OSDN Git Service

Fix two data races in the monitor code.
[android-x86/dalvik.git] / vm / Sync.cpp
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include "Dalvik.h"
18
19 #include <fcntl.h>
20 #include <stdlib.h>
21 #include <unistd.h>
22 #include <pthread.h>
23 #include <time.h>
24 #include <errno.h>
25
26 /*
27  * Every Object has a monitor associated with it, but not every Object is
28  * actually locked.  Even the ones that are locked do not need a
29  * full-fledged monitor until a) there is actual contention or b) wait()
30  * is called on the Object.
31  *
32  * For Dalvik, we have implemented a scheme similar to the one described
33  * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
34  * (ACM 1998).  Things are even easier for us, though, because we have
35  * a full 32 bits to work with.
36  *
37  * The two states of an Object's lock are referred to as "thin" and
38  * "fat".  A lock may transition from the "thin" state to the "fat"
39  * state and this transition is referred to as inflation.  Once a lock
40  * has been inflated it remains in the "fat" state indefinitely.
41  *
42  * The lock value itself is stored in Object.lock.  The LSB of the
43  * lock encodes its state.  When cleared, the lock is in the "thin"
44  * state and its bits are formatted as follows:
45  *
46  *    [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
47  *     lock count   thread id  hash state  0
48  *
49  * When set, the lock is in the "fat" state and its bits are formatted
50  * as follows:
51  *
52  *    [31 ---- 3] [2 ---- 1] [0]
53  *      pointer   hash state  1
54  *
55  * For an in-depth description of the mechanics of thin-vs-fat locking,
56  * read the paper referred to above.
57  */
58
59 /*
60  * Monitors provide:
61  *  - mutually exclusive access to resources
62  *  - a way for multiple threads to wait for notification
63  *
64  * In effect, they fill the role of both mutexes and condition variables.
65  *
66  * Only one thread can own the monitor at any time.  There may be several
67  * threads waiting on it (the wait call unlocks it).  One or more waiting
68  * threads may be getting interrupted or notified at any given time.
69  *
70  * TODO: the various members of monitor are not SMP-safe.
71  */
72 struct Monitor {
73     Thread*     owner;          /* which thread currently owns the lock? */
74     int         lockCount;      /* owner's recursive lock depth */
75     Object*     obj;            /* what object are we part of [debug only] */
76
77     Thread*     waitSet;        /* threads currently waiting on this monitor */
78
79     pthread_mutex_t lock;
80
81     Monitor*    next;
82
83     /*
84      * Who last acquired this monitor, when lock sampling is enabled.
85      * Even when enabled, ownerFileName may be NULL.
86      */
87     const char* ownerFileName;
88     u4          ownerLineNumber;
89 };
90
91
92 /*
93  * Create and initialize a monitor.
94  */
95 Monitor* dvmCreateMonitor(Object* obj)
96 {
97     Monitor* mon;
98
99     mon = (Monitor*) calloc(1, sizeof(Monitor));
100     if (mon == NULL) {
101         LOGE("Unable to allocate monitor");
102         dvmAbort();
103     }
104     if (((u4)mon & 7) != 0) {
105         LOGE("Misaligned monitor: %p", mon);
106         dvmAbort();
107     }
108     mon->obj = obj;
109     dvmInitMutex(&mon->lock);
110
111     /* replace the head of the list with the new monitor */
112     do {
113         mon->next = gDvm.monitorList;
114     } while (android_atomic_release_cas((int32_t)mon->next, (int32_t)mon,
115             (int32_t*)(void*)&gDvm.monitorList) != 0);
116
117     return mon;
118 }
119
120 /*
121  * Free the monitor list.  Only used when shutting the VM down.
122  */
123 void dvmFreeMonitorList()
124 {
125     Monitor* mon;
126     Monitor* nextMon;
127
128     mon = gDvm.monitorList;
129     while (mon != NULL) {
130         nextMon = mon->next;
131         free(mon);
132         mon = nextMon;
133     }
134 }
135
136 /*
137  * Get the object that a monitor is part of.
138  */
139 Object* dvmGetMonitorObject(Monitor* mon)
140 {
141     if (mon == NULL)
142         return NULL;
143     else
144         return mon->obj;
145 }
146
147 /*
148  * Returns the thread id of the thread owning the given lock.
149  */
150 static u4 lockOwner(Object* obj)
151 {
152     Thread *owner;
153     u4 lock;
154
155     assert(obj != NULL);
156     /*
157      * Since we're reading the lock value multiple times, latch it so
158      * that it doesn't change out from under us if we get preempted.
159      */
160     lock = obj->lock;
161     if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
162         return LW_LOCK_OWNER(lock);
163     } else {
164         owner = LW_MONITOR(lock)->owner;
165         return owner ? owner->threadId : 0;
166     }
167 }
168
169 /*
170  * Get the thread that holds the lock on the specified object.  The
171  * object may be unlocked, thin-locked, or fat-locked.
172  *
173  * The caller must lock the thread list before calling here.
174  */
175 Thread* dvmGetObjectLockHolder(Object* obj)
176 {
177     u4 threadId = lockOwner(obj);
178
179     if (threadId == 0)
180         return NULL;
181     return dvmGetThreadByThreadId(threadId);
182 }
183
184 /*
185  * Checks whether the given thread holds the given
186  * objects's lock.
187  */
188 bool dvmHoldsLock(Thread* thread, Object* obj)
189 {
190     if (thread == NULL || obj == NULL) {
191         return false;
192     } else {
193         return thread->threadId == lockOwner(obj);
194     }
195 }
196
197 /*
198  * Free the monitor associated with an object and make the object's lock
199  * thin again.  This is called during garbage collection.
200  */
201 static void freeMonitor(Monitor *mon)
202 {
203     assert(mon != NULL);
204     assert(mon->obj != NULL);
205     assert(LW_SHAPE(mon->obj->lock) == LW_SHAPE_FAT);
206
207     /* This lock is associated with an object
208      * that's being swept.  The only possible way
209      * anyone could be holding this lock would be
210      * if some JNI code locked but didn't unlock
211      * the object, in which case we've got some bad
212      * native code somewhere.
213      */
214     assert(pthread_mutex_trylock(&mon->lock) == 0);
215     assert(pthread_mutex_unlock(&mon->lock) == 0);
216     dvmDestroyMutex(&mon->lock);
217     free(mon);
218 }
219
220 /*
221  * Frees monitor objects belonging to unmarked objects.
222  */
223 void dvmSweepMonitorList(Monitor** mon, int (*isUnmarkedObject)(void*))
224 {
225     Monitor handle;
226     Monitor *prev, *curr;
227     Object *obj;
228
229     assert(mon != NULL);
230     assert(isUnmarkedObject != NULL);
231     prev = &handle;
232     prev->next = curr = *mon;
233     while (curr != NULL) {
234         obj = curr->obj;
235         if (obj != NULL && (*isUnmarkedObject)(obj) != 0) {
236             prev->next = curr->next;
237             freeMonitor(curr);
238             curr = prev->next;
239         } else {
240             prev = curr;
241             curr = curr->next;
242         }
243     }
244     *mon = handle.next;
245 }
246
247 static char *logWriteInt(char *dst, int value)
248 {
249     *dst++ = EVENT_TYPE_INT;
250     set4LE((u1 *)dst, value);
251     return dst + 4;
252 }
253
254 static char *logWriteString(char *dst, const char *value, size_t len)
255 {
256     *dst++ = EVENT_TYPE_STRING;
257     len = len < 32 ? len : 32;
258     set4LE((u1 *)dst, len);
259     dst += 4;
260     memcpy(dst, value, len);
261     return dst + len;
262 }
263
264 #define EVENT_LOG_TAG_dvm_lock_sample 20003
265
266 static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
267                                const char *ownerFileName, u4 ownerLineNumber)
268 {
269     const StackSaveArea *saveArea;
270     const Method *meth;
271     u4 relativePc;
272     char eventBuffer[174];
273     const char *fileName;
274     char procName[33];
275     char *cp;
276     size_t len;
277     int fd;
278
279     saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
280     meth = saveArea->method;
281     cp = eventBuffer;
282
283     /* Emit the event list length, 1 byte. */
284     *cp++ = 9;
285
286     /* Emit the process name, <= 37 bytes. */
287     fd = open("/proc/self/cmdline", O_RDONLY);
288     memset(procName, 0, sizeof(procName));
289     read(fd, procName, sizeof(procName) - 1);
290     close(fd);
291     len = strlen(procName);
292     cp = logWriteString(cp, procName, len);
293
294     /* Emit the sensitive thread ("main thread") status, 5 bytes. */
295     bool isSensitive = false;
296     if (gDvm.isSensitiveThreadHook != NULL) {
297         isSensitive = gDvm.isSensitiveThreadHook();
298     }
299     cp = logWriteInt(cp, isSensitive);
300
301     /* Emit self thread name string, <= 37 bytes. */
302     std::string selfName = dvmGetThreadName(self);
303     cp = logWriteString(cp, selfName.c_str(), selfName.size());
304
305     /* Emit the wait time, 5 bytes. */
306     cp = logWriteInt(cp, waitMs);
307
308     /* Emit the source code file name, <= 37 bytes. */
309     fileName = dvmGetMethodSourceFile(meth);
310     if (fileName == NULL) fileName = "";
311     cp = logWriteString(cp, fileName, strlen(fileName));
312
313     /* Emit the source code line number, 5 bytes. */
314     relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
315     cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));
316
317     /* Emit the lock owner source code file name, <= 37 bytes. */
318     if (ownerFileName == NULL) {
319         ownerFileName = "";
320     } else if (strcmp(fileName, ownerFileName) == 0) {
321         /* Common case, so save on log space. */
322         ownerFileName = "-";
323     }
324     cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));
325
326     /* Emit the source code line number, 5 bytes. */
327     cp = logWriteInt(cp, ownerLineNumber);
328
329     /* Emit the sample percentage, 5 bytes. */
330     cp = logWriteInt(cp, samplePercent);
331
332     assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
333     android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
334                        EVENT_TYPE_LIST,
335                        eventBuffer,
336                        (size_t)(cp - eventBuffer));
337 }
338
339 /*
340  * Lock a monitor.
341  */
342 static void lockMonitor(Thread* self, Monitor* mon)
343 {
344     ThreadStatus oldStatus;
345     u4 waitThreshold, samplePercent;
346     u8 waitStart, waitEnd, waitMs;
347
348     if (mon->owner == self) {
349         mon->lockCount++;
350         return;
351     }
352     if (dvmTryLockMutex(&mon->lock) != 0) {
353         oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
354         waitThreshold = gDvm.lockProfThreshold;
355         if (waitThreshold) {
356             waitStart = dvmGetRelativeTimeUsec();
357         }
358         const char* currentOwnerFileName = mon->ownerFileName;
359         u4 currentOwnerLineNumber = mon->ownerLineNumber;
360
361         dvmLockMutex(&mon->lock);
362         if (waitThreshold) {
363             waitEnd = dvmGetRelativeTimeUsec();
364         }
365         dvmChangeStatus(self, oldStatus);
366         if (waitThreshold) {
367             waitMs = (waitEnd - waitStart) / 1000;
368             if (waitMs >= waitThreshold) {
369                 samplePercent = 100;
370             } else {
371                 samplePercent = 100 * waitMs / waitThreshold;
372             }
373             if (samplePercent != 0 && ((u4)rand() % 100 < samplePercent)) {
374                 logContentionEvent(self, waitMs, samplePercent,
375                                    currentOwnerFileName, currentOwnerLineNumber);
376             }
377         }
378     }
379     mon->owner = self;
380     assert(mon->lockCount == 0);
381
382     // When debugging, save the current monitor holder for future
383     // acquisition failures to use in sampled logging.
384     if (gDvm.lockProfThreshold > 0) {
385         const StackSaveArea *saveArea;
386         const Method *meth;
387         mon->ownerLineNumber = 0;
388         if (self->interpSave.curFrame == NULL) {
389             mon->ownerFileName = "no_frame";
390         } else if ((saveArea =
391                    SAVEAREA_FROM_FP(self->interpSave.curFrame)) == NULL) {
392             mon->ownerFileName = "no_save_area";
393         } else if ((meth = saveArea->method) == NULL) {
394             mon->ownerFileName = "no_method";
395         } else {
396             u4 relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
397             mon->ownerFileName = (char*) dvmGetMethodSourceFile(meth);
398             if (mon->ownerFileName == NULL) {
399                 mon->ownerFileName = "no_method_file";
400             } else {
401                 mon->ownerLineNumber = dvmLineNumFromPC(meth, relativePc);
402             }
403         }
404     }
405 }
406
407 /*
408  * Try to lock a monitor.
409  *
410  * Returns "true" on success.
411  */
412 #ifdef WITH_COPYING_GC
413 static bool tryLockMonitor(Thread* self, Monitor* mon)
414 {
415     if (mon->owner == self) {
416         mon->lockCount++;
417         return true;
418     } else {
419         if (dvmTryLockMutex(&mon->lock) == 0) {
420             mon->owner = self;
421             assert(mon->lockCount == 0);
422             return true;
423         } else {
424             return false;
425         }
426     }
427 }
428 #endif
429
430 /*
431  * Unlock a monitor.
432  *
433  * Returns true if the unlock succeeded.
434  * If the unlock failed, an exception will be pending.
435  */
436 static bool unlockMonitor(Thread* self, Monitor* mon)
437 {
438     assert(self != NULL);
439     assert(mon != NULL);
440     if (mon->owner == self) {
441         /*
442          * We own the monitor, so nobody else can be in here.
443          */
444         if (mon->lockCount == 0) {
445             mon->owner = NULL;
446             mon->ownerFileName = "unlocked";
447             mon->ownerLineNumber = 0;
448             dvmUnlockMutex(&mon->lock);
449         } else {
450             mon->lockCount--;
451         }
452     } else {
453         /*
454          * We don't own this, so we're not allowed to unlock it.
455          * The JNI spec says that we should throw IllegalMonitorStateException
456          * in this case.
457          */
458         dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
459         return false;
460     }
461     return true;
462 }
463
464 /*
465  * Checks the wait set for circular structure.  Returns 0 if the list
466  * is not circular.  Otherwise, returns 1.  Used only by asserts.
467  */
468 #ifndef NDEBUG
469 static int waitSetCheck(Monitor *mon)
470 {
471     Thread *fast, *slow;
472     size_t n;
473
474     assert(mon != NULL);
475     fast = slow = mon->waitSet;
476     n = 0;
477     for (;;) {
478         if (fast == NULL) return 0;
479         if (fast->waitNext == NULL) return 0;
480         if (fast == slow && n > 0) return 1;
481         n += 2;
482         fast = fast->waitNext->waitNext;
483         slow = slow->waitNext;
484     }
485 }
486 #endif
487
488 /*
489  * Links a thread into a monitor's wait set.  The monitor lock must be
490  * held by the caller of this routine.
491  */
492 static void waitSetAppend(Monitor *mon, Thread *thread)
493 {
494     Thread *elt;
495
496     assert(mon != NULL);
497     assert(mon->owner == dvmThreadSelf());
498     assert(thread != NULL);
499     assert(thread->waitNext == NULL);
500     assert(waitSetCheck(mon) == 0);
501     if (mon->waitSet == NULL) {
502         mon->waitSet = thread;
503         return;
504     }
505     elt = mon->waitSet;
506     while (elt->waitNext != NULL) {
507         elt = elt->waitNext;
508     }
509     elt->waitNext = thread;
510 }
511
512 /*
513  * Unlinks a thread from a monitor's wait set.  The monitor lock must
514  * be held by the caller of this routine.
515  */
516 static void waitSetRemove(Monitor *mon, Thread *thread)
517 {
518     Thread *elt;
519
520     assert(mon != NULL);
521     assert(mon->owner == dvmThreadSelf());
522     assert(thread != NULL);
523     assert(waitSetCheck(mon) == 0);
524     if (mon->waitSet == NULL) {
525         return;
526     }
527     if (mon->waitSet == thread) {
528         mon->waitSet = thread->waitNext;
529         thread->waitNext = NULL;
530         return;
531     }
532     elt = mon->waitSet;
533     while (elt->waitNext != NULL) {
534         if (elt->waitNext == thread) {
535             elt->waitNext = thread->waitNext;
536             thread->waitNext = NULL;
537             return;
538         }
539         elt = elt->waitNext;
540     }
541 }
542
543 /*
544  * Converts the given relative waiting time into an absolute time.
545  */
546 static void absoluteTime(s8 msec, s4 nsec, struct timespec *ts)
547 {
548     s8 endSec;
549
550 #ifdef HAVE_TIMEDWAIT_MONOTONIC
551     clock_gettime(CLOCK_MONOTONIC, ts);
552 #else
553     {
554         struct timeval tv;
555         gettimeofday(&tv, NULL);
556         ts->tv_sec = tv.tv_sec;
557         ts->tv_nsec = tv.tv_usec * 1000;
558     }
559 #endif
560     endSec = ts->tv_sec + msec / 1000;
561     if (endSec >= 0x7fffffff) {
562         LOGV("NOTE: end time exceeds epoch");
563         endSec = 0x7ffffffe;
564     }
565     ts->tv_sec = endSec;
566     ts->tv_nsec = (ts->tv_nsec + (msec % 1000) * 1000000) + nsec;
567
568     /* catch rollover */
569     if (ts->tv_nsec >= 1000000000L) {
570         ts->tv_sec++;
571         ts->tv_nsec -= 1000000000L;
572     }
573 }
574
575 int dvmRelativeCondWait(pthread_cond_t* cond, pthread_mutex_t* mutex,
576                         s8 msec, s4 nsec)
577 {
578     int ret;
579     struct timespec ts;
580     absoluteTime(msec, nsec, &ts);
581 #if defined(HAVE_TIMEDWAIT_MONOTONIC)
582     ret = pthread_cond_timedwait_monotonic(cond, mutex, &ts);
583 #else
584     ret = pthread_cond_timedwait(cond, mutex, &ts);
585 #endif
586     assert(ret == 0 || ret == ETIMEDOUT);
587     return ret;
588 }
589
590 /*
591  * Wait on a monitor until timeout, interrupt, or notification.  Used for
592  * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
593  *
594  * If another thread calls Thread.interrupt(), we throw InterruptedException
595  * and return immediately if one of the following are true:
596  *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
597  *  - blocked in join(), join(long), or join(long, int) methods of Thread
598  *  - blocked in sleep(long), or sleep(long, int) methods of Thread
599  * Otherwise, we set the "interrupted" flag.
600  *
601  * Checks to make sure that "nsec" is in the range 0-999999
602  * (i.e. fractions of a millisecond) and throws the appropriate
603  * exception if it isn't.
604  *
605  * The spec allows "spurious wakeups", and recommends that all code using
606  * Object.wait() do so in a loop.  This appears to derive from concerns
607  * about pthread_cond_wait() on multiprocessor systems.  Some commentary
608  * on the web casts doubt on whether these can/should occur.
609  *
610  * Since we're allowed to wake up "early", we clamp extremely long durations
611  * to return at the end of the 32-bit time epoch.
612  */
613 static void waitMonitor(Thread* self, Monitor* mon, s8 msec, s4 nsec,
614     bool interruptShouldThrow)
615 {
616     struct timespec ts;
617     bool wasInterrupted = false;
618     bool timed;
619     int ret;
620     const char *savedFileName;
621     u4 savedLineNumber;
622
623     assert(self != NULL);
624     assert(mon != NULL);
625
626     /* Make sure that we hold the lock. */
627     if (mon->owner != self) {
628         dvmThrowIllegalMonitorStateException(
629             "object not locked by thread before wait()");
630         return;
631     }
632
633     /*
634      * Enforce the timeout range.
635      */
636     if (msec < 0 || nsec < 0 || nsec > 999999) {
637         dvmThrowIllegalArgumentException("timeout arguments out of range");
638         return;
639     }
640
641     /*
642      * Compute absolute wakeup time, if necessary.
643      */
644     if (msec == 0 && nsec == 0) {
645         timed = false;
646     } else {
647         absoluteTime(msec, nsec, &ts);
648         timed = true;
649     }
650
651     /*
652      * Add ourselves to the set of threads waiting on this monitor, and
653      * release our hold.  We need to let it go even if we're a few levels
654      * deep in a recursive lock, and we need to restore that later.
655      *
656      * We append to the wait set ahead of clearing the count and owner
657      * fields so the subroutine can check that the calling thread owns
658      * the monitor.  Aside from that, the order of member updates is
659      * not order sensitive as we hold the pthread mutex.
660      */
661     waitSetAppend(mon, self);
662     int prevLockCount = mon->lockCount;
663     mon->lockCount = 0;
664     mon->owner = NULL;
665     savedFileName = mon->ownerFileName;
666     mon->ownerFileName = NULL;
667     savedLineNumber = mon->ownerLineNumber;
668     mon->ownerLineNumber = 0;
669
670     /*
671      * Update thread status.  If the GC wakes up, it'll ignore us, knowing
672      * that we won't touch any references in this state, and we'll check
673      * our suspend mode before we transition out.
674      */
675     if (timed)
676         dvmChangeStatus(self, THREAD_TIMED_WAIT);
677     else
678         dvmChangeStatus(self, THREAD_WAIT);
679
680     dvmLockMutex(&self->waitMutex);
681
682     /*
683      * Set waitMonitor to the monitor object we will be waiting on.
684      * When waitMonitor is non-NULL a notifying or interrupting thread
685      * must signal the thread's waitCond to wake it up.
686      */
687     assert(self->waitMonitor == NULL);
688     self->waitMonitor = mon;
689
690     /*
691      * Handle the case where the thread was interrupted before we called
692      * wait().
693      */
694     if (self->interrupted) {
695         wasInterrupted = true;
696         self->waitMonitor = NULL;
697         dvmUnlockMutex(&self->waitMutex);
698         goto done;
699     }
700
701     /*
702      * Release the monitor lock and wait for a notification or
703      * a timeout to occur.
704      */
705     dvmUnlockMutex(&mon->lock);
706
707     if (!timed) {
708         ret = pthread_cond_wait(&self->waitCond, &self->waitMutex);
709         assert(ret == 0);
710     } else {
711 #ifdef HAVE_TIMEDWAIT_MONOTONIC
712         ret = pthread_cond_timedwait_monotonic(&self->waitCond, &self->waitMutex, &ts);
713 #else
714         ret = pthread_cond_timedwait(&self->waitCond, &self->waitMutex, &ts);
715 #endif
716         assert(ret == 0 || ret == ETIMEDOUT);
717     }
718     if (self->interrupted) {
719         wasInterrupted = true;
720     }
721
722     self->interrupted = false;
723     self->waitMonitor = NULL;
724
725     dvmUnlockMutex(&self->waitMutex);
726
727     /* Reacquire the monitor lock. */
728     lockMonitor(self, mon);
729
730 done:
731     /*
732      * We remove our thread from wait set after restoring the count
733      * and owner fields so the subroutine can check that the calling
734      * thread owns the monitor. Aside from that, the order of member
735      * updates is not order sensitive as we hold the pthread mutex.
736      */
737     mon->owner = self;
738     mon->lockCount = prevLockCount;
739     mon->ownerFileName = savedFileName;
740     mon->ownerLineNumber = savedLineNumber;
741     waitSetRemove(mon, self);
742
743     /* set self->status back to THREAD_RUNNING, and self-suspend if needed */
744     dvmChangeStatus(self, THREAD_RUNNING);
745
746     if (wasInterrupted) {
747         /*
748          * We were interrupted while waiting, or somebody interrupted an
749          * un-interruptible thread earlier and we're bailing out immediately.
750          *
751          * The doc sayeth: "The interrupted status of the current thread is
752          * cleared when this exception is thrown."
753          */
754         self->interrupted = false;
755         if (interruptShouldThrow) {
756             dvmThrowInterruptedException(NULL);
757         }
758     }
759 }
760
761 /*
762  * Notify one thread waiting on this monitor.
763  */
764 static void notifyMonitor(Thread* self, Monitor* mon)
765 {
766     Thread* thread;
767
768     assert(self != NULL);
769     assert(mon != NULL);
770
771     /* Make sure that we hold the lock. */
772     if (mon->owner != self) {
773         dvmThrowIllegalMonitorStateException(
774             "object not locked by thread before notify()");
775         return;
776     }
777     /* Signal the first waiting thread in the wait set. */
778     while (mon->waitSet != NULL) {
779         thread = mon->waitSet;
780         mon->waitSet = thread->waitNext;
781         thread->waitNext = NULL;
782         dvmLockMutex(&thread->waitMutex);
783         /* Check to see if the thread is still waiting. */
784         if (thread->waitMonitor != NULL) {
785             pthread_cond_signal(&thread->waitCond);
786             dvmUnlockMutex(&thread->waitMutex);
787             return;
788         }
789         dvmUnlockMutex(&thread->waitMutex);
790     }
791 }
792
793 /*
794  * Notify all threads waiting on this monitor.
795  */
796 static void notifyAllMonitor(Thread* self, Monitor* mon)
797 {
798     Thread* thread;
799
800     assert(self != NULL);
801     assert(mon != NULL);
802
803     /* Make sure that we hold the lock. */
804     if (mon->owner != self) {
805         dvmThrowIllegalMonitorStateException(
806             "object not locked by thread before notifyAll()");
807         return;
808     }
809     /* Signal all threads in the wait set. */
810     while (mon->waitSet != NULL) {
811         thread = mon->waitSet;
812         mon->waitSet = thread->waitNext;
813         thread->waitNext = NULL;
814         dvmLockMutex(&thread->waitMutex);
815         /* Check to see if the thread is still waiting. */
816         if (thread->waitMonitor != NULL) {
817             pthread_cond_signal(&thread->waitCond);
818         }
819         dvmUnlockMutex(&thread->waitMutex);
820     }
821 }
822
823 /*
824  * Changes the shape of a monitor from thin to fat, preserving the
825  * internal lock state.  The calling thread must own the lock.
826  */
827 static void inflateMonitor(Thread *self, Object *obj)
828 {
829     Monitor *mon;
830     u4 thin;
831
832     assert(self != NULL);
833     assert(obj != NULL);
834     assert(LW_SHAPE(obj->lock) == LW_SHAPE_THIN);
835     assert(LW_LOCK_OWNER(obj->lock) == self->threadId);
836     /* Allocate and acquire a new monitor. */
837     mon = dvmCreateMonitor(obj);
838     lockMonitor(self, mon);
839     /* Propagate the lock state. */
840     thin = obj->lock;
841     mon->lockCount = LW_LOCK_COUNT(thin);
842     thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
843     thin |= (u4)mon | LW_SHAPE_FAT;
844     /* Publish the updated lock word. */
845     android_atomic_release_store(thin, (int32_t *)&obj->lock);
846 }
847
848 /*
849  * Implements monitorenter for "synchronized" stuff.
850  *
851  * This does not fail or throw an exception (unless deadlock prediction
852  * is enabled and set to "err" mode).
853  */
854 void dvmLockObject(Thread* self, Object *obj)
855 {
856     volatile u4 *thinp;
857     ThreadStatus oldStatus;
858     struct timespec tm;
859     long sleepDelayNs;
860     long minSleepDelayNs = 1000000;  /* 1 millisecond */
861     long maxSleepDelayNs = 1000000000;  /* 1 second */
862     u4 thin, newThin, threadId;
863
864     assert(self != NULL);
865     assert(obj != NULL);
866     threadId = self->threadId;
867     thinp = &obj->lock;
868 retry:
869     thin = *thinp;
870     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
871         /*
872          * The lock is a thin lock.  The owner field is used to
873          * determine the acquire method, ordered by cost.
874          */
875         if (LW_LOCK_OWNER(thin) == threadId) {
876             /*
877              * The calling thread owns the lock.  Increment the
878              * value of the recursion count field.
879              */
880             obj->lock += 1 << LW_LOCK_COUNT_SHIFT;
881             if (LW_LOCK_COUNT(obj->lock) == LW_LOCK_COUNT_MASK) {
882                 /*
883                  * The reacquisition limit has been reached.  Inflate
884                  * the lock so the next acquire will not overflow the
885                  * recursion count field.
886                  */
887                 inflateMonitor(self, obj);
888             }
889         } else if (LW_LOCK_OWNER(thin) == 0) {
890             /*
891              * The lock is unowned.  Install the thread id of the
892              * calling thread into the owner field.  This is the
893              * common case.  In performance critical code the JIT
894              * will have tried this before calling out to the VM.
895              */
896             newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
897             if (android_atomic_acquire_cas(thin, newThin,
898                     (int32_t*)thinp) != 0) {
899                 /*
900                  * The acquire failed.  Try again.
901                  */
902                 goto retry;
903             }
904         } else {
905             LOGV("(%d) spin on lock %p: %#x (%#x) %#x",
906                  threadId, &obj->lock, 0, *thinp, thin);
907             /*
908              * The lock is owned by another thread.  Notify the VM
909              * that we are about to wait.
910              */
911             oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
912             /*
913              * Spin until the thin lock is released or inflated.
914              */
915             sleepDelayNs = 0;
916             for (;;) {
917                 thin = *thinp;
918                 /*
919                  * Check the shape of the lock word.  Another thread
920                  * may have inflated the lock while we were waiting.
921                  */
922                 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
923                     if (LW_LOCK_OWNER(thin) == 0) {
924                         /*
925                          * The lock has been released.  Install the
926                          * thread id of the calling thread into the
927                          * owner field.
928                          */
929                         newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
930                         if (android_atomic_acquire_cas(thin, newThin,
931                                 (int32_t *)thinp) == 0) {
932                             /*
933                              * The acquire succeed.  Break out of the
934                              * loop and proceed to inflate the lock.
935                              */
936                             break;
937                         }
938                     } else {
939                         /*
940                          * The lock has not been released.  Yield so
941                          * the owning thread can run.
942                          */
943                         if (sleepDelayNs == 0) {
944                             sched_yield();
945                             sleepDelayNs = minSleepDelayNs;
946                         } else {
947                             tm.tv_sec = 0;
948                             tm.tv_nsec = sleepDelayNs;
949                             nanosleep(&tm, NULL);
950                             /*
951                              * Prepare the next delay value.  Wrap to
952                              * avoid once a second polls for eternity.
953                              */
954                             if (sleepDelayNs < maxSleepDelayNs / 2) {
955                                 sleepDelayNs *= 2;
956                             } else {
957                                 sleepDelayNs = minSleepDelayNs;
958                             }
959                         }
960                     }
961                 } else {
962                     /*
963                      * The thin lock was inflated by another thread.
964                      * Let the VM know we are no longer waiting and
965                      * try again.
966                      */
967                     LOGV("(%d) lock %p surprise-fattened",
968                              threadId, &obj->lock);
969                     dvmChangeStatus(self, oldStatus);
970                     goto retry;
971                 }
972             }
973             LOGV("(%d) spin on lock done %p: %#x (%#x) %#x",
974                  threadId, &obj->lock, 0, *thinp, thin);
975             /*
976              * We have acquired the thin lock.  Let the VM know that
977              * we are no longer waiting.
978              */
979             dvmChangeStatus(self, oldStatus);
980             /*
981              * Fatten the lock.
982              */
983             inflateMonitor(self, obj);
984             LOGV("(%d) lock %p fattened", threadId, &obj->lock);
985         }
986     } else {
987         /*
988          * The lock is a fat lock.
989          */
990         assert(LW_MONITOR(obj->lock) != NULL);
991         lockMonitor(self, LW_MONITOR(obj->lock));
992     }
993 }
994
995 /*
996  * Implements monitorexit for "synchronized" stuff.
997  *
998  * On failure, throws an exception and returns "false".
999  */
1000 bool dvmUnlockObject(Thread* self, Object *obj)
1001 {
1002     u4 thin;
1003
1004     assert(self != NULL);
1005     assert(self->status == THREAD_RUNNING);
1006     assert(obj != NULL);
1007     /*
1008      * Cache the lock word as its value can change while we are
1009      * examining its state.
1010      */
1011     thin = *(volatile u4 *)&obj->lock;
1012     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1013         /*
1014          * The lock is thin.  We must ensure that the lock is owned
1015          * by the given thread before unlocking it.
1016          */
1017         if (LW_LOCK_OWNER(thin) == self->threadId) {
1018             /*
1019              * We are the lock owner.  It is safe to update the lock
1020              * without CAS as lock ownership guards the lock itself.
1021              */
1022             if (LW_LOCK_COUNT(thin) == 0) {
1023                 /*
1024                  * The lock was not recursively acquired, the common
1025                  * case.  Unlock by clearing all bits except for the
1026                  * hash state.
1027                  */
1028                 thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
1029                 android_atomic_release_store(thin, (int32_t*)&obj->lock);
1030             } else {
1031                 /*
1032                  * The object was recursively acquired.  Decrement the
1033                  * lock recursion count field.
1034                  */
1035                 obj->lock -= 1 << LW_LOCK_COUNT_SHIFT;
1036             }
1037         } else {
1038             /*
1039              * We do not own the lock.  The JVM spec requires that we
1040              * throw an exception in this case.
1041              */
1042             dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
1043             return false;
1044         }
1045     } else {
1046         /*
1047          * The lock is fat.  We must check to see if unlockMonitor has
1048          * raised any exceptions before continuing.
1049          */
1050         assert(LW_MONITOR(obj->lock) != NULL);
1051         if (!unlockMonitor(self, LW_MONITOR(obj->lock))) {
1052             /*
1053              * An exception has been raised.  Do not fall through.
1054              */
1055             return false;
1056         }
1057     }
1058     return true;
1059 }
1060
1061 /*
1062  * Object.wait().  Also called for class init.
1063  */
1064 void dvmObjectWait(Thread* self, Object *obj, s8 msec, s4 nsec,
1065     bool interruptShouldThrow)
1066 {
1067     Monitor* mon;
1068     u4 thin = *(volatile u4 *)&obj->lock;
1069
1070     /* If the lock is still thin, we need to fatten it.
1071      */
1072     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1073         /* Make sure that 'self' holds the lock.
1074          */
1075         if (LW_LOCK_OWNER(thin) != self->threadId) {
1076             dvmThrowIllegalMonitorStateException(
1077                 "object not locked by thread before wait()");
1078             return;
1079         }
1080
1081         /* This thread holds the lock.  We need to fatten the lock
1082          * so 'self' can block on it.  Don't update the object lock
1083          * field yet, because 'self' needs to acquire the lock before
1084          * any other thread gets a chance.
1085          */
1086         inflateMonitor(self, obj);
1087         LOGV("(%d) lock %p fattened by wait()", self->threadId, &obj->lock);
1088     }
1089     mon = LW_MONITOR(obj->lock);
1090     waitMonitor(self, mon, msec, nsec, interruptShouldThrow);
1091 }
1092
1093 /*
1094  * Object.notify().
1095  */
1096 void dvmObjectNotify(Thread* self, Object *obj)
1097 {
1098     u4 thin = *(volatile u4 *)&obj->lock;
1099
1100     /* If the lock is still thin, there aren't any waiters;
1101      * waiting on an object forces lock fattening.
1102      */
1103     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1104         /* Make sure that 'self' holds the lock.
1105          */
1106         if (LW_LOCK_OWNER(thin) != self->threadId) {
1107             dvmThrowIllegalMonitorStateException(
1108                 "object not locked by thread before notify()");
1109             return;
1110         }
1111
1112         /* no-op;  there are no waiters to notify.
1113          */
1114     } else {
1115         /* It's a fat lock.
1116          */
1117         notifyMonitor(self, LW_MONITOR(thin));
1118     }
1119 }
1120
1121 /*
1122  * Object.notifyAll().
1123  */
1124 void dvmObjectNotifyAll(Thread* self, Object *obj)
1125 {
1126     u4 thin = *(volatile u4 *)&obj->lock;
1127
1128     /* If the lock is still thin, there aren't any waiters;
1129      * waiting on an object forces lock fattening.
1130      */
1131     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1132         /* Make sure that 'self' holds the lock.
1133          */
1134         if (LW_LOCK_OWNER(thin) != self->threadId) {
1135             dvmThrowIllegalMonitorStateException(
1136                 "object not locked by thread before notifyAll()");
1137             return;
1138         }
1139
1140         /* no-op;  there are no waiters to notify.
1141          */
1142     } else {
1143         /* It's a fat lock.
1144          */
1145         notifyAllMonitor(self, LW_MONITOR(thin));
1146     }
1147 }
1148
1149 /*
1150  * This implements java.lang.Thread.sleep(long msec, int nsec).
1151  *
1152  * The sleep is interruptible by other threads, which means we can't just
1153  * plop into an OS sleep call.  (We probably could if we wanted to send
1154  * signals around and rely on EINTR, but that's inefficient and relies
1155  * on native code respecting our signal mask.)
1156  *
1157  * We have to do all of this stuff for Object.wait() as well, so it's
1158  * easiest to just sleep on a private Monitor.
1159  *
1160  * It appears that we want sleep(0,0) to go through the motions of sleeping
1161  * for a very short duration, rather than just returning.
1162  */
1163 void dvmThreadSleep(u8 msec, u4 nsec)
1164 {
1165     Thread* self = dvmThreadSelf();
1166     Monitor* mon = gDvm.threadSleepMon;
1167
1168     /* sleep(0,0) wakes up immediately, wait(0,0) means wait forever; adjust */
1169     if (msec == 0 && nsec == 0)
1170         nsec++;
1171
1172     lockMonitor(self, mon);
1173     waitMonitor(self, mon, msec, nsec, true);
1174     unlockMonitor(self, mon);
1175 }
1176
1177 /*
1178  * Implement java.lang.Thread.interrupt().
1179  */
1180 void dvmThreadInterrupt(Thread* thread)
1181 {
1182     assert(thread != NULL);
1183
1184     dvmLockMutex(&thread->waitMutex);
1185
1186     /*
1187      * If the interrupted flag is already set no additional action is
1188      * required.
1189      */
1190     if (thread->interrupted == true) {
1191         dvmUnlockMutex(&thread->waitMutex);
1192         return;
1193     }
1194
1195     /*
1196      * Raise the "interrupted" flag.  This will cause it to bail early out
1197      * of the next wait() attempt, if it's not currently waiting on
1198      * something.
1199      */
1200     thread->interrupted = true;
1201
1202     /*
1203      * Is the thread waiting?
1204      *
1205      * Note that fat vs. thin doesn't matter here;  waitMonitor
1206      * is only set when a thread actually waits on a monitor,
1207      * which implies that the monitor has already been fattened.
1208      */
1209     if (thread->waitMonitor != NULL) {
1210         pthread_cond_signal(&thread->waitCond);
1211     }
1212
1213     dvmUnlockMutex(&thread->waitMutex);
1214 }
1215
1216 #ifndef WITH_COPYING_GC
1217 u4 dvmIdentityHashCode(Object *obj)
1218 {
1219     return (u4)obj;
1220 }
1221 #else
1222 /*
1223  * Returns the identity hash code of the given object.
1224  */
1225 u4 dvmIdentityHashCode(Object *obj)
1226 {
1227     Thread *self, *thread;
1228     volatile u4 *lw;
1229     size_t size;
1230     u4 lock, owner, hashState;
1231
1232     if (obj == NULL) {
1233         /*
1234          * Null is defined to have an identity hash code of 0.
1235          */
1236         return 0;
1237     }
1238     lw = &obj->lock;
1239 retry:
1240     hashState = LW_HASH_STATE(*lw);
1241     if (hashState == LW_HASH_STATE_HASHED) {
1242         /*
1243          * The object has been hashed but has not had its hash code
1244          * relocated by the garbage collector.  Use the raw object
1245          * address.
1246          */
1247         return (u4)obj >> 3;
1248     } else if (hashState == LW_HASH_STATE_HASHED_AND_MOVED) {
1249         /*
1250          * The object has been hashed and its hash code has been
1251          * relocated by the collector.  Use the value of the naturally
1252          * aligned word following the instance data.
1253          */
1254         assert(!dvmIsClassObject(obj));
1255         if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
1256             size = dvmArrayObjectSize((ArrayObject *)obj);
1257             size = (size + 2) & ~2;
1258         } else {
1259             size = obj->clazz->objectSize;
1260         }
1261         return *(u4 *)(((char *)obj) + size);
1262     } else if (hashState == LW_HASH_STATE_UNHASHED) {
1263         /*
1264          * The object has never been hashed.  Change the hash state to
1265          * hashed and use the raw object address.
1266          */
1267         self = dvmThreadSelf();
1268         if (self->threadId == lockOwner(obj)) {
1269             /*
1270              * We already own the lock so we can update the hash state
1271              * directly.
1272              */
1273             *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1274             return (u4)obj >> 3;
1275         }
1276         /*
1277          * We do not own the lock.  Try acquiring the lock.  Should
1278          * this fail, we must suspend the owning thread.
1279          */
1280         if (LW_SHAPE(*lw) == LW_SHAPE_THIN) {
1281             /*
1282              * If the lock is thin assume it is unowned.  We simulate
1283              * an acquire, update, and release with a single CAS.
1284              */
1285             lock = (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1286             if (android_atomic_acquire_cas(
1287                                 0,
1288                                 (int32_t)lock,
1289                                 (int32_t *)lw) == 0) {
1290                 /*
1291                  * A new lockword has been installed with a hash state
1292                  * of hashed.  Use the raw object address.
1293                  */
1294                 return (u4)obj >> 3;
1295             }
1296         } else {
1297             if (tryLockMonitor(self, LW_MONITOR(*lw))) {
1298                 /*
1299                  * The monitor lock has been acquired.  Change the
1300                  * hash state to hashed and use the raw object
1301                  * address.
1302                  */
1303                 *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1304                 unlockMonitor(self, LW_MONITOR(*lw));
1305                 return (u4)obj >> 3;
1306             }
1307         }
1308         /*
1309          * At this point we have failed to acquire the lock.  We must
1310          * identify the owning thread and suspend it.
1311          */
1312         dvmLockThreadList(self);
1313         /*
1314          * Cache the lock word as its value can change between
1315          * determining its shape and retrieving its owner.
1316          */
1317         lock = *lw;
1318         if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
1319             /*
1320              * Find the thread with the corresponding thread id.
1321              */
1322             owner = LW_LOCK_OWNER(lock);
1323             assert(owner != self->threadId);
1324             /*
1325              * If the lock has no owner do not bother scanning the
1326              * thread list and fall through to the failure handler.
1327              */
1328             thread = owner ? gDvm.threadList : NULL;
1329             while (thread != NULL) {
1330                 if (thread->threadId == owner) {
1331                     break;
1332                 }
1333                 thread = thread->next;
1334             }
1335         } else {
1336             thread = LW_MONITOR(lock)->owner;
1337         }
1338         /*
1339          * If thread is NULL the object has been released since the
1340          * thread list lock was acquired.  Try again.
1341          */
1342         if (thread == NULL) {
1343             dvmUnlockThreadList();
1344             goto retry;
1345         }
1346         /*
1347          * Wait for the owning thread to suspend.
1348          */
1349         dvmSuspendThread(thread);
1350         if (dvmHoldsLock(thread, obj)) {
1351             /*
1352              * The owning thread has been suspended.  We can safely
1353              * change the hash state to hashed.
1354              */
1355             *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1356             dvmResumeThread(thread);
1357             dvmUnlockThreadList();
1358             return (u4)obj >> 3;
1359         }
1360         /*
1361          * The wrong thread has been suspended.  Try again.
1362          */
1363         dvmResumeThread(thread);
1364         dvmUnlockThreadList();
1365         goto retry;
1366     }
1367     LOGE("object %p has an unknown hash state %#x", obj, hashState);
1368     dvmDumpThread(dvmThreadSelf(), false);
1369     dvmAbort();
1370     return 0;  /* Quiet the compiler. */
1371 }
1372 #endif  /* WITH_COPYING_GC */