; RTL->C translation support. ; Copyright (C) 2000, 2005, 2009 Red Hat, Inc. ; This file is part of CGEN. ; See file COPYING.CGEN for details. ; Generating C from RTL ; --------------------- ; The main way to generate C code from an RTL expression is: ; ; (rtl-c-parsed mode isa-name-list nil '(func mode ...)) ; ; E.g. ; (rtl-c-parsed SI (all) nil '(add () SI (const () SI 1) (const () SI 2))) ; --> ; "ADDSI (1, 2)" ; ; The expression is in source form and must be already canonicalized (with ; rtx-canonicalize). There is also rtl-c for the occasions where the rtl ; isn't already canonicalized. ; ; The `set' rtx needs to be handled a little carefully. ; Both the dest and src are processed first, and then code to perform the ; assignment is computed. However, the dest may require more than a simple ; C assignment. Therefore set dests are converted to the specified object ; (e.g. a hardware operand) and then a message is sent to this object to ; perform the actual code generation. ; ; All interesting operands (e.g. regs, mem) are `operand' objects. ; The following messages must be supported by operand objects. ; - get-mode - return mode of operand ; - cxmake-get - return object containing operand's value ; - gen-set-quiet - return string of C code to set operand's value (no tracing) ; - gen-set-trace - return string of C code to set operand's value ; ; Instruction fields are refered to by name. ; Instruction ifields must have these methods: ; - get-mode ; - cxmake-get ; ; Conventions used in this file: ; - see rtl.scm ; The object. ; This is a fully translated expression (i.e. C code). (define (class-make ' nil '( ; The mode of C-CODE. mode ; The translated C code. c-code ; The source expression, for debugging. expr ; Attributes of the expression. atlist ; List of temporaries required to compute the expression. ; ??? wip. These would be combined as the expression is ; built up. Then in sets and other statements, the temporaries ; would be declared. ;(tmps . nil) ) nil) ) (method-make! 'make! (lambda (self mode c-code atlist) ; FIXME: Extend COS to allow specifying member predicates. (assert (mode? mode)) (assert (string? c-code)) ;(assert (atlist? atlist)) ; FIXME: What should this be? (elm-set! self 'mode mode) (elm-set! self 'c-code c-code) (elm-set! self 'atlist atlist) self) ) ; Accessor fns (define cx:mode (elm-make-getter 'mode)) (define cx:c-code (elm-make-getter 'c-code)) (define cx:expr (elm-make-getter 'expr)) (define cx:atlist (elm-make-getter 'atlist)) ;(define cx:tmps (elm-make-getter 'tmps)) ; Any object with attributes requires the get-atlist method. (method-make! 'get-atlist (lambda (self) (elm-get self 'atlist))) ; Respond to 'get-mode messages. (method-make! 'get-mode (lambda (self) (elm-get self 'mode))) ; Respond to 'get-name messages for rtx-dump. (method-make! 'get-name (lambda (self) (string-append "(" (obj:str-name (elm-get self 'mode)) ") " (cx:c self))) ) ; Return C code to perform an assignment. ; NEWVAL is a object of the value to be assigned to SELF. (method-make! 'gen-set-quiet (lambda (self estate mode indx selector newval) (string-append " " (cx:c self) " = " (cx:c newval) ";\n")) ) (method-make! 'gen-set-trace (lambda (self estate mode indx selector newval) (string-append " " (cx:c self) " = " (cx:c newval) ";\n")) ) ; Return the C code of CX. ; ??? This used to handle lazy evaluation of the expression. ; Maybe it will again, so it's left in, as a cover fn to cx:c-code. (define (cx:c cx) (cx:c-code cx) ) ; Main routine to create a node object. ; MODE is either the mode's symbol (e.g. 'QI) or a object. ; CODE is a string of C code. (define (cx:make mode code) (make (mode-maybe-lookup mode) code nil) ) ; Make copy of CX in new mode MODE. ; MODE must be a object. (define (cx-new-mode mode cx) (make mode (cx:c cx) (cx:atlist cx)) ) ; Same as cx:make except with attributes. (define (cx:make-with-atlist mode code atlist) (make (mode-maybe-lookup mode) code atlist) ) ; Return a boolean indicated if X is a object. (define (c-expr? x) (class-instance? x)) ; RTX environment support. (method-make! 'cxmake-get (lambda (self estate mode indx selector) (cx:make mode (rtx-temp-value self))) ) (method-make! 'gen-set-quiet (lambda (self estate mode indx selector src) (string-append " " (rtx-temp-value self) " = " (cx:c src) ";\n")) ) (method-make! 'gen-set-trace (lambda (self estate mode indx selector src) (string-append " " (rtx-temp-value self) " = " (cx:c src) ";\n")) ) (define (gen-temp-defs estate env) (string-map (lambda (temp) (let ((temp-obj (cdr temp))) (string-append " " (mode:c-type (rtx-temp-mode temp-obj)) " " (rtx-temp-value temp-obj) ";\n"))) env) ) ; Top level routines to handle rtl->c translation. ; rtl->c configuration parameters ; #t -> emit calls to rtl cover fns, otherwise emit plain C where possible. (define /rtl-c-rtl-cover-fns? #f) ; Called before emitting code to configure the generator. ; ??? I think this can go away now (since cover-fn specification is also ; done at each call to rtl-c). (define (rtl-c-config! . args) (set! /rtl-c-rtl-cover-fns? #f) (let loop ((args args)) (if (null? args) #f ; done (begin (case (car args) ((#:rtl-cover-fns?) (set! /rtl-c-rtl-cover-fns? (cadr args))) (else (error "rtl-c-config: unknown option:" (car args)))) (loop (cddr args))))) *UNSPECIFIED* ) ; Subclass of to record additional things needed for rtl->c. (define (class-make ' '() '( ; #t -> emit calls to rtl cover fns. (rtl-cover-fns? . #f) ; name of output language, "c" or "c++" (output-language . "c") ; #t if generating code for a macro. ; Each newline is then preceeded with '\\'. (macro? . #f) ; Boolean indicating if evaluation is for an instruction. ; It's not always possible to look at OWNER, e.g. when we're ; processing semantic fragments. (for-insn? . #f) ; #f -> reference ifield values using FLD macro. ; #t -> use C variables. ; ??? This is only needed to get correct ifield references ; in opcodes, decoder, and semantics. Maybe a better way to ; go would be to specify the caller's name so there'd be just ; one of these, rather than an increasing number. However, ; for now either way is the same. ; An alternative is to specify a callback to try first. (ifield-var? . #f) ) nil) ) ; FIXME: involves upcasting. (define-getters estate (rtl-cover-fns? output-language macro? for-insn? ifield-var?) ) ; Return booleans indicating if output language is C/C++. (define (estate-output-language-c? estate) (string=? (estate-output-language estate) "c") ) (define (estate-output-language-c++? estate) (string=? (estate-output-language estate) "c++") ) (method-make! 'vmake! (lambda (self args) ; Initialize parent class first. (let loop ((args (send-next self ' 'vmake! args)) (unrecognized nil)) (if (null? args) (reverse! unrecognized) ; ??? Could invoke method to initialize here. (begin (case (car args) ((#:rtl-cover-fns?) (elm-set! self 'rtl-cover-fns? (cadr args))) ((#:output-language) (elm-set! self 'output-language (cadr args))) ((#:macro?) (elm-set! self 'macro? (cadr args))) ((#:for-insn?) (elm-set! self 'for-insn? (cadr args))) ((#:ifield-var?) (elm-set! self 'ifield-var? (cadr args))) (else ; Build in reverse order, as we reverse it back when we're done. (set! unrecognized (cons (cadr args) (cons (car args) unrecognized))))) (loop (cddr args) unrecognized))))) ) ;; Build an estate for use in generating C. ;; OVERRIDES is a #:keyword/value list of parameters to apply last. (define (estate-make-for-rtl-c overrides) (apply vmake (append! (list #:expr-fn (lambda (rtx-obj expr mode estate) (rtl-c-generator rtx-obj)) #:rtl-cover-fns? /rtl-c-rtl-cover-fns?) overrides)) ) ; Translate RTL expression EXPR to C. ; ESTATE is the current rtx evaluation state. ; MODE is a object. (define (rtl-c-with-estate estate mode expr) (cx:c (rtl-c-get estate mode (rtx-eval-with-estate expr mode estate))) ) ; Translate parsed RTL expression X to a string of C code. ; EXPR must have already been fed through rtx-canonicalize. ; MODE is the desired mode of the value or DFLT for "natural mode". ; MODE is a object. ; OVERRIDES is a #:keyword/value list of arguments to build the eval state ; with. (define (rtl-c-parsed mode expr . overrides) ;; ??? If we're passed insn-compiled-semantics the output of xops is ;; confusing. Fix by subclassing -> , and ;; have provide original source expr. (let ((estate (estate-make-for-rtl-c (cons #:outer-expr (cons expr overrides))))) (rtl-c-with-estate estate mode expr)) ) ; Same as rtl-c-parsed but EXPR is unparsed. ; ISA-NAME-LIST is the list of ISA(s) in which to evaluate EXPR. ; EXTRA-VARS-ALIST is an association list of extra (symbol value) ; elements to be used during value lookup. ; MODE is a object. (define (rtl-c mode isa-name-list extra-vars-alist expr . overrides) (let* ((canonical-rtl (rtx-canonicalize #f (obj:name mode) isa-name-list extra-vars-alist expr)) (estate (estate-make-for-rtl-c (cons #:outer-expr (cons canonical-rtl overrides))))) (rtl-c-with-estate estate mode canonical-rtl)) ) ; Same as rtl-c-with-estate except return a object. ; MODE is a object. (define (rtl-c-expr-with-estate estate mode expr) (rtl-c-get estate mode (rtx-eval-with-estate expr mode estate)) ) ; Same as rtl-c-parsed except return a object. ; MODE is a object. (define (rtl-c-expr-parsed mode expr . overrides) ;; ??? If we're passed insn-compiled-semantics the output of xops is ;; confusing. Fix by subclassing -> , and ;; have provide original source expr. (let ((estate (estate-make-for-rtl-c (cons #:outer-expr (cons expr overrides))))) (rtl-c-expr-with-estate estate mode expr)) ) ; Same as rtl-c-expr-parsed but EXPR is unparsed. ; MODE is a object. (define (rtl-c-expr mode isa-name-list extra-vars-alist expr . overrides) (let* ((canonical-rtl (rtx-canonicalize #f (obj:name mode) isa-name-list extra-vars-alist expr)) (estate (estate-make-for-rtl-c (cons #:outer-expr (cons canonical-rtl overrides))))) (rtl-c-expr-with-estate estate mode canonical-rtl)) ) ; C++ versions of rtl-c routines. ; Build an estate for use in generating C++. ; OVERRIDES is a #:keyword/value list of parameters to apply last. (define (estate-make-for-rtl-c++ overrides) (estate-make-for-rtl-c (cons #:output-language (cons "c++" overrides))) ) ; Translate parsed RTL expression X to a string of C++ code. ; EXPR must have already been fed through rtx-canonicalize. ; MODE is the desired mode of the value or DFLT for "natural mode". ; MODE is a object. ; OVERRIDES is a #:keyword/value list of arguments to build the eval state ; with. (define (rtl-c++-parsed mode expr . overrides) ;; ??? If we're passed insn-compiled-semantics the output of xops is ;; confusing. Fix by subclassing -> , and ;; have provide original source expr. (let ((estate (estate-make-for-rtl-c++ (cons #:outer-expr (cons expr overrides))))) (rtl-c-with-estate estate mode expr)) ) ; Same as rtl-c++-parsed but EXPR is unparsed. ; MODE is a object. (define (rtl-c++ mode isa-name-list extra-vars-alist expr . overrides) (let* ((canonical-rtl (rtx-canonicalize #f (obj:name mode) isa-name-list extra-vars-alist expr)) (estate (estate-make-for-rtl-c++ (cons #:outer-expr (cons canonical-rtl overrides))))) (rtl-c-with-estate estate mode canonical-rtl)) ) ; Top level routines for getting/setting values. ; Return a node to get the value of SRC in mode MODE. ; ESTATE is the current rtl evaluation state. ; MODE is a object. ; SRC is one of: ; - node ; - rtl expression (e.g. '(add WI dr sr)) ; - sequence's local variable name ; - sequence's local variable object ; - operand name ; - operand object ; - an integer ; - a string of C code ; FIXME: Reduce acceptable values of SRC. ; The result has mode MODE, unless MODE is the "default mode indicator" ; (DFLT) in which case the mode of the result is derived from SRC. ; ; ??? mode compatibility checks are wip (define (/rtl-c-get estate mode src) (let ((mode mode)) ;;(mode:lookup mode))) (cond ((c-expr? src) (cond ((or (mode:eq? 'VOID mode) (mode:eq? 'DFLT mode) (mode:eq? (cx:mode src) mode)) src) ((rtx-mode-compatible? mode (cx:mode src)) (cx-new-mode mode src)) (else (estate-error estate (string-append "incompatible mode: " "(" (obj:str-name (cx:mode src)) " vs " (obj:str-name mode) ") in " "\"" (cx:c src) "\"") (obj:name mode))))) ; The recursive call to /rtl-c-get is in case the result of rtx-eval ; is a hardware object, rtx-func object, or another rtl expression. ; FIXME: simplify ((rtx? src) (let ((evald-src (rtx-eval-with-estate src mode estate))) ; There must have been some change, otherwise we'll loop forever. (assert (not (eq? src evald-src))) (/rtl-c-get estate mode evald-src))) ;; FIXME: Can we ever get a symbol here? ((or (and (symbol? src) (current-op-lookup src)) (operand? src)) (begin (if (symbol? src) (set! src (current-op-lookup src))) (cond ((mode:eq? 'DFLT mode) ; FIXME: Can we get called with 'DFLT anymore? ; FIXME: If we fetch the mode here, operands can assume ; they never get called with "default mode". (send src 'cxmake-get estate mode #f #f)) ((rtx-mode-compatible? mode (op:mode src)) (let ((mode (op:mode src))) ;; FIXME: (rtx-sem-mode mode))) (send src 'cxmake-get estate mode #f #f))) (else ;; FIXME: canonicalization should have already caught this (estate-error estate (string-append "operand " (obj:str-name src) " referenced in incompatible mode") (obj:name mode)))))) ;; FIXME: Can we ever get a symbol here? ((or (and (symbol? src) (rtx-temp-lookup (estate-env-stack estate) src)) (rtx-temp? src)) (begin (if (symbol? src) (set! src (rtx-temp-lookup (estate-env-stack estate) src))) (cond ((mode:eq? 'DFLT mode) (send src 'cxmake-get estate (rtx-temp-mode src) #f #f)) ((rtx-mode-compatible? mode (rtx-temp-mode src)) (let ((mode (rtx-temp-mode src))) ;; FIXME: (rtx-sem-mode mode))) (send src 'cxmake-get estate mode #f #f))) (else ;; FIXME: canonicalization should have already caught this (estate-error estate (string-append "sequence temp " (rtx-temp-name src) " referenced in incompatible mode") (obj:name mode)))))) ((integer? src) ; Default mode of integer argument is INT. (if (or (mode:eq? 'DFLT mode) (mode:eq? 'VOID mode)) (cx:make INT (number->string src)) (cx:make mode (number->string src)))) ((string? src) ; Default mode of string argument is INT. (if (or (mode:eq? 'DFLT mode) (mode:eq? 'VOID mode)) (cx:make INT src) (cx:make mode src))) (else (estate-error estate "/rtl-c-get: invalid argument" src)))) ) ;; MODE is either a object or the mode name. (define (rtl-c-get estate mode src) (let ((mode (mode-maybe-lookup mode))) (logit 4 (spaces (estate-depth estate)) "(rtl-c-get " (mode-real-name mode) " " (rtx-strdump src) ")\n") (let ((result (/rtl-c-get estate mode src))) (logit 4 (spaces (estate-depth estate)) "(rtl-c-get " (mode-real-name mode) " " (rtx-strdump src) ") => " (cx:c result) "\n") result)) ) ; Return a object to set the value of DEST to SRC. ; ESTATE is the current rtl evaluation state. ; MODE is the mode of DEST or DFLT which means fetch the real mode from DEST. ; MODE is either a object or the mode name. ; DEST is one of: ; - node ; - rtl expression (e.g. '(mem QI dr)) ; SRC is an RTX expression. It is important that we evaluate it, instead of ; our caller, because only we know the mode of DEST (which we need to pass ; when evaluating SRC if MODE is DFLT). ??? Can no longer get DFLT, but ; it feels right to continue to evaluate SRC here. ; The mode of the result is always VOID (void). ; ; ??? One possible optimization is to pass the address of the result ; to the computation of SRC. Seems dodgey though. (define (rtl-c-set-quiet estate mode dest src) ;(display (list 'rtl-c-set-quiet mode dest src)) (newline) (let* ((mode (mode-maybe-lookup mode)) (xdest (cond ((c-expr? dest) dest) ((rtx? dest) (rtx-eval-with-estate dest mode estate)) (else (estate-error estate "rtl-c-set-quiet: invalid dest" dest))))) (assert (mode? mode)) (if (not (object? xdest)) (estate-error estate "rtl-c-set-quiet: invalid dest" dest)) (cx:make VOID (send xdest 'gen-set-quiet estate mode #f #f (rtl-c-get estate mode src)))) ) ; Same as rtl-c-set-quiet except also print TRACE_RESULT message. ; MODE is either a object or the mode name. ; ??? One possible change is to defer the (rtl-c-get src) call to dest's ; set handler. Such sources would be marked accordingly and rtl-c-get ; would recognize them. This would allow, for example, passing the address ; of the result to the computation. (define (rtl-c-set-trace estate mode dest src) ;(display (list 'rtl-c-set-trace mode dest src)) (newline) (let* ((mode (mode-maybe-lookup mode)) (xdest (cond ((c-expr? dest) dest) ((rtx? dest) (rtx-eval-with-estate dest mode estate)) (else (estate-error estate "rtl-c-set-trace: invalid dest" dest))))) (assert (mode? mode)) (if (not (object? xdest)) (estate-error estate "rtl-c-set-trace: invalid dest" dest)) (cx:make VOID (send xdest 'gen-set-trace estate mode #f #f (rtl-c-get estate mode src)))) ) ; Emit C code for each rtx function. ; Table mapping rtx function to C generator. (define /rtl-c-gen-table #f) ; Return the C generator for F. (define (rtl-c-generator f) (vector-ref /rtl-c-gen-table (rtx-num f)) ) ; Support for explicit C/C++ code. ; MODE is the mode name. ; ??? Actually, "support for explicit foreign language code". ; s-c-call needs a better name but "unspec" seems like obfuscation. ; ??? Need to distinguish owner of call (cpu, ???). (define (s-c-call estate mode name . args) (cx:make mode (string-append (if (estate-output-language-c++? estate) (string-append "current_cpu->" name " (") ; FIXME: Prepend @cpu@_ to name here, and delete @cpu@_ from ; description file. (string-append name " (current_cpu")) (let ((c-args (string-map (lambda (arg) (string-append ", " (cx:c (rtl-c-get estate DFLT arg)))) args))) (if (estate-output-language-c++? estate) (string-drop 2 c-args) c-args)) ; If the mode is VOID, this is a statement. ; Otherwise it's an expression. ; ??? Bad assumption! VOID expressions may be used ; within sequences without local vars, which are translated ; to comma-expressions. (if (or (mode:eq? 'DFLT mode) ;; FIXME: can't get DFLT anymore (mode:eq? 'VOID mode)) ");\n" ")") )) ) ; Same as c-call except there is no particular owner of the call. ; In general this means making a call to a non-member function, ; whereas c-call makes calls to member functions (in C++ parlance). ; MODE is the mode name. (define (s-c-raw-call estate mode name . args) (cx:make mode (string-append name " (" (string-drop 2 (string-map (lambda (elm) (string-append ", " (cx:c (rtl-c-get estate DFLT elm)))) args)) ; If the mode is VOID, this is a statement. ; Otherwise it's an expression. ; ??? Bad assumption! VOID expressions may be used ; within sequences without local vars, which are translated ; to comma-expressions. (if (or (mode:eq? 'DFLT mode) ;; FIXME: can't get DFLT anymore (mode:eq? 'VOID mode)) ");\n" ")") )) ) ; Standard arithmetic operations. ; Return a boolean indicating if a cover function/macro should be emitted ; to perform an operation. ; C-OP is a string containing the C operation or #f if there is none. ; MODE is the mode of the operation. (define (/rtx-use-sem-fn? estate c-op mode) ; If no C operation has been provided, use a macro, or ; if this is the simulator and MODE is not a host mode, use a macro. ; (or (not c-op) ; (and (estate-rtl-cover-fns? estate) ; (not (mode:host? mode)))) ; FIXME: The current definition is a temporary hack while host/target-ness ; of INT/UINT is unresolved. (and (not (obj-has-attr? mode 'FORCE-C)) (or (not c-op) (and (estate-rtl-cover-fns? estate) ;; NOTE: We can't check (insn? (estate-owner estate)) here. ;; It's not necessarily present for semantic fragments. (or (estate-for-insn? estate) (not (mode:host? mode)))))) ) ; One operand referenced, result is in same mode. ; MODE is the mode name. (define (s-unop estate name c-op mode src) (let* ((val (rtl-c-get estate mode src)) ; Refetch mode in case it was DFLT and ensure unsigned->signed. (mode (mode:lookup mode)) ;;(cx:mode val)) ;; FIXME: can't get DFLT anymore (sem-mode (rtx-sem-mode mode))) ; FIXME: Argument checking. (if (/rtx-use-sem-fn? estate c-op mode) (if (mode-float? mode) (cx:make sem-mode (string-append "CGEN_CPU_FPU (current_cpu)->ops->" (string-downcase name) (string-downcase (obj:str-name sem-mode)) " (CGEN_CPU_FPU (current_cpu), " (cx:c val) ")")) (cx:make sem-mode (string-append name (obj:str-name sem-mode) " (" (cx:c val) ")"))) (cx:make mode ; not sem-mode on purpose (string-append "(" c-op " (" (cx:c val) "))")))) ) ; Two operands referenced in the same mode producing a result in the same mode. ; MODE is the mode name. ; ; ??? Will eventually want to handle floating point modes specially. Since ; bigger modes may get clumsily passed (there is no pass by reference in C) and ; since we want to eventually handle lazy transformation, FP values could be ; passed by reference. This is easy in C++. C requires more work and is ; defered until it's warranted. ; Implementing this should probably be via a new cxmake-get-ref method, ; rather then complicating cxmake-get. Ditto for rtl-c-get-ref/rtl-c-get. (define (s-binop estate name c-op mode src1 src2) ;(display (list "binop " name ", mode " mode)) (newline) (let* ((val1 (rtl-c-get estate mode src1)) ; Refetch mode in case it was DFLT and ensure unsigned->signed. (mode (mode:lookup mode)) ;;(cx:mode val1)) ;; FIXME: can't get DFLT anymore (sem-mode (rtx-sem-mode mode)) (val2 (rtl-c-get estate mode src2))) ; FIXME: Argument checking. (if (/rtx-use-sem-fn? estate c-op mode) (if (mode-float? mode) (cx:make sem-mode (string-append "CGEN_CPU_FPU (current_cpu)->ops->" (string-downcase name) (string-downcase (obj:str-name sem-mode)) " (CGEN_CPU_FPU (current_cpu), " (cx:c val1) ", " (cx:c val2) ")")) (cx:make sem-mode (string-append name (obj:str-name sem-mode) " (" (cx:c val1) ", " (cx:c val2) ")"))) (cx:make mode ; not sem-mode on purpose (string-append "((" (cx:c val1) ") " c-op " (" (cx:c val2) "))")))) ) ; Same as s-binop except there's a third argument which is always one bit. ; MODE is the mode name. (define (s-binop-with-bit estate name mode src1 src2 src3) (let* ((val1 (rtl-c-get estate mode src1)) ; Refetch mode in case it was DFLT and ensure unsigned->signed. (mode (mode:lookup mode)) ;;(cx:mode val1)) ;; FIXME: can't get DFLT anymore (sem-mode (rtx-sem-mode mode)) (val2 (rtl-c-get estate mode src2)) (val3 (rtl-c-get estate 'BI src3))) ; FIXME: Argument checking. (cx:make mode (string-append name (obj:str-name sem-mode) " (" (cx:c val1) ", " (cx:c val2) ", " (cx:c val3) ")"))) ) ; Shift operations are slightly different than binary operations: ; the mode of src2 is any integral mode. ; MODE is the mode name. ; ??? Note that some cpus have a signed shift left that is semantically ; different from a logical one. May need to create `sla' some day. Later. (define (s-shop estate name c-op mode src1 src2) ;(display (list "shop " name ", mode " mode)) (newline) (let* ((val1 (rtl-c-get estate mode src1)) ; Refetch mode in case it was DFLT and ensure unsigned->signed ; [sign of operation is determined from operation name, not mode]. (mode (mode:lookup mode)) ;;(cx:mode val1)) ;; FIXME: can't get DFLT anymore (sem-mode (rtx-sem-mode mode)) (val2 (rtl-c-get estate mode src2))) ; FIXME: Argument checking. (if (/rtx-use-sem-fn? estate c-op mode) (cx:make sem-mode (string-append name (obj:str-name sem-mode) " (" (cx:c val1) ", " (cx:c val2) ")")) (cx:make mode ; not sem-mode on purpose (string-append "(" ; Ensure correct sign of shift. (cond ((equal? name "SRL") (string-append "(" (if (eq? (mode:class mode) 'UINT) "" "unsigned ") (mode:non-mode-c-type mode) ") ")) ((equal? name "SRA") (string-append "(" (mode:non-mode-c-type mode) ") ")) (else "")) "(" (cx:c val1) ") " c-op " (" (cx:c val2) "))")))) ) ; Process andif, orif. ; SRC1 and SRC2 have any arithmetic mode. ; MODE is the mode name. ; The result has mode BI. ; ??? May want to use INT as BI may introduce some slowness ; in the generated code. (define (s-boolifop estate name c-op src1 src2) (let* ((val1 (rtl-c-get estate DFLT src1)) (val2 (rtl-c-get estate DFLT src2))) ; FIXME: Argument checking. ; If this is the simulator and MODE is not a host mode, use a macro. ; ??? MODE here being the mode of SRC1. Maybe later. (if (estate-rtl-cover-fns? estate) (cx:make (mode:lookup 'BI) (string-append name ; "BI", leave off mode, no need for it " (" (cx:c val1) ", " (cx:c val2) ")")) (cx:make (mode:lookup 'BI) (string-append "((" (cx:c val1) ") " c-op " (" (cx:c val2) "))")))) ) ; Mode conversions. ; MODE is the mode name. (define (s-convop estate name mode s1) ; Get S1 in its normal mode, then convert. (let ((s (rtl-c-get estate DFLT s1)) (mode (mode:lookup mode))) (if (and (not (estate-rtl-cover-fns? estate)) (mode:host? (cx:mode s))) (cx:make mode (string-append "((" (obj:str-name mode) ")" " (" (obj:str-name (cx:mode s)) ")" " (" (cx:c s) "))")) (if (or (mode-float? mode) (mode-float? (cx:mode s))) (cx:make mode (string-append "CGEN_CPU_FPU (current_cpu)->ops->" (string-downcase name) (string-downcase (obj:str-name (rtx-sem-mode (cx:mode s)))) (string-downcase (obj:str-name (rtx-sem-mode mode))) " (CGEN_CPU_FPU (current_cpu), " (cx:c s) ")")) (cx:make mode (string-append name (obj:str-name (rtx-sem-mode (cx:mode s))) (obj:str-name (rtx-sem-mode mode)) " (" (cx:c s) ")"))))) ) ; Compare SRC1 and SRC2 in mode MODE. ; NAME is one of eq,ne,lt,le,gt,ge,ltu,leu,gtu,geu. ; MODE is the mode name. ; The result has mode BI. ; ??? May want a host int mode result as BI may introduce some slowness ; in the generated code. (define (s-cmpop estate name c-op mode src1 src2) (let* ((val1 (rtl-c-get estate mode src1)) ; Refetch mode in case it was DFLT. (mode (mode:lookup mode)) ;;(cx:mode val1)) ;; FIXME: can't get DFLT anymore (val2 (rtl-c-get estate mode src2))) ; FIXME: Argument checking. ; If no C operation has been provided, use a macro, or ; if this is the simulator and MODE is not a host mode, use a macro. (if (/rtx-use-sem-fn? estate c-op mode) (if (mode-float? mode) (cx:make (mode:lookup 'BI) (string-append "CGEN_CPU_FPU (current_cpu)->ops->" (string-downcase (symbol->string name)) (string-downcase (obj:str-name (rtx-sem-mode mode))) " (CGEN_CPU_FPU (current_cpu), " (cx:c val1) ", " (cx:c val2) ")")) (cx:make (mode:lookup 'BI) (string-append (string-upcase (symbol->string name)) (if (memq name '(eq ne)) (obj:str-name (rtx-sem-mode mode)) (obj:str-name mode)) " (" (cx:c val1) ", " (cx:c val2) ")"))) (cx:make (mode:lookup 'BI) (string-append "((" (cx:c val1) ") " c-op " (" (cx:c val2) "))")))) ) ; Conditional execution. ; `if' in RTL has a result, like ?: in C. ; We support both: one with a result (non VOID mode), and one without (VOID mode). ; The non-VOID case must have an else part. ; MODE is the mode of the result, not the comparison. ; MODE is the mode name. ; The comparison is expected to return a zero/non-zero value. ; ??? Perhaps this should be a syntax-expr. Later. (define (s-if estate mode cond then . else) (if (> (length else) 1) (estate-error estate "if: too many elements in `else' part" else)) (let () (if (or (mode:eq? 'DFLT mode) ;; FIXME: can't get DFLT anymore (mode:eq? 'VOID mode)) (cx:make mode (string-append "if (" (cx:c (rtl-c-get estate DFLT cond)) ")" " {\n" (cx:c (rtl-c-get estate mode then)) "}" (if (not (null? else)) (string-append " else {\n" (cx:c (rtl-c-get estate mode (car else))) "}\n") "\n") )) (if (= (length else) 1) (cx:make mode (string-append "((" (cx:c (rtl-c-get estate DFLT cond)) ") ? (" (cx:c (rtl-c-get estate mode then)) ") : (" (cx:c (rtl-c-get estate mode (car else))) "))")) (estate-error estate "non-void-mode `if' must have `else' part")))) ) ; A multiway `if'. ; MODE is the mode name. ; If MODE is VOID emit a series of if/else's. ; If MODE is not VOID, emit a series of ?:'s. ; COND-CODE-LIST is a list of lists, each sublist is a list of two elements: ; condition, code. The condition part must return a zero/non-zero value, and ; the code part is treated as a `sequence'. ; This defer argument evaluation, the syntax ; ((... condition ...) ... action ...) ; needs special parsing. ; FIXME: Need more error checking of arguments. (define (s-cond estate mode . cond-code-list) ;; FIXME: can't get DFLT anymore (let ((vm? (or (mode:eq? 'DFLT mode) (mode:eq? 'VOID mode)))) (if (null? cond-code-list) (estate-error estate "empty `cond'")) (let ((if-part (if vm? "if (" "(")) (then-part (if vm? ") " ") ? ")) (elseif-part (if vm? " else if (" " : (")) (else-part (if vm? " else " " : ")) (fi-part (if vm? "" ")"))) (let loop ((result (string-append if-part (cx:c (rtl-c-get estate DFLT (caar cond-code-list))) then-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar cond-code-list)))))))) (ccl (cdr cond-code-list))) (cond ((null? ccl) (cx:make mode result)) ((eq? (caar ccl) 'else) (cx:make mode (string-append result else-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar ccl))))))))) (else (loop (string-append result elseif-part (cx:c (rtl-c-get estate DFLT (caar ccl))) then-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar ccl))))))) (cdr ccl))))))) ) ; Utility of s-case to print a case prefix (for lack of a better term). (define (/gen-case-prefix val) (string-append " case " (cond ((number? val) (number->string val)) ((symbol? val) (string-upcase (gen-c-symbol val))) ; yes, upcase ((string? val) val) (else (parse-error (make-prefix-context "case:") "bad case" val))) " : ") ) ; Utility of s-case to handle a void result. (define (s-case-vm estate test case-list) (cx:make VOID (string-append " switch (" (cx:c (rtl-c-get estate DFLT test)) ")\n" " {\n" (string-map (lambda (case-entry) (let ((caseval (car case-entry)) (code (cdr case-entry))) (string-append (cond ((list? caseval) (string-map /gen-case-prefix caseval)) ((eq? 'else caseval) (string-append " default : ")) (else (/gen-case-prefix caseval))) (cx:c (apply s-sequence (cons estate (cons VOID (cons nil code))))) " break;\n"))) case-list) " }\n")) ) ; Utility of s-case-non-vm to generate code to perform the test. ; MODE is the mode name. (define (/gen-non-vm-case-test estate mode test cases) (assert (not (null? cases))) (let loop ((result "") (cases cases)) (if (null? cases) result (let ((case (cond ((number? (car cases)) (car cases)) ((symbol? (car cases)) (if (enum-lookup-val (car cases)) (rtx-make 'enum mode (car cases)) (estate-error estate "symbol not an enum" (car cases)))) (else (estate-error estate "invalid case" (car cases)))))) (loop (string-append result (if (= (string-length result) 0) "" " || ") (cx:c (rtl-c-get estate mode test)) " == " (cx:c (rtl-c-get estate mode case))) (cdr cases))))) ) ; Utility of s-case to handle a non-void result. ; This is expanded as a series of ?:'s. ; MODE is the mode name. (define (s-case-non-vm estate mode test case-list) (let ((if-part "(") (then-part ") ? ") (elseif-part " : (") (else-part " : ") (fi-part ")")) (let loop ((result (string-append if-part (/gen-non-vm-case-test estate mode test (caar case-list)) then-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar case-list)))))))) (cl (cdr case-list))) (cond ((null? cl) (cx:make mode result)) ((eq? (caar cl) 'else) (cx:make mode (string-append result else-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar cl))))))))) (else (loop (string-append result elseif-part (/gen-non-vm-case-test estate mode test (caar cl)) then-part (cx:c (apply s-sequence (cons estate (cons mode (cons nil (cdar cl))))))) (cdr cl)))))) ) ; C switch statement ; To follow convention, MODE is the first arg. ; MODE is the mode name. ; FIXME: What to allow for case choices is wip. (define (s-case estate mode test . case-list) ;; FIXME: can't get DFLT anymore (if (or (mode:eq? 'DFLT mode) (mode:eq? 'VOID mode)) (s-case-vm estate test case-list) (s-case-non-vm estate mode test case-list)) ) ; Parallels and Sequences ; Temps for `parallel' are recorded differently than for `sequence'. ; ??? I believe this is because there was an interaction between the two. (define /par-temp-list nil) ; Record a temporary needed for a parallel in mode MODE. ; We just need to record the mode with a unique name so we use a ; object where the "expression" is the variable's name. (define (/par-new-temp! mode) (set! /par-temp-list (cons (cx:make mode (string-append "temp" (number->string (length /par-temp-list)))) /par-temp-list)) (car /par-temp-list) ) ; Return the next temp from the list, and leave the list pointing to the ; next one. (define (/par-next-temp!) (let ((result (car /par-temp-list))) (set! /par-temp-list (cdr /par-temp-list)) result) ) (define (/gen-par-temp-defns temp-list) ;(display temp-list) (newline) (string-append " " ; ??? mode:c-type (string-map (lambda (temp) (string-append (obj:str-name (cx:mode temp)) " " (cx:c temp) ";")) temp-list) "\n") ) ;; Parallels are handled by converting them into two sequences. The first has ;; all set destinations replaced with temps, and the second has all set sources ;; replaced with those temps. ;; rtl-traverse expr-fn to replace the dest of sets with the parallel temp. (define (/par-replace-set-dest-expr-fn rtx-obj expr parent-expr op-pos tstate appstuff) (case (car expr) ((set set-quiet) (let ((name (rtx-name expr)) (options (rtx-options expr)) (mode (rtx-mode expr)) (dest (rtx-set-dest expr)) (src (rtx-set-src expr))) (list name options mode (/par-new-temp! mode) src))) (else #f)) ) ;; rtl-traverse expr-fn to replace the src of sets with the parallel temp. ;; This must process expressions in the same order as /par-replace-set-dests. (define (/par-replace-set-src-expr-fn rtx-obj expr parent-expr op-pos tstate appstuff) (case (car expr) ((set set-quiet) (let ((name (rtx-name expr)) (options (rtx-options expr)) (mode (rtx-mode expr)) (dest (rtx-set-dest expr)) (src (rtx-set-src expr))) (list name options mode dest (/par-next-temp!)))) (else #f)) ) ;; Return a node for a `parallel'. (define (s-parallel estate . exprs) (begin ;; Initialize /par-temp-list for /par-replace-set-dests. (set! /par-temp-list nil) (let* ((set-dest-exprs ;; Use map-in-order because we need temp creation and usage to ;; follow the same order. (map-in-order (lambda (expr) (rtx-traverse (estate-context estate) (estate-owner estate) expr /par-replace-set-dest-expr-fn #f)) exprs)) (set-dests (string-map (lambda (expr) (rtl-c-with-estate estate VOID expr)) set-dest-exprs)) (temps (reverse! /par-temp-list))) ;; Initialize /par-temp-list for /par-replace-set-srcs. (set! /par-temp-list temps) (let* ((set-src-exprs ;; Use map-in-order because we need temp creation and usage to ;; follow the same order. (map-in-order (lambda (expr) (rtx-traverse (estate-context estate) (estate-owner estate) expr /par-replace-set-src-expr-fn #f)) exprs)) (set-srcs (string-map (lambda (expr) (rtl-c-with-estate estate VOID expr)) set-src-exprs))) (cx:make VOID (string-append ;; ??? do {} while (0); doesn't get "optimized out" ;; internally by gcc, meaning two labels and a loop are ;; created for it to have to process. We can generate pretty ;; big files and can cause gcc to require *lots* of memory. ;; So let's try just {} ... "{\n" (/gen-par-temp-defns temps) set-dests set-srcs "}\n") )))) ) ;; Subroutine of s-sequence to simplify it. ;; Return a boolean indicating if GCC's "statement expression" extension ;; is necessary to implement (sequence MODE ENV EXPR-LIST). ;; Only use GCC "statement expression" extension if necessary. ;; ;; Avoid using statement expressions for ;; (sequence non-VOID-mode (error "mumble") expr). ;; Some targets, e.g. cris, use this. (define (/use-gcc-stmt-expr? mode env expr-list) (if (not (rtx-env-empty? env)) #t (case (length expr-list) ((1) #f) ((2) (if (eq? (rtx-name (car expr-list)) 'error) #f #t)) (else #t))) ) ;; Return a node for a `sequence'. ;; MODE is the mode name. (define (s-sequence estate mode env . exprs) (let* ((env (rtx-env-make-locals env)) ;; compile env (estate (estate-push-env estate env))) (if (or (mode:eq? 'DFLT mode) ;; FIXME: DFLT can't appear anymore (mode:eq? 'VOID mode)) (cx:make VOID (string-append ;; ??? do {} while (0); doesn't get "optimized out" ;; internally by gcc, meaning two labels and a loop are ;; created for it to have to process. We can generate pretty ;; big files and can cause gcc to require *lots* of memory. ;; So let's try just {} ... "{\n" (gen-temp-defs estate env) (string-map (lambda (e) (rtl-c-with-estate estate VOID e)) exprs) "}\n")) (let ((use-stmt-expr? (/use-gcc-stmt-expr? mode env exprs))) (cx:make mode (string-append (if use-stmt-expr? "({ " "(") (gen-temp-defs estate env) (string-drop 2 (string-map (lambda (e) (string-append (if use-stmt-expr? "; " ", ") ;; Strip off gratuitous ";\n" at end of expressions that ;; misguessed themselves to be in statement context. ;; See s-c-call, s-c-call-raw above. (let ((substmt (rtl-c-with-estate estate DFLT e))) (if (and (not use-stmt-expr?) (string=? (string-take -2 substmt) ";\n")) (string-drop -2 substmt) substmt)))) exprs)) (if use-stmt-expr? "; })" ")")))))) ) ; Return a node for a `do-count'. (define (s-do-count estate iter-var nr-times . exprs) (let* ((limit-var (rtx-make-iteration-limit-var iter-var)) (env (rtx-env-make-iteration-locals iter-var)) (estate (estate-push-env estate env)) (temp-iter (rtx-temp-lookup (estate-env-stack estate) iter-var)) (temp-limit (rtx-temp-lookup (estate-env-stack estate) limit-var)) (c-iter-var (rtx-temp-value temp-iter)) (c-limit-var (rtx-temp-value temp-limit))) (cx:make VOID (string-append "{\n" (gen-temp-defs estate env) " " c-limit-var " = " (cx:c (rtl-c-get estate (rtx-temp-mode temp-limit) nr-times)) ";\n" " for (" c-iter-var " = 0;\n" " " c-iter-var " < " c-limit-var ";\n" " ++" c-iter-var ")\n" " {\n" (string-map (lambda (e) (rtl-c-with-estate estate VOID e)) exprs) " }\n" "}\n")) ) ) ; ***************************************************************************** ; ; RTL->C generators for each rtx function. ; Return code to set FN as the generator for RTX. (defmacro define-fn (rtx args expr . rest) `(begin (assert (rtx-lookup (quote ,rtx))) (vector-set! table (rtx-num (rtx-lookup (quote ,rtx))) (lambda ,args ,@(cons expr rest)))) ) (define (rtl-c-init!) (set! /rtl-c-gen-table (/rtl-c-build-table)) *UNSPECIFIED* ) ; The rest of this file is one big function to return the rtl->c lookup table. ; For each of these functions, MODE is the name of the mode. (define (/rtl-c-build-table) (let ((table (make-vector (rtx-max-num) #f))) ; Error generation (define-fn error (*estate* options mode message) (let ((c-call (s-c-call *estate* mode "cgen_rtx_error" (string-append "\"" (backslash "\"" message) "\"")))) (if (mode:eq? mode VOID) c-call (cx:make mode (string-append "(" (cx:c c-call) ", 0)")))) ) ; Enum support (define-fn enum (*estate* options mode name) (cx:make mode (string-upcase (gen-c-symbol name))) ) ; Instruction field support. ; ??? This should build an operand object like -build-ifield-operand! does ; in semantics.scm. (define-fn ifield (*estate* options mode ifld-name) (if (estate-ifield-var? *estate*) (cx:make mode (gen-c-symbol ifld-name)) (cx:make mode (string-append "FLD (" (gen-c-symbol ifld-name) ")"))) ; (let ((f (current-ifld-lookup ifld-name))) ; (make (obj-location f) ifld-name ifld-name ; (atlist-cons (bool-attr-make 'SEM-ONLY #t) ; (obj-atlist f)) ; (obj:name (ifld-hw-type f)) ; (obj:name (ifld-mode f)) ; (make 'anonymous ; 'ifield (ifld-mode f) f) ; nil #f #f)) ) ;; Operand support. (define-fn operand (*estate* options mode object-or-name) (cond ((operand? object-or-name) ;; FIXME: objects is what xop is for ;; mode checking to be done during canonicalization object-or-name) ((symbol? object-or-name) (let ((object (current-op-lookup object-or-name))) (if (not object) (estate-error *estate* "undefined operand" object-or-name)) ;; mode checking to be done during canonicalization object)) (else (estate-error *estate* "bad arg to `operand'" object-or-name))) ) (define-fn xop (*estate* options mode object) (let ((delayed (assoc '#:delay (estate-modifiers *estate*)))) (if (and delayed (equal? APPLICATION 'SID-SIMULATOR) (operand? object)) ;; if we're looking at an operand inside a (delay ...) rtx, then we ;; are talking about a _delayed_ operand, which is a different ;; beast. rather than try to work out what context we were ;; constructed within, we just clone the operand instance and set ;; the new one to have a delayed value. the setters and getters ;; will work it out. (let ((obj (object-copy object)) (amount (cadr delayed))) (op:set-delay! obj amount) obj) ;; else return the normal object object))) (define-fn local (*estate* options mode object-or-name) (cond ((rtx-temp? object-or-name) object-or-name) ((symbol? object-or-name) (let ((object (rtx-temp-lookup (estate-env-stack *estate*) object-or-name))) (if (not object) (estate-error *estate* "undefined local" object-or-name)) object)) (else (estate-error *estate* "bad arg to `local'" object-or-name))) ) (define-fn reg (*estate* options mode hw-elm . indx-sel) (let ((indx (or (list-maybe-ref indx-sel 0) 0)) (sel (or (list-maybe-ref indx-sel 1) hw-selector-default))) (s-hw *estate* mode hw-elm indx sel)) ) (define-fn raw-reg (*estate* options mode hw-elm . indx-sel) (let ((indx (or (list-maybe-ref indx-sel 0) 0)) (sel (or (list-maybe-ref indx-sel 1) hw-selector-default))) (let ((result (s-hw *estate* mode hw-elm indx sel))) (obj-cons-attr! result (bool-attr-make 'RAW #t)) result)) ) (define-fn mem (*estate* options mode addr . sel) (s-hw *estate* mode 'h-memory addr (if (pair? sel) (car sel) hw-selector-default)) ) ; ??? Hmmm... needed? The pc is usually specified as `pc' which is shorthand ; for (operand pc). ;(define-fn pc (*estate* options mode) ; s-pc ;) (define-fn ref (*estate* options mode name) (if (not (insn? (estate-owner *estate*))) (estate-error *estate* "ref: not processing an insn" (obj:name (estate-owner *estate*)))) (cx:make 'UINT (string-append "(referenced & (1 << " (number->string (op:num (insn-lookup-op (estate-owner *estate*) name))) "))")) ) ; ??? Maybe this should return an operand object. (define-fn index-of (*estate* options mode op) (send (op:index (rtx-eval-with-estate op DFLT *estate*)) 'cxmake-get *estate* (mode:lookup mode)) ) (define-fn clobber (*estate* options mode object) (cx:make VOID "; /*clobber*/\n") ) (define-fn delay (*estate* options mode num-node rtx) ;; FIXME: Try to move SID stuff into sid-foo.scm. (case APPLICATION ((SID-SIMULATOR) (let* ((n (cadddr num-node)) (old-delay (let ((old (assoc '#:delay (estate-modifiers *estate*)))) (if old (cadr old) 0))) (new-delay (+ n old-delay))) (begin ;; check for proper usage (if (let* ((hw (case (car rtx) ((operand) (op:type (current-op-lookup (rtx-arg1 rtx)))) ((xop) (op:type (rtx-xop-obj rtx))) (else #f)))) (not (and hw (or (pc? hw) (memory? hw) (register? hw))))) (estate-error *estate* "(delay ...) rtx applied to wrong type of operand, should be pc, register or memory" (car rtx))) ;; signal an error if we're delayed and not in a "parallel-insns" CPU (if (not (with-parallel?)) (estate-error *estate* "delayed operand in a non-parallel cpu" (car rtx))) ;; update cpu-global pipeline bound (cpu-set-max-delay! (current-cpu) (max (cpu-max-delay (current-cpu)) new-delay)) ;; pass along new delay to embedded rtx (rtx-eval-with-estate rtx (mode:lookup mode) (estate-with-modifiers *estate* `((#:delay ,new-delay))))))) ;; not in sid-land (else (s-sequence (estate-with-modifiers *estate* '((#:delay))) VOID '() rtx))) ) ; Gets expanded as a macro. ;(define-fn annul (*estate* yes?) ; (s-c-call *estate* 'VOID "SEM_ANNUL_INSN" "pc" yes?) ;) (define-fn skip (*estate* options mode yes?) (send pc 'cxmake-skip *estate* yes?) ;(s-c-call *estate* 'VOID "SEM_SKIP_INSN" "pc" yes?) ) (define-fn eq-attr (*estate* options mode obj attr-name value) (cx:make 'INT (string-append "(GET_ATTR (" (gen-c-symbol attr-name) ") == " (gen-c-symbol value) ")")) ) (define-fn int-attr (*estate* options mode owner attr-name) (cond ((or (equal? owner '(current-insn () DFLT)) ;; FIXME: delete in time (equal? owner '(current-insn () INSN))) (s-c-raw-call *estate* 'INT "GET_ATTR" (string-upcase (gen-c-symbol attr-name)))) (else (estate-error *estate* "attr: unsupported object type" owner))) ) (define-fn const (*estate* options mode c) (assert (not (mode:eq? 'VOID mode))) (if (mode:eq? 'DFLT mode) ;; FIXME: can't get DFLT anymore (set! mode 'INT)) (let ((mode (mode:lookup mode))) (cx:make mode (cond ((or (mode:eq? 'DI mode) (mode:eq? 'UDI mode) (< #xffffffff c) (> #x-80000000 c)) (string-append "MAKEDI (" (gen-integer (high-part c)) ", " (gen-integer (low-part c)) ")")) ((and (<= #x-80000000 c) (> #x80000000 c)) (number->string c)) ((and (<= #x80000000 c) (>= #xffffffff c)) ; ??? GCC complains if not affixed with "U" but that's not k&r. ;(string-append (number->string val) "U")) (string-append "0x" (number->string c 16))) ; Else punt. (else (number->string c))))) ) (define-fn join (*estate* options out-mode in-mode arg1 . arg-rest) ; FIXME: Endianness issues undecided. ; FIXME: Ensure correct number of args for in/out modes. ; Ensure compatible modes. (apply s-c-raw-call (cons *estate* (cons out-mode (cons (stringsym-append "JOIN" in-mode out-mode) (cons arg1 arg-rest))))) ) (define-fn subword (*estate* options mode value word-num) (let* ((mode (mode:lookup mode)) (val (rtl-c-get *estate* DFLT value)) (val-mode (cx:mode val))) (cx:make mode (string-append "SUBWORD" (obj:str-name val-mode) (obj:str-name mode) " (" (cx:c val) (if (mode-bigger? val-mode mode) (string-append ", " (if (number? word-num) (number->string word-num) (cx:c (rtl-c-get *estate* DFLT word-num)))) "") ")"))) ) (define-fn c-code (*estate* options mode text) (cx:make mode text) ) (define-fn c-call (*estate* options mode name . args) (apply s-c-call (cons *estate* (cons mode (cons name args)))) ) (define-fn c-raw-call (*estate* options mode name . args) (apply s-c-raw-call (cons *estate* (cons mode (cons name args)))) ) (define-fn nop (*estate* options mode) (cx:make VOID "((void) 0); /*nop*/\n") ) (define-fn set (*estate* options mode dst src) (if (estate-for-insn? *estate*) (rtl-c-set-trace *estate* mode dst src) (rtl-c-set-quiet *estate* mode dst src)) ) (define-fn set-quiet (*estate* options mode dst src) (rtl-c-set-quiet *estate* mode dst src) ) (define-fn neg (*estate* options mode s1) (s-unop *estate* "NEG" "-" mode s1) ) (define-fn abs (*estate* options mode s1) (s-unop *estate* "ABS" #f mode s1) ) (define-fn inv (*estate* options mode s1) (s-unop *estate* "INV" "~" mode s1) ) (define-fn not (*estate* options mode s1) (s-unop *estate* "NOT" "!" mode s1) ) (define-fn add (*estate* options mode s1 s2) (s-binop *estate* "ADD" "+" mode s1 s2) ) (define-fn sub (*estate* options mode s1 s2) (s-binop *estate* "SUB" "-" mode s1 s2) ) (define-fn addc (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "ADDC" mode s1 s2 s3) ) ;; ??? Whether to rename ADDCF/ADDOF -> ADDCCF/ADDCOF is debatable. (define-fn addc-cflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "ADDCF" mode s1 s2 s3) ) (define-fn addc-oflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "ADDOF" mode s1 s2 s3) ) (define-fn subc (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "SUBC" mode s1 s2 s3) ) ;; ??? Whether to rename SUBCF/SUBOF -> SUBCCF/SUBCOF is debatable. (define-fn subc-cflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "SUBCF" mode s1 s2 s3) ) (define-fn subc-oflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "SUBOF" mode s1 s2 s3) ) ;; ??? These are deprecated. Delete in time. (define-fn add-cflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "ADDCF" mode s1 s2 s3) ) (define-fn add-oflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "ADDOF" mode s1 s2 s3) ) (define-fn sub-cflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "SUBCF" mode s1 s2 s3) ) (define-fn sub-oflag (*estate* options mode s1 s2 s3) (s-binop-with-bit *estate* "SUBOF" mode s1 s2 s3) ) ;(define-fn zflag (*estate* options mode value) ; (list 'eq mode value (list 'const mode 0)) ;) ;(define-fn nflag (*estate* options mode value) ; (list 'lt mode value (list 'const mode 0)) ;) (define-fn mul (*estate* options mode s1 s2) (s-binop *estate* "MUL" "*" mode s1 s2) ) (define-fn div (*estate* options mode s1 s2) (s-binop *estate* "DIV" "/" mode s1 s2) ) (define-fn udiv (*estate* options mode s1 s2) (s-binop *estate* "UDIV" "/" mode s1 s2) ) (define-fn mod (*estate* options mode s1 s2) (s-binop *estate* "MOD" "%" mode s1 s2) ) (define-fn umod (*estate* options mode s1 s2) (s-binop *estate* "UMOD" "%" mode s1 s2) ) (define-fn sqrt (*estate* options mode s1) (s-unop *estate* "SQRT" #f mode s1) ) (define-fn cos (*estate* options mode s1) (s-unop *estate* "COS" #f mode s1) ) (define-fn sin (*estate* options mode s1) (s-unop *estate* "SIN" #f mode s1) ) (define-fn min (*estate* options mode s1 s2) (s-binop *estate* "MIN" #f mode s1 s2) ) (define-fn max (*estate* options mode s1 s2) (s-binop *estate* "MAX" #f mode s1 s2) ) (define-fn umin (*estate* options mode s1 s2) (s-binop *estate* "UMIN" #f mode s1 s2) ) (define-fn umax (*estate* options mode s1 s2) (s-binop *estate* "UMAX" #f mode s1 s2) ) (define-fn and (*estate* options mode s1 s2) (s-binop *estate* "AND" "&" mode s1 s2) ) (define-fn or (*estate* options mode s1 s2) (s-binop *estate* "OR" "|" mode s1 s2) ) (define-fn xor (*estate* options mode s1 s2) (s-binop *estate* "XOR" "^" mode s1 s2) ) (define-fn sll (*estate* options mode s1 s2) (s-shop *estate* "SLL" "<<" mode s1 s2) ) (define-fn srl (*estate* options mode s1 s2) (s-shop *estate* "SRL" ">>" mode s1 s2) ) (define-fn sra (*estate* options mode s1 s2) (s-shop *estate* "SRA" ">>" mode s1 s2) ) (define-fn ror (*estate* options mode s1 s2) (s-shop *estate* "ROR" #f mode s1 s2) ) (define-fn rol (*estate* options mode s1 s2) (s-shop *estate* "ROL" #f mode s1 s2) ) (define-fn andif (*estate* options mode s1 s2) (s-boolifop *estate* "ANDIF" "&&" s1 s2) ) (define-fn orif (*estate* options mode s1 s2) (s-boolifop *estate* "ORIF" "||" s1 s2) ) (define-fn ext (*estate* options mode s1) (s-convop *estate* "EXT" mode s1) ) (define-fn zext (*estate* options mode s1) (s-convop *estate* "ZEXT" mode s1) ) (define-fn trunc (*estate* options mode s1) (s-convop *estate* "TRUNC" mode s1) ) (define-fn fext (*estate* options mode s1) (s-convop *estate* "FEXT" mode s1) ) (define-fn ftrunc (*estate* options mode s1) (s-convop *estate* "FTRUNC" mode s1) ) (define-fn float (*estate* options mode s1) (s-convop *estate* "FLOAT" mode s1) ) (define-fn ufloat (*estate* options mode s1) (s-convop *estate* "UFLOAT" mode s1) ) (define-fn fix (*estate* options mode s1) (s-convop *estate* "FIX" mode s1) ) (define-fn ufix (*estate* options mode s1) (s-convop *estate* "UFIX" mode s1) ) (define-fn eq (*estate* options mode s1 s2) (s-cmpop *estate* 'eq "==" mode s1 s2) ) (define-fn ne (*estate* options mode s1 s2) (s-cmpop *estate* 'ne "!=" mode s1 s2) ) (define-fn lt (*estate* options mode s1 s2) (s-cmpop *estate* 'lt "<" mode s1 s2) ) (define-fn le (*estate* options mode s1 s2) (s-cmpop *estate* 'le "<=" mode s1 s2) ) (define-fn gt (*estate* options mode s1 s2) (s-cmpop *estate* 'gt ">" mode s1 s2) ) (define-fn ge (*estate* options mode s1 s2) (s-cmpop *estate* 'ge ">=" mode s1 s2) ) (define-fn ltu (*estate* options mode s1 s2) (s-cmpop *estate* 'ltu "<" mode s1 s2) ) (define-fn leu (*estate* options mode s1 s2) (s-cmpop *estate* 'leu "<=" mode s1 s2) ) (define-fn gtu (*estate* options mode s1 s2) (s-cmpop *estate* 'gtu ">" mode s1 s2) ) (define-fn geu (*estate* options mode s1 s2) (s-cmpop *estate* 'geu ">=" mode s1 s2) ) (define-fn member (*estate* options mode value set) ;; NOTE: There are multiple evalutions of VALUE in the generated code. ;; It's probably ok, this comment is more for completeness sake. (let ((c-value (rtl-c-get *estate* mode value)) (set (rtx-number-list-values set))) (let loop ((set (cdr set)) (code (string-append "(" (cx:c c-value) " == " (gen-integer (car set)) ")"))) (if (null? set) (cx:make (mode:lookup 'BI) (string-append "(" code ")")) (loop (cdr set) (string-append code " || (" (cx:c c-value) " == " (gen-integer (car set)) ")"))))) ) (define-fn if (*estate* options mode cond then . else) (apply s-if (append! (list *estate* mode cond then) else)) ) (define-fn cond (*estate* options mode . cond-code-list) (apply s-cond (cons *estate* (cons mode cond-code-list))) ) (define-fn case (*estate* options mode test . case-list) (apply s-case (cons *estate* (cons mode (cons test case-list)))) ) (define-fn parallel (*estate* options mode ignore expr . exprs) (apply s-parallel (cons *estate* (cons expr exprs))) ) (define-fn sequence (*estate* options mode locals expr . exprs) (apply s-sequence (cons *estate* (cons mode (cons locals (cons expr exprs))))) ) (define-fn do-count (*estate* options mode iter-var nr-times expr . exprs) (apply s-do-count (cons *estate* (cons iter-var (cons nr-times (cons expr exprs))))) ) (define-fn closure (*estate* options mode isa-name-list env-stack expr) (rtl-c-with-estate (estate-make-closure *estate* isa-name-list (rtx-make-env-stack env-stack)) (mode:lookup mode) expr) ) ;; The result is the rtl->c generator table. ;; FIXME: verify all elements are filled table )) ;; End of /rtl-c-build-table