OSDN Git Service

Merge "DO NOT MERGE: Eliminate redundant changes to hardware vsync state." into cw...
[android-x86/frameworks-native.git] / vulkan / nulldrv / null_driver.cpp
1 /*
2  * Copyright 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include <hardware/hwvulkan.h>
18
19 #include <inttypes.h>
20 #include <stdlib.h>
21 #include <string.h>
22
23 #include <algorithm>
24 #include <array>
25
26 #include <log/log.h>
27 #include <utils/Errors.h>
28
29 #include "null_driver_gen.h"
30
31 using namespace null_driver;
32
33 struct VkPhysicalDevice_T {
34     hwvulkan_dispatch_t dispatch;
35 };
36
37 struct VkInstance_T {
38     hwvulkan_dispatch_t dispatch;
39     VkAllocationCallbacks allocator;
40     VkPhysicalDevice_T physical_device;
41     uint64_t next_callback_handle;
42 };
43
44 struct VkQueue_T {
45     hwvulkan_dispatch_t dispatch;
46 };
47
48 struct VkCommandBuffer_T {
49     hwvulkan_dispatch_t dispatch;
50 };
51
52 namespace {
53 // Handles for non-dispatchable objects are either pointers, or arbitrary
54 // 64-bit non-zero values. We only use pointers when we need to keep state for
55 // the object even in a null driver. For the rest, we form a handle as:
56 //   [63:63] = 1 to distinguish from pointer handles*
57 //   [62:56] = non-zero handle type enum value
58 //   [55: 0] = per-handle-type incrementing counter
59 // * This works because virtual addresses with the high bit set are reserved
60 // for kernel data in all ABIs we run on.
61 //
62 // We never reclaim handles on vkDestroy*. It's not even necessary for us to
63 // have distinct handles for live objects, and practically speaking we won't
64 // ever create 2^56 objects of the same type from a single VkDevice in a null
65 // driver.
66 //
67 // Using a namespace here instead of 'enum class' since we want scoped
68 // constants but also want implicit conversions to integral types.
69 namespace HandleType {
70 enum Enum {
71     kBufferView,
72     kDebugReportCallbackEXT,
73     kDescriptorPool,
74     kDescriptorSet,
75     kDescriptorSetLayout,
76     kEvent,
77     kFence,
78     kFramebuffer,
79     kImageView,
80     kPipeline,
81     kPipelineCache,
82     kPipelineLayout,
83     kQueryPool,
84     kRenderPass,
85     kSampler,
86     kSemaphore,
87     kShaderModule,
88
89     kNumTypes
90 };
91 }  // namespace HandleType
92
93 const VkDeviceSize kMaxDeviceMemory = 0x10000000;  // 256 MiB, arbitrary
94
95 }  // anonymous namespace
96
97 struct VkDevice_T {
98     hwvulkan_dispatch_t dispatch;
99     VkAllocationCallbacks allocator;
100     VkInstance_T* instance;
101     VkQueue_T queue;
102     std::array<uint64_t, HandleType::kNumTypes> next_handle;
103 };
104
105 // -----------------------------------------------------------------------------
106 // Declare HAL_MODULE_INFO_SYM early so it can be referenced by nulldrv_device
107 // later.
108
109 namespace {
110 int OpenDevice(const hw_module_t* module, const char* id, hw_device_t** device);
111 hw_module_methods_t nulldrv_module_methods = {.open = OpenDevice};
112 }  // namespace
113
114 #pragma clang diagnostic push
115 #pragma clang diagnostic ignored "-Wmissing-variable-declarations"
116 __attribute__((visibility("default"))) hwvulkan_module_t HAL_MODULE_INFO_SYM = {
117     .common =
118         {
119             .tag = HARDWARE_MODULE_TAG,
120             .module_api_version = HWVULKAN_MODULE_API_VERSION_0_1,
121             .hal_api_version = HARDWARE_HAL_API_VERSION,
122             .id = HWVULKAN_HARDWARE_MODULE_ID,
123             .name = "Null Vulkan Driver",
124             .author = "The Android Open Source Project",
125             .methods = &nulldrv_module_methods,
126         },
127 };
128 #pragma clang diagnostic pop
129
130 // -----------------------------------------------------------------------------
131
132 namespace {
133
134 int CloseDevice(struct hw_device_t* /*device*/) {
135     // nothing to do - opening a device doesn't allocate any resources
136     return 0;
137 }
138
139 hwvulkan_device_t nulldrv_device = {
140     .common =
141         {
142             .tag = HARDWARE_DEVICE_TAG,
143             .version = HWVULKAN_DEVICE_API_VERSION_0_1,
144             .module = &HAL_MODULE_INFO_SYM.common,
145             .close = CloseDevice,
146         },
147     .EnumerateInstanceExtensionProperties =
148         EnumerateInstanceExtensionProperties,
149     .CreateInstance = CreateInstance,
150     .GetInstanceProcAddr = GetInstanceProcAddr};
151
152 int OpenDevice(const hw_module_t* /*module*/,
153                const char* id,
154                hw_device_t** device) {
155     if (strcmp(id, HWVULKAN_DEVICE_0) == 0) {
156         *device = &nulldrv_device.common;
157         return 0;
158     }
159     return -ENOENT;
160 }
161
162 VkInstance_T* GetInstanceFromPhysicalDevice(
163     VkPhysicalDevice_T* physical_device) {
164     return reinterpret_cast<VkInstance_T*>(
165         reinterpret_cast<uintptr_t>(physical_device) -
166         offsetof(VkInstance_T, physical_device));
167 }
168
169 uint64_t AllocHandle(uint64_t type, uint64_t* next_handle) {
170     const uint64_t kHandleMask = (UINT64_C(1) << 56) - 1;
171     ALOGE_IF(*next_handle == kHandleMask,
172              "non-dispatchable handles of type=%" PRIu64
173              " are about to overflow",
174              type);
175     return (UINT64_C(1) << 63) | ((type & 0x7) << 56) |
176            ((*next_handle)++ & kHandleMask);
177 }
178
179 template <class Handle>
180 Handle AllocHandle(VkInstance instance, HandleType::Enum type) {
181     return reinterpret_cast<Handle>(
182         AllocHandle(type, &instance->next_callback_handle));
183 }
184
185 template <class Handle>
186 Handle AllocHandle(VkDevice device, HandleType::Enum type) {
187     return reinterpret_cast<Handle>(
188         AllocHandle(type, &device->next_handle[type]));
189 }
190
191 VKAPI_ATTR void* DefaultAllocate(void*,
192                                  size_t size,
193                                  size_t alignment,
194                                  VkSystemAllocationScope) {
195     void* ptr = nullptr;
196     // Vulkan requires 'alignment' to be a power of two, but posix_memalign
197     // additionally requires that it be at least sizeof(void*).
198     int ret = posix_memalign(&ptr, std::max(alignment, sizeof(void*)), size);
199     return ret == 0 ? ptr : nullptr;
200 }
201
202 VKAPI_ATTR void* DefaultReallocate(void*,
203                                    void* ptr,
204                                    size_t size,
205                                    size_t alignment,
206                                    VkSystemAllocationScope) {
207     if (size == 0) {
208         free(ptr);
209         return nullptr;
210     }
211
212     // TODO(jessehall): Right now we never shrink allocations; if the new
213     // request is smaller than the existing chunk, we just continue using it.
214     // The null driver never reallocs, so this doesn't matter. If that changes,
215     // or if this code is copied into some other project, this should probably
216     // have a heuristic to allocate-copy-free when doing so will save "enough"
217     // space.
218     size_t old_size = ptr ? malloc_usable_size(ptr) : 0;
219     if (size <= old_size)
220         return ptr;
221
222     void* new_ptr = nullptr;
223     if (posix_memalign(&new_ptr, std::max(alignment, sizeof(void*)), size) != 0)
224         return nullptr;
225     if (ptr) {
226         memcpy(new_ptr, ptr, std::min(old_size, size));
227         free(ptr);
228     }
229     return new_ptr;
230 }
231
232 VKAPI_ATTR void DefaultFree(void*, void* ptr) {
233     free(ptr);
234 }
235
236 const VkAllocationCallbacks kDefaultAllocCallbacks = {
237     .pUserData = nullptr,
238     .pfnAllocation = DefaultAllocate,
239     .pfnReallocation = DefaultReallocate,
240     .pfnFree = DefaultFree,
241 };
242
243 }  // namespace
244
245 namespace null_driver {
246
247 #define DEFINE_OBJECT_HANDLE_CONVERSION(T)              \
248     T* Get##T##FromHandle(Vk##T h);                     \
249     T* Get##T##FromHandle(Vk##T h) {                    \
250         return reinterpret_cast<T*>(uintptr_t(h));      \
251     }                                                   \
252     Vk##T GetHandleTo##T(const T* obj);                 \
253     Vk##T GetHandleTo##T(const T* obj) {                \
254         return Vk##T(reinterpret_cast<uintptr_t>(obj)); \
255     }
256
257 // -----------------------------------------------------------------------------
258 // Global
259
260 VKAPI_ATTR
261 VkResult EnumerateInstanceExtensionProperties(
262     const char* layer_name,
263     uint32_t* count,
264     VkExtensionProperties* properties) {
265     if (layer_name) {
266         ALOGW(
267             "Driver vkEnumerateInstanceExtensionProperties shouldn't be called "
268             "with a layer name ('%s')",
269             layer_name);
270     }
271
272     const VkExtensionProperties kExtensions[] = {
273         {VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION}};
274     const uint32_t kExtensionsCount =
275         sizeof(kExtensions) / sizeof(kExtensions[0]);
276
277     if (!properties || *count > kExtensionsCount)
278         *count = kExtensionsCount;
279     if (properties)
280         std::copy(kExtensions, kExtensions + *count, properties);
281     return *count < kExtensionsCount ? VK_INCOMPLETE : VK_SUCCESS;
282 }
283
284 VKAPI_ATTR
285 VkResult CreateInstance(const VkInstanceCreateInfo* create_info,
286                         const VkAllocationCallbacks* allocator,
287                         VkInstance* out_instance) {
288     if (!allocator)
289         allocator = &kDefaultAllocCallbacks;
290
291     VkInstance_T* instance =
292         static_cast<VkInstance_T*>(allocator->pfnAllocation(
293             allocator->pUserData, sizeof(VkInstance_T), alignof(VkInstance_T),
294             VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE));
295     if (!instance)
296         return VK_ERROR_OUT_OF_HOST_MEMORY;
297
298     instance->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
299     instance->allocator = *allocator;
300     instance->physical_device.dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
301     instance->next_callback_handle = 0;
302
303     for (uint32_t i = 0; i < create_info->enabledExtensionCount; i++) {
304         if (strcmp(create_info->ppEnabledExtensionNames[i],
305                    VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) == 0) {
306             ALOGV("instance extension '%s' requested",
307                   create_info->ppEnabledExtensionNames[i]);
308         } else if (strcmp(create_info->ppEnabledExtensionNames[i],
309                    VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0) {
310             ALOGV("instance extension '%s' requested",
311                   create_info->ppEnabledExtensionNames[i]);
312         } else {
313             ALOGW("unsupported extension '%s' requested",
314                   create_info->ppEnabledExtensionNames[i]);
315         }
316     }
317
318     *out_instance = instance;
319     return VK_SUCCESS;
320 }
321
322 VKAPI_ATTR
323 PFN_vkVoidFunction GetInstanceProcAddr(VkInstance instance, const char* name) {
324     return instance ? GetInstanceProcAddr(name) : GetGlobalProcAddr(name);
325 }
326
327 VKAPI_ATTR
328 PFN_vkVoidFunction GetDeviceProcAddr(VkDevice, const char* name) {
329     return GetInstanceProcAddr(name);
330 }
331
332 // -----------------------------------------------------------------------------
333 // Instance
334
335 void DestroyInstance(VkInstance instance,
336                      const VkAllocationCallbacks* /*allocator*/) {
337     instance->allocator.pfnFree(instance->allocator.pUserData, instance);
338 }
339
340 // -----------------------------------------------------------------------------
341 // PhysicalDevice
342
343 VkResult EnumeratePhysicalDevices(VkInstance instance,
344                                   uint32_t* physical_device_count,
345                                   VkPhysicalDevice* physical_devices) {
346     if (physical_devices && *physical_device_count >= 1)
347         physical_devices[0] = &instance->physical_device;
348     *physical_device_count = 1;
349     return VK_SUCCESS;
350 }
351
352 VkResult EnumerateDeviceLayerProperties(VkPhysicalDevice /*gpu*/,
353                                         uint32_t* count,
354                                         VkLayerProperties* /*properties*/) {
355     ALOGW("Driver vkEnumerateDeviceLayerProperties shouldn't be called");
356     *count = 0;
357     return VK_SUCCESS;
358 }
359
360 VkResult EnumerateDeviceExtensionProperties(VkPhysicalDevice /*gpu*/,
361                                             const char* layer_name,
362                                             uint32_t* count,
363                                             VkExtensionProperties* properties) {
364     if (layer_name) {
365         ALOGW(
366             "Driver vkEnumerateDeviceExtensionProperties shouldn't be called "
367             "with a layer name ('%s')",
368             layer_name);
369         *count = 0;
370         return VK_SUCCESS;
371     }
372
373     const VkExtensionProperties kExtensions[] = {
374         {VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME,
375          VK_ANDROID_NATIVE_BUFFER_SPEC_VERSION}};
376     const uint32_t kExtensionsCount =
377         sizeof(kExtensions) / sizeof(kExtensions[0]);
378
379     if (!properties || *count > kExtensionsCount)
380         *count = kExtensionsCount;
381     if (properties)
382         std::copy(kExtensions, kExtensions + *count, properties);
383     return *count < kExtensionsCount ? VK_INCOMPLETE : VK_SUCCESS;
384 }
385
386 void GetPhysicalDeviceProperties(VkPhysicalDevice,
387                                  VkPhysicalDeviceProperties* properties) {
388     properties->apiVersion = VK_MAKE_VERSION(1, 0, VK_HEADER_VERSION);
389     properties->driverVersion = VK_MAKE_VERSION(0, 0, 1);
390     properties->vendorID = 0;
391     properties->deviceID = 0;
392     properties->deviceType = VK_PHYSICAL_DEVICE_TYPE_OTHER;
393     strcpy(properties->deviceName, "Android Vulkan Null Driver");
394     memset(properties->pipelineCacheUUID, 0,
395            sizeof(properties->pipelineCacheUUID));
396     properties->limits = VkPhysicalDeviceLimits{
397         4096,     // maxImageDimension1D
398         4096,     // maxImageDimension2D
399         256,      // maxImageDimension3D
400         4096,     // maxImageDimensionCube
401         256,      // maxImageArrayLayers
402         65536,    // maxTexelBufferElements
403         16384,    // maxUniformBufferRange
404         1 << 27,  // maxStorageBufferRange
405         128,      // maxPushConstantsSize
406         4096,     // maxMemoryAllocationCount
407         4000,     // maxSamplerAllocationCount
408         1,        // bufferImageGranularity
409         0,        // sparseAddressSpaceSize
410         4,        // maxBoundDescriptorSets
411         16,       // maxPerStageDescriptorSamplers
412         12,       // maxPerStageDescriptorUniformBuffers
413         4,        // maxPerStageDescriptorStorageBuffers
414         16,       // maxPerStageDescriptorSampledImages
415         4,        // maxPerStageDescriptorStorageImages
416         4,        // maxPerStageDescriptorInputAttachments
417         128,      // maxPerStageResources
418         96,       // maxDescriptorSetSamplers
419         72,       // maxDescriptorSetUniformBuffers
420         8,        // maxDescriptorSetUniformBuffersDynamic
421         24,       // maxDescriptorSetStorageBuffers
422         4,        // maxDescriptorSetStorageBuffersDynamic
423         96,       // maxDescriptorSetSampledImages
424         24,       // maxDescriptorSetStorageImages
425         4,        // maxDescriptorSetInputAttachments
426         16,       // maxVertexInputAttributes
427         16,       // maxVertexInputBindings
428         2047,     // maxVertexInputAttributeOffset
429         2048,     // maxVertexInputBindingStride
430         64,       // maxVertexOutputComponents
431         0,        // maxTessellationGenerationLevel
432         0,        // maxTessellationPatchSize
433         0,        // maxTessellationControlPerVertexInputComponents
434         0,        // maxTessellationControlPerVertexOutputComponents
435         0,        // maxTessellationControlPerPatchOutputComponents
436         0,        // maxTessellationControlTotalOutputComponents
437         0,        // maxTessellationEvaluationInputComponents
438         0,        // maxTessellationEvaluationOutputComponents
439         0,        // maxGeometryShaderInvocations
440         0,        // maxGeometryInputComponents
441         0,        // maxGeometryOutputComponents
442         0,        // maxGeometryOutputVertices
443         0,        // maxGeometryTotalOutputComponents
444         64,       // maxFragmentInputComponents
445         4,        // maxFragmentOutputAttachments
446         0,        // maxFragmentDualSrcAttachments
447         4,        // maxFragmentCombinedOutputResources
448         16384,    // maxComputeSharedMemorySize
449         {65536, 65536, 65536},  // maxComputeWorkGroupCount[3]
450         128,                    // maxComputeWorkGroupInvocations
451         {128, 128, 64},         // maxComputeWorkGroupSize[3]
452         4,                      // subPixelPrecisionBits
453         4,                      // subTexelPrecisionBits
454         4,                      // mipmapPrecisionBits
455         UINT32_MAX,             // maxDrawIndexedIndexValue
456         1,                      // maxDrawIndirectCount
457         2,                      // maxSamplerLodBias
458         1,                      // maxSamplerAnisotropy
459         1,                      // maxViewports
460         {4096, 4096},           // maxViewportDimensions[2]
461         {-8192.0f, 8191.0f},    // viewportBoundsRange[2]
462         0,                      // viewportSubPixelBits
463         64,                     // minMemoryMapAlignment
464         256,                    // minTexelBufferOffsetAlignment
465         256,                    // minUniformBufferOffsetAlignment
466         256,                    // minStorageBufferOffsetAlignment
467         -8,                     // minTexelOffset
468         7,                      // maxTexelOffset
469         0,                      // minTexelGatherOffset
470         0,                      // maxTexelGatherOffset
471         0.0f,                   // minInterpolationOffset
472         0.0f,                   // maxInterpolationOffset
473         0,                      // subPixelInterpolationOffsetBits
474         4096,                   // maxFramebufferWidth
475         4096,                   // maxFramebufferHeight
476         256,                    // maxFramebufferLayers
477         VK_SAMPLE_COUNT_1_BIT |
478             VK_SAMPLE_COUNT_4_BIT,  // framebufferColorSampleCounts
479         VK_SAMPLE_COUNT_1_BIT |
480             VK_SAMPLE_COUNT_4_BIT,  // framebufferDepthSampleCounts
481         VK_SAMPLE_COUNT_1_BIT |
482             VK_SAMPLE_COUNT_4_BIT,  // framebufferStencilSampleCounts
483         VK_SAMPLE_COUNT_1_BIT |
484             VK_SAMPLE_COUNT_4_BIT,  // framebufferNoAttachmentsSampleCounts
485         4,                          // maxColorAttachments
486         VK_SAMPLE_COUNT_1_BIT |
487             VK_SAMPLE_COUNT_4_BIT,  // sampledImageColorSampleCounts
488         VK_SAMPLE_COUNT_1_BIT,      // sampledImageIntegerSampleCounts
489         VK_SAMPLE_COUNT_1_BIT |
490             VK_SAMPLE_COUNT_4_BIT,  // sampledImageDepthSampleCounts
491         VK_SAMPLE_COUNT_1_BIT |
492             VK_SAMPLE_COUNT_4_BIT,  // sampledImageStencilSampleCounts
493         VK_SAMPLE_COUNT_1_BIT,      // storageImageSampleCounts
494         1,                          // maxSampleMaskWords
495         VK_TRUE,                    // timestampComputeAndGraphics
496         1,                          // timestampPeriod
497         0,                          // maxClipDistances
498         0,                          // maxCullDistances
499         0,                          // maxCombinedClipAndCullDistances
500         2,                          // discreteQueuePriorities
501         {1.0f, 1.0f},               // pointSizeRange[2]
502         {1.0f, 1.0f},               // lineWidthRange[2]
503         0.0f,                       // pointSizeGranularity
504         0.0f,                       // lineWidthGranularity
505         VK_TRUE,                    // strictLines
506         VK_TRUE,                    // standardSampleLocations
507         1,                          // optimalBufferCopyOffsetAlignment
508         1,                          // optimalBufferCopyRowPitchAlignment
509         64,                         // nonCoherentAtomSize
510     };
511 }
512
513 void GetPhysicalDeviceProperties2KHR(VkPhysicalDevice physical_device,
514                                   VkPhysicalDeviceProperties2KHR* properties) {
515     GetPhysicalDeviceProperties(physical_device, &properties->properties);
516
517     while (properties->pNext) {
518         properties = reinterpret_cast<VkPhysicalDeviceProperties2KHR *>(properties->pNext);
519
520 #pragma clang diagnostic push
521 #pragma clang diagnostic ignored "-Wold-style-cast"
522         switch ((VkFlags)properties->sType) {
523         case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
524             VkPhysicalDevicePresentationPropertiesANDROID *presentation_properties =
525                 reinterpret_cast<VkPhysicalDevicePresentationPropertiesANDROID *>(properties);
526 #pragma clang diagnostic pop
527
528                 // Claim that we do all the right things for the loader to
529                 // expose KHR_shared_presentable_image on our behalf.
530                 presentation_properties->sharedImage = VK_TRUE;
531             } break;
532
533         default:
534             // Silently ignore other extension query structs
535             break;
536         }
537     }
538 }
539
540 void GetPhysicalDeviceQueueFamilyProperties(
541     VkPhysicalDevice,
542     uint32_t* count,
543     VkQueueFamilyProperties* properties) {
544     if (!properties || *count > 1)
545         *count = 1;
546     if (properties && *count == 1) {
547         properties->queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT |
548                                  VK_QUEUE_TRANSFER_BIT;
549         properties->queueCount = 1;
550         properties->timestampValidBits = 64;
551         properties->minImageTransferGranularity = VkExtent3D{1, 1, 1};
552     }
553 }
554
555 void GetPhysicalDeviceQueueFamilyProperties2KHR(VkPhysicalDevice physical_device, uint32_t* count, VkQueueFamilyProperties2KHR* properties) {
556     // note: even though multiple structures, this is safe to forward in this
557     // case since we only expose one queue family.
558     GetPhysicalDeviceQueueFamilyProperties(physical_device, count, properties ? &properties->queueFamilyProperties : nullptr);
559 }
560
561 void GetPhysicalDeviceMemoryProperties(
562     VkPhysicalDevice,
563     VkPhysicalDeviceMemoryProperties* properties) {
564     properties->memoryTypeCount = 1;
565     properties->memoryTypes[0].propertyFlags =
566         VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
567         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
568         VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
569         VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
570     properties->memoryTypes[0].heapIndex = 0;
571     properties->memoryHeapCount = 1;
572     properties->memoryHeaps[0].size = kMaxDeviceMemory;
573     properties->memoryHeaps[0].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
574 }
575
576 void GetPhysicalDeviceMemoryProperties2KHR(VkPhysicalDevice physical_device, VkPhysicalDeviceMemoryProperties2KHR* properties) {
577     GetPhysicalDeviceMemoryProperties(physical_device, &properties->memoryProperties);
578 }
579
580 void GetPhysicalDeviceFeatures(VkPhysicalDevice /*gpu*/,
581                                VkPhysicalDeviceFeatures* features) {
582     *features = VkPhysicalDeviceFeatures{
583         VK_TRUE,   // robustBufferAccess
584         VK_FALSE,  // fullDrawIndexUint32
585         VK_FALSE,  // imageCubeArray
586         VK_FALSE,  // independentBlend
587         VK_FALSE,  // geometryShader
588         VK_FALSE,  // tessellationShader
589         VK_FALSE,  // sampleRateShading
590         VK_FALSE,  // dualSrcBlend
591         VK_FALSE,  // logicOp
592         VK_FALSE,  // multiDrawIndirect
593         VK_FALSE,  // drawIndirectFirstInstance
594         VK_FALSE,  // depthClamp
595         VK_FALSE,  // depthBiasClamp
596         VK_FALSE,  // fillModeNonSolid
597         VK_FALSE,  // depthBounds
598         VK_FALSE,  // wideLines
599         VK_FALSE,  // largePoints
600         VK_FALSE,  // alphaToOne
601         VK_FALSE,  // multiViewport
602         VK_FALSE,  // samplerAnisotropy
603         VK_FALSE,  // textureCompressionETC2
604         VK_FALSE,  // textureCompressionASTC_LDR
605         VK_FALSE,  // textureCompressionBC
606         VK_FALSE,  // occlusionQueryPrecise
607         VK_FALSE,  // pipelineStatisticsQuery
608         VK_FALSE,  // vertexPipelineStoresAndAtomics
609         VK_FALSE,  // fragmentStoresAndAtomics
610         VK_FALSE,  // shaderTessellationAndGeometryPointSize
611         VK_FALSE,  // shaderImageGatherExtended
612         VK_FALSE,  // shaderStorageImageExtendedFormats
613         VK_FALSE,  // shaderStorageImageMultisample
614         VK_FALSE,  // shaderStorageImageReadWithoutFormat
615         VK_FALSE,  // shaderStorageImageWriteWithoutFormat
616         VK_FALSE,  // shaderUniformBufferArrayDynamicIndexing
617         VK_FALSE,  // shaderSampledImageArrayDynamicIndexing
618         VK_FALSE,  // shaderStorageBufferArrayDynamicIndexing
619         VK_FALSE,  // shaderStorageImageArrayDynamicIndexing
620         VK_FALSE,  // shaderClipDistance
621         VK_FALSE,  // shaderCullDistance
622         VK_FALSE,  // shaderFloat64
623         VK_FALSE,  // shaderInt64
624         VK_FALSE,  // shaderInt16
625         VK_FALSE,  // shaderResourceResidency
626         VK_FALSE,  // shaderResourceMinLod
627         VK_FALSE,  // sparseBinding
628         VK_FALSE,  // sparseResidencyBuffer
629         VK_FALSE,  // sparseResidencyImage2D
630         VK_FALSE,  // sparseResidencyImage3D
631         VK_FALSE,  // sparseResidency2Samples
632         VK_FALSE,  // sparseResidency4Samples
633         VK_FALSE,  // sparseResidency8Samples
634         VK_FALSE,  // sparseResidency16Samples
635         VK_FALSE,  // sparseResidencyAliased
636         VK_FALSE,  // variableMultisampleRate
637         VK_FALSE,  // inheritedQueries
638     };
639 }
640
641 void GetPhysicalDeviceFeatures2KHR(VkPhysicalDevice physical_device, VkPhysicalDeviceFeatures2KHR* features) {
642     GetPhysicalDeviceFeatures(physical_device, &features->features);
643 }
644
645 // -----------------------------------------------------------------------------
646 // Device
647
648 VkResult CreateDevice(VkPhysicalDevice physical_device,
649                       const VkDeviceCreateInfo* create_info,
650                       const VkAllocationCallbacks* allocator,
651                       VkDevice* out_device) {
652     VkInstance_T* instance = GetInstanceFromPhysicalDevice(physical_device);
653     if (!allocator)
654         allocator = &instance->allocator;
655     VkDevice_T* device = static_cast<VkDevice_T*>(allocator->pfnAllocation(
656         allocator->pUserData, sizeof(VkDevice_T), alignof(VkDevice_T),
657         VK_SYSTEM_ALLOCATION_SCOPE_DEVICE));
658     if (!device)
659         return VK_ERROR_OUT_OF_HOST_MEMORY;
660
661     device->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
662     device->allocator = *allocator;
663     device->instance = instance;
664     device->queue.dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
665     std::fill(device->next_handle.begin(), device->next_handle.end(),
666               UINT64_C(0));
667
668     for (uint32_t i = 0; i < create_info->enabledExtensionCount; i++) {
669         if (strcmp(create_info->ppEnabledExtensionNames[i],
670                    VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME) == 0) {
671             ALOGV("Enabling " VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME);
672         }
673     }
674
675     *out_device = device;
676     return VK_SUCCESS;
677 }
678
679 void DestroyDevice(VkDevice device,
680                    const VkAllocationCallbacks* /*allocator*/) {
681     if (!device)
682         return;
683     device->allocator.pfnFree(device->allocator.pUserData, device);
684 }
685
686 void GetDeviceQueue(VkDevice device, uint32_t, uint32_t, VkQueue* queue) {
687     *queue = &device->queue;
688 }
689
690 // -----------------------------------------------------------------------------
691 // CommandPool
692
693 struct CommandPool {
694     typedef VkCommandPool HandleType;
695     VkAllocationCallbacks allocator;
696 };
697 DEFINE_OBJECT_HANDLE_CONVERSION(CommandPool)
698
699 VkResult CreateCommandPool(VkDevice device,
700                            const VkCommandPoolCreateInfo* /*create_info*/,
701                            const VkAllocationCallbacks* allocator,
702                            VkCommandPool* cmd_pool) {
703     if (!allocator)
704         allocator = &device->allocator;
705     CommandPool* pool = static_cast<CommandPool*>(allocator->pfnAllocation(
706         allocator->pUserData, sizeof(CommandPool), alignof(CommandPool),
707         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
708     if (!pool)
709         return VK_ERROR_OUT_OF_HOST_MEMORY;
710     pool->allocator = *allocator;
711     *cmd_pool = GetHandleToCommandPool(pool);
712     return VK_SUCCESS;
713 }
714
715 void DestroyCommandPool(VkDevice /*device*/,
716                         VkCommandPool cmd_pool,
717                         const VkAllocationCallbacks* /*allocator*/) {
718     CommandPool* pool = GetCommandPoolFromHandle(cmd_pool);
719     pool->allocator.pfnFree(pool->allocator.pUserData, pool);
720 }
721
722 // -----------------------------------------------------------------------------
723 // CmdBuffer
724
725 VkResult AllocateCommandBuffers(VkDevice /*device*/,
726                                 const VkCommandBufferAllocateInfo* alloc_info,
727                                 VkCommandBuffer* cmdbufs) {
728     VkResult result = VK_SUCCESS;
729     CommandPool& pool = *GetCommandPoolFromHandle(alloc_info->commandPool);
730     std::fill(cmdbufs, cmdbufs + alloc_info->commandBufferCount, nullptr);
731     for (uint32_t i = 0; i < alloc_info->commandBufferCount; i++) {
732         cmdbufs[i] =
733             static_cast<VkCommandBuffer_T*>(pool.allocator.pfnAllocation(
734                 pool.allocator.pUserData, sizeof(VkCommandBuffer_T),
735                 alignof(VkCommandBuffer_T), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
736         if (!cmdbufs[i]) {
737             result = VK_ERROR_OUT_OF_HOST_MEMORY;
738             break;
739         }
740         cmdbufs[i]->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
741     }
742     if (result != VK_SUCCESS) {
743         for (uint32_t i = 0; i < alloc_info->commandBufferCount; i++) {
744             if (!cmdbufs[i])
745                 break;
746             pool.allocator.pfnFree(pool.allocator.pUserData, cmdbufs[i]);
747         }
748     }
749     return result;
750 }
751
752 void FreeCommandBuffers(VkDevice /*device*/,
753                         VkCommandPool cmd_pool,
754                         uint32_t count,
755                         const VkCommandBuffer* cmdbufs) {
756     CommandPool& pool = *GetCommandPoolFromHandle(cmd_pool);
757     for (uint32_t i = 0; i < count; i++)
758         pool.allocator.pfnFree(pool.allocator.pUserData, cmdbufs[i]);
759 }
760
761 // -----------------------------------------------------------------------------
762 // DeviceMemory
763
764 struct DeviceMemory {
765     typedef VkDeviceMemory HandleType;
766     VkDeviceSize size;
767     alignas(16) uint8_t data[0];
768 };
769 DEFINE_OBJECT_HANDLE_CONVERSION(DeviceMemory)
770
771 VkResult AllocateMemory(VkDevice device,
772                         const VkMemoryAllocateInfo* alloc_info,
773                         const VkAllocationCallbacks* allocator,
774                         VkDeviceMemory* mem_handle) {
775     if (SIZE_MAX - sizeof(DeviceMemory) <= alloc_info->allocationSize)
776         return VK_ERROR_OUT_OF_HOST_MEMORY;
777     if (!allocator)
778         allocator = &device->allocator;
779
780     size_t size = sizeof(DeviceMemory) + size_t(alloc_info->allocationSize);
781     DeviceMemory* mem = static_cast<DeviceMemory*>(allocator->pfnAllocation(
782         allocator->pUserData, size, alignof(DeviceMemory),
783         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
784     if (!mem)
785         return VK_ERROR_OUT_OF_HOST_MEMORY;
786     mem->size = size;
787     *mem_handle = GetHandleToDeviceMemory(mem);
788     return VK_SUCCESS;
789 }
790
791 void FreeMemory(VkDevice device,
792                 VkDeviceMemory mem_handle,
793                 const VkAllocationCallbacks* allocator) {
794     if (!allocator)
795         allocator = &device->allocator;
796     DeviceMemory* mem = GetDeviceMemoryFromHandle(mem_handle);
797     allocator->pfnFree(allocator->pUserData, mem);
798 }
799
800 VkResult MapMemory(VkDevice,
801                    VkDeviceMemory mem_handle,
802                    VkDeviceSize offset,
803                    VkDeviceSize,
804                    VkMemoryMapFlags,
805                    void** out_ptr) {
806     DeviceMemory* mem = GetDeviceMemoryFromHandle(mem_handle);
807     *out_ptr = &mem->data[0] + offset;
808     return VK_SUCCESS;
809 }
810
811 // -----------------------------------------------------------------------------
812 // Buffer
813
814 struct Buffer {
815     typedef VkBuffer HandleType;
816     VkDeviceSize size;
817 };
818 DEFINE_OBJECT_HANDLE_CONVERSION(Buffer)
819
820 VkResult CreateBuffer(VkDevice device,
821                       const VkBufferCreateInfo* create_info,
822                       const VkAllocationCallbacks* allocator,
823                       VkBuffer* buffer_handle) {
824     ALOGW_IF(create_info->size > kMaxDeviceMemory,
825              "CreateBuffer: requested size 0x%" PRIx64
826              " exceeds max device memory size 0x%" PRIx64,
827              create_info->size, kMaxDeviceMemory);
828     if (!allocator)
829         allocator = &device->allocator;
830     Buffer* buffer = static_cast<Buffer*>(allocator->pfnAllocation(
831         allocator->pUserData, sizeof(Buffer), alignof(Buffer),
832         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
833     if (!buffer)
834         return VK_ERROR_OUT_OF_HOST_MEMORY;
835     buffer->size = create_info->size;
836     *buffer_handle = GetHandleToBuffer(buffer);
837     return VK_SUCCESS;
838 }
839
840 void GetBufferMemoryRequirements(VkDevice,
841                                  VkBuffer buffer_handle,
842                                  VkMemoryRequirements* requirements) {
843     Buffer* buffer = GetBufferFromHandle(buffer_handle);
844     requirements->size = buffer->size;
845     requirements->alignment = 16;  // allow fast Neon/SSE memcpy
846     requirements->memoryTypeBits = 0x1;
847 }
848
849 void DestroyBuffer(VkDevice device,
850                    VkBuffer buffer_handle,
851                    const VkAllocationCallbacks* allocator) {
852     if (!allocator)
853         allocator = &device->allocator;
854     Buffer* buffer = GetBufferFromHandle(buffer_handle);
855     allocator->pfnFree(allocator->pUserData, buffer);
856 }
857
858 // -----------------------------------------------------------------------------
859 // Image
860
861 struct Image {
862     typedef VkImage HandleType;
863     VkDeviceSize size;
864 };
865 DEFINE_OBJECT_HANDLE_CONVERSION(Image)
866
867 VkResult CreateImage(VkDevice device,
868                      const VkImageCreateInfo* create_info,
869                      const VkAllocationCallbacks* allocator,
870                      VkImage* image_handle) {
871     if (create_info->imageType != VK_IMAGE_TYPE_2D ||
872         create_info->format != VK_FORMAT_R8G8B8A8_UNORM ||
873         create_info->mipLevels != 1) {
874         ALOGE("CreateImage: not yet implemented: type=%d format=%d mips=%u",
875               create_info->imageType, create_info->format,
876               create_info->mipLevels);
877         return VK_ERROR_OUT_OF_HOST_MEMORY;
878     }
879
880     VkDeviceSize size =
881         VkDeviceSize(create_info->extent.width * create_info->extent.height) *
882         create_info->arrayLayers * create_info->samples * 4u;
883     ALOGW_IF(size > kMaxDeviceMemory,
884              "CreateImage: image size 0x%" PRIx64
885              " exceeds max device memory size 0x%" PRIx64,
886              size, kMaxDeviceMemory);
887
888     if (!allocator)
889         allocator = &device->allocator;
890     Image* image = static_cast<Image*>(allocator->pfnAllocation(
891         allocator->pUserData, sizeof(Image), alignof(Image),
892         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
893     if (!image)
894         return VK_ERROR_OUT_OF_HOST_MEMORY;
895     image->size = size;
896     *image_handle = GetHandleToImage(image);
897     return VK_SUCCESS;
898 }
899
900 void GetImageMemoryRequirements(VkDevice,
901                                 VkImage image_handle,
902                                 VkMemoryRequirements* requirements) {
903     Image* image = GetImageFromHandle(image_handle);
904     requirements->size = image->size;
905     requirements->alignment = 16;  // allow fast Neon/SSE memcpy
906     requirements->memoryTypeBits = 0x1;
907 }
908
909 void DestroyImage(VkDevice device,
910                   VkImage image_handle,
911                   const VkAllocationCallbacks* allocator) {
912     if (!allocator)
913         allocator = &device->allocator;
914     Image* image = GetImageFromHandle(image_handle);
915     allocator->pfnFree(allocator->pUserData, image);
916 }
917
918 VkResult GetSwapchainGrallocUsageANDROID(VkDevice,
919                                          VkFormat,
920                                          VkImageUsageFlags,
921                                          int* grallocUsage) {
922     // The null driver never reads or writes the gralloc buffer
923     *grallocUsage = 0;
924     return VK_SUCCESS;
925 }
926
927 VkResult GetSwapchainGrallocUsage2ANDROID(VkDevice,
928                                           VkFormat,
929                                           VkImageUsageFlags,
930                                           VkSwapchainImageUsageFlagsANDROID,
931                                           uint64_t* grallocConsumerUsage,
932                                           uint64_t* grallocProducerUsage) {
933     // The null driver never reads or writes the gralloc buffer
934     *grallocConsumerUsage = 0;
935     *grallocProducerUsage = 0;
936     return VK_SUCCESS;
937 }
938
939 VkResult AcquireImageANDROID(VkDevice,
940                              VkImage,
941                              int fence,
942                              VkSemaphore,
943                              VkFence) {
944     close(fence);
945     return VK_SUCCESS;
946 }
947
948 VkResult QueueSignalReleaseImageANDROID(VkQueue,
949                                         uint32_t,
950                                         const VkSemaphore*,
951                                         VkImage,
952                                         int* fence) {
953     *fence = -1;
954     return VK_SUCCESS;
955 }
956
957 // -----------------------------------------------------------------------------
958 // No-op types
959
960 VkResult CreateBufferView(VkDevice device,
961                           const VkBufferViewCreateInfo*,
962                           const VkAllocationCallbacks* /*allocator*/,
963                           VkBufferView* view) {
964     *view = AllocHandle<VkBufferView>(device, HandleType::kBufferView);
965     return VK_SUCCESS;
966 }
967
968 VkResult CreateDescriptorPool(VkDevice device,
969                               const VkDescriptorPoolCreateInfo*,
970                               const VkAllocationCallbacks* /*allocator*/,
971                               VkDescriptorPool* pool) {
972     *pool = AllocHandle<VkDescriptorPool>(device, HandleType::kDescriptorPool);
973     return VK_SUCCESS;
974 }
975
976 VkResult AllocateDescriptorSets(VkDevice device,
977                                 const VkDescriptorSetAllocateInfo* alloc_info,
978                                 VkDescriptorSet* descriptor_sets) {
979     for (uint32_t i = 0; i < alloc_info->descriptorSetCount; i++)
980         descriptor_sets[i] =
981             AllocHandle<VkDescriptorSet>(device, HandleType::kDescriptorSet);
982     return VK_SUCCESS;
983 }
984
985 VkResult CreateDescriptorSetLayout(VkDevice device,
986                                    const VkDescriptorSetLayoutCreateInfo*,
987                                    const VkAllocationCallbacks* /*allocator*/,
988                                    VkDescriptorSetLayout* layout) {
989     *layout = AllocHandle<VkDescriptorSetLayout>(
990         device, HandleType::kDescriptorSetLayout);
991     return VK_SUCCESS;
992 }
993
994 VkResult CreateEvent(VkDevice device,
995                      const VkEventCreateInfo*,
996                      const VkAllocationCallbacks* /*allocator*/,
997                      VkEvent* event) {
998     *event = AllocHandle<VkEvent>(device, HandleType::kEvent);
999     return VK_SUCCESS;
1000 }
1001
1002 VkResult CreateFence(VkDevice device,
1003                      const VkFenceCreateInfo*,
1004                      const VkAllocationCallbacks* /*allocator*/,
1005                      VkFence* fence) {
1006     *fence = AllocHandle<VkFence>(device, HandleType::kFence);
1007     return VK_SUCCESS;
1008 }
1009
1010 VkResult CreateFramebuffer(VkDevice device,
1011                            const VkFramebufferCreateInfo*,
1012                            const VkAllocationCallbacks* /*allocator*/,
1013                            VkFramebuffer* framebuffer) {
1014     *framebuffer = AllocHandle<VkFramebuffer>(device, HandleType::kFramebuffer);
1015     return VK_SUCCESS;
1016 }
1017
1018 VkResult CreateImageView(VkDevice device,
1019                          const VkImageViewCreateInfo*,
1020                          const VkAllocationCallbacks* /*allocator*/,
1021                          VkImageView* view) {
1022     *view = AllocHandle<VkImageView>(device, HandleType::kImageView);
1023     return VK_SUCCESS;
1024 }
1025
1026 VkResult CreateGraphicsPipelines(VkDevice device,
1027                                  VkPipelineCache,
1028                                  uint32_t count,
1029                                  const VkGraphicsPipelineCreateInfo*,
1030                                  const VkAllocationCallbacks* /*allocator*/,
1031                                  VkPipeline* pipelines) {
1032     for (uint32_t i = 0; i < count; i++)
1033         pipelines[i] = AllocHandle<VkPipeline>(device, HandleType::kPipeline);
1034     return VK_SUCCESS;
1035 }
1036
1037 VkResult CreateComputePipelines(VkDevice device,
1038                                 VkPipelineCache,
1039                                 uint32_t count,
1040                                 const VkComputePipelineCreateInfo*,
1041                                 const VkAllocationCallbacks* /*allocator*/,
1042                                 VkPipeline* pipelines) {
1043     for (uint32_t i = 0; i < count; i++)
1044         pipelines[i] = AllocHandle<VkPipeline>(device, HandleType::kPipeline);
1045     return VK_SUCCESS;
1046 }
1047
1048 VkResult CreatePipelineCache(VkDevice device,
1049                              const VkPipelineCacheCreateInfo*,
1050                              const VkAllocationCallbacks* /*allocator*/,
1051                              VkPipelineCache* cache) {
1052     *cache = AllocHandle<VkPipelineCache>(device, HandleType::kPipelineCache);
1053     return VK_SUCCESS;
1054 }
1055
1056 VkResult CreatePipelineLayout(VkDevice device,
1057                               const VkPipelineLayoutCreateInfo*,
1058                               const VkAllocationCallbacks* /*allocator*/,
1059                               VkPipelineLayout* layout) {
1060     *layout =
1061         AllocHandle<VkPipelineLayout>(device, HandleType::kPipelineLayout);
1062     return VK_SUCCESS;
1063 }
1064
1065 VkResult CreateQueryPool(VkDevice device,
1066                          const VkQueryPoolCreateInfo*,
1067                          const VkAllocationCallbacks* /*allocator*/,
1068                          VkQueryPool* pool) {
1069     *pool = AllocHandle<VkQueryPool>(device, HandleType::kQueryPool);
1070     return VK_SUCCESS;
1071 }
1072
1073 VkResult CreateRenderPass(VkDevice device,
1074                           const VkRenderPassCreateInfo*,
1075                           const VkAllocationCallbacks* /*allocator*/,
1076                           VkRenderPass* renderpass) {
1077     *renderpass = AllocHandle<VkRenderPass>(device, HandleType::kRenderPass);
1078     return VK_SUCCESS;
1079 }
1080
1081 VkResult CreateSampler(VkDevice device,
1082                        const VkSamplerCreateInfo*,
1083                        const VkAllocationCallbacks* /*allocator*/,
1084                        VkSampler* sampler) {
1085     *sampler = AllocHandle<VkSampler>(device, HandleType::kSampler);
1086     return VK_SUCCESS;
1087 }
1088
1089 VkResult CreateSemaphore(VkDevice device,
1090                          const VkSemaphoreCreateInfo*,
1091                          const VkAllocationCallbacks* /*allocator*/,
1092                          VkSemaphore* semaphore) {
1093     *semaphore = AllocHandle<VkSemaphore>(device, HandleType::kSemaphore);
1094     return VK_SUCCESS;
1095 }
1096
1097 VkResult CreateShaderModule(VkDevice device,
1098                             const VkShaderModuleCreateInfo*,
1099                             const VkAllocationCallbacks* /*allocator*/,
1100                             VkShaderModule* module) {
1101     *module = AllocHandle<VkShaderModule>(device, HandleType::kShaderModule);
1102     return VK_SUCCESS;
1103 }
1104
1105 VkResult CreateDebugReportCallbackEXT(VkInstance instance,
1106                                       const VkDebugReportCallbackCreateInfoEXT*,
1107                                       const VkAllocationCallbacks*,
1108                                       VkDebugReportCallbackEXT* callback) {
1109     *callback = AllocHandle<VkDebugReportCallbackEXT>(
1110         instance, HandleType::kDebugReportCallbackEXT);
1111     return VK_SUCCESS;
1112 }
1113
1114 // -----------------------------------------------------------------------------
1115 // No-op entrypoints
1116
1117 // clang-format off
1118 #pragma clang diagnostic push
1119 #pragma clang diagnostic ignored "-Wunused-parameter"
1120
1121 void GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties* pFormatProperties) {
1122     ALOGV("TODO: vk%s", __FUNCTION__);
1123 }
1124
1125 void GetPhysicalDeviceFormatProperties2KHR(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2KHR* pFormatProperties) {
1126     ALOGV("TODO: vk%s", __FUNCTION__);
1127 }
1128
1129 VkResult GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties) {
1130     ALOGV("TODO: vk%s", __FUNCTION__);
1131     return VK_SUCCESS;
1132 }
1133
1134 VkResult GetPhysicalDeviceImageFormatProperties2KHR(VkPhysicalDevice physicalDevice,
1135                                                     const VkPhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo,
1136                                                     VkImageFormatProperties2KHR* pImageFormatProperties) {
1137     ALOGV("TODO: vk%s", __FUNCTION__);
1138     return VK_SUCCESS;
1139 }
1140
1141 VkResult EnumerateInstanceLayerProperties(uint32_t* pCount, VkLayerProperties* pProperties) {
1142     ALOGV("TODO: vk%s", __FUNCTION__);
1143     return VK_SUCCESS;
1144 }
1145
1146 VkResult QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmitInfo, VkFence fence) {
1147     return VK_SUCCESS;
1148 }
1149
1150 VkResult QueueWaitIdle(VkQueue queue) {
1151     ALOGV("TODO: vk%s", __FUNCTION__);
1152     return VK_SUCCESS;
1153 }
1154
1155 VkResult DeviceWaitIdle(VkDevice device) {
1156     ALOGV("TODO: vk%s", __FUNCTION__);
1157     return VK_SUCCESS;
1158 }
1159
1160 void UnmapMemory(VkDevice device, VkDeviceMemory mem) {
1161 }
1162
1163 VkResult FlushMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) {
1164     ALOGV("TODO: vk%s", __FUNCTION__);
1165     return VK_SUCCESS;
1166 }
1167
1168 VkResult InvalidateMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) {
1169     ALOGV("TODO: vk%s", __FUNCTION__);
1170     return VK_SUCCESS;
1171 }
1172
1173 void GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) {
1174     ALOGV("TODO: vk%s", __FUNCTION__);
1175 }
1176
1177 VkResult BindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory mem, VkDeviceSize memOffset) {
1178     return VK_SUCCESS;
1179 }
1180
1181 VkResult BindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem, VkDeviceSize memOffset) {
1182     return VK_SUCCESS;
1183 }
1184
1185 void GetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t* pNumRequirements, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) {
1186     ALOGV("TODO: vk%s", __FUNCTION__);
1187 }
1188
1189 void GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t* pNumProperties, VkSparseImageFormatProperties* pProperties) {
1190     ALOGV("TODO: vk%s", __FUNCTION__);
1191 }
1192
1193 void GetPhysicalDeviceSparseImageFormatProperties2KHR(VkPhysicalDevice physicalDevice,
1194                                                       VkPhysicalDeviceSparseImageFormatInfo2KHR const* pInfo,
1195                                                       unsigned int* pNumProperties,
1196                                                       VkSparseImageFormatProperties2KHR* pProperties) {
1197     ALOGV("TODO: vk%s", __FUNCTION__);
1198 }
1199
1200
1201 VkResult QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) {
1202     ALOGV("TODO: vk%s", __FUNCTION__);
1203     return VK_SUCCESS;
1204 }
1205
1206 void DestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks* allocator) {
1207 }
1208
1209 VkResult ResetFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences) {
1210     return VK_SUCCESS;
1211 }
1212
1213 VkResult GetFenceStatus(VkDevice device, VkFence fence) {
1214     ALOGV("TODO: vk%s", __FUNCTION__);
1215     return VK_SUCCESS;
1216 }
1217
1218 VkResult WaitForFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) {
1219     return VK_SUCCESS;
1220 }
1221
1222 void DestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* allocator) {
1223 }
1224
1225 void DestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks* allocator) {
1226 }
1227
1228 VkResult GetEventStatus(VkDevice device, VkEvent event) {
1229     ALOGV("TODO: vk%s", __FUNCTION__);
1230     return VK_SUCCESS;
1231 }
1232
1233 VkResult SetEvent(VkDevice device, VkEvent event) {
1234     ALOGV("TODO: vk%s", __FUNCTION__);
1235     return VK_SUCCESS;
1236 }
1237
1238 VkResult ResetEvent(VkDevice device, VkEvent event) {
1239     ALOGV("TODO: vk%s", __FUNCTION__);
1240     return VK_SUCCESS;
1241 }
1242
1243 void DestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks* allocator) {
1244 }
1245
1246 VkResult GetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags) {
1247     ALOGV("TODO: vk%s", __FUNCTION__);
1248     return VK_SUCCESS;
1249 }
1250
1251 void DestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* allocator) {
1252 }
1253
1254 void GetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) {
1255     ALOGV("TODO: vk%s", __FUNCTION__);
1256 }
1257
1258 void DestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* allocator) {
1259 }
1260
1261 void DestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* allocator) {
1262 }
1263
1264 void DestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* allocator) {
1265 }
1266
1267 VkResult GetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t* pDataSize, void* pData) {
1268     ALOGV("TODO: vk%s", __FUNCTION__);
1269     return VK_SUCCESS;
1270 }
1271
1272 VkResult MergePipelineCaches(VkDevice device, VkPipelineCache destCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches) {
1273     ALOGV("TODO: vk%s", __FUNCTION__);
1274     return VK_SUCCESS;
1275 }
1276
1277 void DestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* allocator) {
1278 }
1279
1280 void DestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks* allocator) {
1281 }
1282
1283 void DestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks* allocator) {
1284 }
1285
1286 void DestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks* allocator) {
1287 }
1288
1289 void DestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks* allocator) {
1290 }
1291
1292 VkResult ResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) {
1293     ALOGV("TODO: vk%s", __FUNCTION__);
1294     return VK_SUCCESS;
1295 }
1296
1297 void UpdateDescriptorSets(VkDevice device, uint32_t writeCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t copyCount, const VkCopyDescriptorSet* pDescriptorCopies) {
1298     ALOGV("TODO: vk%s", __FUNCTION__);
1299 }
1300
1301 VkResult FreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets) {
1302     ALOGV("TODO: vk%s", __FUNCTION__);
1303     return VK_SUCCESS;
1304 }
1305
1306 void DestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* allocator) {
1307 }
1308
1309 void DestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* allocator) {
1310 }
1311
1312 void GetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity) {
1313     ALOGV("TODO: vk%s", __FUNCTION__);
1314 }
1315
1316 VkResult ResetCommandPool(VkDevice device, VkCommandPool cmdPool, VkCommandPoolResetFlags flags) {
1317     ALOGV("TODO: vk%s", __FUNCTION__);
1318     return VK_SUCCESS;
1319 }
1320
1321 VkResult BeginCommandBuffer(VkCommandBuffer cmdBuffer, const VkCommandBufferBeginInfo* pBeginInfo) {
1322     return VK_SUCCESS;
1323 }
1324
1325 VkResult EndCommandBuffer(VkCommandBuffer cmdBuffer) {
1326     return VK_SUCCESS;
1327 }
1328
1329 VkResult ResetCommandBuffer(VkCommandBuffer cmdBuffer, VkCommandBufferResetFlags flags) {
1330     ALOGV("TODO: vk%s", __FUNCTION__);
1331     return VK_SUCCESS;
1332 }
1333
1334 void CmdBindPipeline(VkCommandBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) {
1335 }
1336
1337 void CmdSetViewport(VkCommandBuffer cmdBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports) {
1338 }
1339
1340 void CmdSetScissor(VkCommandBuffer cmdBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors) {
1341 }
1342
1343 void CmdSetLineWidth(VkCommandBuffer cmdBuffer, float lineWidth) {
1344 }
1345
1346 void CmdSetDepthBias(VkCommandBuffer cmdBuffer, float depthBias, float depthBiasClamp, float slopeScaledDepthBias) {
1347 }
1348
1349 void CmdSetBlendConstants(VkCommandBuffer cmdBuffer, const float blendConst[4]) {
1350 }
1351
1352 void CmdSetDepthBounds(VkCommandBuffer cmdBuffer, float minDepthBounds, float maxDepthBounds) {
1353 }
1354
1355 void CmdSetStencilCompareMask(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilCompareMask) {
1356 }
1357
1358 void CmdSetStencilWriteMask(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilWriteMask) {
1359 }
1360
1361 void CmdSetStencilReference(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilReference) {
1362 }
1363
1364 void CmdBindDescriptorSets(VkCommandBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t setCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) {
1365 }
1366
1367 void CmdBindIndexBuffer(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) {
1368 }
1369
1370 void CmdBindVertexBuffers(VkCommandBuffer cmdBuffer, uint32_t startBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) {
1371 }
1372
1373 void CmdDraw(VkCommandBuffer cmdBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) {
1374 }
1375
1376 void CmdDrawIndexed(VkCommandBuffer cmdBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
1377 }
1378
1379 void CmdDrawIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
1380 }
1381
1382 void CmdDrawIndexedIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
1383 }
1384
1385 void CmdDispatch(VkCommandBuffer cmdBuffer, uint32_t x, uint32_t y, uint32_t z) {
1386 }
1387
1388 void CmdDispatchIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset) {
1389 }
1390
1391 void CmdCopyBuffer(VkCommandBuffer cmdBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) {
1392 }
1393
1394 void CmdCopyImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) {
1395 }
1396
1397 void CmdBlitImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter) {
1398 }
1399
1400 void CmdCopyBufferToImage(VkCommandBuffer cmdBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) {
1401 }
1402
1403 void CmdCopyImageToBuffer(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) {
1404 }
1405
1406 void CmdUpdateBuffer(VkCommandBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize dataSize, const void* pData) {
1407 }
1408
1409 void CmdFillBuffer(VkCommandBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize fillSize, uint32_t data) {
1410 }
1411
1412 void CmdClearColorImage(VkCommandBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) {
1413 }
1414
1415 void CmdClearDepthStencilImage(VkCommandBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) {
1416 }
1417
1418 void CmdClearAttachments(VkCommandBuffer cmdBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects) {
1419 }
1420
1421 void CmdResolveImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) {
1422 }
1423
1424 void CmdSetEvent(VkCommandBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
1425 }
1426
1427 void CmdResetEvent(VkCommandBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
1428 }
1429
1430 void CmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) {
1431 }
1432
1433 void CmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) {
1434 }
1435
1436 void CmdBeginQuery(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot, VkQueryControlFlags flags) {
1437 }
1438
1439 void CmdEndQuery(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot) {
1440 }
1441
1442 void CmdResetQueryPool(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount) {
1443 }
1444
1445 void CmdWriteTimestamp(VkCommandBuffer cmdBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t slot) {
1446 }
1447
1448 void CmdCopyQueryPoolResults(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize destStride, VkQueryResultFlags flags) {
1449 }
1450
1451 void CmdPushConstants(VkCommandBuffer cmdBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t start, uint32_t length, const void* values) {
1452 }
1453
1454 void CmdBeginRenderPass(VkCommandBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) {
1455 }
1456
1457 void CmdNextSubpass(VkCommandBuffer cmdBuffer, VkSubpassContents contents) {
1458 }
1459
1460 void CmdEndRenderPass(VkCommandBuffer cmdBuffer) {
1461 }
1462
1463 void CmdExecuteCommands(VkCommandBuffer cmdBuffer, uint32_t cmdBuffersCount, const VkCommandBuffer* pCmdBuffers) {
1464 }
1465
1466 void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, const VkAllocationCallbacks* pAllocator) {
1467 }
1468
1469 void DebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) {
1470 }
1471
1472 #pragma clang diagnostic pop
1473 // clang-format on
1474
1475 }  // namespace null_driver