu);
264         if (r < 0)
265                 goto fail_free_run;
266         return 0;
267
268 fail_free_run:
269         free_page((unsigned long)vcpu->run);
270 fail:
271         return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277         put_pid(vcpu->pid);
278         kvm_arch_vcpu_uninit(vcpu);
279         free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286         return container_of(mn, struct kvm, mmu_notifier);
287 }
288
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290                                              struct mm_struct *mm,
291                                              unsigned long address)
292 {
293         struct kvm *kvm = mmu_notifier_to_kvm(mn);
294         int need_tlb_flush, idx;
295
296         /*
297          * When ->invalidate_page runs, the linux pte has been zapped
298          * already but the page is still allocated until
299          * ->invalidate_page returns. So if we increase the sequence
300          * here the kvm page fault will notice if the spte can't be
301          * established because the page is going to be freed. If
302          * instead the kvm page fault establishes the spte before
303          * ->invalidate_page runs, kvm_unmap_hva will release it
304          * before returning.
305          *
306          * The sequence increase only need to be seen at spin_unlock
307          * time, and not at spin_lock time.
308          *
309          * Increasing the sequence after the spin_unlock would be
310          * unsafe because the kvm page fault could then establish the
311          * pte after kvm_unmap_hva returned, without noticing the page
312          * is going to be freed.
313          */
314         idx = srcu_read_lock(&kvm->srcu);
315         spin_lock(&kvm->mmu_lock);
316
317         kvm->mmu_notifier_seq++;
318         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319         /* we've to flush the tlb before the pages can be freed */
320         if (need_tlb_flush)
321                 kvm_flush_remote_tlbs(kvm);
322
323         spin_unlock(&kvm->mmu_lock);
324
325         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326
327         srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369         srcu_read_unlock(&kvm->srcu, idx);
370 }
371
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373                                                   struct mm_struct *mm,
374                                                   unsigned long start,
375                                                   unsigned long end)
376 {
377         struct kvm *kvm = mmu_notifier_to_kvm(mn);
378
379         spin_lock(&kvm->mmu_lock);
380         /*
381          * This sequence increase will notify the kvm page fault that
382          * the page that is going to be mapped in the spte could have
383          * been freed.
384          */
385         kvm->mmu_notifier_seq++;
386         smp_wmb();
387         /*
388          * The above sequence increase must be visible before the
389          * below count decrease, which is ensured by the smp_wmb above
390          * in conjunction with the smp_rmb in mmu_notifier_retry().
391          */
392         kvm->mmu_notifier_count--;
393         spin_unlock(&kvm->mmu_lock);
394
395         BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399                                               struct mm_struct *mm,
400                                               unsigned long start,
401                                               unsigned long end)
402 {
403         struct kvm *kvm = mmu_notifier_to_kvm(mn);
404         int young, idx;
405
406         idx = srcu_read_lock(&kvm->srcu);
407         spin_lock(&kvm->mmu_lock);
408
409         young = kvm_age_hva(kvm, start, end);
410         if (young)
411                 kvm_flush_remote_tlbs(kvm);
412
413         spin_unlock(&kvm->mmu_lock);
414         srcu_read_unlock(&kvm->srcu, idx);
415
416         return young;
417 }
418
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420                                         struct mm_struct *mm,
421                                         unsigned long start,
422                                         unsigned long end)
423 {
424         struct kvm *kvm = mmu_notifier_to_kvm(mn);
425         int young, idx;
426
427         idx = srcu_read_lock(&kvm->srcu);
428         spin_lock(&kvm->mmu_lock);
429         /*
430          * Even though we do not flush TLB, this will still adversely
431          * affect performance on pre-Haswell Intel EPT, where there is
432          * no EPT Access Bit to clear so that we have to tear down EPT
433          * tables instead. If we find this unacceptable, we can always
434          * add a parameter to kvm_age_hva so that it effectively doesn't
435          * do anything on clear_young.
436          *
437          * Also note that currently we never issue secondary TLB flushes
438          * from clear_young, leaving this job up to the regular system
439          * cadence. If we find this inaccurate, we might come up with a
440          * more sophisticated heuristic later.
441          */
442         young = kvm_age_hva(kvm, start, end);
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450                                        struct mm_struct *mm,
451                                        unsigned long address)
452 {
453         struct kvm *kvm = mmu_notifier_to_kvm(mn);
454         int young, idx;
455
456         idx = srcu_read_lock(&kvm->srcu);
457         spin_lock(&kvm->mmu_lock);
458         young = kvm_test_age_hva(kvm, address);
459         spin_unlock(&kvm->mmu_lock);
460         srcu_read_unlock(&kvm->srcu, idx);
461
462         return young;
463 }
464
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466                                      struct mm_struct *mm)
467 {
468         struct kvm *kvm = mmu_notifier_to_kvm(mn);
469         int idx;
470
471         idx = srcu_read_lock(&kvm->srcu);
472         kvm_arch_flush_shadow_all(kvm);
473         srcu_read_unlock(&kvm->srcu, idx);
474 }
475
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
478         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
479         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
480         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
481         .clear_young            = kvm_mmu_notifier_clear_young,
482         .test_young             = kvm_mmu_notifier_test_young,
483         .change_pte             = kvm_mmu_notifier_change_pte,
484         .release                = kvm_mmu_notifier_release,
485 };
486
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492
493 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497         return 0;
498 }
499
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504         int i;
505         struct kvm_memslots *slots;
506
507         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
508         if (!slots)
509                 return NULL;
510
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0644,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         mmgrab(current->mm);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         refcount_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 struct kvm_memslots *slots = kvm_alloc_memslots();
642                 if (!slots)
643                         goto out_err_no_srcu;
644                 /*
645                  * Generations must be different for each address space.
646                  * Init kvm generation close to the maximum to easily test the
647                  * code of handling generation number wrap-around.
648                  */
649                 slots->generation = i * 2 - 150;
650                 rcu_assign_pointer(kvm->memslots[i], slots);
651         }
652
653         if (init_srcu_struct(&kvm->srcu))
654                 goto out_err_no_srcu;
655         if (init_srcu_struct(&kvm->irq_srcu))
656                 goto out_err_no_irq_srcu;
657         for (i = 0; i < KVM_NR_BUSES; i++) {
658                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659                                         GFP_KERNEL);
660                 if (!kvm->buses[i])
661                         goto out_err;
662         }
663
664         r = kvm_init_mmu_notifier(kvm);
665         if (r)
666                 goto out_err;
667
668         spin_lock(&kvm_lock);
669         list_add(&kvm->vm_list, &vm_list);
670         spin_unlock(&kvm_lock);
671
672         preempt_notifier_inc();
673
674         return kvm;
675
676 out_err:
677         cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679         cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681         hardware_disable_all();
682 out_err_no_disable:
683         for (i = 0; i < KVM_NR_BUSES; i++)
684                 kfree(kvm->buses[i]);
685         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686                 kvm_free_memslots(kvm, kvm->memslots[i]);
687         kvm_arch_free_vm(kvm);
688         mmdrop(current->mm);
689         return ERR_PTR(r);
690 }
691
692 /*
693  * Avoid using vmalloc for a small buffer.
694  * Should not be used when the size is statically known.
695  */
696 void *kvm_kvzalloc(unsigned long size)
697 {
698         if (size > PAGE_SIZE)
699                 return vzalloc(size);
700         else
701                 return kzalloc(size, GFP_KERNEL);
702 }
703
704 static void kvm_destroy_devices(struct kvm *kvm)
705 {
706         struct kvm_device *dev, *tmp;
707
708         /*
709          * We do not need to take the kvm->lock here, because nobody else
710          * has a reference to the struct kvm at this point and therefore
711          * cannot access the devices list anyhow.
712          */
713         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
714                 list_del(&dev->vm_node);
715                 dev->ops->destroy(dev);
716         }
717 }
718
719 static void kvm_destroy_vm(struct kvm *kvm)
720 {
721         int i;
722         struct mm_struct *mm = kvm->mm;
723
724         kvm_destroy_vm_debugfs(kvm);
725         kvm_arch_sync_events(kvm);
726         spin_lock(&kvm_lock);
727         list_del(&kvm->vm_list);
728         spin_unlock(&kvm_lock);
729         kvm_free_irq_routing(kvm);
730         for (i = 0; i < KVM_NR_BUSES; i++)
731                 kvm_io_bus_destroy(kvm->buses[i]);
732         kvm_coalesced_mmio_free(kvm);
733 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
734         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
735 #else
736         kvm_arch_flush_shadow_all(kvm);
737 #endif
738         kvm_arch_destroy_vm(kvm);
739         kvm_destroy_devices(kvm);
740         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
741                 kvm_free_memslots(kvm, kvm->memslots[i]);
742         cleanup_srcu_struct(&kvm->irq_srcu);
743         cleanup_srcu_struct(&kvm->srcu);
744         kvm_arch_free_vm(kvm);
745         preempt_notifier_dec();
746         hardware_disable_all();
747         mmdrop(mm);
748 }
749
750 void kvm_get_kvm(struct kvm *kvm)
751 {
752         refcount_inc(&kvm->users_count);
753 }
754 EXPORT_SYMBOL_GPL(kvm_get_kvm);
755
756 void kvm_put_kvm(struct kvm *kvm)
757 {
758         if (refcount_dec_and_test(&kvm->users_count))
759                 kvm_destroy_vm(kvm);
760 }
761 EXPORT_SYMBOL_GPL(kvm_put_kvm);
762
763
764 static int kvm_vm_release(struct inode *inode, struct file *filp)
765 {
766         struct kvm *kvm = filp->private_data;
767
768         kvm_irqfd_release(kvm);
769
770         kvm_put_kvm(kvm);
771         return 0;
772 }
773
774 /*
775  * Allocation size is twice as large as the actual dirty bitmap size.
776  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
777  */
778 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
779 {
780         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
781
782         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
783         if (!memslot->dirty_bitmap)
784                 return -ENOMEM;
785
786         return 0;
787 }
788
789 /*
790  * Insert memslot and re-sort memslots based on their GFN,
791  * so binary search could be used to lookup GFN.
792  * Sorting algorithm takes advantage of having initially
793  * sorted array and known changed memslot position.
794  */
795 static void update_memslots(struct kvm_memslots *slots,
796                             struct kvm_memory_slot *new)
797 {
798         int id = new->id;
799         int i = slots->id_to_index[id];
800         struct kvm_memory_slot *mslots = slots->memslots;
801
802         WARN_ON(mslots[i].id != id);
803         if (!new->npages) {
804                 WARN_ON(!mslots[i].npages);
805                 if (mslots[i].npages)
806                         slots->used_slots--;
807         } else {
808                 if (!mslots[i].npages)
809                         slots->used_slots++;
810         }
811
812         while (i < KVM_MEM_SLOTS_NUM - 1 &&
813                new->base_gfn <= mslots[i + 1].base_gfn) {
814                 if (!mslots[i + 1].npages)
815                         break;
816                 mslots[i] = mslots[i + 1];
817                 slots->id_to_index[mslots[i].id] = i;
818                 i++;
819         }
820
821         /*
822          * The ">=" is needed when creating a slot with base_gfn == 0,
823          * so that it moves before all those with base_gfn == npages == 0.
824          *
825          * On the other hand, if new->npages is zero, the above loop has
826          * already left i pointing to the beginning of the empty part of
827          * mslots, and the ">=" would move the hole backwards in this
828          * case---which is wrong.  So skip the loop when deleting a slot.
829          */
830         if (new->npages) {
831                 while (i > 0 &&
832                        new->base_gfn >= mslots[i - 1].base_gfn) {
833                         mslots[i] = mslots[i - 1];
834                         slots->id_to_index[mslots[i].id] = i;
835                         i--;
836                 }
837         } else
838                 WARN_ON_ONCE(i != slots->used_slots);
839
840         mslots[i] = *new;
841         slots->id_to_index[mslots[i].id] = i;
842 }
843
844 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
845 {
846         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
847
848 #ifdef __KVM_HAVE_READONLY_MEM
849         valid_flags |= KVM_MEM_READONLY;
850 #endif
851
852         if (mem->flags & ~valid_flags)
853                 return -EINVAL;
854
855         return 0;
856 }
857
858 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
859                 int as_id, struct kvm_memslots *slots)
860 {
861         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
862
863         /*
864          * Set the low bit in the generation, which disables SPTE caching
865          * until the end of synchronize_srcu_expedited.
866          */
867         WARN_ON(old_memslots->generation & 1);
868         slots->generation = old_memslots->generation + 1;
869
870         rcu_assign_pointer(kvm->memslots[as_id], slots);
871         synchronize_srcu_expedited(&kvm->srcu);
872
873         /*
874          * Increment the new memslot generation a second time. This prevents
875          * vm exits that race with memslot updates from caching a memslot
876          * generation that will (potentially) be valid forever.
877          *
878          * Generations must be unique even across address spaces.  We do not need
879          * a global counter for that, instead the generation space is evenly split
880          * across address spaces.  For example, with two address spaces, address
881          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
882          * use generations 2, 6, 10, 14, ...
883          */
884         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
885
886         kvm_arch_memslots_updated(kvm, slots);
887
888         return old_memslots;
889 }
890
891 /*
892  * Allocate some memory and give it an address in the guest physical address
893  * space.
894  *
895  * Discontiguous memory is allowed, mostly for framebuffers.
896  *
897  * Must be called holding kvm->slots_lock for write.
898  */
899 int __kvm_set_memory_region(struct kvm *kvm,
900                             const struct kvm_userspace_memory_region *mem)
901 {
902         int r;
903         gfn_t base_gfn;
904         unsigned long npages;
905         struct kvm_memory_slot *slot;
906         struct kvm_memory_slot old, new;
907         struct kvm_memslots *slots = NULL, *old_memslots;
908         int as_id, id;
909         enum kvm_mr_change change;
910
911         r = check_memory_region_flags(mem);
912         if (r)
913                 goto out;
914
915         r = -EINVAL;
916         as_id = mem->slot >> 16;
917         id = (u16)mem->slot;
918
919         /* General sanity checks */
920         if (mem->memory_size & (PAGE_SIZE - 1))
921                 goto out;
922         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
923                 goto out;
924         /* We can read the guest memory with __xxx_user() later on. */
925         if ((id < KVM_USER_MEM_SLOTS) &&
926             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
927              !access_ok(VERIFY_WRITE,
928                         (void __user *)(unsigned long)mem->userspace_addr,
929                         mem->memory_size)))
930                 goto out;
931         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
932                 goto out;
933         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
934                 goto out;
935
936         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
937         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
938         npages = mem->memory_size >> PAGE_SHIFT;
939
940         if (npages > KVM_MEM_MAX_NR_PAGES)
941                 goto out;
942
943         new = old = *slot;
944
945         new.id = id;
946         new.base_gfn = base_gfn;
947         new.npages = npages;
948         new.flags = mem->flags;
949
950         if (npages) {
951                 if (!old.npages)
952                         change = KVM_MR_CREATE;
953                 else { /* Modify an existing slot. */
954                         if ((mem->userspace_addr != old.userspace_addr) ||
955                             (npages != old.npages) ||
956                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
957                                 goto out;
958
959                         if (base_gfn != old.base_gfn)
960                                 change = KVM_MR_MOVE;
961                         else if (new.flags != old.flags)
962                                 change = KVM_MR_FLAGS_ONLY;
963                         else { /* Nothing to change. */
964                                 r = 0;
965                                 goto out;
966                         }
967                 }
968         } else {
969                 if (!old.npages)
970                         goto out;
971
972                 change = KVM_MR_DELETE;
973                 new.base_gfn = 0;
974                 new.flags = 0;
975         }
976
977         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
978                 /* Check for overlaps */
979                 r = -EEXIST;
980                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
981                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
982                             (slot->id == id))
983                                 continue;
984                         if (!((base_gfn + npages <= slot->base_gfn) ||
985                               (base_gfn >= slot->base_gfn + slot->npages)))
986                                 goto out;
987                 }
988         }
989
990         /* Free page dirty bitmap if unneeded */
991         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
992                 new.dirty_bitmap = NULL;
993
994         r = -ENOMEM;
995         if (change == KVM_MR_CREATE) {
996                 new.userspace_addr = mem->userspace_addr;
997
998                 if (kvm_arch_create_memslot(kvm, &new, npages))
999                         goto out_free;
1000         }
1001
1002         /* Allocate page dirty bitmap if needed */
1003         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1004                 if (kvm_create_dirty_bitmap(&new) < 0)
1005                         goto out_free;
1006         }
1007
1008         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1009         if (!slots)
1010                 goto out_free;
1011         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1012
1013         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1014                 slot = id_to_memslot(slots, id);
1015                 slot->flags |= KVM_MEMSLOT_INVALID;
1016
1017                 old_memslots = install_new_memslots(kvm, as_id, slots);
1018
1019                 /* slot was deleted or moved, clear iommu mapping */
1020                 kvm_iommu_unmap_pages(kvm, &old);
1021                 /* From this point no new shadow pages pointing to a deleted,
1022                  * or moved, memslot will be created.
1023                  *
1024                  * validation of sp->gfn happens in:
1025                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1026                  *      - kvm_is_visible_gfn (mmu_check_roots)
1027                  */
1028                 kvm_arch_flush_shadow_memslot(kvm, slot);
1029
1030                 /*
1031                  * We can re-use the old_memslots from above, the only difference
1032                  * from the currently installed memslots is the invalid flag.  This
1033                  * will get overwritten by update_memslots anyway.
1034                  */
1035                 slots = old_memslots;
1036         }
1037
1038         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1039         if (r)
1040                 goto out_slots;
1041
1042         /* actual memory is freed via old in kvm_free_memslot below */
1043         if (change == KVM_MR_DELETE) {
1044                 new.dirty_bitmap = NULL;
1045                 memset(&new.arch, 0, sizeof(new.arch));
1046         }
1047
1048         update_memslots(slots, &new);
1049         old_memslots = install_new_memslots(kvm, as_id, slots);
1050
1051         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1052
1053         kvm_free_memslot(kvm, &old, &new);
1054         kvfree(old_memslots);
1055
1056         /*
1057          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1058          * un-mapped and re-mapped if their base changes.  Since base change
1059          * unmapping is handled above with slot deletion, mapping alone is
1060          * needed here.  Anything else the iommu might care about for existing
1061          * slots (size changes, userspace addr changes and read-only flag
1062          * changes) is disallowed above, so any other attribute changes getting
1063          * here can be skipped.
1064          */
1065         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1066                 r = kvm_iommu_map_pages(kvm, &new);
1067                 return r;
1068         }
1069
1070         return 0;
1071
1072 out_slots:
1073         kvfree(slots);
1074 out_free:
1075         kvm_free_memslot(kvm, &new, &old);
1076 out:
1077         return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082                           const struct kvm_userspace_memory_region *mem)
1083 {
1084         int r;
1085
1086         mutex_lock(&kvm->slots_lock);
1087         r = __kvm_set_memory_region(kvm, mem);
1088         mutex_unlock(&kvm->slots_lock);
1089         return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094                                           struct kvm_userspace_memory_region *mem)
1095 {
1096         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097                 return -EINVAL;
1098
1099         return kvm_set_memory_region(kvm, mem);
1100 }
1101
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103                         struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105         struct kvm_memslots *slots;
1106         struct kvm_memory_slot *memslot;
1107         int i, as_id, id;
1108         unsigned long n;
1109         unsigned long any = 0;
1110
1111         as_id = log->slot >> 16;
1112         id = (u16)log->slot;
1113         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114                 return -EINVAL;
1115
1116         slots = __kvm_memslots(kvm, as_id);
1117         memslot = id_to_memslot(slots, id);
1118         if (!memslot->dirty_bitmap)
1119                 return -ENOENT;
1120
1121         n = kvm_dirty_bitmap_bytes(memslot);
1122
1123         for (i = 0; !any && i < n/sizeof(long); ++i)
1124                 any = memslot->dirty_bitmap[i];
1125
1126         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127                 return -EFAULT;
1128
1129         if (any)
1130                 *is_dirty = 1;
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138  *      are dirty write protect them for next write.
1139  * @kvm:        pointer to kvm instance
1140  * @log:        slot id and address to which we copy the log
1141  * @is_dirty:   flag set if any page is dirty
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159                         struct kvm_dirty_log *log, bool *is_dirty)
1160 {
1161         struct kvm_memslots *slots;
1162         struct kvm_memory_slot *memslot;
1163         int i, as_id, id;
1164         unsigned long n;
1165         unsigned long *dirty_bitmap;
1166         unsigned long *dirty_bitmap_buffer;
1167
1168         as_id = log->slot >> 16;
1169         id = (u16)log->slot;
1170         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171                 return -EINVAL;
1172
1173         slots = __kvm_memslots(kvm, as_id);
1174         memslot = id_to_memslot(slots, id);
1175
1176         dirty_bitmap = memslot->dirty_bitmap;
1177         if (!dirty_bitmap)
1178                 return -ENOENT;
1179
1180         n = kvm_dirty_bitmap_bytes(memslot);
1181
1182         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1183         memset(dirty_bitmap_buffer, 0, n);
1184
1185         spin_lock(&kvm->mmu_lock);
1186         *is_dirty = false;
1187         for (i = 0; i < n / sizeof(long); i++) {
1188                 unsigned long mask;
1189                 gfn_t offset;
1190
1191                 if (!dirty_bitmap[i])
1192                         continue;
1193
1194                 *is_dirty = true;
1195
1196                 mask = xchg(&dirty_bitmap[i], 0);
1197                 dirty_bitmap_buffer[i] = mask;
1198
1199                 if (mask) {
1200                         offset = i * BITS_PER_LONG;
1201                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1202                                                                 offset, mask);
1203                 }
1204         }
1205
1206         spin_unlock(&kvm->mmu_lock);
1207         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208                 return -EFAULT;
1209         return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216         return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221         largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241               memslot->flags & KVM_MEMSLOT_INVALID)
1242                 return false;
1243
1244         return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250         struct vm_area_struct *vma;
1251         unsigned long addr, size;
1252
1253         size = PAGE_SIZE;
1254
1255         addr = gfn_to_hva(kvm, gfn);
1256         if (kvm_is_error_hva(addr))
1257                 return PAGE_SIZE;
1258
1259         down_read(&current->mm->mmap_sem);
1260         vma = find_vma(current->mm, addr);
1261         if (!vma)
1262                 goto out;
1263
1264         size = vma_kernel_pagesize(vma);
1265
1266 out:
1267         up_read(&current->mm->mmap_sem);
1268
1269         return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274         return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                        gfn_t *nr_pages, bool write)
1279 {
1280         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281                 return KVM_HVA_ERR_BAD;
1282
1283         if (memslot_is_readonly(slot) && write)
1284                 return KVM_HVA_ERR_RO_BAD;
1285
1286         if (nr_pages)
1287                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289         return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293                                      gfn_t *nr_pages)
1294 {
1295         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299                                         gfn_t gfn)
1300 {
1301         return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322                                       gfn_t gfn, bool *writable)
1323 {
1324         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326         if (!kvm_is_error_hva(hva) && writable)
1327                 *writable = !memslot_is_readonly(slot);
1328
1329         return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347                 struct page **page)
1348 {
1349         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350
1351         if (write)
1352                 flags |= FOLL_WRITE;
1353
1354         return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360
1361         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362         return rc == -EHWPOISON;
1363 }
1364
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372         struct page *page[1];
1373         int npages;
1374
1375         if (!(async || atomic))
1376                 return false;
1377
1378         /*
1379          * Fast pin a writable pfn only if it is a write fault request
1380          * or the caller allows to map a writable pfn for a read fault
1381          * request.
1382          */
1383         if (!(write_fault || writable))
1384                 return false;
1385
1386         npages = __get_user_pages_fast(addr, 1, 1, page);
1387         if (npages == 1) {
1388                 *pfn = page_to_pfn(page[0]);
1389
1390                 if (writable)
1391                         *writable = true;
1392                 return true;
1393         }
1394
1395         return false;
1396 }
1397
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403                            bool *writable, kvm_pfn_t *pfn)
1404 {
1405         struct page *page[1];
1406         int npages = 0;
1407
1408         might_sleep();
1409
1410         if (writable)
1411                 *writable = write_fault;
1412
1413         if (async) {
1414                 down_read(&current->mm->mmap_sem);
1415                 npages = get_user_page_nowait(addr, write_fault, page);
1416                 up_read(&current->mm->mmap_sem);
1417         } else {
1418                 unsigned int flags = FOLL_HWPOISON;
1419
1420                 if (write_fault)
1421                         flags |= FOLL_WRITE;
1422
1423                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1424         }
1425         if (npages != 1)
1426                 return npages;
1427
1428         /* map read fault as writable if possible */
1429         if (unlikely(!write_fault) && writable) {
1430                 struct page *wpage[1];
1431
1432                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1433                 if (npages == 1) {
1434                         *writable = true;
1435                         put_page(page[0]);
1436                         page[0] = wpage[0];
1437                 }
1438
1439                 npages = 1;
1440         }
1441         *pfn = page_to_pfn(page[0]);
1442         return npages;
1443 }
1444
1445 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1446 {
1447         if (unlikely(!(vma->vm_flags & VM_READ)))
1448                 return false;
1449
1450         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1451                 return false;
1452
1453         return true;
1454 }
1455
1456 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1457                                unsigned long addr, bool *async,
1458                                bool write_fault, kvm_pfn_t *p_pfn)
1459 {
1460         unsigned long pfn;
1461         int r;
1462
1463         r = follow_pfn(vma, addr, &pfn);
1464         if (r) {
1465                 /*
1466                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1467                  * not call the fault handler, so do it here.
1468                  */
1469                 bool unlocked = false;
1470                 r = fixup_user_fault(current, current->mm, addr,
1471                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1472                                      &unlocked);
1473                 if (unlocked)
1474                         return -EAGAIN;
1475                 if (r)
1476                         return r;
1477
1478                 r = follow_pfn(vma, addr, &pfn);
1479                 if (r)
1480                         return r;
1481
1482         }
1483
1484
1485         /*
1486          * Get a reference here because callers of *hva_to_pfn* and
1487          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1488          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1489          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1490          * simply do nothing for reserved pfns.
1491          *
1492          * Whoever called remap_pfn_range is also going to call e.g.
1493          * unmap_mapping_range before the underlying pages are freed,
1494          * causing a call to our MMU notifier.
1495          */ 
1496         kvm_get_pfn(pfn);
1497
1498         *p_pfn = pfn;
1499         return 0;
1500 }
1501
1502 /*
1503  * Pin guest page in memory and return its pfn.
1504  * @addr: host virtual address which maps memory to the guest
1505  * @atomic: whether this function can sleep
1506  * @async: whether this function need to wait IO complete if the
1507  *         host page is not in the memory
1508  * @write_fault: whether we should get a writable host page
1509  * @writable: whether it allows to map a writable host page for !@write_fault
1510  *
1511  * The function will map a writable host page for these two cases:
1512  * 1): @write_fault = true
1513  * 2): @write_fault = false && @writable, @writable will tell the caller
1514  *     whether the mapping is writable.
1515  */
1516 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1517                         bool write_fault, bool *writable)
1518 {
1519         struct vm_area_struct *vma;
1520         kvm_pfn_t pfn = 0;
1521         int npages, r;
1522
1523         /* we can do it either atomically or asynchronously, not both */
1524         BUG_ON(atomic && async);
1525
1526         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1527                 return pfn;
1528
1529         if (atomic)
1530                 return KVM_PFN_ERR_FAULT;
1531
1532         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1533         if (npages == 1)
1534                 return pfn;
1535
1536         down_read(&current->mm->mmap_sem);
1537         if (npages == -EHWPOISON ||
1538               (!async && check_user_page_hwpoison(addr))) {
1539                 pfn = KVM_PFN_ERR_HWPOISON;
1540                 goto exit;
1541         }
1542
1543 retry:
1544         vma = find_vma_intersection(current->mm, addr, addr + 1);
1545
1546         if (vma == NULL)
1547                 pfn = KVM_PFN_ERR_FAULT;
1548         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1549                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1550                 if (r == -EAGAIN)
1551                         goto retry;
1552                 if (r < 0)
1553                         pfn = KVM_PFN_ERR_FAULT;
1554         } else {
1555                 if (async && vma_is_valid(vma, write_fault))
1556                         *async = true;
1557                 pfn = KVM_PFN_ERR_FAULT;
1558         }
1559 exit:
1560         up_read(&current->mm->mmap_sem);
1561         return pfn;
1562 }
1563
1564 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1565                                bool atomic, bool *async, bool write_fault,
1566                                bool *writable)
1567 {
1568         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1569
1570         if (addr == KVM_HVA_ERR_RO_BAD) {
1571                 if (writable)
1572                         *writable = false;
1573                 return KVM_PFN_ERR_RO_FAULT;
1574         }
1575
1576         if (kvm_is_error_hva(addr)) {
1577                 if (writable)
1578                         *writable = false;
1579                 return KVM_PFN_NOSLOT;
1580         }
1581
1582         /* Do not map writable pfn in the readonly memslot. */
1583         if (writable && memslot_is_readonly(slot)) {
1584                 *writable = false;
1585                 writable = NULL;
1586         }
1587
1588         return hva_to_pfn(addr, atomic, async, write_fault,
1589                           writable);
1590 }
1591 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1592
1593 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1594                       bool *writable)
1595 {
1596         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1597                                     write_fault, writable);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1600
1601 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1602 {
1603         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1604 }
1605 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1606
1607 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1610 }
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1612
1613 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1614 {
1615         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1618
1619 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1624
1625 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1626 {
1627         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1628 }
1629 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1630
1631 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1632 {
1633         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1636
1637 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1638                             struct page **pages, int nr_pages)
1639 {
1640         unsigned long addr;
1641         gfn_t entry;
1642
1643         addr = gfn_to_hva_many(slot, gfn, &entry);
1644         if (kvm_is_error_hva(addr))
1645                 return -1;
1646
1647         if (entry < nr_pages)
1648                 return 0;
1649
1650         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1651 }
1652 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1653
1654 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1655 {
1656         if (is_error_noslot_pfn(pfn))
1657                 return KVM_ERR_PTR_BAD_PAGE;
1658
1659         if (kvm_is_reserved_pfn(pfn)) {
1660                 WARN_ON(1);
1661                 return KVM_ERR_PTR_BAD_PAGE;
1662         }
1663
1664         return pfn_to_page(pfn);
1665 }
1666
1667 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1668 {
1669         kvm_pfn_t pfn;
1670
1671         pfn = gfn_to_pfn(kvm, gfn);
1672
1673         return kvm_pfn_to_page(pfn);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_page);
1676
1677 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1678 {
1679         kvm_pfn_t pfn;
1680
1681         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1682
1683         return kvm_pfn_to_page(pfn);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1686
1687 void kvm_release_page_clean(struct page *page)
1688 {
1689         WARN_ON(is_error_page(page));
1690
1691         kvm_release_pfn_clean(page_to_pfn(page));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1694
1695 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1696 {
1697         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1698                 put_page(pfn_to_page(pfn));
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1701
1702 void kvm_release_page_dirty(struct page *page)
1703 {
1704         WARN_ON(is_error_page(page));
1705
1706         kvm_release_pfn_dirty(page_to_pfn(page));
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1709
1710 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1711 {
1712         kvm_set_pfn_dirty(pfn);
1713         kvm_release_pfn_clean(pfn);
1714 }
1715
1716 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1717 {
1718         if (!kvm_is_reserved_pfn(pfn)) {
1719                 struct page *page = pfn_to_page(pfn);
1720
1721                 if (!PageReserved(page))
1722                         SetPageDirty(page);
1723         }
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1726
1727 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1728 {
1729         if (!kvm_is_reserved_pfn(pfn))
1730                 mark_page_accessed(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1733
1734 void kvm_get_pfn(kvm_pfn_t pfn)
1735 {
1736         if (!kvm_is_reserved_pfn(pfn))
1737                 get_page(pfn_to_page(pfn));
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1740
1741 static int next_segment(unsigned long len, int offset)
1742 {
1743         if (len > PAGE_SIZE - offset)
1744                 return PAGE_SIZE - offset;
1745         else
1746                 return len;
1747 }
1748
1749 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1750                                  void *data, int offset, int len)
1751 {
1752         int r;
1753         unsigned long addr;
1754
1755         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1756         if (kvm_is_error_hva(addr))
1757                 return -EFAULT;
1758         r = __copy_from_user(data, (void __user *)addr + offset, len);
1759         if (r)
1760                 return -EFAULT;
1761         return 0;
1762 }
1763
1764 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1765                         int len)
1766 {
1767         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1768
1769         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1772
1773 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1774                              int offset, int len)
1775 {
1776         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1777
1778         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1781
1782 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1783 {
1784         gfn_t gfn = gpa >> PAGE_SHIFT;
1785         int seg;
1786         int offset = offset_in_page(gpa);
1787         int ret;
1788
1789         while ((seg = next_segment(len, offset)) != 0) {
1790                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1791                 if (ret < 0)
1792                         return ret;
1793                 offset = 0;
1794                 len -= seg;
1795                 data += seg;
1796                 ++gfn;
1797         }
1798         return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_read_guest);
1801
1802 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1803 {
1804         gfn_t gfn = gpa >> PAGE_SHIFT;
1805         int seg;
1806         int offset = offset_in_page(gpa);
1807         int ret;
1808
1809         while ((seg = next_segment(len, offset)) != 0) {
1810                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1811                 if (ret < 0)
1812                         return ret;
1813                 offset = 0;
1814                 len -= seg;
1815                 data += seg;
1816                 ++gfn;
1817         }
1818         return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1821
1822 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1823                                    void *data, int offset, unsigned long len)
1824 {
1825         int r;
1826         unsigned long addr;
1827
1828         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1829         if (kvm_is_error_hva(addr))
1830                 return -EFAULT;
1831         pagefault_disable();
1832         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1833         pagefault_enable();
1834         if (r)
1835                 return -EFAULT;
1836         return 0;
1837 }
1838
1839 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1840                           unsigned long len)
1841 {
1842         gfn_t gfn = gpa >> PAGE_SHIFT;
1843         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1844         int offset = offset_in_page(gpa);
1845
1846         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1849
1850 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1851                                void *data, unsigned long len)
1852 {
1853         gfn_t gfn = gpa >> PAGE_SHIFT;
1854         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1855         int offset = offset_in_page(gpa);
1856
1857         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1860
1861 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1862                                   const void *data, int offset, int len)
1863 {
1864         int r;
1865         unsigned long addr;
1866
1867         addr = gfn_to_hva_memslot(memslot, gfn);
1868         if (kvm_is_error_hva(addr))
1869                 return -EFAULT;
1870         r = __copy_to_user((void __user *)addr + offset, data, len);
1871         if (r)
1872                 return -EFAULT;
1873         mark_page_dirty_in_slot(memslot, gfn);
1874         return 0;
1875 }
1876
1877 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1878                          const void *data, int offset, int len)
1879 {
1880         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1881
1882         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1885
1886 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1887                               const void *data, int offset, int len)
1888 {
1889         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1890
1891         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1894
1895 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1896                     unsigned long len)
1897 {
1898         gfn_t gfn = gpa >> PAGE_SHIFT;
1899         int seg;
1900         int offset = offset_in_page(gpa);
1901         int ret;
1902
1903         while ((seg = next_segment(len, offset)) != 0) {
1904                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1905                 if (ret < 0)
1906                         return ret;
1907                 offset = 0;
1908                 len -= seg;
1909                 data += seg;
1910                 ++gfn;
1911         }
1912         return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_write_guest);
1915
1916 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1917                          unsigned long len)
1918 {
1919         gfn_t gfn = gpa >> PAGE_SHIFT;
1920         int seg;
1921         int offset = offset_in_page(gpa);
1922         int ret;
1923
1924         while ((seg = next_segment(len, offset)) != 0) {
1925                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1926                 if (ret < 0)
1927                         return ret;
1928                 offset = 0;
1929                 len -= seg;
1930                 data += seg;
1931                 ++gfn;
1932         }
1933         return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1936
1937 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1938                                        struct gfn_to_hva_cache *ghc,
1939                                        gpa_t gpa, unsigned long len)
1940 {
1941         int offset = offset_in_page(gpa);
1942         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1943         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1944         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1945         gfn_t nr_pages_avail;
1946
1947         ghc->gpa = gpa;
1948         ghc->generation = slots->generation;
1949         ghc->len = len;
1950         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1951         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1952         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1953                 ghc->hva += offset;
1954         } else {
1955                 /*
1956                  * If the requested region crosses two memslots, we still
1957                  * verify that the entire region is valid here.
1958                  */
1959                 while (start_gfn <= end_gfn) {
1960                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1961                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1962                                                    &nr_pages_avail);
1963                         if (kvm_is_error_hva(ghc->hva))
1964                                 return -EFAULT;
1965                         start_gfn += nr_pages_avail;
1966                 }
1967                 /* Use the slow path for cross page reads and writes. */
1968                 ghc->memslot = NULL;
1969         }
1970         return 0;
1971 }
1972
1973 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1974                               gpa_t gpa, unsigned long len)
1975 {
1976         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1977         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1980
1981 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1982                                        void *data, int offset, unsigned long len)
1983 {
1984         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1985         int r;
1986         gpa_t gpa = ghc->gpa + offset;
1987
1988         BUG_ON(len + offset > ghc->len);
1989
1990         if (slots->generation != ghc->generation)
1991                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1992
1993         if (unlikely(!ghc->memslot))
1994                 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1995
1996         if (kvm_is_error_hva(ghc->hva))
1997                 return -EFAULT;
1998
1999         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2000         if (r)
2001                 return -EFAULT;
2002         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2003
2004         return 0;
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2007
2008 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2009                                void *data, unsigned long len)
2010 {
2011         return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2014
2015 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2016                                void *data, unsigned long len)
2017 {
2018         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2019         int r;
2020
2021         BUG_ON(len > ghc->len);
2022
2023         if (slots->generation != ghc->generation)
2024                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2025
2026         if (unlikely(!ghc->memslot))
2027                 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2028
2029         if (kvm_is_error_hva(ghc->hva))
2030                 return -EFAULT;
2031
2032         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2033         if (r)
2034                 return -EFAULT;
2035
2036         return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2039
2040 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2041 {
2042         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2043
2044         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2047
2048 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2049 {
2050         gfn_t gfn = gpa >> PAGE_SHIFT;
2051         int seg;
2052         int offset = offset_in_page(gpa);
2053         int ret;
2054
2055         while ((seg = next_segment(len, offset)) != 0) {
2056                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2057                 if (ret < 0)
2058                         return ret;
2059                 offset = 0;
2060                 len -= seg;
2061                 ++gfn;
2062         }
2063         return 0;
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2066
2067 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2068                                     gfn_t gfn)
2069 {
2070         if (memslot && memslot->dirty_bitmap) {
2071                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2072
2073                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2074         }
2075 }
2076
2077 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2078 {
2079         struct kvm_memory_slot *memslot;
2080
2081         memslot = gfn_to_memslot(kvm, gfn);
2082         mark_page_dirty_in_slot(memslot, gfn);
2083 }
2084 EXPORT_SYMBOL_GPL(mark_page_dirty);
2085
2086 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2087 {
2088         struct kvm_memory_slot *memslot;
2089
2090         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2091         mark_page_dirty_in_slot(memslot, gfn);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2094
2095 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097         unsigned int old, val, grow;
2098
2099         old = val = vcpu->halt_poll_ns;
2100         grow = READ_ONCE(halt_poll_ns_grow);
2101         /* 10us base */
2102         if (val == 0 && grow)
2103                 val = 10000;
2104         else
2105                 val *= grow;
2106
2107         if (val > halt_poll_ns)
2108                 val = halt_poll_ns;
2109
2110         vcpu->halt_poll_ns = val;
2111         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2112 }
2113
2114 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2115 {
2116         unsigned int old, val, shrink;
2117
2118         old = val = vcpu->halt_poll_ns;
2119         shrink = READ_ONCE(halt_poll_ns_shrink);
2120         if (shrink == 0)
2121                 val = 0;
2122         else
2123                 val /= shrink;
2124
2125         vcpu->halt_poll_ns = val;
2126         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2127 }
2128
2129 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2130 {
2131         if (kvm_arch_vcpu_runnable(vcpu)) {
2132                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2133                 return -EINTR;
2134         }
2135         if (kvm_cpu_has_pending_timer(vcpu))
2136                 return -EINTR;
2137         if (signal_pending(current))
2138                 return -EINTR;
2139
2140         return 0;
2141 }
2142
2143 /*
2144  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2145  */
2146 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2147 {
2148         ktime_t start, cur;
2149         DECLARE_SWAITQUEUE(wait);
2150         bool waited = false;
2151         u64 block_ns;
2152
2153         start = cur = ktime_get();
2154         if (vcpu->halt_poll_ns) {
2155                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2156
2157                 ++vcpu->stat.halt_attempted_poll;
2158                 do {
2159                         /*
2160                          * This sets KVM_REQ_UNHALT if an interrupt
2161                          * arrives.
2162                          */
2163                         if (kvm_vcpu_check_block(vcpu) < 0) {
2164                                 ++vcpu->stat.halt_successful_poll;
2165                                 if (!vcpu_valid_wakeup(vcpu))
2166                                         ++vcpu->stat.halt_poll_invalid;
2167                                 goto out;
2168                         }
2169                         cur = ktime_get();
2170                 } while (single_task_running() && ktime_before(cur, stop));
2171         }
2172
2173         kvm_arch_vcpu_blocking(vcpu);
2174
2175         for (;;) {
2176                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2177
2178                 if (kvm_vcpu_check_block(vcpu) < 0)
2179                         break;
2180
2181                 waited = true;
2182                 schedule();
2183         }
2184
2185         finish_swait(&vcpu->wq, &wait);
2186         cur = ktime_get();
2187
2188         kvm_arch_vcpu_unblocking(vcpu);
2189 out:
2190         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2191
2192         if (!vcpu_valid_wakeup(vcpu))
2193                 shrink_halt_poll_ns(vcpu);
2194         else if (halt_poll_ns) {
2195                 if (block_ns <= vcpu->halt_poll_ns)
2196                         ;
2197                 /* we had a long block, shrink polling */
2198                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2199                         shrink_halt_poll_ns(vcpu);
2200                 /* we had a short halt and our poll time is too small */
2201                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2202                         block_ns < halt_poll_ns)
2203                         grow_halt_poll_ns(vcpu);
2204         } else
2205                 vcpu->halt_poll_ns = 0;
2206
2207         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2208         kvm_arch_vcpu_block_finish(vcpu);
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2211
2212 #ifndef CONFIG_S390
2213 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2214 {
2215         struct swait_queue_head *wqp;
2216
2217         wqp = kvm_arch_vcpu_wq(vcpu);
2218         if (swait_active(wqp)) {
2219                 swake_up(wqp);
2220                 ++vcpu->stat.halt_wakeup;
2221         }
2222
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2225
2226 /*
2227  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228  */
2229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2230 {
2231         int me;
2232         int cpu = vcpu->cpu;
2233
2234         kvm_vcpu_wake_up(vcpu);
2235         me = get_cpu();
2236         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2237                 if (kvm_arch_vcpu_should_kick(vcpu))
2238                         smp_send_reschedule(cpu);
2239         put_cpu();
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2242 #endif /* !CONFIG_S390 */
2243
2244 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2245 {
2246         struct pid *pid;
2247         struct task_struct *task = NULL;
2248         int ret = 0;
2249
2250         rcu_read_lock();
2251         pid = rcu_dereference(target->pid);
2252         if (pid)
2253                 task = get_pid_task(pid, PIDTYPE_PID);
2254         rcu_read_unlock();
2255         if (!task)
2256                 return ret;
2257         ret = yield_to(task, 1);
2258         put_task_struct(task);
2259
2260         return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2263
2264 /*
2265  * Helper that checks whether a VCPU is eligible for directed yield.
2266  * Most eligible candidate to yield is decided by following heuristics:
2267  *
2268  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2269  *  (preempted lock holder), indicated by @in_spin_loop.
2270  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2271  *
2272  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2273  *  chance last time (mostly it has become eligible now since we have probably
2274  *  yielded to lockholder in last iteration. This is done by toggling
2275  *  @dy_eligible each time a VCPU checked for eligibility.)
2276  *
2277  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2278  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2279  *  burning. Giving priority for a potential lock-holder increases lock
2280  *  progress.
2281  *
2282  *  Since algorithm is based on heuristics, accessing another VCPU data without
2283  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2284  *  and continue with next VCPU and so on.
2285  */
2286 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2287 {
2288 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2289         bool eligible;
2290
2291         eligible = !vcpu->spin_loop.in_spin_loop ||
2292                     vcpu->spin_loop.dy_eligible;
2293
2294         if (vcpu->spin_loop.in_spin_loop)
2295                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2296
2297         return eligible;
2298 #else
2299         return true;
2300 #endif
2301 }
2302
2303 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2304 {
2305         struct kvm *kvm = me->kvm;
2306         struct kvm_vcpu *vcpu;
2307         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2308         int yielded = 0;
2309         int try = 3;
2310         int pass;
2311         int i;
2312
2313         kvm_vcpu_set_in_spin_loop(me, true);
2314         /*
2315          * We boost the priority of a VCPU that is runnable but not
2316          * currently running, because it got preempted by something
2317          * else and called schedule in __vcpu_run.  Hopefully that
2318          * VCPU is holding the lock that we need and will release it.
2319          * We approximate round-robin by starting at the last boosted VCPU.
2320          */
2321         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2322                 kvm_for_each_vcpu(i, vcpu, kvm) {
2323                         if (!pass && i <= last_boosted_vcpu) {
2324                                 i = last_boosted_vcpu;
2325                                 continue;
2326                         } else if (pass && i > last_boosted_vcpu)
2327                                 break;
2328                         if (!ACCESS_ONCE(vcpu->preempted))
2329                                 continue;
2330                         if (vcpu == me)
2331                                 continue;
2332                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2333                                 continue;
2334                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2335                                 continue;
2336
2337                         yielded = kvm_vcpu_yield_to(vcpu);
2338                         if (yielded > 0) {
2339                                 kvm->last_boosted_vcpu = i;
2340                                 break;
2341                         } else if (yielded < 0) {
2342                                 try--;
2343                                 if (!try)
2344                                         break;
2345                         }
2346                 }
2347         }
2348         kvm_vcpu_set_in_spin_loop(me, false);
2349
2350         /* Ensure vcpu is not eligible during next spinloop */
2351         kvm_vcpu_set_dy_eligible(me, false);
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354
2355 static int kvm_vcpu_fault(struct vm_fault *vmf)
2356 {
2357         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2358         struct page *page;
2359
2360         if (vmf->pgoff == 0)
2361                 page = virt_to_page(vcpu->run);
2362 #ifdef CONFIG_X86
2363         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2364                 page = virt_to_page(vcpu->arch.pio_data);
2365 #endif
2366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2367         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2368                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2369 #endif
2370         else
2371                 return kvm_arch_vcpu_fault(vcpu, vmf);
2372         get_page(page);
2373         vmf->page = page;
2374         return 0;
2375 }
2376
2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2378         .fault = kvm_vcpu_fault,
2379 };
2380
2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383         vma->vm_ops = &kvm_vcpu_vm_ops;
2384         return 0;
2385 }
2386
2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 {
2389         struct kvm_vcpu *vcpu = filp->private_data;
2390
2391         debugfs_remove_recursive(vcpu->debugfs_dentry);
2392         kvm_put_kvm(vcpu->kvm);
2393         return 0;
2394 }
2395
2396 static struct file_operations kvm_vcpu_fops = {
2397         .release        = kvm_vcpu_release,
2398         .unlocked_ioctl = kvm_vcpu_ioctl,
2399 #ifdef CONFIG_KVM_COMPAT
2400         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2401 #endif
2402         .mmap           = kvm_vcpu_mmap,
2403         .llseek         = noop_llseek,
2404 };
2405
2406 /*
2407  * Allocates an inode for the vcpu.
2408  */
2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 {
2411         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2412 }
2413
2414 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2415 {
2416         char dir_name[ITOA_MAX_LEN * 2];
2417         int ret;
2418
2419         if (!kvm_arch_has_vcpu_debugfs())
2420                 return 0;
2421
2422         if (!debugfs_initialized())
2423                 return 0;
2424
2425         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2426         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2427                                                                 vcpu->kvm->debugfs_dentry);
2428         if (!vcpu->debugfs_dentry)
2429                 return -ENOMEM;
2430
2431         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2432         if (ret < 0) {
2433                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2434                 return ret;
2435         }
2436
2437         return 0;
2438 }
2439
2440 /*
2441  * Creates some virtual cpus.  Good luck creating more than one.
2442  */
2443 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2444 {
2445         int r;
2446         struct kvm_vcpu *vcpu;
2447
2448         if (id >= KVM_MAX_VCPU_ID)
2449                 return -EINVAL;
2450
2451         mutex_lock(&kvm->lock);
2452         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2453                 mutex_unlock(&kvm->lock);
2454                 return -EINVAL;
2455         }
2456
2457         kvm->created_vcpus++;
2458         mutex_unlock(&kvm->lock);
2459
2460         vcpu = kvm_arch_vcpu_create(kvm, id);
2461         if (IS_ERR(vcpu)) {
2462                 r = PTR_ERR(vcpu);
2463                 goto vcpu_decrement;
2464         }
2465
2466         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2467
2468         r = kvm_arch_vcpu_setup(vcpu);
2469         if (r)
2470                 goto vcpu_destroy;
2471
2472         r = kvm_create_vcpu_debugfs(vcpu);
2473         if (r)
2474                 goto vcpu_destroy;
2475
2476         mutex_lock(&kvm->lock);
2477         if (kvm_get_vcpu_by_id(kvm, id)) {
2478                 r = -EEXIST;
2479                 goto unlock_vcpu_destroy;
2480         }
2481
2482         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2483
2484         /* Now it's all set up, let userspace reach it */
2485         kvm_get_kvm(kvm);
2486         r = create_vcpu_fd(vcpu);
2487         if (r < 0) {
2488                 kvm_put_kvm(kvm);
2489                 goto unlock_vcpu_destroy;
2490         }
2491
2492         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2493
2494         /*
2495          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2496          * before kvm->online_vcpu's incremented value.
2497          */
2498         smp_wmb();
2499         atomic_inc(&kvm->online_vcpus);
2500
2501         mutex_unlock(&kvm->lock);
2502         kvm_arch_vcpu_postcreate(vcpu);
2503         return r;
2504
2505 unlock_vcpu_destroy:
2506         mutex_unlock(&kvm->lock);
2507         debugfs_remove_recursive(vcpu->debugfs_dentry);
2508 vcpu_destroy:
2509         kvm_arch_vcpu_destroy(vcpu);
2510 vcpu_decrement:
2511         mutex_lock(&kvm->lock);
2512         kvm->created_vcpus--;
2513         mutex_unlock(&kvm->lock);
2514         return r;
2515 }
2516
2517 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2518 {
2519         if (sigset) {
2520                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2521                 vcpu->sigset_active = 1;
2522                 vcpu->sigset = *sigset;
2523         } else
2524                 vcpu->sigset_active = 0;
2525         return 0;
2526 }
2527
2528 static long kvm_vcpu_ioctl(struct file *filp,
2529                            unsigned int ioctl, unsigned long arg)
2530 {
2531         struct kvm_vcpu *vcpu = filp->private_data;
2532         void __user *argp = (void __user *)arg;
2533         int r;
2534         struct kvm_fpu *fpu = NULL;
2535         struct kvm_sregs *kvm_sregs = NULL;
2536
2537         if (vcpu->kvm->mm != current->mm)
2538                 return -EIO;
2539
2540         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2541                 return -EINVAL;
2542
2543 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2544         /*
2545          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2546          * so vcpu_load() would break it.
2547          */
2548         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2549                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2550 #endif
2551
2552
2553         r = vcpu_load(vcpu);
2554         if (r)
2555                 return r;
2556         switch (ioctl) {
2557         case KVM_RUN:
2558                 r = -EINVAL;
2559                 if (arg)
2560                         goto out;
2561                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2562                         /* The thread running this VCPU changed. */
2563                         struct pid *oldpid = vcpu->pid;
2564                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2565
2566                         rcu_assign_pointer(vcpu->pid, newpid);
2567                         if (oldpid)
2568                                 synchronize_rcu();
2569                         put_pid(oldpid);
2570                 }
2571                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2572                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2573                 break;
2574         case KVM_GET_REGS: {
2575                 struct kvm_regs *kvm_regs;
2576
2577                 r = -ENOMEM;
2578                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2579                 if (!kvm_regs)
2580                         goto out;
2581                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2582                 if (r)
2583                         goto out_free1;
2584                 r = -EFAULT;
2585                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2586                         goto out_free1;
2587                 r = 0;
2588 out_free1:
2589                 kfree(kvm_regs);
2590                 break;
2591         }
2592         case KVM_SET_REGS: {
2593                 struct kvm_regs *kvm_regs;
2594
2595                 r = -ENOMEM;
2596                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2597                 if (IS_ERR(kvm_regs)) {
2598                         r = PTR_ERR(kvm_regs);
2599                         goto out;
2600                 }
2601                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2602                 kfree(kvm_regs);
2603                 break;
2604         }
2605         case KVM_GET_SREGS: {
2606                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2607                 r = -ENOMEM;
2608                 if (!kvm_sregs)
2609                         goto out;
2610                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2611                 if (r)
2612                         goto out;
2613                 r = -EFAULT;
2614                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2615                         goto out;
2616                 r = 0;
2617                 break;
2618         }
2619         case KVM_SET_SREGS: {
2620                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2621                 if (IS_ERR(kvm_sregs)) {
2622                         r = PTR_ERR(kvm_sregs);
2623                         kvm_sregs = NULL;
2624                         goto out;
2625                 }
2626                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2627                 break;
2628         }
2629         case KVM_GET_MP_STATE: {
2630                 struct kvm_mp_state mp_state;
2631
2632                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2633                 if (r)
2634                         goto out;
2635                 r = -EFAULT;
2636                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2637                         goto out;
2638                 r = 0;
2639                 break;
2640         }
2641         case KVM_SET_MP_STATE: {
2642                 struct kvm_mp_state mp_state;
2643
2644                 r = -EFAULT;
2645                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2646                         goto out;
2647                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2648                 break;
2649         }
2650         case KVM_TRANSLATE: {
2651                 struct kvm_translation tr;
2652
2653                 r = -EFAULT;
2654                 if (copy_from_user(&tr, argp, sizeof(tr)))
2655                         goto out;
2656                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2657                 if (r)
2658                         goto out;
2659                 r = -EFAULT;
2660                 if (copy_to_user(argp, &tr, sizeof(tr)))
2661                         goto out;
2662                 r = 0;
2663                 break;
2664         }
2665         case KVM_SET_GUEST_DEBUG: {
2666                 struct kvm_guest_debug dbg;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2670                         goto out;
2671                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2672                 break;
2673         }
2674         case KVM_SET_SIGNAL_MASK: {
2675                 struct kvm_signal_mask __user *sigmask_arg = argp;
2676                 struct kvm_signal_mask kvm_sigmask;
2677                 sigset_t sigset, *p;
2678
2679                 p = NULL;
2680                 if (argp) {
2681                         r = -EFAULT;
2682                         if (copy_from_user(&kvm_sigmask, argp,
2683                                            sizeof(kvm_sigmask)))
2684                                 goto out;
2685                         r = -EINVAL;
2686                         if (kvm_sigmask.len != sizeof(sigset))
2687                                 goto out;
2688                         r = -EFAULT;
2689                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2690                                            sizeof(sigset)))
2691                                 goto out;
2692                         p = &sigset;
2693                 }
2694                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2695                 break;
2696         }
2697         case KVM_GET_FPU: {
2698                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2699                 r = -ENOMEM;
2700                 if (!fpu)
2701                         goto out;
2702                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2703                 if (r)
2704                         goto out;
2705                 r = -EFAULT;
2706                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2707                         goto out;
2708                 r = 0;
2709                 break;
2710         }
2711         case KVM_SET_FPU: {
2712                 fpu = memdup_user(argp, sizeof(*fpu));
2713                 if (IS_ERR(fpu)) {
2714                         r = PTR_ERR(fpu);
2715                         fpu = NULL;
2716                         goto out;
2717                 }
2718                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2719                 break;
2720         }
2721         default:
2722                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2723         }
2724 out:
2725         vcpu_put(vcpu);
2726         kfree(fpu);
2727         kfree(kvm_sregs);
2728         return r;
2729 }
2730
2731 #ifdef CONFIG_KVM_COMPAT
2732 static long kvm_vcpu_compat_ioctl(struct file *filp,
2733                                   unsigned int ioctl, unsigned long arg)
2734 {
2735         struct kvm_vcpu *vcpu = filp->private_data;
2736         void __user *argp = compat_ptr(arg);
2737         int r;
2738
2739         if (vcpu->kvm->mm != current->mm)
2740                 return -EIO;
2741
2742         switch (ioctl) {
2743         case KVM_SET_SIGNAL_MASK: {
2744                 struct kvm_signal_mask __user *sigmask_arg = argp;
2745                 struct kvm_signal_mask kvm_sigmask;
2746                 compat_sigset_t csigset;
2747                 sigset_t sigset;
2748
2749                 if (argp) {
2750                         r = -EFAULT;
2751                         if (copy_from_user(&kvm_sigmask, argp,
2752                                            sizeof(kvm_sigmask)))
2753                                 goto out;
2754                         r = -EINVAL;
2755                         if (kvm_sigmask.len != sizeof(csigset))
2756                                 goto out;
2757                         r = -EFAULT;
2758                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2759                                            sizeof(csigset)))
2760                                 goto out;
2761                         sigset_from_compat(&sigset, &csigset);
2762                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2763                 } else
2764                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2765                 break;
2766         }
2767         default:
2768                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2769         }
2770
2771 out:
2772         return r;
2773 }
2774 #endif
2775
2776 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2777                                  int (*accessor)(struct kvm_device *dev,
2778                                                  struct kvm_device_attr *attr),
2779                                  unsigned long arg)
2780 {
2781         struct kvm_device_attr attr;
2782
2783         if (!accessor)
2784                 return -EPERM;
2785
2786         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2787                 return -EFAULT;
2788
2789         return accessor(dev, &attr);
2790 }
2791
2792 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2793                              unsigned long arg)
2794 {
2795         struct kvm_device *dev = filp->private_data;
2796
2797         switch (ioctl) {
2798         case KVM_SET_DEVICE_ATTR:
2799                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2800         case KVM_GET_DEVICE_ATTR:
2801                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2802         case KVM_HAS_DEVICE_ATTR:
2803                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2804         default:
2805                 if (dev->ops->ioctl)
2806                         return dev->ops->ioctl(dev, ioctl, arg);
2807
2808                 return -ENOTTY;
2809         }
2810 }
2811
2812 static int kvm_device_release(struct inode *inode, struct file *filp)
2813 {
2814         struct kvm_device *dev = filp->private_data;
2815         struct kvm *kvm = dev->kvm;
2816
2817         kvm_put_kvm(kvm);
2818         return 0;
2819 }
2820
2821 static const struct file_operations kvm_device_fops = {
2822         .unlocked_ioctl = kvm_device_ioctl,
2823 #ifdef CONFIG_KVM_COMPAT
2824         .compat_ioctl = kvm_device_ioctl,
2825 #endif
2826         .release = kvm_device_release,
2827 };
2828
2829 struct kvm_device *kvm_device_from_filp(struct file *filp)
2830 {
2831         if (filp->f_op != &kvm_device_fops)
2832                 return NULL;
2833
2834         return filp->private_data;
2835 }
2836
2837 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2838 #ifdef CONFIG_KVM_MPIC
2839         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2840         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2841 #endif
2842
2843 #ifdef CONFIG_KVM_XICS
2844         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2845 #endif
2846 };
2847
2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2849 {
2850         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2851                 return -ENOSPC;
2852
2853         if (kvm_device_ops_table[type] != NULL)
2854                 return -EEXIST;
2855
2856         kvm_device_ops_table[type] = ops;
2857         return 0;
2858 }
2859
2860 void kvm_unregister_device_ops(u32 type)
2861 {
2862         if (kvm_device_ops_table[type] != NULL)
2863                 kvm_device_ops_table[type] = NULL;
2864 }
2865
2866 static int kvm_ioctl_create_device(struct kvm *kvm,
2867                                    struct kvm_create_device *cd)
2868 {
2869         struct kvm_device_ops *ops = NULL;
2870         struct kvm_device *dev;
2871         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2872         int ret;
2873
2874         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2875                 return -ENODEV;
2876
2877         ops = kvm_device_ops_table[cd->type];
2878         if (ops == NULL)
2879                 return -ENODEV;
2880
2881         if (test)
2882                 return 0;
2883
2884         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2885         if (!dev)
2886                 return -ENOMEM;
2887
2888         dev->ops = ops;
2889         dev->kvm = kvm;
2890
2891         mutex_lock(&kvm->lock);
2892         ret = ops->create(dev, cd->type);
2893         if (ret < 0) {
2894                 mutex_unlock(&kvm->lock);
2895                 kfree(dev);
2896                 return ret;
2897         }
2898         list_add(&dev->vm_node, &kvm->devices);
2899         mutex_unlock(&kvm->lock);
2900
2901         if (ops->init)
2902                 ops->init(dev);
2903
2904         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2905         if (ret < 0) {
2906                 mutex_lock(&kvm->lock);
2907                 list_del(&dev->vm_node);
2908                 mutex_unlock(&kvm->lock);
2909                 ops->destroy(dev);
2910                 return ret;
2911         }
2912
2913         kvm_get_kvm(kvm);
2914         cd->fd = ret;
2915         return 0;
2916 }
2917
2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2919 {
2920         switch (arg) {
2921         case KVM_CAP_USER_MEMORY:
2922         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2923         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2924         case KVM_CAP_INTERNAL_ERROR_DATA:
2925 #ifdef CONFIG_HAVE_KVM_MSI
2926         case KVM_CAP_SIGNAL_MSI:
2927 #endif
2928 #ifdef CONFIG_HAVE_KVM_IRQFD
2929         case KVM_CAP_IRQFD:
2930         case KVM_CAP_IRQFD_RESAMPLE:
2931 #endif
2932         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2933         case KVM_CAP_CHECK_EXTENSION_VM:
2934                 return 1;
2935 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2936         case KVM_CAP_IRQ_ROUTING:
2937                 return KVM_MAX_IRQ_ROUTES;
2938 #endif
2939 #if KVM_ADDRESS_SPACE_NUM > 1
2940         case KVM_CAP_MULTI_ADDRESS_SPACE:
2941                 return KVM_ADDRESS_SPACE_NUM;
2942 #endif
2943         case KVM_CAP_MAX_VCPU_ID:
2944                 return KVM_MAX_VCPU_ID;
2945         default:
2946                 break;
2947         }
2948         return kvm_vm_ioctl_check_extension(kvm, arg);
2949 }
2950
2951 static long kvm_vm_ioctl(struct file *filp,
2952                            unsigned int ioctl, unsigned long arg)
2953 {
2954         struct kvm *kvm = filp->private_data;
2955         void __user *argp = (void __user *)arg;
2956         int r;
2957
2958         if (kvm->mm != current->mm)
2959                 return -EIO;
2960         switch (ioctl) {
2961         case KVM_CREATE_VCPU:
2962                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2963                 break;
2964         case KVM_SET_USER_MEMORY_REGION: {
2965                 struct kvm_userspace_memory_region kvm_userspace_mem;
2966
2967                 r = -EFAULT;
2968                 if (copy_from_user(&kvm_userspace_mem, argp,
2969                                                 sizeof(kvm_userspace_mem)))
2970                         goto out;
2971
2972                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2973                 break;
2974         }
2975         case KVM_GET_DIRTY_LOG: {
2976                 struct kvm_dirty_log log;
2977
2978                 r = -EFAULT;
2979                 if (copy_from_user(&log, argp, sizeof(log)))
2980                         goto out;
2981                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2982                 break;
2983         }
2984 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2985         case KVM_REGISTER_COALESCED_MMIO: {
2986                 struct kvm_coalesced_mmio_zone zone;
2987
2988                 r = -EFAULT;
2989                 if (copy_from_user(&zone, argp, sizeof(zone)))
2990                         goto out;
2991                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2992                 break;
2993         }
2994         case KVM_UNREGISTER_COALESCED_MMIO: {
2995                 struct kvm_coalesced_mmio_zone zone;
2996
2997                 r = -EFAULT;
2998                 if (copy_from_user(&zone, argp, sizeof(zone)))
2999                         goto out;
3000                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3001                 break;
3002         }
3003 #endif
3004         case KVM_IRQFD: {
3005                 struct kvm_irqfd data;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&data, argp, sizeof(data)))
3009                         goto out;
3010                 r = kvm_irqfd(kvm, &data);
3011                 break;
3012         }
3013         case KVM_IOEVENTFD: {
3014                 struct kvm_ioeventfd data;
3015
3016                 r = -EFAULT;
3017                 if (copy_from_user(&data, argp, sizeof(data)))
3018                         goto out;
3019                 r = kvm_ioeventfd(kvm, &data);
3020                 break;
3021         }
3022 #ifdef CONFIG_HAVE_KVM_MSI
3023         case KVM_SIGNAL_MSI: {
3024                 struct kvm_msi msi;
3025
3026                 r = -EFAULT;
3027                 if (copy_from_user(&msi, argp, sizeof(msi)))
3028                         goto out;
3029                 r = kvm_send_userspace_msi(kvm, &msi);
3030                 break;
3031         }
3032 #endif
3033 #ifdef __KVM_HAVE_IRQ_LINE
3034         case KVM_IRQ_LINE_STATUS:
3035         case KVM_IRQ_LINE: {
3036                 struct kvm_irq_level irq_event;
3037
3038                 r = -EFAULT;
3039                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3040                         goto out;
3041
3042                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3043                                         ioctl == KVM_IRQ_LINE_STATUS);
3044                 if (r)
3045                         goto out;
3046
3047                 r = -EFAULT;
3048                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3049                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3050                                 goto out;
3051                 }
3052
3053                 r = 0;
3054                 break;
3055         }
3056 #endif
3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058         case KVM_SET_GSI_ROUTING: {
3059                 struct kvm_irq_routing routing;
3060                 struct kvm_irq_routing __user *urouting;
3061                 struct kvm_irq_routing_entry *entries = NULL;
3062
3063                 r = -EFAULT;
3064                 if (copy_from_user(&routing, argp, sizeof(routing)))
3065                         goto out;
3066                 r = -EINVAL;
3067                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3068                         goto out;
3069                 if (routing.flags)
3070                         goto out;
3071                 if (routing.nr) {
3072                         r = -ENOMEM;
3073                         entries = vmalloc(routing.nr * sizeof(*entries));
3074                         if (!entries)
3075                                 goto out;
3076                         r = -EFAULT;
3077                         urouting = argp;
3078                         if (copy_from_user(entries, urouting->entries,
3079                                            routing.nr * sizeof(*entries)))
3080                                 goto out_free_irq_routing;
3081                 }
3082                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3083                                         routing.flags);
3084 out_free_irq_routing:
3085                 vfree(entries);
3086                 break;
3087         }
3088 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3089         case KVM_CREATE_DEVICE: {
3090                 struct kvm_create_device cd;
3091
3092                 r = -EFAULT;
3093                 if (copy_from_user(&cd, argp, sizeof(cd)))
3094                         goto out;
3095
3096                 r = kvm_ioctl_create_device(kvm, &cd);
3097                 if (r)
3098                         goto out;
3099
3100                 r = -EFAULT;
3101                 if (copy_to_user(argp, &cd, sizeof(cd)))
3102                         goto out;
3103
3104                 r = 0;
3105                 break;
3106         }
3107         case KVM_CHECK_EXTENSION:
3108                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3109                 break;
3110         default:
3111                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3112         }
3113 out:
3114         return r;
3115 }
3116
3117 #ifdef CONFIG_KVM_COMPAT
3118 struct compat_kvm_dirty_log {
3119         __u32 slot;
3120         __u32 padding1;
3121         union {
3122                 compat_uptr_t dirty_bitmap; /* one bit per page */
3123                 __u64 padding2;
3124         };
3125 };
3126
3127 static long kvm_vm_compat_ioctl(struct file *filp,
3128                            unsigned int ioctl, unsigned long arg)
3129 {
3130         struct kvm *kvm = filp->private_data;
3131         int r;
3132
3133         if (kvm->mm != current->mm)
3134                 return -EIO;
3135         switch (ioctl) {
3136         case KVM_GET_DIRTY_LOG: {
3137                 struct compat_kvm_dirty_log compat_log;
3138                 struct kvm_dirty_log log;
3139
3140                 if (copy_from_user(&compat_log, (void __user *)arg,
3141                                    sizeof(compat_log)))
3142                         return -EFAULT;
3143                 log.slot         = compat_log.slot;
3144                 log.padding1     = compat_log.padding1;
3145                 log.padding2     = compat_log.padding2;
3146                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3147
3148                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3149                 break;
3150         }
3151         default:
3152                 r = kvm_vm_ioctl(filp, ioctl, arg);
3153         }
3154         return r;
3155 }
3156 #endif
3157
3158 static struct file_operations kvm_vm_fops = {
3159         .release        = kvm_vm_release,
3160         .unlocked_ioctl = kvm_vm_ioctl,
3161 #ifdef CONFIG_KVM_COMPAT
3162         .compat_ioctl   = kvm_vm_compat_ioctl,
3163 #endif
3164         .llseek         = noop_llseek,
3165 };
3166
3167 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 {
3169         int r;
3170         struct kvm *kvm;
3171         struct file *file;
3172
3173         kvm = kvm_create_vm(type);
3174         if (IS_ERR(kvm))
3175                 return PTR_ERR(kvm);
3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3177         r = kvm_coalesced_mmio_init(kvm);
3178         if (r < 0) {
3179                 kvm_put_kvm(kvm);
3180                 return r;
3181         }
3182 #endif
3183         r = get_unused_fd_flags(O_CLOEXEC);
3184         if (r < 0) {
3185                 kvm_put_kvm(kvm);
3186                 return r;
3187         }
3188         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3189         if (IS_ERR(file)) {
3190                 put_unused_fd(r);
3191                 kvm_put_kvm(kvm);
3192                 return PTR_ERR(file);
3193         }
3194
3195         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3196                 put_unused_fd(r);
3197                 fput(file);
3198                 return -ENOMEM;
3199         }
3200
3201         fd_install(r, file);
3202         return r;
3203 }
3204
3205 static long kvm_dev_ioctl(struct file *filp,
3206                           unsigned int ioctl, unsigned long arg)
3207 {
3208         long r = -EINVAL;
3209
3210         switch (ioctl) {
3211         case KVM_GET_API_VERSION:
3212                 if (arg)
3213                         goto out;
3214                 r = KVM_API_VERSION;
3215                 break;
3216         case KVM_CREATE_VM:
3217                 r = kvm_dev_ioctl_create_vm(arg);
3218                 break;
3219         case KVM_CHECK_EXTENSION:
3220                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221                 break;
3222         case KVM_GET_VCPU_MMAP_SIZE:
3223                 if (arg)
3224                         goto out;
3225                 r = PAGE_SIZE;     /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227                 r += PAGE_SIZE;    /* pio data page */
3228 #endif
3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3230                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3231 #endif
3232                 break;
3233         case KVM_TRACE_ENABLE:
3234         case KVM_TRACE_PAUSE:
3235         case KVM_TRACE_DISABLE:
3236                 r = -EOPNOTSUPP;
3237                 break;
3238         default:
3239                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240         }
3241 out:
3242         return r;
3243 }
3244
3245 static struct file_operations kvm_chardev_ops = {
3246         .unlocked_ioctl = kvm_dev_ioctl,
3247         .compat_ioctl   = kvm_dev_ioctl,
3248         .llseek         = noop_llseek,
3249 };
3250
3251 static struct miscdevice kvm_dev = {
3252         KVM_MINOR,
3253         "kvm",
3254         &kvm_chardev_ops,
3255 };
3256
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259         int cpu = raw_smp_processor_id();
3260         int r;
3261
3262         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263                 return;
3264
3265         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266
3267         r = kvm_arch_hardware_enable();
3268
3269         if (r) {
3270                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271                 atomic_inc(&hardware_enable_failed);
3272                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273         }
3274 }
3275
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278         raw_spin_lock(&kvm_count_lock);
3279         if (kvm_usage_count)
3280                 hardware_enable_nolock(NULL);
3281         raw_spin_unlock(&kvm_count_lock);
3282         return 0;
3283 }
3284
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287         int cpu = raw_smp_processor_id();
3288
3289         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290                 return;
3291         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292         kvm_arch_hardware_disable();
3293 }
3294
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297         raw_spin_lock(&kvm_count_lock);
3298         if (kvm_usage_count)
3299                 hardware_disable_nolock(NULL);
3300         raw_spin_unlock(&kvm_count_lock);
3301         return 0;
3302 }
3303
3304 static void hardware_disable_all_nolock(void)
3305 {
3306         BUG_ON(!kvm_usage_count);
3307
3308         kvm_usage_count--;
3309         if (!kvm_usage_count)
3310                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312
3313 static void hardware_disable_all(void)
3314 {
3315         raw_spin_lock(&kvm_count_lock);
3316         hardware_disable_all_nolock();
3317         raw_spin_unlock(&kvm_count_lock);
3318 }
3319
3320 static int hardware_enable_all(void)
3321 {
3322         int r = 0;
3323
3324         raw_spin_lock(&kvm_count_lock);
3325
3326         kvm_usage_count++;
3327         if (kvm_usage_count == 1) {
3328                 atomic_set(&hardware_enable_failed, 0);
3329                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3330
3331                 if (atomic_read(&hardware_enable_failed)) {
3332                         hardware_disable_all_nolock();
3333                         r = -EBUSY;
3334                 }
3335         }
3336
3337         raw_spin_unlock(&kvm_count_lock);
3338
3339         return r;
3340 }
3341
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343                       void *v)
3344 {
3345         /*
3346          * Some (well, at least mine) BIOSes hang on reboot if
3347          * in vmx root mode.
3348          *
3349          * And Intel TXT required VMX off for all cpu when system shutdown.
3350          */
3351         pr_info("kvm: exiting hardware virtualization\n");
3352         kvm_rebooting = true;
3353         on_each_cpu(hardware_disable_nolock, NULL, 1);
3354         return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block kvm_reboot_notifier = {
3358         .notifier_call = kvm_reboot,
3359         .priority = 0,
3360 };
3361
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364         int i;
3365
3366         for (i = 0; i < bus->dev_count; i++) {
3367                 struct kvm_io_device *pos = bus->range[i].dev;
3368
3369                 kvm_iodevice_destructor(pos);
3370         }
3371         kfree(bus);
3372 }
3373
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375                                  const struct kvm_io_range *r2)
3376 {
3377         gpa_t addr1 = r1->addr;
3378         gpa_t addr2 = r2->addr;
3379
3380         if (addr1 < addr2)
3381                 return -1;
3382
3383         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3384          * accept any overlapping write.  Any order is acceptable for
3385          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386          * we process all of them.
3387          */
3388         if (r2->len) {
3389                 addr1 += r1->len;
3390                 addr2 += r2->len;
3391         }
3392
3393         if (addr1 > addr2)
3394                 return 1;
3395
3396         return 0;
3397 }
3398
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401         return kvm_io_bus_cmp(p1, p2);
3402 }
3403
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405                           gpa_t addr, int len)
3406 {
3407         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408                 .addr = addr,
3409                 .len = len,
3410                 .dev = dev,
3411         };
3412
3413         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414                 kvm_io_bus_sort_cmp, NULL);
3415
3416         return 0;
3417 }
3418
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420                              gpa_t addr, int len)
3421 {
3422         struct kvm_io_range *range, key;
3423         int off;
3424
3425         key = (struct kvm_io_range) {
3426                 .addr = addr,
3427                 .len = len,
3428         };
3429
3430         range = bsearch(&key, bus->range, bus->dev_count,
3431                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432         if (range == NULL)
3433                 return -ENOENT;
3434
3435         off = range - bus->range;
3436
3437         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438                 off--;
3439
3440         return off;
3441 }
3442
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444                               struct kvm_io_range *range, const void *val)
3445 {
3446         int idx;
3447
3448         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449         if (idx < 0)
3450                 return -EOPNOTSUPP;
3451
3452         while (idx < bus->dev_count &&
3453                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455                                         range->len, val))
3456                         return idx;
3457                 idx++;
3458         }
3459
3460         return -EOPNOTSUPP;
3461 }
3462
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465                      int len, const void *val)
3466 {
3467         struct kvm_io_bus *bus;
3468         struct kvm_io_range range;
3469         int r;
3470
3471         range = (struct kvm_io_range) {
3472                 .addr = addr,
3473                 .len = len,
3474         };
3475
3476         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478         return r < 0 ? r : 0;
3479 }
3480
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483                             gpa_t addr, int len, const void *val, long cookie)
3484 {
3485         struct kvm_io_bus *bus;
3486         struct kvm_io_range range;
3487
3488         range = (struct kvm_io_range) {
3489                 .addr = addr,
3490                 .len = len,
3491         };
3492
3493         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494
3495         /* First try the device referenced by cookie. */
3496         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3497             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3498                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3499                                         val))
3500                         return cookie;
3501
3502         /*
3503          * cookie contained garbage; fall back to search and return the
3504          * correct cookie value.
3505          */
3506         return __kvm_io_bus_write(vcpu, bus, &range, val);
3507 }
3508
3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3510                              struct kvm_io_range *range, void *val)
3511 {
3512         int idx;
3513
3514         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3515         if (idx < 0)
3516                 return -EOPNOTSUPP;
3517
3518         while (idx < bus->dev_count &&
3519                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3520                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3521                                        range->len, val))
3522                         return idx;
3523                 idx++;
3524         }
3525
3526         return -EOPNOTSUPP;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3529
3530 /* kvm_io_bus_read - called under kvm->slots_lock */
3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3532                     int len, void *val)
3533 {
3534         struct kvm_io_bus *bus;
3535         struct kvm_io_range range;
3536         int r;
3537
3538         range = (struct kvm_io_range) {
3539                 .addr = addr,
3540                 .len = len,
3541         };
3542
3543         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3544         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3545         return r < 0 ? r : 0;
3546 }
3547
3548
3549 /* Caller must hold slots_lock. */
3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3551                             int len, struct kvm_io_device *dev)
3552 {
3553         struct kvm_io_bus *new_bus, *bus;
3554
3555         bus = kvm->buses[bus_idx];
3556         /* exclude ioeventfd which is limited by maximum fd */
3557         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558                 return -ENOSPC;
3559
3560         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3562         if (!new_bus)
3563                 return -ENOMEM;
3564         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565                sizeof(struct kvm_io_range)));
3566         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568         synchronize_srcu_expedited(&kvm->srcu);
3569         kfree(bus);
3570
3571         return 0;
3572 }
3573
3574 /* Caller must hold slots_lock. */
3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576                               struct kvm_io_device *dev)
3577 {
3578         int i, r;
3579         struct kvm_io_bus *new_bus, *bus;
3580
3581         bus = kvm->buses[bus_idx];
3582         r = -ENOENT;
3583         for (i = 0; i < bus->dev_count; i++)
3584                 if (bus->range[i].dev == dev) {
3585                         r = 0;
3586                         break;
3587                 }
3588
3589         if (r)
3590                 return r;
3591
3592         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3594         if (!new_bus)
3595                 return -ENOMEM;
3596
3597         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3598         new_bus->dev_count--;
3599         memcpy(new_bus->range + i, bus->range + i + 1,
3600                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3601
3602         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603         synchronize_srcu_expedited(&kvm->srcu);
3604         kfree(bus);
3605         return r;
3606 }
3607
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609                                          gpa_t addr)
3610 {
3611         struct kvm_io_bus *bus;
3612         int dev_idx, srcu_idx;
3613         struct kvm_io_device *iodev = NULL;
3614
3615         srcu_idx = srcu_read_lock(&kvm->srcu);
3616
3617         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618
3619         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3620         if (dev_idx < 0)
3621                 goto out_unlock;
3622
3623         iodev = bus->range[dev_idx].dev;
3624
3625 out_unlock:
3626         srcu_read_unlock(&kvm->srcu, srcu_idx);
3627
3628         return iodev;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3631
3632 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3633                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3634                            const char *fmt)
3635 {
3636         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3637                                           inode->i_private;
3638
3639         /* The debugfs files are a reference to the kvm struct which
3640          * is still valid when kvm_destroy_vm is called.
3641          * To avoid the race between open and the removal of the debugfs
3642          * directory we test against the users count.
3643          */
3644         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3645                 return -ENOENT;
3646
3647         if (simple_attr_open(inode, file, get, set, fmt)) {
3648                 kvm_put_kvm(stat_data->kvm);
3649                 return -ENOMEM;
3650         }
3651
3652         return 0;
3653 }
3654
3655 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3656 {
3657         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658                                           inode->i_private;
3659
3660         simple_attr_release(inode, file);
3661         kvm_put_kvm(stat_data->kvm);
3662
3663         return 0;
3664 }
3665
3666 static int vm_stat_get_per_vm(void *data, u64 *val)
3667 {
3668         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3669
3670         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3671
3672         return 0;
3673 }
3674
3675 static int vm_stat_clear_per_vm(void *data, u64 val)
3676 {
3677         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3678
3679         if (val)
3680                 return -EINVAL;
3681
3682         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3683
3684         return 0;
3685 }
3686
3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3688 {
3689         __simple_attr_check_format("%llu\n", 0ull);
3690         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3691                                 vm_stat_clear_per_vm, "%llu\n");
3692 }
3693
3694 static const struct file_operations vm_stat_get_per_vm_fops = {
3695         .owner   = THIS_MODULE,
3696         .open    = vm_stat_get_per_vm_open,
3697         .release = kvm_debugfs_release,
3698         .read    = simple_attr_read,
3699         .write   = simple_attr_write,
3700         .llseek  = generic_file_llseek,
3701 };
3702
3703 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3704 {
3705         int i;
3706         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707         struct kvm_vcpu *vcpu;
3708
3709         *val = 0;
3710
3711         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3712                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3713
3714         return 0;
3715 }
3716
3717 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3718 {
3719         int i;
3720         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721         struct kvm_vcpu *vcpu;
3722
3723         if (val)
3724                 return -EINVAL;
3725
3726         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3728
3729         return 0;
3730 }
3731
3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3733 {
3734         __simple_attr_check_format("%llu\n", 0ull);
3735         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3736                                  vcpu_stat_clear_per_vm, "%llu\n");
3737 }
3738
3739 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3740         .owner   = THIS_MODULE,
3741         .open    = vcpu_stat_get_per_vm_open,
3742         .release = kvm_debugfs_release,
3743         .read    = simple_attr_read,
3744         .write   = simple_attr_write,
3745         .llseek  = generic_file_llseek,
3746 };
3747
3748 static const struct file_operations *stat_fops_per_vm[] = {
3749         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3750         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3751 };
3752
3753 static int vm_stat_get(void *_offset, u64 *val)
3754 {
3755         unsigned offset = (long)_offset;
3756         struct kvm *kvm;
3757         struct kvm_stat_data stat_tmp = {.offset = offset};
3758         u64 tmp_val;
3759
3760         *val = 0;
3761         spin_lock(&kvm_lock);
3762         list_for_each_entry(kvm, &vm_list, vm_list) {
3763                 stat_tmp.kvm = kvm;
3764                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3765                 *val += tmp_val;
3766         }
3767         spin_unlock(&kvm_lock);
3768         return 0;
3769 }
3770
3771 static int vm_stat_clear(void *_offset, u64 val)
3772 {
3773         unsigned offset = (long)_offset;
3774         struct kvm *kvm;
3775         struct kvm_stat_data stat_tmp = {.offset = offset};
3776
3777         if (val)
3778                 return -EINVAL;
3779
3780         spin_lock(&kvm_lock);
3781         list_for_each_entry(kvm, &vm_list, vm_list) {
3782                 stat_tmp.kvm = kvm;
3783                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3784         }
3785         spin_unlock(&kvm_lock);
3786
3787         return 0;
3788 }
3789
3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3791
3792 static int vcpu_stat_get(void *_offset, u64 *val)
3793 {
3794         unsigned offset = (long)_offset;
3795         struct kvm *kvm;
3796         struct kvm_stat_data stat_tmp = {.offset = offset};
3797         u64 tmp_val;
3798
3799         *val = 0;
3800         spin_lock(&kvm_lock);
3801         list_for_each_entry(kvm, &vm_list, vm_list) {
3802                 stat_tmp.kvm = kvm;
3803                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804                 *val += tmp_val;
3805         }
3806         spin_unlock(&kvm_lock);
3807         return 0;
3808 }
3809
3810 static int vcpu_stat_clear(void *_offset, u64 val)
3811 {
3812         unsigned offset = (long)_offset;
3813         struct kvm *kvm;
3814         struct kvm_stat_data stat_tmp = {.offset = offset};
3815
3816         if (val)
3817                 return -EINVAL;
3818
3819         spin_lock(&kvm_lock);
3820         list_for_each_entry(kvm, &vm_list, vm_list) {
3821                 stat_tmp.kvm = kvm;
3822                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3823         }
3824         spin_unlock(&kvm_lock);
3825
3826         return 0;
3827 }
3828
3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3830                         "%llu\n");
3831
3832 static const struct file_operations *stat_fops[] = {
3833         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3834         [KVM_STAT_VM]   = &vm_stat_fops,
3835 };
3836
3837 static int kvm_init_debug(void)
3838 {
3839         int r = -EEXIST;
3840         struct kvm_stats_debugfs_item *p;
3841
3842         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3843         if (kvm_debugfs_dir == NULL)
3844                 goto out;
3845
3846         kvm_debugfs_num_entries = 0;
3847         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3848                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3849                                          (void *)(long)p->offset,
3850                                          stat_fops[p->kind]))
3851                         goto out_dir;
3852         }
3853
3854         return 0;
3855
3856 out_dir:
3857         debugfs_remove_recursive(kvm_debugfs_dir);
3858 out:
3859         return r;
3860 }
3861
3862 static int kvm_suspend(void)
3863 {
3864         if (kvm_usage_count)
3865                 hardware_disable_nolock(NULL);
3866         return 0;
3867 }
3868
3869 static void kvm_resume(void)
3870 {
3871         if (kvm_usage_count) {
3872                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3873                 hardware_enable_nolock(NULL);
3874         }
3875 }
3876
3877 static struct syscore_ops kvm_syscore_ops = {
3878         .suspend = kvm_suspend,
3879         .resume = kvm_resume,
3880 };
3881
3882 static inline
3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3884 {
3885         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3886 }
3887
3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3889 {
3890         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3891
3892         if (vcpu->preempted)
3893                 vcpu->preempted = false;
3894
3895         kvm_arch_sched_in(vcpu, cpu);
3896
3897         kvm_arch_vcpu_load(vcpu, cpu);
3898 }
3899
3900 static void kvm_sched_out(struct preempt_notifier *pn,
3901                           struct task_struct *next)
3902 {
3903         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3904
3905         if (current->state == TASK_RUNNING)
3906                 vcpu->preempted = true;
3907         kvm_arch_vcpu_put(vcpu);
3908 }
3909
3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3911                   struct module *module)
3912 {
3913         int r;
3914         int cpu;
3915
3916         r = kvm_arch_init(opaque);
3917         if (r)
3918                 goto out_fail;
3919
3920         /*
3921          * kvm_arch_init makes sure there's at most one caller
3922          * for architectures that support multiple implementations,
3923          * like intel and amd on x86.
3924          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3925          * conflicts in case kvm is already setup for another implementation.
3926          */
3927         r = kvm_irqfd_init();
3928         if (r)
3929                 goto out_irqfd;
3930
3931         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3932                 r = -ENOMEM;
3933                 goto out_free_0;
3934         }
3935
3936         r = kvm_arch_hardware_setup();
3937         if (r < 0)
3938                 goto out_free_0a;
3939
3940         for_each_online_cpu(cpu) {
3941                 smp_call_function_single(cpu,
3942                                 kvm_arch_check_processor_compat,
3943                                 &r, 1);
3944                 if (r < 0)
3945                         goto out_free_1;
3946         }
3947
3948         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3949                                       kvm_starting_cpu, kvm_dying_cpu);
3950         if (r)
3951                 goto out_free_2;
3952         register_reboot_notifier(&kvm_reboot_notifier);
3953
3954         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3955         if (!vcpu_align)
3956                 vcpu_align = __alignof__(struct kvm_vcpu);
3957         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3958                                            0, NULL);
3959         if (!kvm_vcpu_cache) {
3960                 r = -ENOMEM;
3961                 goto out_free_3;
3962         }
3963
3964         r = kvm_async_pf_init();
3965         if (r)
3966                 goto out_free;
3967
3968         kvm_chardev_ops.owner = module;
3969         kvm_vm_fops.owner = module;
3970         kvm_vcpu_fops.owner = module;
3971
3972         r = misc_register(&kvm_dev);
3973         if (r) {
3974                 pr_err("kvm: misc device register failed\n");
3975                 goto out_unreg;
3976         }
3977
3978         register_syscore_ops(&kvm_syscore_ops);
3979
3980         kvm_preempt_ops.sched_in = kvm_sched_in;
3981         kvm_preempt_ops.sched_out = kvm_sched_out;
3982
3983         r = kvm_init_debug();
3984         if (r) {
3985                 pr_err("kvm: create debugfs files failed\n");
3986                 goto out_undebugfs;
3987         }
3988
3989         r = kvm_vfio_ops_init();
3990         WARN_ON(r);
3991
3992         return 0;
3993
3994 out_undebugfs:
3995         unregister_syscore_ops(&kvm_syscore_ops);
3996         misc_deregister(&kvm_dev);
3997 out_unreg:
3998         kvm_async_pf_deinit();
3999 out_free:
4000         kmem_cache_destroy(kvm_vcpu_cache);
4001 out_free_3:
4002         unregister_reboot_notifier(&kvm_reboot_notifier);
4003         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4004 out_free_2:
4005 out_free_1:
4006         kvm_arch_hardware_unsetup();
4007 out_free_0a:
4008         free_cpumask_var(cpus_hardware_enabled);
4009 out_free_0:
4010         kvm_irqfd_exit();
4011 out_irqfd:
4012         kvm_arch_exit();
4013 out_fail:
4014         return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_init);
4017
4018 void kvm_exit(void)
4019 {
4020         debugfs_remove_recursive(kvm_debugfs_dir);
4021         misc_deregister(&kvm_dev);
4022         kmem_cache_destroy(kvm_vcpu_cache);
4023         kvm_async_pf_deinit();
4024         unregister_syscore_ops(&kvm_syscore_ops);
4025         unregister_reboot_notifier(&kvm_reboot_notifier);
4026         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4027         on_each_cpu(hardware_disable_nolock, NULL, 1);
4028         kvm_arch_hardware_unsetup();
4029         kvm_arch_exit();
4030         kvm_irqfd_exit();
4031         free_cpumask_var(cpus_hardware_enabled);
4032         kvm_vfio_ops_exit();
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_exit);