OSDN Git Service

Invert sense of a test.
[android-x86/dalvik.git] / vm / Hash.cpp
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 /*
17  * Hash table.  The dominant calls are add and lookup, with removals
18  * happening very infrequently.  We use probing, and don't worry much
19  * about tombstone removal.
20  */
21 #include "Dalvik.h"
22
23 #include <stdlib.h>
24
25 /* table load factor, i.e. how full can it get before we resize */
26 //#define LOAD_NUMER  3       // 75%
27 //#define LOAD_DENOM  4
28 #define LOAD_NUMER  5       // 62.5%
29 #define LOAD_DENOM  8
30 //#define LOAD_NUMER  1       // 50%
31 //#define LOAD_DENOM  2
32
33 /*
34  * Compute the capacity needed for a table to hold "size" elements.
35  */
36 size_t dvmHashSize(size_t size) {
37     return (size * LOAD_DENOM) / LOAD_NUMER +1;
38 }
39
40
41 /*
42  * Create and initialize a hash table.
43  */
44 HashTable* dvmHashTableCreate(size_t initialSize, HashFreeFunc freeFunc)
45 {
46     HashTable* pHashTable;
47
48     assert(initialSize > 0);
49
50     pHashTable = (HashTable*) malloc(sizeof(*pHashTable));
51     if (pHashTable == NULL)
52         return NULL;
53
54     dvmInitMutex(&pHashTable->lock);
55
56     pHashTable->tableSize = dexRoundUpPower2(initialSize);
57     pHashTable->numEntries = pHashTable->numDeadEntries = 0;
58     pHashTable->freeFunc = freeFunc;
59     pHashTable->pEntries =
60         (HashEntry*) calloc(pHashTable->tableSize, sizeof(HashEntry));
61     if (pHashTable->pEntries == NULL) {
62         free(pHashTable);
63         return NULL;
64     }
65
66     return pHashTable;
67 }
68
69 /*
70  * Clear out all entries.
71  */
72 void dvmHashTableClear(HashTable* pHashTable)
73 {
74     HashEntry* pEnt;
75     int i;
76
77     pEnt = pHashTable->pEntries;
78     for (i = 0; i < pHashTable->tableSize; i++, pEnt++) {
79         if (pEnt->data == HASH_TOMBSTONE) {
80             // nuke entry
81             pEnt->data = NULL;
82         } else if (pEnt->data != NULL) {
83             // call free func then nuke entry
84             if (pHashTable->freeFunc != NULL)
85                 (*pHashTable->freeFunc)(pEnt->data);
86             pEnt->data = NULL;
87         }
88     }
89
90     pHashTable->numEntries = 0;
91     pHashTable->numDeadEntries = 0;
92 }
93
94 /*
95  * Free the table.
96  */
97 void dvmHashTableFree(HashTable* pHashTable)
98 {
99     if (pHashTable == NULL)
100         return;
101     dvmHashTableClear(pHashTable);
102     free(pHashTable->pEntries);
103     free(pHashTable);
104 }
105
106 #ifndef NDEBUG
107 /*
108  * Count up the number of tombstone entries in the hash table.
109  */
110 static int countTombStones(HashTable* pHashTable)
111 {
112     int i, count;
113
114     for (count = i = 0; i < pHashTable->tableSize; i++) {
115         if (pHashTable->pEntries[i].data == HASH_TOMBSTONE)
116             count++;
117     }
118     return count;
119 }
120 #endif
121
122 /*
123  * Resize a hash table.  We do this when adding an entry increased the
124  * size of the table beyond its comfy limit.
125  *
126  * This essentially requires re-inserting all elements into the new storage.
127  *
128  * If multiple threads can access the hash table, the table's lock should
129  * have been grabbed before issuing the "lookup+add" call that led to the
130  * resize, so we don't have a synchronization problem here.
131  */
132 static bool resizeHash(HashTable* pHashTable, int newSize)
133 {
134     HashEntry* pNewEntries;
135     int i;
136
137     assert(countTombStones(pHashTable) == pHashTable->numDeadEntries);
138     //ALOGI("before: dead=%d", pHashTable->numDeadEntries);
139
140     pNewEntries = (HashEntry*) calloc(newSize, sizeof(HashEntry));
141     if (pNewEntries == NULL)
142         return false;
143
144     for (i = 0; i < pHashTable->tableSize; i++) {
145         void* data = pHashTable->pEntries[i].data;
146         if (data != NULL && data != HASH_TOMBSTONE) {
147             int hashValue = pHashTable->pEntries[i].hashValue;
148             int newIdx;
149
150             /* probe for new spot, wrapping around */
151             newIdx = hashValue & (newSize-1);
152             while (pNewEntries[newIdx].data != NULL)
153                 newIdx = (newIdx + 1) & (newSize-1);
154
155             pNewEntries[newIdx].hashValue = hashValue;
156             pNewEntries[newIdx].data = data;
157         }
158     }
159
160     free(pHashTable->pEntries);
161     pHashTable->pEntries = pNewEntries;
162     pHashTable->tableSize = newSize;
163     pHashTable->numDeadEntries = 0;
164
165     assert(countTombStones(pHashTable) == 0);
166     return true;
167 }
168
169 /*
170  * Look up an entry.
171  *
172  * We probe on collisions, wrapping around the table.
173  */
174 void* dvmHashTableLookup(HashTable* pHashTable, u4 itemHash, void* item,
175     HashCompareFunc cmpFunc, bool doAdd)
176 {
177     HashEntry* pEntry;
178     HashEntry* pEnd;
179     void* result = NULL;
180
181     assert(pHashTable->tableSize > 0);
182     assert(item != HASH_TOMBSTONE);
183     assert(item != NULL);
184
185     /* jump to the first entry and probe for a match */
186     pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
187     pEnd = &pHashTable->pEntries[pHashTable->tableSize];
188     while (pEntry->data != NULL) {
189         if (pEntry->data != HASH_TOMBSTONE &&
190             pEntry->hashValue == itemHash &&
191             (*cmpFunc)(pEntry->data, item) == 0)
192         {
193             /* match */
194             //ALOGD("+++ match on entry %d", pEntry - pHashTable->pEntries);
195             break;
196         }
197
198         pEntry++;
199         if (pEntry == pEnd) {     /* wrap around to start */
200             if (pHashTable->tableSize == 1)
201                 break;      /* edge case - single-entry table */
202             pEntry = pHashTable->pEntries;
203         }
204
205         //ALOGI("+++ look probing %d...", pEntry - pHashTable->pEntries);
206     }
207
208     if (pEntry->data == NULL) {
209         if (doAdd) {
210             pEntry->hashValue = itemHash;
211             pEntry->data = item;
212             pHashTable->numEntries++;
213
214             /*
215              * We've added an entry.  See if this brings us too close to full.
216              */
217             if ((pHashTable->numEntries+pHashTable->numDeadEntries) * LOAD_DENOM
218                 > pHashTable->tableSize * LOAD_NUMER)
219             {
220                 if (!resizeHash(pHashTable, pHashTable->tableSize * 2)) {
221                     /* don't really have a way to indicate failure */
222                     ALOGE("Dalvik hash resize failure");
223                     dvmAbort();
224                 }
225                 /* note "pEntry" is now invalid */
226             } else {
227                 //ALOGW("okay %d/%d/%d",
228                 //    pHashTable->numEntries, pHashTable->tableSize,
229                 //    (pHashTable->tableSize * LOAD_NUMER) / LOAD_DENOM);
230             }
231
232             /* full table is bad -- search for nonexistent never halts */
233             assert(pHashTable->numEntries < pHashTable->tableSize);
234             result = item;
235         } else {
236             assert(result == NULL);
237         }
238     } else {
239         result = pEntry->data;
240     }
241
242     return result;
243 }
244
245 /*
246  * Remove an entry from the table.
247  *
248  * Does NOT invoke the "free" function on the item.
249  */
250 bool dvmHashTableRemove(HashTable* pHashTable, u4 itemHash, void* item)
251 {
252     HashEntry* pEntry;
253     HashEntry* pEnd;
254
255     assert(pHashTable->tableSize > 0);
256
257     /* jump to the first entry and probe for a match */
258     pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
259     pEnd = &pHashTable->pEntries[pHashTable->tableSize];
260     while (pEntry->data != NULL) {
261         if (pEntry->data == item) {
262             //ALOGI("+++ stepping on entry %d", pEntry - pHashTable->pEntries);
263             pEntry->data = HASH_TOMBSTONE;
264             pHashTable->numEntries--;
265             pHashTable->numDeadEntries++;
266             return true;
267         }
268
269         pEntry++;
270         if (pEntry == pEnd) {     /* wrap around to start */
271             if (pHashTable->tableSize == 1)
272                 break;      /* edge case - single-entry table */
273             pEntry = pHashTable->pEntries;
274         }
275
276         //ALOGI("+++ del probing %d...", pEntry - pHashTable->pEntries);
277     }
278
279     return false;
280 }
281
282 /*
283  * Scan every entry in the hash table and evaluate it with the specified
284  * indirect function call. If the function returns 1, remove the entry from
285  * the table.
286  *
287  * Does NOT invoke the "free" function on the item.
288  *
289  * Returning values other than 0 or 1 will abort the routine.
290  */
291 int dvmHashForeachRemove(HashTable* pHashTable, HashForeachRemoveFunc func)
292 {
293     int i, val, tableSize;
294
295     tableSize = pHashTable->tableSize;
296
297     for (i = 0; i < tableSize; i++) {
298         HashEntry* pEnt = &pHashTable->pEntries[i];
299
300         if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) {
301             val = (*func)(pEnt->data);
302             if (val == 1) {
303                 pEnt->data = HASH_TOMBSTONE;
304                 pHashTable->numEntries--;
305                 pHashTable->numDeadEntries++;
306             }
307             else if (val != 0) {
308                 return val;
309             }
310         }
311     }
312     return 0;
313 }
314
315
316 /*
317  * Execute a function on every entry in the hash table.
318  *
319  * If "func" returns a nonzero value, terminate early and return the value.
320  */
321 int dvmHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg)
322 {
323     int i, val, tableSize;
324
325     tableSize = pHashTable->tableSize;
326
327     for (i = 0; i < tableSize; i++) {
328         HashEntry* pEnt = &pHashTable->pEntries[i];
329
330         if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) {
331             val = (*func)(pEnt->data, arg);
332             if (val != 0)
333                 return val;
334         }
335     }
336
337     return 0;
338 }
339
340
341 /*
342  * Look up an entry, counting the number of times we have to probe.
343  *
344  * Returns -1 if the entry wasn't found.
345  */
346 static int countProbes(HashTable* pHashTable, u4 itemHash, const void* item,
347     HashCompareFunc cmpFunc)
348 {
349     HashEntry* pEntry;
350     HashEntry* pEnd;
351     int count = 0;
352
353     assert(pHashTable->tableSize > 0);
354     assert(item != HASH_TOMBSTONE);
355     assert(item != NULL);
356
357     /* jump to the first entry and probe for a match */
358     pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
359     pEnd = &pHashTable->pEntries[pHashTable->tableSize];
360     while (pEntry->data != NULL) {
361         if (pEntry->data != HASH_TOMBSTONE &&
362             pEntry->hashValue == itemHash &&
363             (*cmpFunc)(pEntry->data, item) == 0)
364         {
365             /* match */
366             break;
367         }
368
369         pEntry++;
370         if (pEntry == pEnd) {     /* wrap around to start */
371             if (pHashTable->tableSize == 1)
372                 break;      /* edge case - single-entry table */
373             pEntry = pHashTable->pEntries;
374         }
375
376         count++;
377     }
378     if (pEntry->data == NULL)
379         return -1;
380
381     return count;
382 }
383
384 /*
385  * Evaluate the amount of probing required for the specified hash table.
386  *
387  * We do this by running through all entries in the hash table, computing
388  * the hash value and then doing a lookup.
389  *
390  * The caller should lock the table before calling here.
391  */
392 void dvmHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc,
393     HashCompareFunc cmpFunc)
394 {
395     int numEntries, minProbe, maxProbe, totalProbe;
396     HashIter iter;
397
398     numEntries = maxProbe = totalProbe = 0;
399     minProbe = 65536*32767;
400
401     for (dvmHashIterBegin(pHashTable, &iter); !dvmHashIterDone(&iter);
402         dvmHashIterNext(&iter))
403     {
404         const void* data = (const void*)dvmHashIterData(&iter);
405         int count;
406
407         count = countProbes(pHashTable, (*calcFunc)(data), data, cmpFunc);
408
409         numEntries++;
410
411         if (count < minProbe)
412             minProbe = count;
413         if (count > maxProbe)
414             maxProbe = count;
415         totalProbe += count;
416     }
417
418     ALOGI("Probe: min=%d max=%d, total=%d in %d (%d), avg=%.3f",
419         minProbe, maxProbe, totalProbe, numEntries, pHashTable->tableSize,
420         (float) totalProbe / (float) numEntries);
421 }