// Uses nacl's secret_box to encrypt a net.Conn. // It is (meant to be) an implementation of the STS protocol. // Note we do not (yet) assume that a remote peer's pubkey // is known ahead of time, and thus we are technically // still vulnerable to MITM. (TODO!) // See docs/sts-final.pdf for more info package p2p import ( "bytes" crand "crypto/rand" "crypto/sha256" "encoding/binary" "errors" "io" "net" "time" "golang.org/x/crypto/nacl/box" "golang.org/x/crypto/nacl/secretbox" "golang.org/x/crypto/ripemd160" "github.com/tendermint/go-crypto" "github.com/tendermint/go-wire" cmn "github.com/tendermint/tmlibs/common" ) // 2 + 1024 == 1026 total frame size const dataLenSize = 2 // uint16 to describe the length, is <= dataMaxSize const dataMaxSize = 1024 const totalFrameSize = dataMaxSize + dataLenSize const sealedFrameSize = totalFrameSize + secretbox.Overhead const authSigMsgSize = (32 + 1) + (64 + 1) // fixed size (length prefixed) byte arrays // Implements net.Conn type SecretConnection struct { conn io.ReadWriteCloser recvBuffer []byte recvNonce *[24]byte sendNonce *[24]byte remPubKey crypto.PubKeyEd25519 shrSecret *[32]byte // shared secret } // Performs handshake and returns a new authenticated SecretConnection. // Returns nil if error in handshake. // Caller should call conn.Close() // See docs/sts-final.pdf for more information. func MakeSecretConnection(conn io.ReadWriteCloser, locPrivKey crypto.PrivKeyEd25519) (*SecretConnection, error) { locPubKey := locPrivKey.PubKey().Unwrap().(crypto.PubKeyEd25519) // Generate ephemeral keys for perfect forward secrecy. locEphPub, locEphPriv := genEphKeys() // Write local ephemeral pubkey and receive one too. // NOTE: every 32-byte string is accepted as a Curve25519 public key // (see DJB's Curve25519 paper: http://cr.yp.to/ecdh/curve25519-20060209.pdf) remEphPub, err := shareEphPubKey(conn, locEphPub) if err != nil { return nil, err } // Compute common shared secret. shrSecret := computeSharedSecret(remEphPub, locEphPriv) // Sort by lexical order. loEphPub, hiEphPub := sort32(locEphPub, remEphPub) // Generate nonces to use for secretbox. recvNonce, sendNonce := genNonces(loEphPub, hiEphPub, locEphPub == loEphPub) // Generate common challenge to sign. challenge := genChallenge(loEphPub, hiEphPub) // Construct SecretConnection. sc := &SecretConnection{ conn: conn, recvBuffer: nil, recvNonce: recvNonce, sendNonce: sendNonce, shrSecret: shrSecret, } // Sign the challenge bytes for authentication. locSignature := signChallenge(challenge, locPrivKey) // Share (in secret) each other's pubkey & challenge signature authSigMsg, err := shareAuthSignature(sc, locPubKey, locSignature) if err != nil { return nil, err } remPubKey, remSignature := authSigMsg.Key, authSigMsg.Sig if !remPubKey.VerifyBytes(challenge[:], remSignature) { return nil, errors.New("Challenge verification failed") } // We've authorized. sc.remPubKey = remPubKey.Unwrap().(crypto.PubKeyEd25519) return sc, nil } // Returns authenticated remote pubkey func (sc *SecretConnection) RemotePubKey() crypto.PubKeyEd25519 { return sc.remPubKey } // Writes encrypted frames of `sealedFrameSize` // CONTRACT: data smaller than dataMaxSize is read atomically. func (sc *SecretConnection) Write(data []byte) (n int, err error) { for 0 < len(data) { var frame []byte = make([]byte, totalFrameSize) var chunk []byte if dataMaxSize < len(data) { chunk = data[:dataMaxSize] data = data[dataMaxSize:] } else { chunk = data data = nil } chunkLength := len(chunk) binary.BigEndian.PutUint16(frame, uint16(chunkLength)) copy(frame[dataLenSize:], chunk) // encrypt the frame var sealedFrame = make([]byte, sealedFrameSize) secretbox.Seal(sealedFrame[:0], frame, sc.sendNonce, sc.shrSecret) // fmt.Printf("secretbox.Seal(sealed:%X,sendNonce:%X,shrSecret:%X\n", sealedFrame, sc.sendNonce, sc.shrSecret) incr2Nonce(sc.sendNonce) // end encryption _, err := sc.conn.Write(sealedFrame) if err != nil { return n, err } else { n += len(chunk) } } return } // CONTRACT: data smaller than dataMaxSize is read atomically. func (sc *SecretConnection) Read(data []byte) (n int, err error) { if 0 < len(sc.recvBuffer) { n_ := copy(data, sc.recvBuffer) sc.recvBuffer = sc.recvBuffer[n_:] return } sealedFrame := make([]byte, sealedFrameSize) _, err = io.ReadFull(sc.conn, sealedFrame) if err != nil { return } // decrypt the frame var frame = make([]byte, totalFrameSize) // fmt.Printf("secretbox.Open(sealed:%X,recvNonce:%X,shrSecret:%X\n", sealedFrame, sc.recvNonce, sc.shrSecret) _, ok := secretbox.Open(frame[:0], sealedFrame, sc.recvNonce, sc.shrSecret) if !ok { return n, errors.New("Failed to decrypt SecretConnection") } incr2Nonce(sc.recvNonce) // end decryption var chunkLength = binary.BigEndian.Uint16(frame) // read the first two bytes if chunkLength > dataMaxSize { return 0, errors.New("chunkLength is greater than dataMaxSize") } var chunk = frame[dataLenSize : dataLenSize+chunkLength] n = copy(data, chunk) sc.recvBuffer = chunk[n:] return } // Implements net.Conn func (sc *SecretConnection) Close() error { return sc.conn.Close() } func (sc *SecretConnection) LocalAddr() net.Addr { return sc.conn.(net.Conn).LocalAddr() } func (sc *SecretConnection) RemoteAddr() net.Addr { return sc.conn.(net.Conn).RemoteAddr() } func (sc *SecretConnection) SetDeadline(t time.Time) error { return sc.conn.(net.Conn).SetDeadline(t) } func (sc *SecretConnection) SetReadDeadline(t time.Time) error { return sc.conn.(net.Conn).SetReadDeadline(t) } func (sc *SecretConnection) SetWriteDeadline(t time.Time) error { return sc.conn.(net.Conn).SetWriteDeadline(t) } func genEphKeys() (ephPub, ephPriv *[32]byte) { var err error ephPub, ephPriv, err = box.GenerateKey(crand.Reader) if err != nil { cmn.PanicCrisis("Could not generate ephemeral keypairs") } return } func shareEphPubKey(conn io.ReadWriteCloser, locEphPub *[32]byte) (remEphPub *[32]byte, err error) { var err1, err2 error cmn.Parallel( func() { _, err1 = conn.Write(locEphPub[:]) }, func() { remEphPub = new([32]byte) _, err2 = io.ReadFull(conn, remEphPub[:]) }, ) if err1 != nil { return nil, err1 } if err2 != nil { return nil, err2 } return remEphPub, nil } func computeSharedSecret(remPubKey, locPrivKey *[32]byte) (shrSecret *[32]byte) { shrSecret = new([32]byte) box.Precompute(shrSecret, remPubKey, locPrivKey) return } func sort32(foo, bar *[32]byte) (lo, hi *[32]byte) { if bytes.Compare(foo[:], bar[:]) < 0 { lo = foo hi = bar } else { lo = bar hi = foo } return } func genNonces(loPubKey, hiPubKey *[32]byte, locIsLo bool) (recvNonce, sendNonce *[24]byte) { nonce1 := hash24(append(loPubKey[:], hiPubKey[:]...)) nonce2 := new([24]byte) copy(nonce2[:], nonce1[:]) nonce2[len(nonce2)-1] ^= 0x01 if locIsLo { recvNonce = nonce1 sendNonce = nonce2 } else { recvNonce = nonce2 sendNonce = nonce1 } return } func genChallenge(loPubKey, hiPubKey *[32]byte) (challenge *[32]byte) { return hash32(append(loPubKey[:], hiPubKey[:]...)) } func signChallenge(challenge *[32]byte, locPrivKey crypto.PrivKeyEd25519) (signature crypto.SignatureEd25519) { signature = locPrivKey.Sign(challenge[:]).Unwrap().(crypto.SignatureEd25519) return } type authSigMessage struct { Key crypto.PubKey Sig crypto.Signature } func shareAuthSignature(sc *SecretConnection, pubKey crypto.PubKeyEd25519, signature crypto.SignatureEd25519) (*authSigMessage, error) { var recvMsg authSigMessage var err1, err2 error cmn.Parallel( func() { msgBytes := wire.BinaryBytes(authSigMessage{pubKey.Wrap(), signature.Wrap()}) _, err1 = sc.Write(msgBytes) }, func() { readBuffer := make([]byte, authSigMsgSize) _, err2 = io.ReadFull(sc, readBuffer) if err2 != nil { return } n := int(0) // not used. recvMsg = wire.ReadBinary(authSigMessage{}, bytes.NewBuffer(readBuffer), authSigMsgSize, &n, &err2).(authSigMessage) }) if err1 != nil { return nil, err1 } if err2 != nil { return nil, err2 } return &recvMsg, nil } func verifyChallengeSignature(challenge *[32]byte, remPubKey crypto.PubKeyEd25519, remSignature crypto.SignatureEd25519) bool { return remPubKey.VerifyBytes(challenge[:], remSignature.Wrap()) } //-------------------------------------------------------------------------------- // sha256 func hash32(input []byte) (res *[32]byte) { hasher := sha256.New() hasher.Write(input) // does not error resSlice := hasher.Sum(nil) res = new([32]byte) copy(res[:], resSlice) return } // We only fill in the first 20 bytes with ripemd160 func hash24(input []byte) (res *[24]byte) { hasher := ripemd160.New() hasher.Write(input) // does not error resSlice := hasher.Sum(nil) res = new([24]byte) copy(res[:], resSlice) return } // ripemd160 func hash20(input []byte) (res *[20]byte) { hasher := ripemd160.New() hasher.Write(input) // does not error resSlice := hasher.Sum(nil) res = new([20]byte) copy(res[:], resSlice) return } // increment nonce big-endian by 2 with wraparound. func incr2Nonce(nonce *[24]byte) { incrNonce(nonce) incrNonce(nonce) } // increment nonce big-endian by 1 with wraparound. func incrNonce(nonce *[24]byte) { for i := 23; 0 <= i; i-- { nonce[i] += 1 if nonce[i] != 0 { return } } }