OSDN Git Service

Remove dead code/unused variables to avoid gcc-4.6 warnings.
[android-x86/dalvik.git] / vm / interp / Jit.cpp
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #ifdef WITH_JIT
17
18 /*
19  * Target independent portion of Android's Jit
20  */
21
22 #include "Dalvik.h"
23 #include "Jit.h"
24
25 #include "libdex/DexOpcodes.h"
26 #include <unistd.h>
27 #include <pthread.h>
28 #include <sys/time.h>
29 #include <signal.h>
30 #include "compiler/Compiler.h"
31 #include "compiler/CompilerUtility.h"
32 #include "compiler/CompilerIR.h"
33 #include <errno.h>
34
35 #if defined(WITH_SELF_VERIFICATION)
36 /* Allocate space for per-thread ShadowSpace data structures */
37 void* dvmSelfVerificationShadowSpaceAlloc(Thread* self)
38 {
39     self->shadowSpace = (ShadowSpace*) calloc(1, sizeof(ShadowSpace));
40     if (self->shadowSpace == NULL)
41         return NULL;
42
43     self->shadowSpace->registerSpaceSize = REG_SPACE;
44     self->shadowSpace->registerSpace =
45         (int*) calloc(self->shadowSpace->registerSpaceSize, sizeof(int));
46
47     return self->shadowSpace->registerSpace;
48 }
49
50 /* Free per-thread ShadowSpace data structures */
51 void dvmSelfVerificationShadowSpaceFree(Thread* self)
52 {
53     free(self->shadowSpace->registerSpace);
54     free(self->shadowSpace);
55 }
56
57 /*
58  * Save out PC, FP, thread state, and registers to shadow space.
59  * Return a pointer to the shadow space for JIT to use.
60  *
61  * The set of saved state from the Thread structure is:
62  *     pc  (Dalvik PC)
63  *     fp  (Dalvik FP)
64  *     retval
65  *     method
66  *     methodClassDex
67  *     interpStackEnd
68  */
69 void* dvmSelfVerificationSaveState(const u2* pc, u4* fp,
70                                    Thread* self, int targetTrace)
71 {
72     ShadowSpace *shadowSpace = self->shadowSpace;
73     unsigned preBytes = self->interpSave.method->outsSize*4 +
74         sizeof(StackSaveArea);
75     unsigned postBytes = self->interpSave.method->registersSize*4;
76
77     //LOGD("### selfVerificationSaveState(%d) pc: %#x fp: %#x",
78     //    self->threadId, (int)pc, (int)fp);
79
80     if (shadowSpace->selfVerificationState != kSVSIdle) {
81         LOGD("~~~ Save: INCORRECT PREVIOUS STATE(%d): %d",
82             self->threadId, shadowSpace->selfVerificationState);
83         LOGD("********** SHADOW STATE DUMP **********");
84         LOGD("PC: %#x FP: %#x", (int)pc, (int)fp);
85     }
86     shadowSpace->selfVerificationState = kSVSStart;
87
88     // Dynamically grow shadow register space if necessary
89     if (preBytes + postBytes > shadowSpace->registerSpaceSize * sizeof(u4)) {
90         free(shadowSpace->registerSpace);
91         shadowSpace->registerSpaceSize = (preBytes + postBytes) / sizeof(u4);
92         shadowSpace->registerSpace =
93             (int*) calloc(shadowSpace->registerSpaceSize, sizeof(u4));
94     }
95
96     // Remember original state
97     shadowSpace->startPC = pc;
98     shadowSpace->fp = fp;
99     shadowSpace->retval = self->interpSave.retval;
100     shadowSpace->interpStackEnd = self->interpStackEnd;
101
102     /*
103      * Store the original method here in case the trace ends with a
104      * return/invoke, the last method.
105      */
106     shadowSpace->method = self->interpSave.method;
107     shadowSpace->methodClassDex = self->interpSave.methodClassDex;
108
109     shadowSpace->shadowFP = shadowSpace->registerSpace +
110                             shadowSpace->registerSpaceSize - postBytes/4;
111
112     self->interpSave.curFrame = (u4*)shadowSpace->shadowFP;
113     self->interpStackEnd = (u1*)shadowSpace->registerSpace;
114
115     // Create a copy of the stack
116     memcpy(((char*)shadowSpace->shadowFP)-preBytes, ((char*)fp)-preBytes,
117         preBytes+postBytes);
118
119     // Setup the shadowed heap space
120     shadowSpace->heapSpaceTail = shadowSpace->heapSpace;
121
122     // Reset trace length
123     shadowSpace->traceLength = 0;
124
125     return shadowSpace;
126 }
127
128 /*
129  * Save ending PC, FP and compiled code exit point to shadow space.
130  * Return a pointer to the shadow space for JIT to restore state.
131  */
132 void* dvmSelfVerificationRestoreState(const u2* pc, u4* fp,
133                                       SelfVerificationState exitState,
134                                       Thread* self)
135 {
136     ShadowSpace *shadowSpace = self->shadowSpace;
137     shadowSpace->endPC = pc;
138     shadowSpace->endShadowFP = fp;
139     shadowSpace->jitExitState = exitState;
140
141     //LOGD("### selfVerificationRestoreState(%d) pc: %#x fp: %#x endPC: %#x",
142     //    self->threadId, (int)shadowSpace->startPC, (int)shadowSpace->fp,
143     //    (int)pc);
144
145     if (shadowSpace->selfVerificationState != kSVSStart) {
146         LOGD("~~~ Restore: INCORRECT PREVIOUS STATE(%d): %d",
147             self->threadId, shadowSpace->selfVerificationState);
148         LOGD("********** SHADOW STATE DUMP **********");
149         LOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
150             (int)shadowSpace->endPC);
151         LOGD("Interp FP: %#x", (int)shadowSpace->fp);
152         LOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
153             (int)shadowSpace->endShadowFP);
154     }
155
156     // Special case when punting after a single instruction
157     if (exitState == kSVSPunt && pc == shadowSpace->startPC) {
158         shadowSpace->selfVerificationState = kSVSIdle;
159     } else {
160         shadowSpace->selfVerificationState = exitState;
161     }
162
163     /* Restore state before returning */
164     self->interpSave.pc = shadowSpace->startPC;
165     self->interpSave.curFrame = shadowSpace->fp;
166     self->interpSave.method = shadowSpace->method;
167     self->interpSave.methodClassDex = shadowSpace->methodClassDex;
168     self->interpSave.retval = shadowSpace->retval;
169     self->interpStackEnd = shadowSpace->interpStackEnd;
170
171     return shadowSpace;
172 }
173
174 /* Print contents of virtual registers */
175 static void selfVerificationPrintRegisters(int* addr, int* addrRef,
176                                            int numWords)
177 {
178     int i;
179     for (i = 0; i < numWords; i++) {
180         LOGD("(v%d) 0x%8x%s", i, addr[i], addr[i] != addrRef[i] ? " X" : "");
181     }
182 }
183
184 /* Print values maintained in shadowSpace */
185 static void selfVerificationDumpState(const u2* pc, Thread* self)
186 {
187     ShadowSpace* shadowSpace = self->shadowSpace;
188     StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
189     int frameBytes = (int) shadowSpace->registerSpace +
190                      shadowSpace->registerSpaceSize*4 -
191                      (int) shadowSpace->shadowFP;
192     int localRegs = 0;
193     int frameBytes2 = 0;
194     if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
195         localRegs = (stackSave->method->registersSize -
196                      stackSave->method->insSize)*4;
197         frameBytes2 = (int) shadowSpace->fp -
198                       (int)self->interpSave.curFrame - localRegs;
199     }
200     LOGD("********** SHADOW STATE DUMP **********");
201     LOGD("CurrentPC: %#x, Offset: 0x%04x", (int)pc,
202         (int)(pc - stackSave->method->insns));
203     LOGD("Class: %s", shadowSpace->method->clazz->descriptor);
204     LOGD("Method: %s", shadowSpace->method->name);
205     LOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
206         (int)shadowSpace->endPC);
207     LOGD("Interp FP: %#x endFP: %#x", (int)shadowSpace->fp,
208         (int)self->interpSave.curFrame);
209     LOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
210         (int)shadowSpace->endShadowFP);
211     LOGD("Frame1 Bytes: %d Frame2 Local: %d Bytes: %d", frameBytes,
212         localRegs, frameBytes2);
213     LOGD("Trace length: %d State: %d", shadowSpace->traceLength,
214         shadowSpace->selfVerificationState);
215 }
216
217 /* Print decoded instructions in the current trace */
218 static void selfVerificationDumpTrace(const u2* pc, Thread* self)
219 {
220     ShadowSpace* shadowSpace = self->shadowSpace;
221     StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
222     int i, addr, offset;
223     DecodedInstruction *decInsn;
224
225     LOGD("********** SHADOW TRACE DUMP **********");
226     for (i = 0; i < shadowSpace->traceLength; i++) {
227         addr = shadowSpace->trace[i].addr;
228         offset =  (int)((u2*)addr - stackSave->method->insns);
229         decInsn = &(shadowSpace->trace[i].decInsn);
230         /* Not properly decoding instruction, some registers may be garbage */
231         LOGD("%#x: (0x%04x) %s",
232             addr, offset, dexGetOpcodeName(decInsn->opcode));
233     }
234 }
235
236 /* Code is forced into this spin loop when a divergence is detected */
237 static void selfVerificationSpinLoop(ShadowSpace *shadowSpace)
238 {
239     const u2 *startPC = shadowSpace->startPC;
240     JitTraceDescription* desc = dvmCopyTraceDescriptor(startPC, NULL);
241     if (desc) {
242         dvmCompilerWorkEnqueue(startPC, kWorkOrderTraceDebug, desc);
243         /*
244          * This function effectively terminates the VM right here, so not
245          * freeing the desc pointer when the enqueuing fails is acceptable.
246          */
247     }
248     gDvmJit.selfVerificationSpin = true;
249     while(gDvmJit.selfVerificationSpin) sleep(10);
250 }
251
252 /*
253  * If here, we're re-interpreting an instruction that was included
254  * in a trace that was just executed.  This routine is called for
255  * each instruction in the original trace, and compares state
256  * when it reaches the end point.
257  *
258  * TUNING: the interpretation mechanism now supports a counted
259  * single-step mechanism.  If we were to associate an instruction
260  * count with each trace exit, we could just single-step the right
261  * number of cycles and then compare.  This would improve detection
262  * of control divergences, as well as (slightly) simplify this code.
263  */
264 void dvmCheckSelfVerification(const u2* pc, Thread* self)
265 {
266     ShadowSpace *shadowSpace = self->shadowSpace;
267     SelfVerificationState state = shadowSpace->selfVerificationState;
268
269     DecodedInstruction decInsn;
270     dexDecodeInstruction(pc, &decInsn);
271
272     //LOGD("### DbgIntp(%d): PC: %#x endPC: %#x state: %d len: %d %s",
273     //    self->threadId, (int)pc, (int)shadowSpace->endPC, state,
274     //    shadowSpace->traceLength, dexGetOpcodeName(decInsn.opcode));
275
276     if (state == kSVSIdle || state == kSVSStart) {
277         LOGD("~~~ DbgIntrp: INCORRECT PREVIOUS STATE(%d): %d",
278             self->threadId, state);
279         selfVerificationDumpState(pc, self);
280         selfVerificationDumpTrace(pc, self);
281     }
282
283     /*
284      * Generalize the self verification state to kSVSDebugInterp unless the
285      * entry reason is kSVSBackwardBranch or kSVSSingleStep.
286      */
287     if (state != kSVSBackwardBranch && state != kSVSSingleStep) {
288         shadowSpace->selfVerificationState = kSVSDebugInterp;
289     }
290
291     /*
292      * Check if the current pc matches the endPC. Only check for non-zero
293      * trace length when backward branches are involved.
294      */
295     if (pc == shadowSpace->endPC &&
296         (state == kSVSDebugInterp || state == kSVSSingleStep ||
297          (state == kSVSBackwardBranch && shadowSpace->traceLength != 0))) {
298
299         shadowSpace->selfVerificationState = kSVSIdle;
300
301         /* Check register space */
302         int frameBytes = (int) shadowSpace->registerSpace +
303                          shadowSpace->registerSpaceSize*4 -
304                          (int) shadowSpace->shadowFP;
305         if (memcmp(shadowSpace->fp, shadowSpace->shadowFP, frameBytes)) {
306             if (state == kSVSBackwardBranch) {
307                 /* State mismatch on backward branch - try one more iteration */
308                 shadowSpace->selfVerificationState = kSVSDebugInterp;
309                 goto log_and_continue;
310             }
311             LOGD("~~~ DbgIntp(%d): REGISTERS DIVERGENCE!", self->threadId);
312             selfVerificationDumpState(pc, self);
313             selfVerificationDumpTrace(pc, self);
314             LOGD("*** Interp Registers: addr: %#x bytes: %d",
315                 (int)shadowSpace->fp, frameBytes);
316             selfVerificationPrintRegisters((int*)shadowSpace->fp,
317                                            (int*)shadowSpace->shadowFP,
318                                            frameBytes/4);
319             LOGD("*** Shadow Registers: addr: %#x bytes: %d",
320                 (int)shadowSpace->shadowFP, frameBytes);
321             selfVerificationPrintRegisters((int*)shadowSpace->shadowFP,
322                                            (int*)shadowSpace->fp,
323                                            frameBytes/4);
324             selfVerificationSpinLoop(shadowSpace);
325         }
326         /* Check new frame if it exists (invokes only) */
327         if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
328             StackSaveArea* stackSave =
329                 SAVEAREA_FROM_FP(self->interpSave.curFrame);
330             int localRegs = (stackSave->method->registersSize -
331                              stackSave->method->insSize)*4;
332             int frameBytes2 = (int) shadowSpace->fp -
333                               (int) self->interpSave.curFrame - localRegs;
334             if (memcmp(((char*)self->interpSave.curFrame)+localRegs,
335                 ((char*)shadowSpace->endShadowFP)+localRegs, frameBytes2)) {
336                 if (state == kSVSBackwardBranch) {
337                     /*
338                      * State mismatch on backward branch - try one more
339                      * iteration.
340                      */
341                     shadowSpace->selfVerificationState = kSVSDebugInterp;
342                     goto log_and_continue;
343                 }
344                 LOGD("~~~ DbgIntp(%d): REGISTERS (FRAME2) DIVERGENCE!",
345                     self->threadId);
346                 selfVerificationDumpState(pc, self);
347                 selfVerificationDumpTrace(pc, self);
348                 LOGD("*** Interp Registers: addr: %#x l: %d bytes: %d",
349                     (int)self->interpSave.curFrame, localRegs, frameBytes2);
350                 selfVerificationPrintRegisters((int*)self->interpSave.curFrame,
351                                                (int*)shadowSpace->endShadowFP,
352                                                (frameBytes2+localRegs)/4);
353                 LOGD("*** Shadow Registers: addr: %#x l: %d bytes: %d",
354                     (int)shadowSpace->endShadowFP, localRegs, frameBytes2);
355                 selfVerificationPrintRegisters((int*)shadowSpace->endShadowFP,
356                                                (int*)self->interpSave.curFrame,
357                                                (frameBytes2+localRegs)/4);
358                 selfVerificationSpinLoop(shadowSpace);
359             }
360         }
361
362         /* Check memory space */
363         bool memDiff = false;
364         ShadowHeap* heapSpacePtr;
365         for (heapSpacePtr = shadowSpace->heapSpace;
366              heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
367             int memData = *((unsigned int*) heapSpacePtr->addr);
368             if (heapSpacePtr->data != memData) {
369                 if (state == kSVSBackwardBranch) {
370                     /*
371                      * State mismatch on backward branch - try one more
372                      * iteration.
373                      */
374                     shadowSpace->selfVerificationState = kSVSDebugInterp;
375                     goto log_and_continue;
376                 }
377                 LOGD("~~~ DbgIntp(%d): MEMORY DIVERGENCE!", self->threadId);
378                 LOGD("Addr: %#x Intrp Data: %#x Jit Data: %#x",
379                     heapSpacePtr->addr, memData, heapSpacePtr->data);
380                 selfVerificationDumpState(pc, self);
381                 selfVerificationDumpTrace(pc, self);
382                 memDiff = true;
383             }
384         }
385         if (memDiff) selfVerificationSpinLoop(shadowSpace);
386
387
388         /*
389          * Success.  If this shadowed trace included a single-stepped
390          * instruction, we need to stay in the interpreter for one
391          * more interpretation before resuming.
392          */
393         if (state == kSVSSingleStep) {
394             assert(self->jitResumeNPC != NULL);
395             assert(self->singleStepCount == 0);
396             self->singleStepCount = 1;
397             dvmEnableSubMode(self, kSubModeCountedStep);
398         }
399
400         /*
401          * Switch off shadow replay mode.  The next shadowed trace
402          * execution will turn it back on.
403          */
404         dvmDisableSubMode(self, kSubModeJitSV);
405
406         self->jitState = kJitDone;
407         return;
408     }
409 log_and_continue:
410     /* If end not been reached, make sure max length not exceeded */
411     if (shadowSpace->traceLength >= JIT_MAX_TRACE_LEN) {
412         LOGD("~~~ DbgIntp(%d): CONTROL DIVERGENCE!", self->threadId);
413         LOGD("startPC: %#x endPC: %#x currPC: %#x",
414             (int)shadowSpace->startPC, (int)shadowSpace->endPC, (int)pc);
415         selfVerificationDumpState(pc, self);
416         selfVerificationDumpTrace(pc, self);
417         selfVerificationSpinLoop(shadowSpace);
418         return;
419     }
420     /* Log the instruction address and decoded instruction for debug */
421     shadowSpace->trace[shadowSpace->traceLength].addr = (int)pc;
422     shadowSpace->trace[shadowSpace->traceLength].decInsn = decInsn;
423     shadowSpace->traceLength++;
424 }
425 #endif
426
427 /*
428  * If one of our fixed tables or the translation buffer fills up,
429  * call this routine to avoid wasting cycles on future translation requests.
430  */
431 void dvmJitStopTranslationRequests()
432 {
433     /*
434      * Note 1: This won't necessarily stop all translation requests, and
435      * operates on a delayed mechanism.  Running threads look to the copy
436      * of this value in their private thread structures and won't see
437      * this change until it is refreshed (which happens on interpreter
438      * entry).
439      * Note 2: This is a one-shot memory leak on this table. Because this is a
440      * permanent off switch for Jit profiling, it is a one-time leak of 1K
441      * bytes, and no further attempt will be made to re-allocate it.  Can't
442      * free it because some thread may be holding a reference.
443      */
444     gDvmJit.pProfTable = NULL;
445     dvmJitUpdateThreadStateAll();
446 }
447
448 #if defined(WITH_JIT_TUNING)
449 /* Convenience function to increment counter from assembly code */
450 void dvmBumpNoChain(int from)
451 {
452     gDvmJit.noChainExit[from]++;
453 }
454
455 /* Convenience function to increment counter from assembly code */
456 void dvmBumpNormal()
457 {
458     gDvmJit.normalExit++;
459 }
460
461 /* Convenience function to increment counter from assembly code */
462 void dvmBumpPunt(int from)
463 {
464     gDvmJit.puntExit++;
465 }
466 #endif
467
468 /* Dumps debugging & tuning stats to the log */
469 void dvmJitStats()
470 {
471     int i;
472     int hit;
473     int not_hit;
474     int chains;
475     int stubs;
476     if (gDvmJit.pJitEntryTable) {
477         for (i=0, stubs=chains=hit=not_hit=0;
478              i < (int) gDvmJit.jitTableSize;
479              i++) {
480             if (gDvmJit.pJitEntryTable[i].dPC != 0) {
481                 hit++;
482                 if (gDvmJit.pJitEntryTable[i].codeAddress ==
483                       dvmCompilerGetInterpretTemplate())
484                     stubs++;
485             } else
486                 not_hit++;
487             if (gDvmJit.pJitEntryTable[i].u.info.chain != gDvmJit.jitTableSize)
488                 chains++;
489         }
490         LOGD("JIT: table size is %d, entries used is %d",
491              gDvmJit.jitTableSize,  gDvmJit.jitTableEntriesUsed);
492         LOGD("JIT: %d traces, %d slots, %d chains, %d thresh, %s",
493              hit, not_hit + hit, chains, gDvmJit.threshold,
494              gDvmJit.blockingMode ? "Blocking" : "Non-blocking");
495
496 #if defined(WITH_JIT_TUNING)
497         LOGD("JIT: Code cache patches: %d", gDvmJit.codeCachePatches);
498
499         LOGD("JIT: Lookups: %d hits, %d misses; %d normal, %d punt",
500              gDvmJit.addrLookupsFound, gDvmJit.addrLookupsNotFound,
501              gDvmJit.normalExit, gDvmJit.puntExit);
502
503         LOGD("JIT: ICHits: %d", gDvmICHitCount);
504
505         LOGD("JIT: noChainExit: %d IC miss, %d interp callsite, "
506              "%d switch overflow",
507              gDvmJit.noChainExit[kInlineCacheMiss],
508              gDvmJit.noChainExit[kCallsiteInterpreted],
509              gDvmJit.noChainExit[kSwitchOverflow]);
510
511         LOGD("JIT: ICPatch: %d init, %d rejected, %d lock-free, %d queued, "
512              "%d dropped",
513              gDvmJit.icPatchInit, gDvmJit.icPatchRejected,
514              gDvmJit.icPatchLockFree, gDvmJit.icPatchQueued,
515              gDvmJit.icPatchDropped);
516
517         LOGD("JIT: Invoke: %d mono, %d poly, %d native, %d return",
518              gDvmJit.invokeMonomorphic, gDvmJit.invokePolymorphic,
519              gDvmJit.invokeNative, gDvmJit.returnOp);
520         LOGD("JIT: Inline: %d mgetter, %d msetter, %d pgetter, %d psetter",
521              gDvmJit.invokeMonoGetterInlined, gDvmJit.invokeMonoSetterInlined,
522              gDvmJit.invokePolyGetterInlined, gDvmJit.invokePolySetterInlined);
523         LOGD("JIT: Total compilation time: %llu ms", gDvmJit.jitTime / 1000);
524         LOGD("JIT: Avg unit compilation time: %llu us",
525              gDvmJit.numCompilations == 0 ? 0 :
526              gDvmJit.jitTime / gDvmJit.numCompilations);
527         LOGD("JIT: Potential GC blocked by compiler: max %llu us / "
528              "avg %llu us (%d)",
529              gDvmJit.maxCompilerThreadBlockGCTime,
530              gDvmJit.numCompilerThreadBlockGC == 0 ?
531                  0 : gDvmJit.compilerThreadBlockGCTime /
532                      gDvmJit.numCompilerThreadBlockGC,
533              gDvmJit.numCompilerThreadBlockGC);
534 #endif
535
536         LOGD("JIT: %d Translation chains, %d interp stubs",
537              gDvmJit.translationChains, stubs);
538         if (gDvmJit.profileMode == kTraceProfilingContinuous) {
539             dvmCompilerSortAndPrintTraceProfiles();
540         }
541     }
542 }
543
544
545 /* End current trace now & don't include current instruction */
546 void dvmJitEndTraceSelect(Thread* self, const u2* dPC)
547 {
548     if (self->jitState == kJitTSelect) {
549         self->jitState = kJitTSelectEnd;
550     }
551     if (self->jitState == kJitTSelectEnd) {
552         // Clean up and finish now.
553         dvmCheckJit(dPC, self);
554     }
555 }
556
557 /*
558  * Find an entry in the JitTable, creating if necessary.
559  * Returns null if table is full.
560  */
561 static JitEntry *lookupAndAdd(const u2* dPC, bool callerLocked,
562                               bool isMethodEntry)
563 {
564     u4 chainEndMarker = gDvmJit.jitTableSize;
565     u4 idx = dvmJitHash(dPC);
566
567     /*
568      * Walk the bucket chain to find an exact match for our PC and trace/method
569      * type
570      */
571     while ((gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) &&
572            ((gDvmJit.pJitEntryTable[idx].dPC != dPC) ||
573             (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry !=
574              isMethodEntry))) {
575         idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
576     }
577
578     if (gDvmJit.pJitEntryTable[idx].dPC != dPC ||
579         gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry != isMethodEntry) {
580         /*
581          * No match.  Aquire jitTableLock and find the last
582          * slot in the chain. Possibly continue the chain walk in case
583          * some other thread allocated the slot we were looking
584          * at previuosly (perhaps even the dPC we're trying to enter).
585          */
586         if (!callerLocked)
587             dvmLockMutex(&gDvmJit.tableLock);
588         /*
589          * At this point, if .dPC is NULL, then the slot we're
590          * looking at is the target slot from the primary hash
591          * (the simple, and common case).  Otherwise we're going
592          * to have to find a free slot and chain it.
593          */
594         ANDROID_MEMBAR_FULL(); /* Make sure we reload [].dPC after lock */
595         if (gDvmJit.pJitEntryTable[idx].dPC != NULL) {
596             u4 prev;
597             while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
598                 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
599                     gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
600                         isMethodEntry) {
601                     /* Another thread got there first for this dPC */
602                     if (!callerLocked)
603                         dvmUnlockMutex(&gDvmJit.tableLock);
604                     return &gDvmJit.pJitEntryTable[idx];
605                 }
606                 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
607             }
608             /* Here, idx should be pointing to the last cell of an
609              * active chain whose last member contains a valid dPC */
610             assert(gDvmJit.pJitEntryTable[idx].dPC != NULL);
611             /* Linear walk to find a free cell and add it to the end */
612             prev = idx;
613             while (true) {
614                 idx++;
615                 if (idx == chainEndMarker)
616                     idx = 0;  /* Wraparound */
617                 if ((gDvmJit.pJitEntryTable[idx].dPC == NULL) ||
618                     (idx == prev))
619                     break;
620             }
621             if (idx != prev) {
622                 JitEntryInfoUnion oldValue;
623                 JitEntryInfoUnion newValue;
624                 /*
625                  * Although we hold the lock so that noone else will
626                  * be trying to update a chain field, the other fields
627                  * packed into the word may be in use by other threads.
628                  */
629                 do {
630                     oldValue = gDvmJit.pJitEntryTable[prev].u;
631                     newValue = oldValue;
632                     newValue.info.chain = idx;
633                 } while (android_atomic_release_cas(oldValue.infoWord,
634                         newValue.infoWord,
635                         &gDvmJit.pJitEntryTable[prev].u.infoWord) != 0);
636             }
637         }
638         if (gDvmJit.pJitEntryTable[idx].dPC == NULL) {
639             gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry = isMethodEntry;
640             /*
641              * Initialize codeAddress and allocate the slot.  Must
642              * happen in this order (since dPC is set, the entry is live.
643              */
644             android_atomic_release_store((int32_t)dPC,
645                  (volatile int32_t *)(void *)&gDvmJit.pJitEntryTable[idx].dPC);
646             gDvmJit.pJitEntryTable[idx].dPC = dPC;
647             gDvmJit.jitTableEntriesUsed++;
648         } else {
649             /* Table is full */
650             idx = chainEndMarker;
651         }
652         if (!callerLocked)
653             dvmUnlockMutex(&gDvmJit.tableLock);
654     }
655     return (idx == chainEndMarker) ? NULL : &gDvmJit.pJitEntryTable[idx];
656 }
657
658 /* Dump a trace description */
659 void dvmJitDumpTraceDesc(JitTraceDescription *trace)
660 {
661     int i;
662     bool done = false;
663     const u2* dpc;
664     const u2* dpcBase;
665     int curFrag = 0;
666     LOGD("===========================================");
667     LOGD("Trace dump %#x, Method %s off %#x",(int)trace,
668          trace->method->name,trace->trace[curFrag].info.frag.startOffset);
669     dpcBase = trace->method->insns;
670     while (!done) {
671         DecodedInstruction decInsn;
672         if (trace->trace[curFrag].isCode) {
673             LOGD("Frag[%d]- Insts: %d, start: %#x, hint: %#x, end: %d",
674                  curFrag, trace->trace[curFrag].info.frag.numInsts,
675                  trace->trace[curFrag].info.frag.startOffset,
676                  trace->trace[curFrag].info.frag.hint,
677                  trace->trace[curFrag].info.frag.runEnd);
678             dpc = dpcBase + trace->trace[curFrag].info.frag.startOffset;
679             for (i=0; i<trace->trace[curFrag].info.frag.numInsts; i++) {
680                 dexDecodeInstruction(dpc, &decInsn);
681                 LOGD("    0x%04x - %s %#x",(dpc-dpcBase),
682                      dexGetOpcodeName(decInsn.opcode),(int)dpc);
683                 dpc += dexGetWidthFromOpcode(decInsn.opcode);
684             }
685             if (trace->trace[curFrag].info.frag.runEnd) {
686                 done = true;
687             }
688         } else {
689             LOGD("Frag[%d]- META info: 0x%08x", curFrag,
690                  (int)trace->trace[curFrag].info.meta);
691         }
692         curFrag++;
693     }
694     LOGD("-------------------------------------------");
695 }
696
697 /*
698  * Append the class ptr of "this" and the current method ptr to the current
699  * trace. That is, the trace runs will contain the following components:
700  *  + trace run that ends with an invoke (existing entry)
701  *  + thisClass (new)
702  *  + calleeMethod (new)
703  */
704 static void insertClassMethodInfo(Thread* self,
705                                   const ClassObject* thisClass,
706                                   const Method* calleeMethod,
707                                   const DecodedInstruction* insn)
708 {
709     int currTraceRun = ++self->currTraceRun;
710     self->trace[currTraceRun].info.meta = thisClass ?
711                                     (void *) thisClass->descriptor : NULL;
712     self->trace[currTraceRun].isCode = false;
713
714     currTraceRun = ++self->currTraceRun;
715     self->trace[currTraceRun].info.meta = thisClass ?
716                                     (void *) thisClass->classLoader : NULL;
717     self->trace[currTraceRun].isCode = false;
718
719     currTraceRun = ++self->currTraceRun;
720     self->trace[currTraceRun].info.meta = (void *) calleeMethod;
721     self->trace[currTraceRun].isCode = false;
722 }
723
724 /*
725  * Check if the next instruction following the invoke is a move-result and if
726  * so add it to the trace. That is, this will add the trace run that includes
727  * the move-result to the trace list.
728  *
729  *  + trace run that ends with an invoke (existing entry)
730  *  + thisClass (existing entry)
731  *  + calleeMethod (existing entry)
732  *  + move result (new)
733  *
734  * lastPC, len, offset are all from the preceding invoke instruction
735  */
736 static void insertMoveResult(const u2 *lastPC, int len, int offset,
737                              Thread *self)
738 {
739     DecodedInstruction nextDecInsn;
740     const u2 *moveResultPC = lastPC + len;
741
742     dexDecodeInstruction(moveResultPC, &nextDecInsn);
743     if ((nextDecInsn.opcode != OP_MOVE_RESULT) &&
744         (nextDecInsn.opcode != OP_MOVE_RESULT_WIDE) &&
745         (nextDecInsn.opcode != OP_MOVE_RESULT_OBJECT))
746         return;
747
748     /* We need to start a new trace run */
749     int currTraceRun = ++self->currTraceRun;
750     self->currRunHead = moveResultPC;
751     self->trace[currTraceRun].info.frag.startOffset = offset + len;
752     self->trace[currTraceRun].info.frag.numInsts = 1;
753     self->trace[currTraceRun].info.frag.runEnd = false;
754     self->trace[currTraceRun].info.frag.hint = kJitHintNone;
755     self->trace[currTraceRun].isCode = true;
756     self->totalTraceLen++;
757
758     self->currRunLen = dexGetWidthFromInstruction(moveResultPC);
759 }
760
761 /*
762  * Adds to the current trace request one instruction at a time, just
763  * before that instruction is interpreted.  This is the primary trace
764  * selection function.  NOTE: return instruction are handled a little
765  * differently.  In general, instructions are "proposed" to be added
766  * to the current trace prior to interpretation.  If the interpreter
767  * then successfully completes the instruction, is will be considered
768  * part of the request.  This allows us to examine machine state prior
769  * to interpretation, and also abort the trace request if the instruction
770  * throws or does something unexpected.  However, return instructions
771  * will cause an immediate end to the translation request - which will
772  * be passed to the compiler before the return completes.  This is done
773  * in response to special handling of returns by the interpreter (and
774  * because returns cannot throw in a way that causes problems for the
775  * translated code.
776  */
777 void dvmCheckJit(const u2* pc, Thread* self)
778 {
779     const ClassObject *thisClass = self->callsiteClass;
780     const Method* curMethod = self->methodToCall;
781     int flags, len;
782     int allDone = false;
783     /* Stay in break/single-stop mode for the next instruction */
784     bool stayOneMoreInst = false;
785
786     /* Prepare to handle last PC and stage the current PC & method*/
787     const u2 *lastPC = self->lastPC;
788
789     self->lastPC = pc;
790
791     switch (self->jitState) {
792         int offset;
793         DecodedInstruction decInsn;
794         case kJitTSelect:
795             /* First instruction - just remember the PC and exit */
796             if (lastPC == NULL) break;
797             /* Grow the trace around the last PC if jitState is kJitTSelect */
798             dexDecodeInstruction(lastPC, &decInsn);
799
800             /*
801              * Treat {PACKED,SPARSE}_SWITCH as trace-ending instructions due
802              * to the amount of space it takes to generate the chaining
803              * cells.
804              */
805             if (self->totalTraceLen != 0 &&
806                 (decInsn.opcode == OP_PACKED_SWITCH ||
807                  decInsn.opcode == OP_SPARSE_SWITCH)) {
808                 self->jitState = kJitTSelectEnd;
809                 break;
810             }
811
812 #if defined(SHOW_TRACE)
813             LOGD("TraceGen: adding %s. lpc:%#x, pc:%#x",
814                  dexGetOpcodeName(decInsn.opcode), (int)lastPC, (int)pc);
815 #endif
816             flags = dexGetFlagsFromOpcode(decInsn.opcode);
817             len = dexGetWidthFromInstruction(lastPC);
818             offset = lastPC - self->traceMethod->insns;
819             assert((unsigned) offset <
820                    dvmGetMethodInsnsSize(self->traceMethod));
821             if (lastPC != self->currRunHead + self->currRunLen) {
822                 int currTraceRun;
823                 /* We need to start a new trace run */
824                 currTraceRun = ++self->currTraceRun;
825                 self->currRunLen = 0;
826                 self->currRunHead = (u2*)lastPC;
827                 self->trace[currTraceRun].info.frag.startOffset = offset;
828                 self->trace[currTraceRun].info.frag.numInsts = 0;
829                 self->trace[currTraceRun].info.frag.runEnd = false;
830                 self->trace[currTraceRun].info.frag.hint = kJitHintNone;
831                 self->trace[currTraceRun].isCode = true;
832             }
833             self->trace[self->currTraceRun].info.frag.numInsts++;
834             self->totalTraceLen++;
835             self->currRunLen += len;
836
837             /*
838              * If the last instruction is an invoke, we will try to sneak in
839              * the move-result* (if existent) into a separate trace run.
840              */
841             {
842               int needReservedRun = (flags & kInstrInvoke) ? 1 : 0;
843
844               /* Will probably never hit this with the current trace builder */
845               if (self->currTraceRun ==
846                    (MAX_JIT_RUN_LEN - 1 - needReservedRun)) {
847                 self->jitState = kJitTSelectEnd;
848               }
849             }
850
851             if (!dexIsGoto(flags) &&
852                   ((flags & (kInstrCanBranch |
853                              kInstrCanSwitch |
854                              kInstrCanReturn |
855                              kInstrInvoke)) != 0)) {
856                     self->jitState = kJitTSelectEnd;
857 #if defined(SHOW_TRACE)
858                 LOGD("TraceGen: ending on %s, basic block end",
859                      dexGetOpcodeName(decInsn.opcode));
860 #endif
861
862                 /*
863                  * If the current invoke is a {virtual,interface}, get the
864                  * current class/method pair into the trace as well.
865                  * If the next instruction is a variant of move-result, insert
866                  * it to the trace too.
867                  */
868                 if (flags & kInstrInvoke) {
869                     insertClassMethodInfo(self, thisClass, curMethod,
870                                           &decInsn);
871                     insertMoveResult(lastPC, len, offset, self);
872                 }
873             }
874             /* Break on throw or self-loop */
875             if ((decInsn.opcode == OP_THROW) || (lastPC == pc)){
876                 self->jitState = kJitTSelectEnd;
877             }
878             if (self->totalTraceLen >= JIT_MAX_TRACE_LEN) {
879                 self->jitState = kJitTSelectEnd;
880             }
881             if ((flags & kInstrCanReturn) != kInstrCanReturn) {
882                 break;
883             }
884             else {
885                 /*
886                  * Last instruction is a return - stay in the dbg interpreter
887                  * for one more instruction if it is a non-void return, since
888                  * we don't want to start a trace with move-result as the first
889                  * instruction (which is already included in the trace
890                  * containing the invoke.
891                  */
892                 if (decInsn.opcode != OP_RETURN_VOID) {
893                     stayOneMoreInst = true;
894                 }
895             }
896             /* NOTE: intentional fallthrough for returns */
897         case kJitTSelectEnd:
898             {
899                 /* Empty trace - set to bail to interpreter */
900                 if (self->totalTraceLen == 0) {
901                     dvmJitSetCodeAddr(self->currTraceHead,
902                                       dvmCompilerGetInterpretTemplate(),
903                                       dvmCompilerGetInterpretTemplateSet(),
904                                       false /* Not method entry */, 0);
905                     self->jitState = kJitDone;
906                     allDone = true;
907                     break;
908                 }
909
910                 int lastTraceDesc = self->currTraceRun;
911
912                 /* Extend a new empty desc if the last slot is meta info */
913                 if (!self->trace[lastTraceDesc].isCode) {
914                     lastTraceDesc = ++self->currTraceRun;
915                     self->trace[lastTraceDesc].info.frag.startOffset = 0;
916                     self->trace[lastTraceDesc].info.frag.numInsts = 0;
917                     self->trace[lastTraceDesc].info.frag.hint = kJitHintNone;
918                     self->trace[lastTraceDesc].isCode = true;
919                 }
920
921                 /* Mark the end of the trace runs */
922                 self->trace[lastTraceDesc].info.frag.runEnd = true;
923
924                 JitTraceDescription* desc =
925                    (JitTraceDescription*)malloc(sizeof(JitTraceDescription) +
926                      sizeof(JitTraceRun) * (self->currTraceRun+1));
927
928                 if (desc == NULL) {
929                     LOGE("Out of memory in trace selection");
930                     dvmJitStopTranslationRequests();
931                     self->jitState = kJitDone;
932                     allDone = true;
933                     break;
934                 }
935
936                 desc->method = self->traceMethod;
937                 memcpy((char*)&(desc->trace[0]),
938                     (char*)&(self->trace[0]),
939                     sizeof(JitTraceRun) * (self->currTraceRun+1));
940 #if defined(SHOW_TRACE)
941                 LOGD("TraceGen:  trace done, adding to queue");
942                 dvmJitDumpTraceDesc(desc);
943 #endif
944                 if (dvmCompilerWorkEnqueue(
945                        self->currTraceHead,kWorkOrderTrace,desc)) {
946                     /* Work order successfully enqueued */
947                     if (gDvmJit.blockingMode) {
948                         dvmCompilerDrainQueue();
949                     }
950                 } else {
951                     /*
952                      * Make sure the descriptor for the abandoned work order is
953                      * freed.
954                      */
955                     free(desc);
956                 }
957                 self->jitState = kJitDone;
958                 allDone = true;
959             }
960             break;
961         case kJitDone:
962             allDone = true;
963             break;
964         case kJitNot:
965             allDone = true;
966             break;
967         default:
968             LOGE("Unexpected JIT state: %d", self->jitState);
969             dvmAbort();
970             break;
971     }
972
973     /*
974      * If we're done with trace selection, switch off the control flags.
975      */
976      if (allDone) {
977          dvmDisableSubMode(self, kSubModeJitTraceBuild);
978          if (stayOneMoreInst) {
979              // Keep going in single-step mode for at least one more inst
980              assert(self->jitResumeNPC == NULL);
981              self->singleStepCount = MIN(1, self->singleStepCount);
982              dvmEnableSubMode(self, kSubModeCountedStep);
983          }
984      }
985      return;
986 }
987
988 JitEntry *dvmJitFindEntry(const u2* pc, bool isMethodEntry)
989 {
990     int idx = dvmJitHash(pc);
991
992     /* Expect a high hit rate on 1st shot */
993     if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
994         (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == isMethodEntry))
995         return &gDvmJit.pJitEntryTable[idx];
996     else {
997         int chainEndMarker = gDvmJit.jitTableSize;
998         while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
999             idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
1000             if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
1001                 (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
1002                 isMethodEntry))
1003                 return &gDvmJit.pJitEntryTable[idx];
1004         }
1005     }
1006     return NULL;
1007 }
1008
1009 /*
1010  * Walk through the JIT profile table and find the corresponding JIT code, in
1011  * the specified format (ie trace vs method). This routine needs to be fast.
1012  */
1013 void* getCodeAddrCommon(const u2* dPC, bool methodEntry)
1014 {
1015     int idx = dvmJitHash(dPC);
1016     const u2* pc = gDvmJit.pJitEntryTable[idx].dPC;
1017     if (pc != NULL) {
1018         bool hideTranslation = dvmJitHideTranslation();
1019         if (pc == dPC &&
1020             gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == methodEntry) {
1021             int offset = (gDvmJit.profileMode >= kTraceProfilingContinuous) ?
1022                  0 : gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
1023             intptr_t codeAddress =
1024                 (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
1025 #if defined(WITH_JIT_TUNING)
1026             gDvmJit.addrLookupsFound++;
1027 #endif
1028             return hideTranslation || !codeAddress ?  NULL :
1029                   (void *)(codeAddress + offset);
1030         } else {
1031             int chainEndMarker = gDvmJit.jitTableSize;
1032             while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
1033                 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
1034                 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
1035                     gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
1036                         methodEntry) {
1037                     int offset = (gDvmJit.profileMode >=
1038                         kTraceProfilingContinuous) ? 0 :
1039                         gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
1040                     intptr_t codeAddress =
1041                         (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
1042 #if defined(WITH_JIT_TUNING)
1043                     gDvmJit.addrLookupsFound++;
1044 #endif
1045                     return hideTranslation || !codeAddress ? NULL :
1046                         (void *)(codeAddress + offset);
1047                 }
1048             }
1049         }
1050     }
1051 #if defined(WITH_JIT_TUNING)
1052     gDvmJit.addrLookupsNotFound++;
1053 #endif
1054     return NULL;
1055 }
1056
1057 /*
1058  * If a translated code address, in trace format, exists for the davik byte code
1059  * pointer return it.
1060  */
1061 void* dvmJitGetTraceAddr(const u2* dPC)
1062 {
1063     return getCodeAddrCommon(dPC, false /* method entry */);
1064 }
1065
1066 /*
1067  * If a translated code address, in whole-method format, exists for the davik
1068  * byte code pointer return it.
1069  */
1070 void* dvmJitGetMethodAddr(const u2* dPC)
1071 {
1072     return getCodeAddrCommon(dPC, true /* method entry */);
1073 }
1074
1075 /*
1076  * Similar to dvmJitGetTraceAddr, but returns null if the calling
1077  * thread is in a single-step mode.
1078  */
1079 void* dvmJitGetTraceAddrThread(const u2* dPC, Thread* self)
1080 {
1081     return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
1082             getCodeAddrCommon(dPC, false /* method entry */);
1083 }
1084
1085 /*
1086  * Similar to dvmJitGetMethodAddr, but returns null if the calling
1087  * thread is in a single-step mode.
1088  */
1089 void* dvmJitGetMethodAddrThread(const u2* dPC, Thread* self)
1090 {
1091     return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
1092             getCodeAddrCommon(dPC, true /* method entry */);
1093 }
1094
1095 /*
1096  * Register the translated code pointer into the JitTable.
1097  * NOTE: Once a codeAddress field transitions from initial state to
1098  * JIT'd code, it must not be altered without first halting all
1099  * threads.  We defer the setting of the profile prefix size until
1100  * after the new code address is set to ensure that the prefix offset
1101  * is never applied to the initial interpret-only translation.  All
1102  * translations with non-zero profile prefixes will still be correct
1103  * if entered as if the profile offset is 0, but the interpret-only
1104  * template cannot handle a non-zero prefix.
1105  * NOTE: JitTable must not be in danger of reset while this
1106  * code is executing. see Issue 4271784 for details.
1107  */
1108 void dvmJitSetCodeAddr(const u2* dPC, void *nPC, JitInstructionSetType set,
1109                        bool isMethodEntry, int profilePrefixSize)
1110 {
1111     JitEntryInfoUnion oldValue;
1112     JitEntryInfoUnion newValue;
1113     /*
1114      * Get the JitTable slot for this dPC (or create one if JitTable
1115      * has been reset between the time the trace was requested and
1116      * now.
1117      */
1118     JitEntry *jitEntry = isMethodEntry ?
1119         lookupAndAdd(dPC, false /* caller holds tableLock */, isMethodEntry) :
1120                      dvmJitFindEntry(dPC, isMethodEntry);
1121     assert(jitEntry);
1122     /* Note: order of update is important */
1123     do {
1124         oldValue = jitEntry->u;
1125         newValue = oldValue;
1126         newValue.info.isMethodEntry = isMethodEntry;
1127         newValue.info.instructionSet = set;
1128         newValue.info.profileOffset = profilePrefixSize;
1129     } while (android_atomic_release_cas(
1130              oldValue.infoWord, newValue.infoWord,
1131              &jitEntry->u.infoWord) != 0);
1132     jitEntry->codeAddress = nPC;
1133 }
1134
1135 /*
1136  * Determine if valid trace-bulding request is active.  If so, set
1137  * the proper flags in interpBreak and return.  Trace selection will
1138  * then begin normally via dvmCheckBefore.
1139  */
1140 void dvmJitCheckTraceRequest(Thread* self)
1141 {
1142     int i;
1143     /*
1144      * A note on trace "hotness" filtering:
1145      *
1146      * Our first level trigger is intentionally loose - we need it to
1147      * fire easily not just to identify potential traces to compile, but
1148      * also to allow re-entry into the code cache.
1149      *
1150      * The 2nd level filter (done here) exists to be selective about
1151      * what we actually compile.  It works by requiring the same
1152      * trace head "key" (defined as filterKey below) to appear twice in
1153      * a relatively short period of time.   The difficulty is defining the
1154      * shape of the filterKey.  Unfortunately, there is no "one size fits
1155      * all" approach.
1156      *
1157      * For spiky execution profiles dominated by a smallish
1158      * number of very hot loops, we would want the second-level filter
1159      * to be very selective.  A good selective filter is requiring an
1160      * exact match of the Dalvik PC.  In other words, defining filterKey as:
1161      *     intptr_t filterKey = (intptr_t)self->interpSave.pc
1162      *
1163      * However, for flat execution profiles we do best when aggressively
1164      * translating.  A heuristically decent proxy for this is to use
1165      * the value of the method pointer containing the trace as the filterKey.
1166      * Intuitively, this is saying that once any trace in a method appears hot,
1167      * immediately translate any other trace from that same method that
1168      * survives the first-level filter.  Here, filterKey would be defined as:
1169      *     intptr_t filterKey = (intptr_t)self->interpSave.method
1170      *
1171      * The problem is that we can't easily detect whether we're dealing
1172      * with a spiky or flat profile.  If we go with the "pc" match approach,
1173      * flat profiles perform poorly.  If we go with the loose "method" match,
1174      * we end up generating a lot of useless translations.  Probably the
1175      * best approach in the future will be to retain profile information
1176      * across runs of each application in order to determine it's profile,
1177      * and then choose once we have enough history.
1178      *
1179      * However, for now we've decided to chose a compromise filter scheme that
1180      * includes elements of both.  The high order bits of the filter key
1181      * are drawn from the enclosing method, and are combined with a slice
1182      * of the low-order bits of the Dalvik pc of the trace head.  The
1183      * looseness of the filter can be adjusted by changing with width of
1184      * the Dalvik pc slice (JIT_TRACE_THRESH_FILTER_PC_BITS).  The wider
1185      * the slice, the tighter the filter.
1186      *
1187      * Note: the fixed shifts in the function below reflect assumed word
1188      * alignment for method pointers, and half-word alignment of the Dalvik pc.
1189      * for method pointers and half-word alignment for dalvik pc.
1190      */
1191     u4 methodKey = (u4)self->interpSave.method <<
1192                    (JIT_TRACE_THRESH_FILTER_PC_BITS - 2);
1193     u4 pcKey = ((u4)self->interpSave.pc >> 1) &
1194                ((1 << JIT_TRACE_THRESH_FILTER_PC_BITS) - 1);
1195     intptr_t filterKey = (intptr_t)(methodKey | pcKey);
1196
1197     // Shouldn't be here if already building a trace.
1198     assert((self->interpBreak.ctl.subMode & kSubModeJitTraceBuild)==0);
1199
1200     /* Check if the JIT request can be handled now */
1201     if ((gDvmJit.pJitEntryTable != NULL) &&
1202         ((self->interpBreak.ctl.breakFlags & kInterpSingleStep) == 0)){
1203         /* Bypass the filter for hot trace requests or during stress mode */
1204         if (self->jitState == kJitTSelectRequest &&
1205             gDvmJit.threshold > 6) {
1206             /* Two-level filtering scheme */
1207             for (i=0; i< JIT_TRACE_THRESH_FILTER_SIZE; i++) {
1208                 if (filterKey == self->threshFilter[i]) {
1209                     self->threshFilter[i] = 0; // Reset filter entry
1210                     break;
1211                 }
1212             }
1213             if (i == JIT_TRACE_THRESH_FILTER_SIZE) {
1214                 /*
1215                  * Use random replacement policy - otherwise we could miss a
1216                  * large loop that contains more traces than the size of our
1217                  * filter array.
1218                  */
1219                 i = rand() % JIT_TRACE_THRESH_FILTER_SIZE;
1220                 self->threshFilter[i] = filterKey;
1221                 self->jitState = kJitDone;
1222             }
1223         }
1224
1225         /* If the compiler is backlogged, cancel any JIT actions */
1226         if (gDvmJit.compilerQueueLength >= gDvmJit.compilerHighWater) {
1227             self->jitState = kJitDone;
1228         }
1229
1230         /*
1231          * Check for additional reasons that might force the trace select
1232          * request to be dropped
1233          */
1234         if (self->jitState == kJitTSelectRequest ||
1235             self->jitState == kJitTSelectRequestHot) {
1236             if (dvmJitFindEntry(self->interpSave.pc, false)) {
1237                 /* In progress - nothing do do */
1238                self->jitState = kJitDone;
1239             } else {
1240                 JitEntry *slot = lookupAndAdd(self->interpSave.pc,
1241                                               false /* lock */,
1242                                               false /* method entry */);
1243                 if (slot == NULL) {
1244                     /*
1245                      * Table is full.  This should have been
1246                      * detected by the compiler thread and the table
1247                      * resized before we run into it here.  Assume bad things
1248                      * are afoot and disable profiling.
1249                      */
1250                     self->jitState = kJitDone;
1251                     LOGD("JIT: JitTable full, disabling profiling");
1252                     dvmJitStopTranslationRequests();
1253                 }
1254             }
1255         }
1256
1257         switch (self->jitState) {
1258             case kJitTSelectRequest:
1259             case kJitTSelectRequestHot:
1260                 self->jitState = kJitTSelect;
1261                 self->traceMethod = self->interpSave.method;
1262                 self->currTraceHead = self->interpSave.pc;
1263                 self->currTraceRun = 0;
1264                 self->totalTraceLen = 0;
1265                 self->currRunHead = self->interpSave.pc;
1266                 self->currRunLen = 0;
1267                 self->trace[0].info.frag.startOffset =
1268                      self->interpSave.pc - self->interpSave.method->insns;
1269                 self->trace[0].info.frag.numInsts = 0;
1270                 self->trace[0].info.frag.runEnd = false;
1271                 self->trace[0].info.frag.hint = kJitHintNone;
1272                 self->trace[0].isCode = true;
1273                 self->lastPC = 0;
1274                 /* Turn on trace selection mode */
1275                 dvmEnableSubMode(self, kSubModeJitTraceBuild);
1276 #if defined(SHOW_TRACE)
1277                 LOGD("Starting trace for %s at %#x",
1278                      self->interpSave.method->name, (int)self->interpSave.pc);
1279 #endif
1280                 break;
1281             case kJitDone:
1282                 break;
1283             default:
1284                 LOGE("Unexpected JIT state: %d", self->jitState);
1285                 dvmAbort();
1286         }
1287     } else {
1288         /* Cannot build trace this time */
1289         self->jitState = kJitDone;
1290     }
1291 }
1292
1293 /*
1294  * Resizes the JitTable.  Must be a power of 2, and returns true on failure.
1295  * Stops all threads, and thus is a heavyweight operation. May only be called
1296  * by the compiler thread.
1297  */
1298 bool dvmJitResizeJitTable( unsigned int size )
1299 {
1300     JitEntry *pNewTable;
1301     JitEntry *pOldTable;
1302     JitEntry tempEntry;
1303     unsigned int oldSize;
1304     unsigned int i;
1305
1306     assert(gDvmJit.pJitEntryTable != NULL);
1307     assert(size && !(size & (size - 1)));   /* Is power of 2? */
1308
1309     LOGI("Jit: resizing JitTable from %d to %d", gDvmJit.jitTableSize, size);
1310
1311     if (size <= gDvmJit.jitTableSize) {
1312         return true;
1313     }
1314
1315     /* Make sure requested size is compatible with chain field width */
1316     tempEntry.u.info.chain = size;
1317     if (tempEntry.u.info.chain != size) {
1318         LOGD("Jit: JitTable request of %d too big", size);
1319         return true;
1320     }
1321
1322     pNewTable = (JitEntry*)calloc(size, sizeof(*pNewTable));
1323     if (pNewTable == NULL) {
1324         return true;
1325     }
1326     for (i=0; i< size; i++) {
1327         pNewTable[i].u.info.chain = size;  /* Initialize chain termination */
1328     }
1329
1330     /* Stop all other interpreting/jit'ng threads */
1331     dvmSuspendAllThreads(SUSPEND_FOR_TBL_RESIZE);
1332
1333     pOldTable = gDvmJit.pJitEntryTable;
1334     oldSize = gDvmJit.jitTableSize;
1335
1336     dvmLockMutex(&gDvmJit.tableLock);
1337     gDvmJit.pJitEntryTable = pNewTable;
1338     gDvmJit.jitTableSize = size;
1339     gDvmJit.jitTableMask = size - 1;
1340     gDvmJit.jitTableEntriesUsed = 0;
1341
1342     for (i=0; i < oldSize; i++) {
1343         if (pOldTable[i].dPC) {
1344             JitEntry *p;
1345             u2 chain;
1346             p = lookupAndAdd(pOldTable[i].dPC, true /* holds tableLock*/,
1347                              pOldTable[i].u.info.isMethodEntry);
1348             p->codeAddress = pOldTable[i].codeAddress;
1349             /* We need to preserve the new chain field, but copy the rest */
1350             chain = p->u.info.chain;
1351             p->u = pOldTable[i].u;
1352             p->u.info.chain = chain;
1353         }
1354     }
1355
1356     dvmUnlockMutex(&gDvmJit.tableLock);
1357
1358     free(pOldTable);
1359
1360     /* Restart the world */
1361     dvmResumeAllThreads(SUSPEND_FOR_TBL_RESIZE);
1362
1363     return false;
1364 }
1365
1366 /*
1367  * Reset the JitTable to the initial clean state.
1368  */
1369 void dvmJitResetTable()
1370 {
1371     JitEntry *jitEntry = gDvmJit.pJitEntryTable;
1372     unsigned int size = gDvmJit.jitTableSize;
1373     unsigned int i;
1374
1375     dvmLockMutex(&gDvmJit.tableLock);
1376
1377     /* Note: If need to preserve any existing counts. Do so here. */
1378     if (gDvmJit.pJitTraceProfCounters) {
1379         for (i=0; i < JIT_PROF_BLOCK_BUCKETS; i++) {
1380             if (gDvmJit.pJitTraceProfCounters->buckets[i])
1381                 memset((void *) gDvmJit.pJitTraceProfCounters->buckets[i],
1382                        0, sizeof(JitTraceCounter_t) * JIT_PROF_BLOCK_ENTRIES);
1383         }
1384         gDvmJit.pJitTraceProfCounters->next = 0;
1385     }
1386
1387     memset((void *) jitEntry, 0, sizeof(JitEntry) * size);
1388     for (i=0; i< size; i++) {
1389         jitEntry[i].u.info.chain = size;  /* Initialize chain termination */
1390     }
1391     gDvmJit.jitTableEntriesUsed = 0;
1392     dvmUnlockMutex(&gDvmJit.tableLock);
1393 }
1394
1395 /*
1396  * Return the address of the next trace profile counter.  This address
1397  * will be embedded in the generated code for the trace, and thus cannot
1398  * change while the trace exists.
1399  */
1400 JitTraceCounter_t *dvmJitNextTraceCounter()
1401 {
1402     int idx = gDvmJit.pJitTraceProfCounters->next / JIT_PROF_BLOCK_ENTRIES;
1403     int elem = gDvmJit.pJitTraceProfCounters->next % JIT_PROF_BLOCK_ENTRIES;
1404     JitTraceCounter_t *res;
1405     /* Lazily allocate blocks of counters */
1406     if (!gDvmJit.pJitTraceProfCounters->buckets[idx]) {
1407         JitTraceCounter_t *p =
1408               (JitTraceCounter_t*) calloc(JIT_PROF_BLOCK_ENTRIES, sizeof(*p));
1409         if (!p) {
1410             LOGE("Failed to allocate block of trace profile counters");
1411             dvmAbort();
1412         }
1413         gDvmJit.pJitTraceProfCounters->buckets[idx] = p;
1414     }
1415     res = &gDvmJit.pJitTraceProfCounters->buckets[idx][elem];
1416     gDvmJit.pJitTraceProfCounters->next++;
1417     return res;
1418 }
1419
1420 /*
1421  * Float/double conversion requires clamping to min and max of integer form.  If
1422  * target doesn't support this normally, use these.
1423  */
1424 s8 dvmJitd2l(double d)
1425 {
1426     static const double kMaxLong = (double)(s8)0x7fffffffffffffffULL;
1427     static const double kMinLong = (double)(s8)0x8000000000000000ULL;
1428     if (d >= kMaxLong)
1429         return (s8)0x7fffffffffffffffULL;
1430     else if (d <= kMinLong)
1431         return (s8)0x8000000000000000ULL;
1432     else if (d != d) // NaN case
1433         return 0;
1434     else
1435         return (s8)d;
1436 }
1437
1438 s8 dvmJitf2l(float f)
1439 {
1440     static const float kMaxLong = (float)(s8)0x7fffffffffffffffULL;
1441     static const float kMinLong = (float)(s8)0x8000000000000000ULL;
1442     if (f >= kMaxLong)
1443         return (s8)0x7fffffffffffffffULL;
1444     else if (f <= kMinLong)
1445         return (s8)0x8000000000000000ULL;
1446     else if (f != f) // NaN case
1447         return 0;
1448     else
1449         return (s8)f;
1450 }
1451
1452 /* Should only be called by the compiler thread */
1453 void dvmJitChangeProfileMode(TraceProfilingModes newState)
1454 {
1455     if (gDvmJit.profileMode != newState) {
1456         gDvmJit.profileMode = newState;
1457         dvmJitUnchainAll();
1458     }
1459 }
1460
1461 void dvmJitTraceProfilingOn()
1462 {
1463     if (gDvmJit.profileMode == kTraceProfilingPeriodicOff)
1464         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1465                                     (void*) kTraceProfilingPeriodicOn);
1466     else if (gDvmJit.profileMode == kTraceProfilingDisabled)
1467         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1468                                     (void*) kTraceProfilingContinuous);
1469 }
1470
1471 void dvmJitTraceProfilingOff()
1472 {
1473     if (gDvmJit.profileMode == kTraceProfilingPeriodicOn)
1474         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1475                                     (void*) kTraceProfilingPeriodicOff);
1476     else if (gDvmJit.profileMode == kTraceProfilingContinuous)
1477         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1478                                     (void*) kTraceProfilingDisabled);
1479 }
1480
1481 /*
1482  * Update JIT-specific info in Thread structure for a single thread
1483  */
1484 void dvmJitUpdateThreadStateSingle(Thread* thread)
1485 {
1486     thread->pJitProfTable = gDvmJit.pProfTable;
1487     thread->jitThreshold = gDvmJit.threshold;
1488 }
1489
1490 /*
1491  * Walk through the thread list and refresh all local copies of
1492  * JIT global state (which was placed there for fast access).
1493  */
1494 void dvmJitUpdateThreadStateAll()
1495 {
1496     Thread* self = dvmThreadSelf();
1497     Thread* thread;
1498
1499     dvmLockThreadList(self);
1500     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1501         dvmJitUpdateThreadStateSingle(thread);
1502     }
1503     dvmUnlockThreadList();
1504
1505 }
1506 #endif /* WITH_JIT */